brought to you by TCORE

J. Algebra Comb. Discrete Appl. 3(3) • 155–158

Received: 30 October 2015 Accepted: 06 January 2016

Journal of Algebra Combinatorics Discrete Structures and Applications

The covering number of M_{24}

Research Article

Michael Epstein, Spyros S. Magliveras

Abstract: A *finite cover* C of a group G is a finite collection of proper subgroups of G such that G is equal to the union of all of the members of C. Such a cover is called *minimal* if it has the smallest cardinality among all finite covers of G. The *covering number* of G, denoted by $\sigma(G)$, is the number of subgroups in a minimal cover of G. In this paper the covering number of the Mathieu group M_{24} is shown to be 3336.

2010 MSC: 20B40, 20D05, 20E07, 20E32

Keywords: Group theory, Group coverings, Finite simple groups

1. Introduction

A finite collection C of proper subgroups of a group G is said to be a *finite cover* of G if $\bigcup_{H \in C} H = G$. Of course if G is cyclic then G does not admit such a cover, but any group with a finite noncyclic homomorphic image has a finite cover. The *covering number* of such a group G is denoted by $\sigma(G)$, and is defined by $\sigma(G) = min\{|C| : C \text{ is a finite cover of } G\}$. Any cover satisfying $|C| = \sigma(G)$ is called *minimal*.

In [3] J. H. E. Cohn proved that if G is a finite noncyclic supersolvable group then $\sigma(G) = p + 1$, where p is the least prime such that G has more than one subgroup of index p, and conjectured that if G is a finite noncyclic solvable group, then $\sigma(G) = p^a + 1$, where p^a is the order of the smallest chief factor of G with more than one complement in G. This conjecture was proven by Tomkinson in [11], who suggested investigating the covering numbers of simple groups. In [2], R. Bryce, V. Fedri, and L. Serena determined the covering numbers of some linear groups. The covering numbers of the Suzuki groups were investigated by M. S. Lucido in [9].

A. Maróti considers alternating and symmetric groups in [10], wherein it is shown that $\sigma(\mathbb{S}_n) = 2^{n-1}$ if n is odd and not equal to 9, that $\sigma(\mathbb{S}_n) \leq 2^{n-2}$ if n is even, and that if n is not equal to 7 or 9 then $\sigma(\mathbb{A}_n) \geq 2^{n-2}$ with equality if and only if $n \equiv 2 \pmod{4}$. Further results on the covering numbers of small alternating and symmetric groups can be found in [3, 5, 7, 8].

Michael Epstein (Corresponding Author), Spyros S. Magliveras; Department of Mathematical Sciences, Florida Atlantic University, Boca Raton, FL 33431 (email: mepstein2012@fau.edu, spyros@fau.edu).

In [6], P. E. Holmes determined the covering numbers of the Mathieu groups M_{11} , M_{22} , and M_{23} , as well as the Lyons group and the O'Nan group, and gave upper and lower bounds for the covering numbers of the Janko group J_1 and the McLaughlin group. The covering number of M_{12} was determined by L. C. Kappe, D. Nikolova-Popova, and E. Swartz in [8].

The aim of this paper is to show that $\sigma(M_{24}) = 3336$.

2. Preliminaries

Throughout we use standard terminology and notation from group theory. We will write $N \cdot H$ and $N \setminus H$ to denote a split extension of N by H and a general extension of N by H respectively. If π is an element of a permutation group and the disjoint cycle decomposition of π has k_i cycles of length m_i , $1 \leq i \leq r$, with $m_1 > m_2 > ... > m_r$, we will write the cycle type of π as $m_1^{k_1} m_2^{k_2} ... m_r^{k_r}$.

Let G be a group and $x \in G$. If $\langle x \rangle$ is maximal among cyclic subgroups of G then we call x a *principal* element and $\langle x \rangle$ a *principal subgroup* of G. It is easy to see that a collection C of proper subgroups of G is a cover if and only if every principal subgroup is contained in a member of C.

If G is a finite noncyclic group and C is a finite cover of G, then by replacing each subgroup $H \in C$ with a maximal subgroup M of G such that $H \leq M$, we can obtain a cover C' of G consisting of maximal subgroups with $|C'| \leq |C|$. So, for the purpose of determining the covering number of such a group it suffices to consider covers consisting solely of maximal subgroups.

3. The Mathieu group M_{24}

In light of the discussion in section 2, we begin with the maximal subgroups and the principal elements of M_{24} . As seen in [4], there are 9 conjugacy classes of maximal subgroups of M_{24} , which we denote by \mathcal{M}_i , $1 \leq i \leq 9$ ordered such that $|\mathcal{M}_1| \leq |\mathcal{M}_2| \leq ... \leq |\mathcal{M}_9|$. The sizes of these conjugacy classes of maximal subgroups are given by $(|\mathcal{M}_1|, ..., |\mathcal{M}_9|) = (24, 276, 759, 1288, 1771, 2024, 3795, 40320, 1457280)$. If $H_i \in \mathcal{M}_i$ for i = 1, ..., 9 then the isomorphism types of the H_i are as follows: $H_1 \cong M_{23}$, $H_2 \cong M_{22} \cdot \mathbb{Z}_2$, $H_3 \cong \mathbb{Z}_2^4 \cdot \mathbb{A}_8$, $H_4 \cong M_{12} \cdot \mathbb{Z}_2$, $H_5 \cong \mathbb{Z}_2^6 \cdot (\mathbb{Z}_3 \setminus \mathbb{S}_6)$, $H_6 \cong L_3(4) \cdot \mathbb{S}_3$, $H_7 \cong \mathbb{Z}_2^6 \cdot (L_3(2) \times \mathbb{S}_3)$, $H_8 \cong L_2(23)$, and $H_9 \cong L_2(7)$. Let $X = \{j \in \mathbb{Z} \mid 1 \leq j \leq 24\}$, and for a positive integer k let $\binom{X}{k}$ denote the set of all subsets of X with cardinality k. We note that H_1 , H_2 , and H_6 are stabilizers in the actions of M_{24} on X, $\binom{X}{2}$, and $\binom{X}{3}$ respectively.

The principal elements of M_{24} (represented on 24 points) have cycle types $8^2 4^1 2^1 1^2$, $10^2 2^2$, $11^2 1^2$, $12^1 6^1 4^1 2^1$, 12^2 , $14^1 7^1 2^1 1^1$, $15^1 5^1 3^1 1^1$, $21^1 3^1$, and $23^1 1^1$. We will denote the sets of principal elements with these cycle types by $\mathcal{T}_1, \ldots, \mathcal{T}_9$ respectively. We remark that $\mathcal{T}_6, \mathcal{T}_7, \mathcal{T}_8$, and \mathcal{T}_9 are each the union of two conjugacy classes of principal elements with the same cycle type, while the remaining \mathcal{T}_i consist of a single conjugacy class of elements. The cardinalities of these sets are given by $(|\mathcal{T}_1|, \ldots, |\mathcal{T}_9|) = (15301440, 12241152, 22256640, 20401920, 20401920, 34974720, 32643072, 23316480, 21288960).$

We describe the incidence between the sets $\mathcal{T}_1, \ldots, \mathcal{T}_9$ and the classes $\mathcal{M}_1, \ldots, \mathcal{M}_9$ of maximal subgroups with a matrix $A = (a_{i,j})$ where the entry $a_{i,j}$ in row \mathcal{T}_i and column \mathcal{M}_j is the number of elements from \mathcal{T}_i contained in each maximal subgroup from class \mathcal{M}_j . The entries of this matrix were computed using the Magma algebra system [1], and are given in Table 1.

Observe that the elements from \mathcal{T}_1 , \mathcal{T}_3 , \mathcal{T}_6 , \mathcal{T}_7 , and \mathcal{T}_9 each fix a point of X and therefore are contained within the subgroups from class \mathcal{M}_1 . Each element from \mathcal{T}_8 has a single cycle of length 3 and is therefore contained within a unique member of class \mathcal{M}_6 . From table 1 we can see that the subgroups from class \mathcal{M}_4 contain elements from each of \mathcal{T}_2 , \mathcal{T}_4 , and \mathcal{T}_5 , and since each of these sets of principal elements consists of a single conjugacy class, every element from $\mathcal{T}_2 \cup \mathcal{T}_4 \cup \mathcal{T}_5$ is contained within some member of \mathcal{M}_4 . Consequently, $\mathcal{M}_1 \cup \mathcal{M}_4 \cup \mathcal{M}_6$ is a cover of M_{24} by 24 + 1288 + 2024 = 3336 maximal subgroups, and $\sigma(M_{24}) \leq 3336$.

Table 1. The incidence matrix A

$\mathcal{T}_i ackslash \mathcal{M}_j$	\mathcal{M}_1	\mathcal{M}_2	\mathcal{M}_3	\mathcal{M}_4	\mathcal{M}_5	\mathcal{M}_6	\mathcal{M}_7	\mathcal{M}_8	\mathcal{M}_9
\mathcal{T}_1	1275120	110880	20160	23760	8640	15120	4032	0	0
\mathcal{T}_2	0	88704	0	28512	6912	0	0	0	0
\mathcal{T}_3	1854720	80640	0	17280	0	0	0	2760	0
\mathcal{T}_4	0	73920	26880	31680	23040	0	5376	0	0
\mathcal{T}_5	0	0	0	15840	11520	0	5376	1012	0
\mathcal{T}_6	1457280	126720	46080	0	0	17280	9216	0	0
\mathcal{T}_7	1360128	0	43008	0	18432	16128	0	0	0
\mathcal{T}_8	0	0	0	0	0	11520	6144	0	0
\mathcal{T}_9	887040	0	0	0	0	0	0	528	0

Now suppose that C is a cover of M_{24} which consists of maximal subgroups. For $1 \le i \le 9$, let $x_i = |C \cap \mathcal{M}_i|$. Since the subgroups from class \mathcal{M}_9 contain no principal elements, we may assume without loss of generality that $x_9 = 0$. Then since C is a cover of M_{24} we must have

$$\sum_{j=1}^{8} a_{i,j} x_j \ge |\mathcal{T}_i|, \ 1 \le i \le 9.$$
(1)

The reader can verify (by integer linear programming, for example) that if $(x_1, ..., x_8)$ is a tuple of nonnegative integers with $x_j \leq |\mathcal{M}_j|$ for $1 \leq j \leq 8$ which satisfies the system of inequalities given by (1), then $\sum_{j=1}^8 x_j \geq 3336$. Thus for any such cover \mathcal{C} we have $|\mathcal{C}| \geq 3336$, and so we conclude that $\sigma(M_{24}) = 3336$.

Acknowledgment: The authors would like to express their thanks to Dr. Igor Kliakhandler whose generous support made possible a most significant Conference on *Algebraic Combinatorics and Applications* at Michigan Technical University in August, 2015. The authors also wish to thank Prof. Vladimir Tonchev for his work to secure extra funding, a superbly organized conference, and the wonderful hospitality.

References

- W. Bosma, J. Cannon, C. Playoust, The Magma algebra system I: The user language, J. Symbolic Comput. 24(3-4) (1997) 235–265.
- [2] R. A. Bryce, V. Fedri, L. Serena, Subgroup coverings of some linear groups, Bull. Austral. Math. Soc. 60(2) (1999) 227–238.
- [3] J. H. E. Cohn, On *n*-sum groups, Math. Scand. 75(1) (1994) 44–58.
- [4] J. H. Conway, R. T. Curtis, S. P. Norton, R. A. Parker, R. A. Wilson, Atlas of Finite Groups, Clarendon Press, Oxford, 1985.
- [5] M. Epstein, S.S. Magliveras, D. Nikolova-Popova, The covering numbers of A₉ and A₁₁, to appear in the J. Combin. Math. Combin. Comput.
- [6] P. E. Holmes, Subgroup coverings of some sporadic groups, J. Combin. Theory Ser. A 113(6) (2006) 1204–1213.

- [7] L. C. Kappe, J. L. Redden, On the covering number of small alternating groups, Contemp. Math. 511 (2010) 109–125.
- [8] L. C. Kappe, D. Nikolova-Popova, E. Swartz, On the covering number of small symmetric groups and some sporadic simple groups, arXiv:1409.2292v1 [math.GR].
- [9] M. S. Lucido, On the covers of finite groups, in: C. M. Campbell, E. F. Robertson, G. C. Smith (Eds), Groups St. Andrews 2001, in Oxford, vol II, in : London Math. Soc. Lecture Note Ser. 305, 2003, 395–399.
- [10] A. Maróti, Covering the symmetric groups with proper subgroups, J. Combin. Theory Ser. A 110(1) (2005) 97–111.
- [11] M. J. Tomkinson, Groups as the union of proper subgroups, Math. Scand. 81(2) (1997) 191–198.