Journal of Algebra Combinatorics Discrete Structures and Applications

The 3 -GDDs of type $g^{3} u^{2}$

Research Article

Charles J. Colbourn, Melissa S. Keranen, Donald L. Kreher

Abstract: A 3-GDD of type $g^{3} u^{2}$ exists if and only if g and u have the same parity, 3 divides u and $u \leq 3 g$. Such a 3-GDD of type $g^{3} u^{2}$ is equivalent to an edge decomposition of $K_{g, g, g, u, u}$ into triangles.

2010 MSC: 05B05, 05B07, 05C70
Keywords: Group divisible designs, Partial triple systems, Graph decomposition

1. Introduction

A group divisible design (GDD) is a decomposition of the complete multipartite graph into complete subgraphs. The complete subgraphs used are the blocks of the GDD and are presented by giving the subset of the vertices they span. The partite sets are groups. Formally a \mathscr{K}-GDD is a triple $(V, \mathscr{B}, \mathscr{G})$ where

1. V is a finite set of points;
2. \mathscr{B} is a collection of subsets of V, where $|B| \in \mathscr{K}$, for all $B \in \mathscr{B}$;
3. \mathscr{G} is a partition of V into groups.
4. Every pair of points is in exactly one block or group.

The type of a GDD is the multiset of its group sizes. Thus a decomposition of $K_{g_{0}, g_{1}, g_{2}, \ldots, g_{t-1}}$ into complete subgraphs is a GDD of type $\left\{g_{0}, g_{1}, g_{2}, \ldots, g_{t-1}\right\}$. If the GDD has t_{i} groups of size g_{i} it is our custom to specify the type with the notation: $g_{0}^{t_{0}} g_{1}^{t_{1}} g_{2}^{t_{2}} \cdots g_{\ell}^{t_{\ell}}$. Also if $\mathscr{K}=\{k\}$ we write k-GDD instead of $\{k\}$-GDD. The blocks of a 3 -GDD are usually called triples or triangles. For example a 3 -GDD of type $4^{3} 2^{1}$ is a decomposition of $K_{4,4,4,2}$ into triangles.

[^0]Theorem 1.1. For a 3-GDD of type $g_{1} g_{2} \cdots g_{s}$ with $g_{1} \geq \cdots \geq g_{s} \geq 1, s \geq 2$, and $v=\sum_{i=1}^{s} g_{i}$ to exist, necessary conditions include (Colbourn [2]):

1. $\binom{v}{2} \equiv \sum_{i=1}^{s}\binom{g_{i}}{2}(\bmod 3)$;
2. $g_{i} \equiv v(\bmod 2)$ for $1 \leq i \leq s$;
3. $g_{1} \leq \sum_{i=3}^{s} g_{i}$;
4. whenever $\alpha_{i} \in\{0,1\}$ for $1 \leq i \leq s$ and $v_{0}=\sum_{i=1}^{s} \alpha_{i} g_{i}$,

$$
v_{0}\left(v-v_{0}\right) \leq 2\left[\binom{v_{0}}{2}+\binom{v-v_{0}}{2}-\sum_{i=1}^{s}\binom{g_{i}}{2}\right]
$$

5. $2 g_{2} g_{3} \geq g_{1}\left[g_{2}+g_{3}-\sum_{i=4}^{s} g_{i}\right] ;$ and
6. if $g_{1}=\sum_{i=3}^{s} g_{i}$ then $2 g_{3} g_{4} \geq\left(g_{1}-g_{2}\right)\left[g_{3}+g_{4}-\sum_{i=5}^{s} g_{i}\right]$.

These conditions are known to be sufficient when

1. (Wilson $[8,9]) g_{1}=\cdots=g_{s}$;
2. (Colbourn, Hoffman, and Rees [5]) $g_{1}=\cdots=g_{s-1}$ or $g_{2}=\cdots=g_{s}$;
3. (Colbourn, Cusack, and Kreher [3]) $1 \leq t \leq s, g_{1}=\cdots=g_{t}$, and $g_{t+1}=\cdots=g_{s}=1$;
4. (Bryant and Horsley [1]) $g_{3}=\cdots=g_{s}=1$; and
5. (Colbourn [2]) $\sum_{i=1}^{s} g_{i} \leq 60$.

Surprisingly, in no other cases are necessary and sufficient conditions known for any other class of 3 -GDDs (of index 1). Partial results are known when $g_{3}=\cdots=g_{s}=2[6]$. Theorem 1.1 establishes that no 3 -GDD with two groups exists; every 3-GDD with three groups has $g_{1}=g_{2}=g_{3}$; and every 3-GDD with four groups has type g^{4} or $g^{3} u^{1}$; moreover, the first and second sufficient conditions ensure that all such 3-GDDs exist. Turning to five groups, the situation is much less satisfactory. While Theorem 1.1 handles all types $g^{5}, g^{4} u^{1}$, and $g_{1} \cdots g_{5}$ with $\sum_{i=1}^{5} g_{i} \leq 60$, many more cases are possible. Indeed it may happen that a 3 -GDD with five groups has all groups of different sizes; for example, a 3-GDD of type $17^{1} 11^{1} 9^{1} 7^{1} 5^{1}$ exists [2]. Hence the general existence problem for five groups appears to be substantially more complicated than cases with fewer groups. We address one part of this problem, when there are only two group sizes.

The focus of this article is to prove
Theorem 1.2 (Main Theorem). A 3-GDD of type $g^{3} u^{2}$ exists if and only if $g \equiv u(\bmod 2), u \equiv 0$ $(\bmod 3)$, and $u \leq 3 g$.

If a 3 -GDD of type $g^{3} u^{2}$ exist, then $v=3 g+2 u \equiv 2 u(\bmod 3)$ and $v \equiv g(\bmod 3)$. Thus it follows from Theorem 1.1 conditions (1) and (2) that $g \equiv u(\bmod 2)$ and $u \equiv 0(\bmod 3)$. Condition 3 of Theorem 1.1 is exactly the necessary conditions for the existence of a 3-GDD of type $g^{3} u^{2}$ are established by Theorem 1.1. Sufficiency is proved in the sections that follow.

2. 3-GDDs of type $g^{3} u^{2}$

Let $\gamma_{i j \ell}$ be the number of triples that contain points of groups G_{i}, G_{j}, and G_{ℓ}. Elementary counting establishes that when $\left|G_{1}\right|=\left|G_{2}\right|=\left|G_{3}\right|=g$ and $\left|G_{4}\right|=\left|G_{5}\right|=u$, we have $\gamma_{123}=g^{2}-\frac{1}{3}(u(3 g-u))$, $\gamma_{124}=\gamma_{125}=\gamma_{134}=\gamma_{135}=\gamma_{234}=\gamma_{235}=\frac{1}{6}(u(3 g-u))$, and $\gamma_{145}=\gamma_{245}=\gamma_{345}=\frac{1}{3} u^{2}$. An easy case arises when $u=3 g$:

Lemma 2.1. There exists a 3-GDD of type $g^{3}(3 g)^{2}$, for all g.
Proof. A 3-GDD of type $(3 g)^{3}$ exists. Partition one of the groups into three groups of size g on these groups place the triples of a 3 -GDD of type g^{3}.

A one-factor on a set S is a set of $|S| / 2$ vertex-disjoint edges. A holey one-factor on a set S with hole H is a set of $(|S|-|H|) / 2$ vertex-disjoint edges in which no edge is incident to a vertex in H. We use the following result.

Lemma 2.2. (Rees [7]) Let $h \geq 1$ and $0 \leq r \leq 2 h,(h, r) \notin\{(1,2),(3,6)\}$. There exists a $\{2,3\}$-GDD of type $(2 h)^{3}$ which is resolvable into r parallel classes of blocks of size 3 and $4 h-2 r$ parallel classes of blocks of size 2. Consequently whenever $0 \leq x \leq r$, the edges of $K_{2 h, 2 h, 2 h}$ can be partitioned into $4 h-2 r$ one-factors, $3 x$ holey one-factors (x for each group), and $r-x$ parallel classes of triples.

Theorem 2.3. If there exists a 3-GDD of type $x^{3} u^{2}$ with $g \equiv x(\bmod 2)$ and $g \geq 2 x+u$, then there exists a3-GDD of type $g^{3} u^{2}$.

Proof. Write $h=\frac{g-x}{2}$. Without loss of generality, $u \neq 0$ so $u \geq 3$. Because $g \geq 2 x+u$, then $h \geq \frac{x+u}{2} \geq 2$. When $h=3$, we have $(g, x, u) \in\{(7,1,3),(9,3,3)\}$, and the required GDDs are from Theorem 1.1. Henceforth $h \notin\{1,3\}$. Choose groups $\left\{G_{i}: 1 \leq i \leq 5\right\}$ with $\left|G_{1}\right|=\left|G_{2}\right|=\left|G_{3}\right|=g$ and $\left|G_{4}\right|=\left|G_{5}\right|=u$. For $i \in\{1,2,3\}$ partition G_{i} into parts $G_{i, 1}$ and $G_{i, 2}$ where $\left|G_{i, 1}\right|=x$ and $\left|G_{i, 2}\right|=g-x=2 h$. Place a 3 -GDD of type $x^{3} u^{2}$ aligning the groups on $G_{1,1}, G_{2,1}, G_{3,1}, G_{4}$, and G_{5}. Now $r=2 h-u=g-x-u \geq 2 x+u-x-u=x$. So use Lemma 2.2 with groups $G_{1,2}, G_{2,2}, G_{3,2}$ to construct a partition of $K_{2 h, 2 h, 2 h}$ into $4 h-2 r$ one-factors $\left\{F_{y}: y \in G_{4} \cup G_{5}\right\}$; for $i \in\{1,2,3\}, x$ holey one-factors $\left\{H_{i, x}: x \in G_{i, 1}\right\}$ missing $G_{i, 2}$; and $r-x$ parallel classes of triples. Include all $(2 h)(r-x)$ triples in the $r-x$ parallel classes. Then for each $y \in G_{4} \cup G_{5}$, adjoin y to each edge in F_{y}, forming $2 u(3(2 h))$ triples. Finally, for $i \in\{1,2,3\}$ and $x \in G_{i, 1}$, adjoin point x to each edge in $H_{i, x}$ to form $6 x h$ additional triples.
Corollary 2.4. There exists a 3-GDD of type $g^{3} u^{2}$, whenever $g \geq \frac{5}{3} u$, $u \equiv 0(\bmod 3)$, and $g \equiv u$ $(\bmod 2)$.

Proof. Apply Theorem 2.3 with $x=u / 3$.
In the remainder, the expression give weight w to the point x means to replace x with a set of w new points $x_{1}, x_{2}, \ldots, x_{w}$; and if $S=\left\{s_{1}, s_{2}, \ldots, s_{k}\right\}$ is a set of points given weights $\left(w\left(s_{i}\right): 1 \leq\right.$ $i \leq k$), then to place a 3-GDD of type $\left\{w\left(s_{1}\right), w\left(s_{2}\right), \ldots, w\left(s_{k}\right)\right\}$ on S means to include all triples in a 3-GDD of type $\left\{w\left(s_{1}\right), w\left(s_{2}\right), \ldots, w\left(s_{k}\right)\right\}$ with groups $\left\{\left\{s_{i, 1}, s_{i, 2}, s_{i, 3}, \ldots, s_{i, w\left(s_{i}\right)}\right\}: 1 \leq i \leq k\right\}$. A synonymous expression is to fill the inflated block with a 3-GDD of type $\left\{w\left(s_{1}\right), w\left(s_{2}\right), \ldots, w\left(s_{k}\right)\right\}$. This is illustrated in the following.

Lemma 2.5. If a 3-GDD of type $(g / w)^{3}(u / w)^{2}$ exists, then a 3-GDD of type $g^{3} u^{2}$ also exists.
Proof. Starting with a 3-GDD of type $(g / w)^{3}(u / w)^{2}$, give weight w to the points using a 3-GDD of type w^{3}, which always exists.

Recall that a 5 -GDD of type k^{5} is equivalent to 3 mutually orthogonal Latin squares of order k, which are known to exist when $k \notin\{2,3,6,10\}$ [4]. (When $k=10$ existence remains uncertain, but they do not exist for $k \in\{2,3,6\}$.)

Lemma 2.6. If there exists a 5-GDD of type k^{5}, and integers g, u with $g \equiv u \equiv k(\bmod 2), 3 k \leq g, u \leq$ $9 k$, and $u \equiv 0(\bmod 3)$, then there exists a $3-\mathrm{GDD}$ of type $g^{3} u^{2}$.

Proof. Form a 5-GDD of type k^{5} with groups $\overline{G_{1}}, \overline{G_{2}}, \overline{G_{3}}, \overline{G_{4}}, \overline{G_{5}}$. Let the points of $\overline{G_{i}}$ be $\left\{x_{i 1}, \ldots, x_{i k}\right\}$, so that $\left\{x_{1 k}, x_{2 k}, x_{3 k}, x_{4 k}, x_{5 k}\right\}$ is a block.

Write $g=3 a+9(k-1-a)+b$ with $0 \leq a \leq k-1$ and $b \in\{3,5,7,9\}$. Write $u=3 c+9(k-c)$ with $0 \leq c \leq k$. Set

$$
w\left(x_{i j}\right)=\left\{\begin{array}{l}
b \text { if } 1 \leq i \leq 3 \text { and } j=k \\
3 \text { if } 1 \leq i \leq 3 \text { and } 1 \leq j \leq a \\
3 \text { if } 4 \leq i \leq 5 \text { and } 1 \leq j \leq c, \\
9 \text { if } 1 \leq i \leq 3 \text { and } a+1 \leq j<k \\
9 \text { if } 4 \leq i \leq 5 \text { and } c+1 \leq j \leq k
\end{array}\right.
$$

According to [2], there exist 3-GDDs of types $3^{5}, 5^{1} 3^{4}, 7^{1} 3^{4}, 9^{1} 3^{4}, 9^{1} 5^{1} 3^{3}, 5^{3} 3^{2}, 9^{1} 7^{1} 3^{3}, 7^{3} 3^{2}, 9^{2} 3^{3}, 9^{2} 5^{1} 3^{2}$, $9^{2} 7^{1} 3^{2}, 9^{3} 3^{2}, 9^{2} 5^{3}, 9^{3} 5^{1} 3^{1}, 9^{3} 7^{1} 3^{1}, 9^{2} 7^{3}, 9^{4} 3^{1}, 9^{4} 5^{1}, 9^{4} 7^{1}$, and 9^{5}. Each block of the 5 -GDD of type k^{5} has weights forming one of these types, so we place a 3 -GDD on the points arising from each.
Theorem 2.7. Suppose $u \equiv 0(\bmod 3)$, $u \equiv g(\bmod 2)$ and $3 \leq u \leq 3 g$. Then a 3-GDD of type $g^{3} u^{2}$ exists, except possibly when $3 g+2 u>60$ and

$$
\begin{align*}
& g \in\{9,10,11,13,18,20,22,30,32,34\} \text { and } \frac{3}{5} g<u<3 g ; \text { or } \tag{1}\\
& g \equiv 1 \quad(\bmod 3) \text { and } u=3 g-6 ; \text { or } \tag{2}\\
& u \in\{18,30\} \text { and } u<g<\frac{5}{3} u \tag{3}
\end{align*}
$$

Proof. Using Lemma 2.1 and Corollary 2.4, assume that $\frac{3}{5} g<u<3 g$. Write $u=3 \ell$ and $g=3 m+r$, where $r \in\{0,1,2\}$; then $\ell \equiv m(\bmod 2)$ if and only if $r \in\{0,2\}$. To handle cases with $u \geq g$ and $g \notin S=\{2,4,6,8,9,10,11,13,18,20,22,30,32,34\}$, apply Lemma 2.6 with $k=m$ when $r \in\{0,2\}$ and $k=m-1$ when $r=1$. When applied with $k=m-1, u \leq 9 m-9$, leading to the possible exceptions in (2). When $g \in\{2,4,6,8\}$ and $u<3 g$, all required GDDs are from [2]. Thus when $u \geq g$, the possible exceptions are listed in (1) and (2).

To handle cases when $u \leq g$ and $u \notin T=\{6,9,18,30\}$, apply Lemma 2.6 with $k=\ell$. When $u \in\{6,9\}$ and $u \leq g \leq \frac{5}{3} u$, all required GDDs are from [2]. Thus when $u \leq g$, the possible exceptions are listed in (3).
Lemma 2.8. There exists a 3-GDD of type $13^{3} 15^{2}$.
Proof. Begin with a 5 -GDD of type 5^{5}. Fix a block B and give weights $1,1,1,3,3$ to it. On the remaining points give weight 3 . Fill the inflated blocks with 3 -GDDs of type $1^{3} 3^{1}, 1^{1} 3^{4}, 3^{5}$ from [2].

Theorem 2.9. A 3-GDD of type $g^{3} u^{2}$ exists if and only if $g \equiv u(\bmod 2)$ and $u \equiv 0(\bmod 3)$ except possibly when $g \equiv 1(\bmod 3), g \geq 16$, and $u=3 g-6$; or

$$
g^{3} u^{2} \in\left\{\begin{array}{rrrrrr}
9^{3} 21^{2}, & 10^{3} 24^{2}, & 11^{3} 15^{2}, & 11^{3} 21^{2}, & 11^{3} 27^{2}, & 13^{3} 21^{2}, \\
18^{3} 42^{2}, & 13^{3} 27^{3} 48^{2}, & 20^{3} 42^{2} 33^{2}, & 20^{3} 48^{2}, & 20^{3} 54^{2}, & 22^{3} 42^{2}, \\
22^{3} 62^{2} 48^{2}, & 30^{3} 84^{2}, & 32^{3} 54^{2}, & 32^{3} 90^{2}, & 34^{3} 84^{2}, & 34^{3} 96^{2} .
\end{array}\right.
$$

Proof. Apply Lemma 2.1, Lemma 2.5, Theorem 2.3, and Theorem 2.7. Then apply Lemma 2.6 with $k=4$ to handle types $18^{3} u^{1}$ for $u \in\{12,24\}$ and $22^{3} u^{1}$ for $u \in\{24,30,36\}$; and with $k=8$ to handle $30^{3} u^{1}$ for $u \in\{24,48,72\}, 32^{3} u^{1}$ for $u \in\{30,42,54,66\}$, and $34^{3} u^{1}$ for $u \in\{24,36,48,60,72\}$. Apply Lemma 2.8 to handle $13^{3} 15^{2}$.

3. Incomplete group divisible designs

Let K be a set of positive integers, each at least 2. An incomplete group divisible design (K-IGDD) of type $\left(g_{1}: h_{1}\right)^{u_{1}} \cdots\left(g_{s}: h_{s}\right)^{u_{s}}$ is a quadruple $(V, \mathscr{B}, \mathscr{G}, H)$ where

1. V is a set of $\sum_{i=1}^{s} u_{i} g_{i}$ elements;
2. $H \subset V$, the hole, contains $\sum_{i=1}^{s} u_{i} h_{i}$ elements;
3. $\mathscr{G}=\left\{G_{1}, \ldots, G_{m}\right\}$ is a partition of V into $m=\sum_{i=1}^{s} u_{i}$ groups $G_{1}, \ldots G_{m}$ so that u_{i} of the groups have size g_{i} and contain h_{i} points of H, for $1 \leq i \leq s$;
4. \mathscr{B} is a set of blocks with $|B| \in K$ whenever $B \in \mathscr{B}$, so that every pair of elements that are in the hole or in a group do not appear in a block, and every other pair occurs in exactly one block.

When $K=\{k\}$, we write k-IGDD.
Lemma 3.1. Suppose that K is a set of odd positive integers. If a K-IGDD of type $\left(g_{1}: h_{1}\right)^{u_{1}} \cdots\left(g_{s}: h_{s}\right)^{u_{s}}$ exists and $w \geq 2$, then a 3-IGDD of type $\left(w g_{1}: w h_{1}\right)^{u_{1}} \cdots\left(w g_{s}: w h_{s}\right)^{u_{s}}$ exists.

Proof. Give weight w to each point and fill with a 3-GDD of type w^{k} for $k \in K$.
Corollary 3.2. A 3-IGDD of type $(12: 3)^{1}(6: 3)^{4}$ exists.
Proof. A $\{3,5\}$-IGDD of type $(4: 1)^{1}(2: 1)^{4}$ exists with groups $\left\{\left\{d_{i}, x_{i}\right\}: 0 \leq i \leq 3\right\} \cup\left\{y, z_{1}, z_{2}, z_{3}\right\}$, hole $\left\{d_{0}, d_{1}, d_{2}, d_{3}, y\right\}$, and blocks $\left\{\left\{d_{i}, x_{(i+j) \bmod 4}, z_{j}\right\}: 0 \leq i \leq 3,1 \leq j \leq 3\right\}$ and $\left\{x_{0}, x_{1}, x_{2}, x_{3}, y\right\}$. Apply Lemma 3.1 with $w=3$.

Lemma 3.3. If a 3-IGDD of type $(3 g: 3 h)^{3}$ and a 3-IGDD of type $(g: h)^{3}$ exist, then a 3-IGDD of type $(3 g: 3 h)^{2}(g: h)^{3}$ exists.

Proof. Fill one group of the 3-IGDD of type $(3 g: 3 h)^{3}$ with the 3-IGDD of type $(g: h)^{3}$.
Corollary 3.4. When $1 \leq h \leq \frac{1}{2} g$, a 3-IGDD of type $(3 g: 3 h)^{2}(g: h)^{3}$ exists. In particular, a 3-IGDD of type $(6: 3)^{2}(2: 1)^{3}$ and a 3-IGDD of type $(12: 3)^{2}(4: 1)^{3}$ exist.

Proof. A 3-IGDD of type $(g: h)^{3}$ is equivalent to a latin square of side g with a subsquare of side h, which exist whenever $1 \leq h \leq \frac{1}{2} g$, [4].

Lemma 3.5. A 3-IGDD of type $(4: 1)^{i}(2: 1)^{5-i}$ exists when $i \in\{0,2\}$. Hence a 3 -IGDD of type $(6: 3)^{5}$ and a 3-IGDD of type $(12: 3)^{2}(6: 3)^{3}$ exist.

Proof. When $i=0$, form blocks $\left\{\left\{a_{i}, i+1, i+4\right\},\left\{a_{i}, i+2, i+3\right\}: i \in \mathbb{Z}_{5}\right\}$ with groups $\left\{a_{i}, i\right\}$ and hole $\left\{a_{i}: i \in \mathbb{Z}_{5}\right\}$.

When $i=2$, a solution follows:
Blocks: $\{5,7,10\},\{5,6,11\},\{4,9,10\},\{4,8,12\},\{4,7,13\},\{3,8,10\},\{3,6,12\},\{3,4,11\},\{2,9,12\}$, $\{2,7,11\},\{2,6,13\},\{2,5,8\},\{1,8,11\},\{1,7,12\},\{1,4,6\},\{1,2,10\},\{0,9,11\},\{0,8,13\},\{0,6,10\}$, $\{0,5,12\},\{0,3,7\},\{0,2,4\}$.

Groups: $\{0,1\},\{2,3\},\{4,5\},\{6,7,8,9\},\{10,11,12,13\}$.
Hole: $\{1,3,5,9,13\}$.
Use Lemma 3.1 with weight 3 to obtain the specific IGDDs.

Lemma 3.6. There exist 3-IGDD of type $(4: 1)^{3}(6: 3)^{i}(12: 3)^{2-i}$ for $i \in\{0,1,2\}$.
Proof. When $i=0$, apply Corollary 3.4. When $i=2$, start with points $\left\{x_{j}: x \in \mathbb{Z}_{5}, \quad j \in \mathbb{Z}_{3}\right\}$; elements with the same x-coordinate are in the same group of the IGDD. Place orbits of triples $\left\{0_{0}, 1_{0}, 2_{0}\right\}$, $\left\{0_{0}, 3_{0}, 4_{0}\right\},\left\{1_{0}, 3_{0}, 4_{1}\right\}$, and $\left\{2_{0}, 3_{0}, 4_{2}\right\}$, developing the subscript modulo 3 . Then the remaining pairs $\left\{x_{i}, y_{j}\right\}$ with $x \neq y$ can be partitioned into a holey 1-factor missing $\left\{x_{0}, x_{1}, x_{2}\right\}$ for $x \in\{0,1,2\}$ and three holey 1 -factors missing $\left\{x_{0}, x_{1}, x_{2}\right\}$ for $x \in\{3,4\}$. Extending these 9 holey 1 -factors gives the 9 points in the hole of the IGDD.

To construct a 3-IGDD of type $(4: 1)^{3}(6: 3)^{1}(12: 3)^{1}$ first form seven sets of size 3: $\left\{A_{i}=\left\{a_{j}^{i}: j \in\right.\right.$ $\left.\left.\mathbb{Z}_{3}\right\}: i \in \mathbb{Z}_{3}\right\}, B=\left\{b_{j}: j \in \mathbb{Z}_{3}\right\}$, and $\left\{C_{i}=\left\{c_{j}^{i}: j \in \mathbb{Z}_{3}\right\}: i \in \mathbb{Z}_{3}\right\}$. Let $H=\left\{\alpha_{i}, \beta_{i}, \gamma_{i}: i \in \mathbb{Z}_{3}\right\}$ be 9 additional points. We construct the 3 -IGDD with groups:

$$
\left(A_{0} \cup\left\{\alpha_{0}\right\}\right),\left(A_{1} \cup\left\{\alpha_{1}\right\}\right),\left(A_{2} \cup\left\{\alpha_{2}\right\}\right),\left(B \cup\left\{\beta_{0}, \beta_{1}, \beta_{2}\right\}\right),\left(C_{0} \cup C_{1} \cup C_{2} \cup\left\{\gamma_{0}, \gamma_{1}, \gamma_{2}\right\}\right)
$$

and hole H. Now form

1. the triples of a 3-GDD of type 3^{3} on groups $\left\{\beta_{0}, \beta_{1}, \beta_{2}\right\}, A_{i}$, and C_{i} for $i \in \mathbb{Z}_{3}$,
2. $\left\{\left\{\gamma_{i}, b_{j}, a_{j}^{i}\right\},\left\{\gamma_{i}, a_{j}^{i+1}, a_{j}^{i+2}\right\}: i, j \in \mathbb{Z}_{3}\right\}$,
3. $\left\{\left\{\alpha_{i}, a_{j}^{i+1}, c_{j}^{i+2}\right\},\left\{\alpha_{i}, a_{j}^{i+2}, c_{j}^{i+1}\right\},\left\{\alpha_{i}, b_{j}, c_{j}^{i}\right\}: i, j \in \mathbb{Z}_{3}\right\}$,
4. $\left\{\left\{b_{j}, a_{j+1}^{i}, c_{j+2}^{i+1}\right\},\left\{b_{j}, a_{j+2}^{i+1}, c_{j+1}^{i}\right\}: i, j \in \mathbb{Z}_{3}\right\}$,
5. $\left\{\left\{a_{j}^{i}, c_{j+2}^{i+1}, a_{j+1}^{i+2}\right\}: i, j \in \mathbb{Z}_{3}\right\}$,
6. $\left\{\left\{a_{j}^{0}, a_{j+1}^{1}, a_{j+2}^{2}\right\}: j \in \mathbb{Z}_{3}\right\}$.

It is an easy but tedious exercise to verify that these triples provide the desired IGDD.
Lemma 3.7. A 3 -IGDD of type $(5: 1)^{3}(9: 3)^{2}$ exists.
Proof. Form a set $X=\mathbb{Z}_{3} \times \mathbb{Z}_{4} \times \mathbb{Z}_{2}$ of points. Let $G_{i}=\{i\} \times\{0,1\} \times \mathbb{Z}_{2}$ for $i \in \mathbb{Z}_{3}$, and let $G_{j+1}=\mathbb{Z}_{3} \times\{j\} \times \mathbb{Z}_{2}$ for $j \in\{2,3\}$. On X with groups $\left\{G_{i}: 0 \leq i \leq 4\right\}$ we construct a partition of pairs not in a group into one holey parallel class of ten pairs missing G_{i} for each $i \in\{0,1,2\}$; three parallel clases of nine pairs missing G_{i} for each $i \in\{3,4\}$; and 48 triples. Once constructed, extending holey parallel classes produces the desired IGDD.

First we make the triples. Form a 3-GDD of type 4^{3} on $\mathbb{Z}_{3} \times \mathbb{Z}_{4}$ having a parallel class on $\left\{\mathbb{Z}_{3} \times\{j\}\right.$: $\left.j \in \mathbb{Z}_{4}\right\}$ and groups on $\left\{\{i\} \times \mathbb{Z}_{4}: i \in \mathbb{Z}_{3}\right\}$. This has 12 triples; give weight 2 to form 48 triples.

For $i \in \mathbb{Z}_{3}$ let

$$
F_{i}=\left\{\begin{array}{ll}
\{(i, 2,0),(i, 3,0)\}, & \{(i, 2,1),(i, 3,1)\}, \\
\{(i+1,2,0),(i+1,3,1)\},\{(i+1,0,0),(i+1,2,1)\},\{(i+1,1,1),(i+1,3,0)\}, \\
\{(i+2,2,1),(i+2,3,0)\},\{(i+2,0,1),(i+2,2,0)\},\{(i+2,1,0),(i+2,3,1)\}, \\
\{(i+1,0,1),(i+2,0,0)\},\{(i+1,1,0),(i+2,1,1)\}
\end{array}\right\}
$$

Then F_{i} is a holey parallel class for G_{i} for $i \in \mathbb{Z}_{3}$.
For $i \in \mathbb{Z}_{3}$ and $\sigma \in \mathbb{Z}_{2}$ let $\bar{\sigma}=1-\sigma$ and let

$$
H_{i \sigma}=\left\{\begin{array}{lll}
\{(i+1, \sigma, \sigma),(i+2, \sigma, \bar{\sigma})\}, & \{(i, \bar{\sigma}, \sigma),(i+1, \bar{\sigma}, \sigma)\}, & \{(i, \bar{\sigma}, \bar{\sigma}),(i+2, \bar{\sigma}, \bar{\sigma})\}, \\
\{(i, \sigma, \sigma),(i, 2+\bar{\sigma}, \sigma)\}, & \{(i+1, \sigma, \bar{\sigma}),(i+1,2+\bar{\sigma}, \sigma)\},\{(i+2, \bar{\sigma}, \sigma),(i+2,2+\bar{\sigma}, \sigma)\}, \\
\{(i, \sigma, \bar{\sigma}),(i, 2+\bar{\sigma}, \bar{\sigma})\}, & \{(i+1, \bar{\sigma}, \bar{\sigma}),(i+1,2+\bar{\sigma}, \bar{\sigma})\},\{(i+2, \sigma, \sigma),(i+2,2+\bar{\sigma}, \bar{\sigma})\} .
\end{array}\right\}
$$

Then $\left\{H_{i \sigma}: i \in \mathbb{Z}_{3}\right\}$ contains three holey parallel classes for $G_{3+\sigma}$ for $\sigma \in \mathbb{Z}_{2}$.

4. Using incomplete group divisible designs

Theorem 4.1. Let m, k be integers. If $5 \leq m \leq k \leq 3 m, m \equiv k(\bmod 2)$, and $m \notin\{6,10\}$, then there exist 3 -GDDs of type $(3 m+1)^{3}(3 k+3)^{2}$ and $(3 m+3)^{3}(3 k+3)^{2}$.

Proof. There exists a 5 -GDD of type m^{5} that has a parallel class P of blocks (this is equivalent to three idempotent MOLS of side m, see [4]). Let $G_{1}, G_{2}, G_{3}, G_{4}, G_{5}$ be its groups. Give weight 3 to all points in $G_{1} \cup G_{2} \cup G_{3}$. In each of $\frac{3 m-k}{2}$ of the blocks of P give weight 3 to the two points of the block in G_{4} or G_{5}; for the remaining $\frac{k-m}{2}$ of the blocks of P, give weight 9 .

Add a set H of 15 or 9 points distributed $3,3,3,3,3$ or $1,1,1,3,3$ to the groups to obtain group types $(3 m+3)^{3}(3 k+3)^{2}$ and $(3 m+1)^{3}(3 k+3)^{2}$ respectively. Fill blocks not in the parallel class P with a 3 -GDD of type $9^{i} 3^{5-i}, i=0,1$ or 2 from [2]. Fill blocks that are in the parallel class P with a 3-IGDD of type $(6: 3)^{5}$ and a 3-IGDD of type $(6: 3)^{3}(12: 3)^{2}$, or a 3 -IGDD of type $(4: 1)^{3}(6: 3)^{2}$ and a 3 -IGDD of type $(4: 1)^{3}(12: 3)^{2}$, all having hole H. Fill H with a 3 -GDD of type 3^{5} or a 3-GDD of type $1^{3} 3^{2}$ respectively.

Corollary 4.2. There exist 3 -GDD s with $g \equiv 1(\bmod 3), g \geq 16, g \notin\{19,31\}$, and $u=3 g-6$; and when $g^{3} u^{2} \in\left\{18^{3} 42^{2}, 18^{3} 48^{2}, 22^{3} 42^{2}, 22^{3} 48^{2}, 22^{3} 54^{2}, 22^{3} 60^{2}, 30^{3} 84^{2}, 34^{3} 84^{2}, 34^{3} 96^{2}\right\}$.

Proof. Apply the first statement of Theorem 4.1 with $(m, k)=\left(\frac{g-1}{3}, g-3\right)$ when $g \equiv 1(\bmod 3)$, $g \geq 16, g \notin\{19,31\}$ and $u=3 g-6$. Apply the first statement with $m=7$ and $k \in\{13,15,17,19\}$ to treat the cases with $g=22$; and with $m=11$ and $k \in\{27,31\}$ to treat the cases with $g=34$. Apply the second statement with $m=5$ and $k \in\{13,15\}$ to handle the cases with $g=18$, and with $(m, k)=(9,27)$ to handle $30^{3} 84^{2}$.

It remains to treat

$$
g^{3} u^{2} \in\left\{\begin{array}{r}
9^{3} 21^{2}, 10^{3} 24^{2}, 11^{3} 15^{2}, 11^{3} 21^{2}, 11^{3} 27^{2}, 13^{3} 21^{2}, 13^{3} 27^{2}, 13^{3} 33^{2}, \\
19^{3} 51^{2}, 20^{3} 42^{2}, 20^{3} 48^{2}, 20^{3} 54^{2}, 31^{3} 87^{2}, 32^{3} 78^{2}, 32^{3} 90^{2}
\end{array}\right\}
$$

Next we extend Theorem 4.1:

Theorem 4.3. Let $m \geq 5$ be an integer with $m \notin\{6,10,14,18,22\}$. Let $k \equiv m(\bmod 2)$ be an integer, where $m \leq k \leq 3 m$. Let α be an integer with $1 \leq \alpha \leq m$, and let a be an integer for which $\alpha \leq a \leq 3 \alpha$ and $a \equiv \alpha(\bmod 2)$. Then a 3-IGDD of type $\left((3 m+a: a)^{3}(3 k+3 \alpha: 3 \alpha)^{2}\right.$ exists. If in addition a 3 -GDD of type $a^{3}(3 \alpha)^{2}$ exists, then a 3 -GDD of type $(3 m+a)^{3}(3 k+3 \alpha)^{2}$ exists.

Proof. There are 4 MOLS of order m [4] and hence there exists a 5-GDD of type m^{5} with α disjoint parallel classes $\left\{P_{i}: 1 \leq i \leq \alpha\right\}$. Let $G_{1}, G_{2}, G_{3}, G_{4}, G_{5}$ be its groups. Give weight 3 to all the points in $G_{1} \cup G_{2} \cup G_{3}$. In each of G_{4} and G_{5} give weight 3 to $\frac{3 m-k}{2}$ of the points and weight 9 to the remaining $\frac{k-m}{2}$ points. Now for $1 \leq i \leq \alpha$, let H_{i} contain three new points in each of G_{4} and G_{5}; and either three or one new points in each of G_{1}, G_{2}, G_{3} according to whether $i \leq \frac{a-\alpha}{2}$ or not.

Fill blocks not in $\bigcup_{i=1}^{\alpha} P_{\alpha}$ using a 3-GDD of type $9^{i} 3^{5-i}$ with $i \in\{0,1,2\}$. For each parallel class P_{i}, fill each block with an IGDD of type $(6: 3)^{3}(12: 3)^{2},(6: 3)^{4}(12: 3)^{1}$, or $(6: 3)^{5}$, that has hole H_{i}; these are from Corollary 3.2 and Lemma 3.5. This produces the 3-IGDD of type $\left((3 m+a: a)^{3}(3 k+3 \alpha: 3 \alpha)^{2}\right.$. If a 3 -GDD of type $a^{3}(3 \alpha)^{2}$ exists, use it to fill the hole.
Corollary 4.4. There exist 3 -GDD s of types $19^{3} 51^{2}, 20^{3} u^{2}$ for $u \in\{42,48,54\}, 31^{3} 87^{2}$, and $32^{3} u^{2}$ for $u \in\{78,90\}$.

Proof. Theorem 4.3 handles $19^{3} 51^{2}$ using $(m, \alpha, a)=(5,2,4)$ and $k=15 ; 20^{3} u^{2}$ for $u \in\{42,48,54\}$ using $(m, \alpha, a)=(5,3,5)$ and $k \in\{11,13,15\} ; 31^{3} 87^{2}$ using $(m, \alpha, a)=(9,2,4)$ and $k=27$; and $32^{3} u^{2}$ for $u \in\{78,90\}$ using $(m, \alpha, a)=(9,3,5)$ and $k \in\{23,27\}$.

It remains only to treat a few cases with $g \leq 13$. A variant of Theorem 4.3 uses a different weighting:
Theorem 4.5. Let $m \geq 5$ be an integer with $m \notin\{6,10,14,18,22\}$. Let α be an integer with $1 \leq \alpha \leq m$, and let a be an integer for which $\alpha \leq a \leq 3 \alpha$ and $a \equiv \alpha(\bmod 2)$. Then a 3-IGDD of type $\left((m+\alpha: \alpha)^{3}(3 m+a: a)^{2}\right.$ exists. If in addition a 3-GDD of type $\alpha^{3} a^{2}$ exists, then a 3-GDD of type $\left((m+\alpha)^{3}(3 m+a)^{2}\right.$ exists.

Proof. Let $G_{1}, G_{2}, G_{3}, G_{4}, G_{5}$ be the groups of a 5 -GDD of type m^{5} with α disjoint parallel classes $\left\{P_{i}: 1 \leq i \leq \alpha\right\}$. Give weight 1 to all points in $G_{1} \cup G_{2} \cup G_{3}$, and weight 3 to all points in $G_{4} \cup G_{5}$. Fill blocks not in $\bigcup_{i=1}^{\alpha} P_{\alpha}$ using a 3 -GDD of type $1^{3} 3^{2}$.

For $1 \leq i \leq \alpha$, let H_{i} contain three new points in each of G_{1}, G_{2}, G_{3}; and either three or one new points in each of G_{4} and G_{5} according to whether $i \leq \frac{a-\alpha}{2}$ or not. For $1 \leq i \leq \frac{a-\alpha}{2}$, fill each block of P_{i} with an 3-IGDD of type $(2: 1)^{3}(6: 3)^{2}$ that has hole H_{i}. For $\frac{a-\alpha}{2}<i \leq \alpha$, fill each block of P_{i} with an 3 -IGDD of type $(2: 1)^{3}(4: 1)^{2}$ that has hole H_{i}. This produces the 3-IGDD of type $\left((m+\alpha: \alpha)^{3}(3 k+a:\right.$ $a)^{2}$.

Corollary 4.6. There exist 3 -GDDs of types $9^{3} 21^{2}, 10^{3} 24^{2}, 11^{3} 27^{2}, 13^{3} 27^{2}$, and $13^{3} 33^{2}$.
Proof. Apply Theorem 4.5 with $(m, \alpha, a)=(5,4,6)$ to handle $9^{3} 21^{2} ;(m, \alpha, a)=(7,3,3)$ to handle $10^{3} 24^{2} ;(m, \alpha, a)=(7,4,6)$ to handle $11^{3} 27^{2} ;(m, \alpha, a)=(7,6,6)$ to handle $13^{3} 27^{2} ;$ and $(m, \alpha, a)=$ $(9,4,6)$ to handle $13^{3} 33^{2}$.

Theorem 4.7. If there exist 3-GDDs of types $g^{3} u^{2}$ and $a^{3} b^{2}$ and a 3-IGDD of type $(g+a: a)^{3}(u+b: b)^{2}$, then for all $w \geq 3$ there also exists a 3-GDD of type $(w g+a)^{3}(w u+b)^{2}$.

Proof. Let $\left\{\overline{G_{i}}: 1 \leq i \leq 5\right\}$ be groups of size g, g, g, u, u respectively and set $\overline{\mathscr{G}}=\bigcup_{i=1}^{5} \overline{G_{i}}$. Let $\left\{H_{i}\right.$: $1 \leq i \leq 5\}$ be groups of size a, a, a, b, b respectively and set $\mathscr{H}=\bigcup_{i=1}^{5} H_{i}$. If $\bar{x} \in \overline{\mathscr{G}}$, then we denote by x, the w-element set $x=\bar{x} \times \mathbb{Z}_{w}$ and set $G_{i}=\bigcup_{\bar{x} \in \overline{G_{i}}} x$. We construct the 3-GDD of type $(w g+a)^{3}(w u+b)^{2}$ on groups $\left\{\left(G_{i} \cup H_{i}\right): 1 \leq i \leq 5\right\}$.

If $\bar{x}, \bar{y}, \bar{z} \in \overline{\mathscr{G}}$, let $P(x, y, z)=\left\{\{\bar{x} \times\{i\}, \bar{y} \times\{i\}, \bar{z} \times\{i\}\}: i \in \mathbb{Z}_{w}\right\} ;$ this is a parallel class of triples. Because $w \geq 3$ there is an idempotent latin square of side w; consequently a 3-GDD of type w^{3} can be constructed with groups x, y, z that contains the parallel class $P(x, y, z)$. Let $D(x, y, z)$ be the triples in this GDD that are not in $P(x, y, z)$.

Let \mathbb{A} be a 3 -IGDD of type $(g+a: a)^{3}(u+b: b)^{2}$ on the groups $\left(\overline{G_{i}} \cup H_{i}\right), i=1,2,3,4,5$ and hole \mathscr{H}. Let \mathbb{B} be a 3 -GDD of type $g^{3} u^{2}$ on the groups $\overline{G_{i}}, i=1,2,3,4,5$.

To construct the 3-GDD of type $(w g+a)^{3}(w u+b)^{2}$ we take the triples in: $\{\{h, \bar{x} \times\{i\}, \bar{y} \times\{i\}\}$: $\left.i \in \mathbb{Z}_{w}\right\}$ whenever $\{h, \bar{x}, \bar{y}\}$ is a triple in \mathbb{A} intersecting the hole \mathscr{H} in the point $h ; P(x, y, z)$ whenever $\{\bar{x}, \bar{y}, \bar{z}\}$ is a triple in \mathbb{A} disjoint from the hole $\mathscr{H} ; D(x, y, z)$ whenever $\{\bar{x}, \bar{y}, \bar{z}\}$ is a triple in $\mathbb{B} ;$ and a 3 -GDD of type $a^{3} b^{2}$ on the hole \mathscr{H}.

Corollary 4.8. There exists a 3-GDD of type $13^{3} 21^{2}$.
Proof. There exist 3 -GDDs of types $4^{3} 6^{2}$ and $1^{3} 3^{2}$ and a 3 -IGDD of type $(5: 1)^{3}(9: 3)^{2}$ from Lemma 3.7. Apply Theorem 4.7 with $w=3$.

Theorem 4.9. If there exist 3-GDDs of types $g^{3} u^{2}$ and $a^{3} b^{2}$ and a 3-IGDD of type $(g+a: a)^{3}(u+b: b)^{2}$, then for all $w \geq 3$ there also exists a 3-GDD of type $(w g+(w-1) a)^{3}(w u+(w-1) b)^{2}$.

Figure 1. A partition of $K_{6,6,6,12,12}$

Proof. Let $\left\{\overline{G_{i}}: 1 \leq i \leq 5\right\}$ be groups of size g, g, g, u, u respectively and set $\bar{G}=\bigcup_{i=1}^{5} \overline{G_{i}}$. Let $\left\{\bar{H}_{i}: 1 \leq i \leq 5\right\}$ be groups of size a, a, a, b, b respectively and set $\overline{\mathscr{H}}=\bigcup_{i=1}^{5} \bar{H}_{i}$. If $\bar{x} \in \overline{\mathscr{G}}$, then we denote by x, the w-element set $x=\bar{x} \times \mathbb{Z}_{w}$ and set $G_{i}=\bigcup_{\bar{x} \in \overline{G_{i}}} x$. If $\bar{h} \in \overline{\mathscr{H}}$, then we denote by h, the $(w-1)$-element set $x=\bar{x} \times\left(\mathbb{Z}_{w} \backslash\{0\}\right)$ and set $H_{i}=\bigcup_{\bar{h} \in \overline{H_{i}}} h$. We construct the 3-GDD of type ($w g+$ $(w-1) a)^{3}(w u+(w-1) b)^{2}$ on groups $\left\{\left(G_{i} \cup H_{i}\right): 1 \leq i \leq 5\right\} . P(x, y, z)$ and $D(x, y, z)$ are as in the proof of Theorem 4.7.

Let \mathbb{A} be a 3 -IGDD of type $(g+a: a)^{3}(u+b: b)^{2}$ on the groups $\left(\overline{G_{i}} \cup \overline{H_{i}}\right), i=1,2,3,4,5$ and hole $\overline{\mathscr{H}}$. Let \mathbb{B} be a 3 -GDD of type $g^{3} u^{2}$ on the groups $\overline{G_{i}}, i=1,2,3,4,5$.

To construct the 3-GDD of type $(w g+(w-1) a)^{3}(w u+(w-1) b)^{2}$ we take the triples in: $\{\{\bar{h} \times\{j\}, \bar{x} \times$ $\left.\{i\}, \bar{y} \times\{i+j \bmod w\}\}: i, j \in \mathbb{Z}_{w}, j \neq 0\right\}$ whenever $\{\bar{h}, \bar{x}, \bar{y}\}$ is a triple in \mathbb{A} intersecting the hole $\overline{\mathscr{H}}$ in
the point $\bar{h} ; D(x, y, z)$ whenever $\{\bar{x}, \bar{y}, \bar{z}\}$ is a triple in \mathbb{A} disjoint from the hole $\overline{\mathscr{H}} ; P(x, y, z)$ whenever $\{\bar{x}, \bar{y}, \bar{z}\}$ is a triple in \mathbb{B}; and a 3-GDD of type $((w-1) a)^{3}((w-1) b)^{2}$ on the hole $\bigcup_{i=1}^{5} H_{i}$.

Corollary 4.10. There exists a 3-GDD of type $11^{3} 15^{2}$.
Proof. There exist 3-GDDs of types $3^{3} 3^{2}$ and $1^{3} 3^{2}$ and a 3 -IGDD of type $(4: 1)^{3}(6: 3)^{2}$. Apply Theorem 4.9 with $w=3$.

Lemma 4.11. There exists a 3-GDD of type $11^{3} 21^{2}$.
Proof. Figure 1 provides a partition of $K_{6,6,6,12,12}$ that was found using a hill-climbing algorithm on points a-r and A-X with groups $G_{1}=\mathrm{a}-\mathrm{f}, G_{2}=\mathrm{g}-\mathrm{l}, G_{3}=\mathrm{m}-\mathrm{r}, G_{4}=\mathrm{A}-\mathrm{L}$, and $G_{5}=\mathrm{M}-\mathrm{X}$ into five holey parallel classes of pairs for each of G_{1}, G_{2}, and G_{3}; nine holey parallel classes of pairs for each of G_{4} and G_{5}; and 48 triples. To form a 3-IgDD of type $(11: 5)^{3}(21: 9)^{2}$, extend the holey parallel classes. Then fill the hole with a 3 -GDD of type $5^{3} 9^{2}$.

This completes the proof of the Main Theorem.

References

[1] D. Bryant, D. Horsley, Steiner triple systems with two disjoint subsystems, J. Combin. Des. 14(1) (2006) 14-24.
[2] C. J. Colbourn, Small group divisible designs with block size three, J. Combin. Math. Combin. Comput. 14 (1993) 153-171.
[3] C. J. Colbourn, C. A. Cusack, D. L. Kreher, Partial Steiner triple systems with equal-sized holes, J. Combin. Theory Ser. A 70(1) (1995) 56-65.
[4] C. J. Colbourn, J. H. Dinitz (Eds.), Handbook of Combinatorial Designs, Second Edition, CRC/Chapman and Hall, Boca Raton, FL, 2007.
[5] C. J. Colbourn, D. Hoffman, R. Rees, A new class of group divisible designs with block size three, J. Combin. Theory Ser. A 59(1) (1992) 73-89.
[6] C. J. Colbourn, M. A. Oravas, R. S. Rees, Steiner triple systems with disjoint or intersecting subsystems, J. Combin. Des. 8(1) (2000) 58-77.
[7] R. Rees, Uniformly resolvable pairwise balanced designs with blocksizes two and three, J. Combin. Theory Ser. A 45(2) (1987) 207-225.
[8] R. M. Wilson, An existence theory for pairwise balanced designs. I. Composition theorems and morphisms, J. Combinatorial Theory Ser. A 13 (1972) 220-245.
[9] R. M. Wilson, An existence theory for pairwise balanced designs. II. The structure of PBD-closed sets and the existence conjectures, J. Combinatorial Theory Ser. A 13 (1972) 246-273.

[^0]: Charles J. Colbourn; School of CIDSE, Arizona State University, Tempe, Arizona 85287-8809, U.S.A. (email: charles.colbourn@asu.edu).
 Melissa S. Keranen, Donald L. Kreher (Corresponding Author); Department of Mathematical Sciences, Michigan Technological University, Houghton, Michigan 49931-1295, U.S.A. (email: msjukuri@mtu.edu, kreher@mtu.edu).

