The covering number of M_{24}

Michael Epstein, Spyros S. Magliveras

Abstract

A finite cover \mathcal{C} of a group G is a finite collection of proper subgroups of G such that G is equal to the union of all of the members of \mathcal{C}. Such a cover is called minimal if it has the smallest cardinality among all finite covers of G. The covering number of G, denoted by $\sigma(G)$, is the number of subgroups in a minimal cover of G. In this paper the covering number of the Mathieu group M_{24} is shown to be 3336 .

2010 MSC: 20B40, 20D05, 20E07, 20E32
Keywords: Group theory, Group coverings, Finite simple groups

1. Introduction

A finite collection \mathcal{C} of proper subgroups of a group G is said to be a finite cover of G if $\bigcup_{H \in \mathcal{C}} H=G$. Of course if G is cyclic then G does not admit such a cover, but any group with a finite noncyclic homomorphic image has a finite cover. The covering number of such a group G is denoted by $\sigma(G)$, and is defined by $\sigma(G)=\min \{|\mathcal{C}|: \mathcal{C}$ is a finite cover of $G\}$. Any cover satisfying $|\mathcal{C}|=\sigma(G)$ is called minimal.

In [3] J. H. E. Cohn proved that if G is a finite noncyclic supersolvable group then $\sigma(G)=p+1$, where p is the least prime such that G has more than one subgroup of index p, and conjectured that if G is a finite noncyclic solvable group, then $\sigma(G)=p^{a}+1$, where p^{a} is the order of the smallest chief factor of G with more than one complement in G. This conjecture was proven by Tomkinson in [11], who suggested investigating the covering numbers of simple groups. In [2], R. Bryce, V. Fedri, and L. Serena determined the covering numbers of some linear groups. The covering numbers of the Suzuki groups were investigated by M. S. Lucido in [9].
A. Maróti considers alternating and symmetric groups in [10], wherein it is shown that $\sigma\left(\mathbb{S}_{n}\right)=2^{n-1}$ if n is odd and not equal to 9 , that $\sigma\left(\mathbb{S}_{n}\right) \leq 2^{n-2}$ if n is even, and that if n is not equal to 7 or 9 then $\sigma\left(\mathbb{A}_{n}\right) \geq 2^{n-2}$ with equality if and only if $n \equiv 2(\bmod 4)$. Further results on the covering numbers of small alternating and symmetric groups can be found in $[3,5,7,8]$.

[^0]In [6], P. E. Holmes determined the covering numbers of the Mathieu groups M_{11}, M_{22}, and M_{23}, as well as the Lyons group and the O'Nan group, and gave upper and lower bounds for the covering numbers of the Janko group J_{1} and the McLaughlin group. The covering number of M_{12} was determined by L. C. Kappe, D. Nikolova-Popova, and E. Swartz in [8].

The aim of this paper is to show that $\sigma\left(M_{24}\right)=3336$.

2. Preliminaries

Throughout we use standard terminology and notation from group theory. We will write $N \cdot H$ and $N \backslash H$ to denote a split extension of N by H and a general extension of N by H respectively. If π is an element of a permutation group and the disjoint cycle decomposition of π has k_{i} cycles of length m_{i}, $1 \leq i \leq r$, with $m_{1}>m_{2}>\ldots>m_{r}$, we will write the cycle type of π as $m_{1}^{k_{1}} m_{2}^{k_{2}} \ldots m_{r}^{k_{r}}$.

Let G be a group and $x \in G$. If $\langle x\rangle$ is maximal among cyclic subgroups of G then we call x a principal element and $\langle x\rangle$ a principal subgroup of G. It is easy to see that a collection \mathcal{C} of proper subgroups of G is a cover if and only if every principal subgroup is contained in a member of \mathcal{C}.

If G is a finite noncyclic group and \mathcal{C} is a finite cover of G, then by replacing each subgroup $H \in \mathcal{C}$ with a maximal subgroup M of G such that $H \leq M$, we can obtain a cover \mathcal{C}^{\prime} of G consisting of maximal subgroups with $\left|\mathcal{C}^{\prime}\right| \leq|\mathcal{C}|$. So, for the purpose of determining the covering number of such a group it suffices to consider covers consisting solely of maximal subgroups.

3. The Mathieu group M_{24}

In light of the discussion in section 2, we begin with the maximal subgroups and the principal elements of M_{24}. As seen in [4], there are 9 conjugacy classes of maximal subgroups of M_{24}, which we denote by $\mathcal{M}_{i}, 1 \leq i \leq 9$ ordered such that $\left|\mathcal{M}_{1}\right| \leq\left|\mathcal{M}_{2}\right| \leq \ldots \leq\left|\mathcal{M}_{9}\right|$. The sizes of these conjugacy classes of maximal subgroups are given by $\left(\left|\mathcal{M}_{1}\right|, \ldots,\left|\mathcal{M}_{9}\right|\right)=(24,276,759,1288,1771,2024,3795,40320$, 1457280). If $H_{i} \in \mathcal{M}_{i}$ for $i=1, \ldots, 9$ then the isomorphism types of the H_{i} are as follows: $H_{1} \cong M_{23}$, $H_{2} \cong M_{22} \cdot \mathbb{Z}_{2}, H_{3} \cong \mathbb{Z}_{2}^{4} \cdot \mathbb{A}_{8}, H_{4} \cong M_{12} \cdot \mathbb{Z}_{2}, H_{5} \cong \mathbb{Z}_{2}^{6} \cdot\left(\mathbb{Z}_{3} \backslash \mathbb{S}_{6}\right), H_{6} \cong L_{3}(4) \cdot \mathbb{S}_{3}, H_{7} \cong \mathbb{Z}_{2}^{6} \cdot\left(L_{3}(2) \times \mathbb{S}_{3}\right)$, $H_{8} \cong L_{2}(23)$, and $H_{9} \cong L_{2}(7)$. Let $X=\{j \in \mathbb{Z} \mid 1 \leq j \leq 24\}$, and for a positive integer k let $\binom{X}{k}$ denote the set of all subsets of X with cardinality k. We note that H_{1}, H_{2}, and H_{6} are stabilizers in the actions of M_{24} on $X,\binom{X}{2}$, and $\binom{X}{3}$ respectively.

The principal elements of M_{24} (represented on 24 points) have cycle types $8^{2} 4^{1} 2^{1} 1^{2}, 10^{2} 2^{2}, 11^{2} 1^{2}$, $12^{1} 6^{1} 4^{1} 2^{1}, 12^{2}, 14^{1} 7^{1} 2^{1} 1^{1}, 15^{1} 5^{1} 3^{1} 1^{1}, 21^{1} 3^{1}$, and $23^{1} 1^{1}$. We will denote the sets of principal elements with these cycle types by $\mathcal{T}_{1}, \ldots, \mathcal{T}_{9}$ respectively. We remark that $\mathcal{T}_{6}, \mathcal{T}_{7}, \mathcal{T}_{8}$, and \mathcal{T}_{9} are each the union of two conjugacy classes of principal elements with the same cycle type, while the remaining \mathcal{T}_{i} consist of a single conjugacy class of elements. The cardinalities of these sets are given by $\left(\left|\mathcal{T}_{1}\right|, \ldots,\left|\mathcal{T}_{9}\right|\right)=$ (15301440, 12241152, 22256640, 20401920, 20401920, 34974720, 32643072, 23316480, 21288960).

We describe the incidence between the sets $\mathcal{T}_{1}, \ldots, \mathcal{T}_{9}$ and the classes $\mathcal{M}_{1}, \ldots, \mathcal{M}_{9}$ of maximal subgroups with a matrix $A=\left(a_{i, j}\right)$ where the entry $a_{i, j}$ in row \mathcal{T}_{i} and column \mathcal{M}_{j} is the number of elements from \mathcal{T}_{i} contained in each maximal subgroup from class \mathcal{M}_{j}. The entries of this matrix were computed using the Magma algebra system [1], and are given in Table 1.

Observe that the elements from $\mathcal{T}_{1}, \mathcal{T}_{3}, \mathcal{T}_{6}, \mathcal{T}_{7}$, and \mathcal{T}_{9} each fix a point of X and therefore are contained within the subgroups from class \mathcal{M}_{1}. Each element from \mathcal{T}_{8} has a single cycle of length 3 and is therefore contained within a unique member of class \mathcal{M}_{6}. From table 1 we can see that the subgroups from class \mathcal{M}_{4} contain elements from each of $\mathcal{T}_{2}, \mathcal{T}_{4}$, and \mathcal{T}_{5}, and since each of these sets of principal elements consists of a single conjugacy class, every element from $\mathcal{T}_{2} \cup \mathcal{T}_{4} \cup \mathcal{T}_{5}$ is contained within some member of \mathcal{M}_{4}. Consequently, $\mathcal{M}_{1} \cup \mathcal{M}_{4} \cup \mathcal{M}_{6}$ is a cover of M_{24} by $24+1288+2024=3336$ maximal subgroups, and $\sigma\left(M_{24}\right) \leq 3336$.

Table 1. The incidence matrix A

$\mathcal{T}_{i} \backslash \mathcal{M}_{j}$	\mathcal{M}_{1}	\mathcal{M}_{2}	\mathcal{M}_{3}	\mathcal{M}_{4}	\mathcal{M}_{5}	\mathcal{M}_{6}	\mathcal{M}_{7}	\mathcal{M}_{8}	\mathcal{M}_{9}
\mathcal{T}_{1}	1275120	110880	20160	23760	8640	15120	4032	0	0
\mathcal{T}_{2}	0	88704	0	28512	6912	0	0	0	0
\mathcal{T}_{3}	1854720	80640	0	17280	0	0	0	2760	0
\mathcal{T}_{4}	0	73920	26880	31680	23040	0	5376	0	0
\mathcal{T}_{5}	0	0	0	15840	11520	0	5376	1012	0
\mathcal{T}_{6}	1457280	126720	46080	0	0	17280	9216	0	0
\mathcal{T}_{7}	1360128	0	43008	0	18432	16128	0	0	0
\mathcal{T}_{8}	0	0	0	0	0	11520	6144	0	0
\mathcal{T}_{9}	887040	0	0	0	0	0	0	528	0

Now suppose that \mathcal{C} is a cover of M_{24} which consists of maximal subgroups. For $1 \leq i \leq 9$, let $x_{i}=\left|\mathcal{C} \cap \mathcal{M}_{i}\right|$. Since the subgroups from class \mathcal{M}_{9} contain no principal elements, we may assume without loss of generality that $x_{9}=0$. Then since \mathcal{C} is a cover of M_{24} we must have

$$
\begin{equation*}
\sum_{j=1}^{8} a_{i, j} x_{j} \geq\left|\mathcal{T}_{i}\right|, \quad 1 \leq i \leq 9 \tag{1}
\end{equation*}
$$

The reader can verify (by integer linear programming, for example) that if (x_{1}, \ldots, x_{8}) is a tuple of nonnegative integers with $x_{j} \leq\left|\mathcal{M}_{j}\right|$ for $1 \leq j \leq 8$ which satisfies the system of inequalities given by (1), then $\sum_{j=1}^{8} x_{j} \geq 3336$. Thus for any such cover \mathcal{C} we have $|\mathcal{C}| \geq 3336$, and so we conclude that $\sigma\left(M_{24}\right)=3336$.

Acknowledgment: The authors would like to express their thanks to Dr. Igor Kliakhandler whose generous support made possible a most significant Conference on Algebraic Combinatorics and Applications at Michigan Technical University in August, 2015. The authors also wish to thank Prof. Vladimir Tonchev for his work to secure extra funding, a superbly organized conference, and the wonderful hospitality.

References

[1] W. Bosma, J. Cannon, C. Playoust, The Magma algebra system I: The user language, J. Symbolic Comput. 24(3-4) (1997) 235-265.
[2] R. A. Bryce, V. Fedri, L. Serena, Subgroup coverings of some linear groups, Bull. Austral. Math. Soc. 60(2) (1999) 227-238.
[3] J. H. E. Cohn, On n-sum groups, Math. Scand. 75(1) (1994) 44-58.
[4] J. H. Conway, R. T. Curtis, S. P. Norton, R. A. Parker, R. A. Wilson, Atlas of Finite Groups, Clarendon Press, Oxford, 1985.
[5] M. Epstein, S.S. Magliveras, D. Nikolova-Popova, The covering numbers of \mathbb{A}_{9} and \mathbb{A}_{11}, to appear in the J. Combin. Math. Combin. Comput.
[6] P. E. Holmes, Subgroup coverings of some sporadic groups, J. Combin. Theory Ser. A 113(6) (2006) 1204-1213.
[7] L. C. Kappe, J. L. Redden, On the covering number of small alternating groups, Contemp. Math. 511 (2010) 109-125.
[8] L. C. Kappe, D. Nikolova-Popova, E. Swartz, On the covering number of small symmetric groups and some sporadic simple groups, arXiv:1409.2292v1 [math.GR].
[9] M. S. Lucido, On the covers of finite groups, in: C. M. Campbell, E. F. Robertson, G. C. Smith (Eds), Groups St. Andrews 2001, in Oxford, vol II, in : London Math. Soc. Lecture Note Ser. 305, 2003, 395-399.
[10] A. Maróti, Covering the symmetric groups with proper subgroups, J. Combin. Theory Ser. A 110(1) (2005) 97-111.
[11] M. J. Tomkinson, Groups as the union of proper subgroups, Math. Scand. 81(2) (1997) 191-198.

[^0]: Michael Epstein (Corresponding Author), Spyros S. Magliveras; Department of Mathematical Sciences, Florida Atlantic University, Boca Raton, FL 33431 (email: mepstein2012@fau.edu, spyros@fau.edu).

