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Abstract: The Kite graph, denoted by Kitep,q is obtained by appending a complete graph Kp to a pendant
vertex of a path Pq. In this paper, firstly we show that no two non-isomorphic kite graphs are
cospectral w.r.t the adjacency matrix. Let G be a graph which is cospectral with Kitep,q and let
w(G) be the clique number of G. Then, it is shown that w(G) ≥ p − 2q + 1. Also, we prove that
Kitep,2 graphs are determined by their adjacency spectrum.
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1. Introduction

All of the graphs considered here are simple and undirected. Let G = (V,E) be a graph with vertex
set V (G) = {v1, v2, . . . , vn} and edge set E(G). For a given graph F , if G does not contain F as an
induced subgraph, then G is called F − free. A complete subgraph of G is a clique of G. The clique
number of G is the number of the vertices in the largest clique of G and it is denoted by w(G). Let
A(G) be the (0,1)-adjacency matrix of G and dk denotes the degree of the vertex vk. The polynomial
PA(G)(λ) = det(λI − A(G)) is the adjacency characteristic polynomial of G, where I is the identity
matrix. Eigenvalues of the matrix A(G) are adjacency eigenvalues. Since A(G) is real and symmetric
matrix, adjacency eigenvalues are all real numbers and could be ordered as λ1(A(G)) ≥ λ2(A(G)) ≥
. . . ≥ λn(A(G)). Adjacency spectrum of the graph G consists of the adjacency eigenvalues with their
multiplicities. The largest absolute value of the adjacency eigenvalues of a graph is known as its adjacency
spectral radius. Two graphs G and H are said to be cospectral if they have same spectrum (i.e., same
characteristic polynomial). A graph G is determined by its adjacency spectrum, shortly DAS, if every
graph cospectral with G w.r.t the adjacency matrix, is isomorphic to G. It is conjectured in [5] that
almost all graphs are determined by their spectrum, DS for short. But it is difficult to show that a given
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graph is DS. Up to now, some graphs are proved to be DS [1, 2, 4–11, 13, 15]. Recently, some papers have
appeared in the literature that researchers focus on some special graphs (oftenly under some conditions)
and prove that these special graphs are DS or non-DS [1, 2, 6–11, 13, 15]. For a recent survey, one can
see [5].

The Kite graph, denoted by Kitep,q, is obtained by appending a complete graph with p vertices Kp

to a pendant vertex of a path graph with q vertices Pq. If q = 1, it is called short kite graph.

In this paper, firstly we obtain the characteristic polynomial of kite graphs and show that no two
non-isomorphic kite graphs are cospectral w.r.t the adjacency matrix. Then for a given graph G which is
cospectral with Kitep,q, the clique number of G is w(G) ≥ p− 2q+1. Also we prove that Kitep,2 graphs
are DAS for all p.

2. Preliminaries

First, we give some lemmas that will be used in the next sections of this paper.

Lemma 2.1. [8] Let x1 be a pendant vertex of a graph G and x2 be the vertex which is adjacent to x1.
Let G1 be the induced subgraph obtained from G by deleting the vertex x1. If x1 and x2 are deleted, the
induced subgraph G2 is obtained. Then,

PA(G)(λ) = λPA(G1)(λ)− PA(G2)(λ)

Lemma 2.2. [4] For nxn matrices A and B, followings are equivalent :

(i) A and B are cospectral

(ii) A and B have the same characteristic polynomial

(iii) tr(Ai) = tr(Bi) for i = 1, 2, ..., n

Lemma 2.3. [4] For the adjacency matrix of a graph G, following parameters can be deduced from the
spectrum;

(i) the number of vertices

(ii) the number of edges

(iii) the number of closed walks of any fixed length.

Theorem 2.4. [14] If a given connected graph G has the same order, same clique number and same
spectral radius with Kitep,q then G is isomorphic to Kitep,q.

In the rest of the paper, we denote the number of subgraphs of a graph G which are isomorphic to
complete graph K3 by t(G).

Theorem 2.5. [14] For any integers p ≥ 3 and q ≥ 1, if we denote the spectral radius of A(Kitep,q) with
ρ(Kitep,q) then

p− 1 +
1

p2
+

1

p3
< ρ(Kitep,q) < p− 1 +

1

4p
+

1

p2 − 2p

Theorem 2.6. [12] Let G be a graph with n vertices, m edges and spectral radius µ. If G is Kr+1−free,
then

µ ≤
√
2m(

r − 1

r
)

Lemma 2.7. [3](Interlacing Lemma) If G is a graph on n vertices with eigenvalues λ1(G) ≥ . . . ≥
λn(G) and H is an induced subgraph on m vertices with eigenvalues λ1(H) ≥ . . . ≥ λm(H), then for
i = 1, . . . ,m

λi(G) ≥ λi(H) ≥ λn−m+i(G)
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Lemma 2.8. [3] A connected graph with the largest adjacency eigenvalue less than 2 are precisely induced
subgraphs of the Smith graphs shown in Figure 1.

Figure 1. Smith graphs

3. Characteristic polynomial of kite graphs

We use the method similar to that given in [8] to obtain the general form of characteristic polynomials
of Kitep,q graphs. Obviously, if we delete the vertex with one degree from short kite graph, the induced
subgraph will be the complete graph Kp. Then, by deleting the vertex with one degree and its adjacent
vertex, we obtain the complete graph Kp−1 with p− 1 vertices. From Lemma 2.1, we get

PA(Kitep,1)(λ) = λPA(Kp)(λ)− PA(Kp−1)(λ)

= λ(λ− p+ 1)(λ+ 1)p−1 − [(λ− p+ 2)(λ+ 1)p−2]

= (λ+ 1)p−2[(λ2 − λp+ λ)(λ+ 1)− λ+ p− 2]

= (λ+ 1)p−2[λ3 − (p− 2)λ2 − λp+ p− 2].

Similarly for Kitep,2, induced subgraphs will be Kitep,1 and Kp respectively. By Lemma 2.1, we get

PA(Kitep,2)(λ) = λPA(Kitep,1)(λ)− PA(Kp))(λ)

= λ(λPA(Kp)(λ)− PA(Kp−1)(λ))− PA(Kp))(λ)

= (λ2 − 1)PA(Kp)(λ)− λPA(Kp−1)(λ).

By using these polynomials, we calculate the characteristic polynomial of Kitep,q where n = p + q.
Again, by Lemma 2.1 we have

PA(Kitep,1)(λ) = λPA(Kp)(λ)− PA(Kp−1)(λ).
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Coefficients of above equation are b1 = −1, a1 = λ. Simultaneously, we get

PA(Kitep,2)(λ) = (λ2 − 1)PA(Kp)(λ)− λPA(Kp−1)(λ).

and coefficients of above equation are b2 = −a1 = −λ, a2 = λa1 − 1 = λ2 − 1. Then for Kitep,3, we have

PA(Kitep,3)(λ) = λPA(Kitep,2)(λ)− PA(Kitep,1))(λ)

= (λ(λ2 − 1)− λ)PA(Kp)(λ)− ((λ2 − 1)PA(Kp−1)(λ))

and coefficients of above equation are b3 = −a2 = −(λ2 − 1), a3 = λa2 − a1 = λ(λ2 − 1) − λ. In the
following steps, for n ≥ 3, an = λan−1 − an−2. From this difference equation, we get

an =

n∑
k=0

(
λ+
√
λ2 − 4

2
)k(

λ−
√
λ2 − 4

2
)n−k

Now, let λ = 2cosθ and u = eiθ. Then, we have

an =

n∑
k=0

u2k−n =
u−n(1− u2n+2)

1− u2

and by calculation the characteristic polynomial of any kite graph Kitep,q where n = p+ q is

PA(Kitep,q)(u+ u−1) = an−pPA(Kp)(u+ u−1)− an−p−1PA(Kp−1)(u+ u−1)

=
u−n+p(1− u2n−2p+2)

1− u2
.((u+ u−1 − p+ 1).(u+ u−1 + 1)p−1)

−u
−n+p+1(1− u2n−2p+4)

1− u2
.((u+ u−1 − p+ 2).(u+ u−1 + 1)p−2)

=
u−n+p(1 + u− u−1)p−2

1− u2
[(2− p).(1 + u−1 − u2n−2p+2 − u2n−2p+3)

+(u−2 − u2n−2p+4)]

=
u−q(1 + u− u−1)p−2

1− u2
[(2− p).(1 + u−1 − u2q+2 − u2q+3)

+(u−2 − u2q+4)].

Theorem 3.1. No two non-isomorphic kite graphs have the same adjacency spectrum.

Proof. Assume that there are two cospectral kite graphs with number of vertices respectively, p1 + q1
and p2 + q2. Since they are cospectral, they must have same number of vertices and same characteristic
polynomials. Hence, n = p1 + q1 = p2 + q2 and we get

PA(Kitep1,q1
)(u+ u−1) = PA(Kitep2,q2

)(u+ u−1)

i.e.,

u−n+p1(1 + u− u−1)p1−2

1− u2
[(2− p1).(1 + u−1 − u2n−2p1+2 − u2n−2p1+3)

+(u−2 − u2n−2p1+4)]

=
u−n+p2(1 + u− u−1)p2−2

1− u2
[(2− p2).(1 + u−1 − u2n−2p2+2 − u2n−2p2+3)

+(u−2 − u2n−2p2+4])
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i.e.,

up1 .(1 + u− u−1)
p1
.[(2− p1).(1 + u−1 − u2n−2p1+2 − u2n−2p1+3)

+(u−2 − u2n−2p1+4)]

= up2 .(1 + u− u−1)
p2
.[(2− p2).(1 + u−1 − u2n−2p2+2 − u2n−2p2+3)

+(u−2 − u2n−2p2+4)]

Let p1 > p2. It follows that n− p2 > n− p1. Then, we have

up1−p2 .(1 + u− u−1)
p1−p2 {[(2− p1).(1 + u−1 − u2n−2p1+2 − u2n−2p1+3)

+(u−2 − u2n−2p1+4)]− [(2− p2).(1 + u−1 − u2n−2p2+2 − u2n−2p2+3)

+(u−2 − u2n−2p2+4)]} = 0

By using the fact that u 6= 0 and 1 + u+ u−1 6= 0, we get

f(u) = [(2− p1).(1 + u−1 − u2n−2p1+2 − u2n−2p1+3) + (u−2 − u2n−2p1+4)]

−[(2− p2).(1 + u−1 − u2n−2p2+2 − u2n−2p2+3) + (u−2 − u2n−2p2+4)]

= 0

Since f(u) = 0, the derivation of (2n− 2p2 + 5)th of f equals to zero again. Thus, we have

[(p1 − 2)(2n− 2p2 + 4)!(u−2n+2p2−6)]− [(p2 − 2).(2n− 2p2 + 4)!(u−2n+2p2−6)] = 0

i.e.,

[(p1 − 2)− (p2 − 2)].(u−2n+2p2−6) = 0

i.e.,

p1 = p2

since u 6= 0. This is a contradiction with our assumption that is p1 > p2. For p2 > p1, we get the similar
contradiction. So p1 must be equal to p2. Hence q1 = q2 and these graphs are isomorphic.

4. Spectral characterization of Kitep,2 graphs

Lemma 4.1. Let G be a graph which is cospectral with Kitep,q. Then we get

w(G) ≥ p− 2q + 1.

Proof. Since G is cospectral with Kitep,q, from Lemma 2.3, G has the same number of vertices, same
number of edges and same spectrum with Kitep,q. So, if G has n vertices and m edges, n = p + q and

m =

(
p
2

)
+ q = p2−p+2q

2 . Also, ρ(G) = ρ(Kitep,q). From Theorem 2.6, we say that if µ >
√

2m( r−1r )

then G isn’t Kr+1 − free. It means that, G contains Kr+1 as an induced subgraph. Now, we claim that
for r < p− 2q,

√
2m( r−1r ) < ρ(G). By Theorem 2.5, we’ve already known that p− 1 + 1

p2 + 1
p3 < ρ(G).

Hence, we need to show that
√

2m( r−1r ) < p− 1 + 1
p2 + 1

p3 , when r < p− 2q . Indeed,
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(

√
2m(

r − 1

r
))2 − (p− 1 +

1

p2
+

1

p3
)2 = (p2 − p+ 2q)(r − 1)− r(p− 1 +

1

p2
+

1

p3
)2

= (p2 − p+ 2q)(r − 1)−

(
r(p2 + p3)

p5
)(2(p− 1) +

(p2 + p3)

p5
)

= (pr − p2 + p+ (2q − 1)r − 2q)−

(
r(p2 + p3)

p5
)(2(p− 1) +

(p2 + p3)

p5
)

By the help of Mathematica, for r < p− 2q we can see

(pr − p2 + p+ (2q − 1)r − 2q)− (
r(p2 + p3)

p5
)(2(p− 1) +

(p2 + p3)

p5
) < 0

i.e.,

(

√
2m(

r − 1

r
))2 − (p− 1 +

1

p2
+

1

p3
)2 < 0

i.e.,

(

√
2m(

r − 1

r
))2 < (p− 1 +

1

p2
+

1

p3
)2

Since
√
2m( r−1r ) > 0 and p− 1 + 1

p2 + 1
p3 > 0, we get

√
2m(

r − 1

r
) < p− 1 +

1

p2
+

1

p3
< ρ(G).

Thus, we proved our claim and so G contains Kr+1 as an induced subgraph such that r < p − 2q.
Consequently, w(G) ≥ p− 2q + 1.

Theorem 4.2. Kitep,2 graphs are determined by their adjacency spectrum for all p.

Proof. If p = 1 or p = 2, Kitep,2 graphs are actually the path graphs P3 or P4. Also if p = 3, then we
obtain the lollipop graph H5,3. As is known, these graphs are already DAS [8]. Hence we will continue
our proof for p ≥ 4. Adjacency characteristic polynomial of Kitep,2 is as below,

PA(Kitep,2)(λ) = (λ+ 1)p−2[λ4 + (2− p)λ3 − (p+ 1)λ2 + (2p− 4)λ+ p− 1]

By calculation, for the adjacency eigenvalues of Kitep,2, we obtain the following facts;
p − 1 < λ1(A(Kitep,2)) < p, 0 < λ2(A(Kitep,2)) < 2, λ3(A(Kitep,2)) < 0, λ4(A(Kitep,2)) = . . . =
λp+1(A(Kitep,2)) = −1 and λp−1(A(Kitep,2)) < −1.

For a given graph G with n vertices and m edges, assume that G is cospectral with Kitep,2. Then

by Lemma 2.3, n = p + 2, m =

(
p
2

)
+ 2 = p2−p+4

2 and t(G) = t(Kitep,2) =

(
p
3

)
= p3−3p2+2p

6 . From
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Lemma 4.1, w(G) ≥ p− 2q+1. When q = 2, w(G) ≥ p− 3 = n− 5. It’s well-known that complete graph
Kn is DS. So w(G) 6= n. If w(G) = n− 1 = p+ 1, then G contains at least one clique with size p− 1. It

means that the edge number of G is greater than or equal to
(
p+ 1
2

)
. But it is a contradiction since(

p+ 1
2

)
>

(
p
2

)
+ 2 = m. Hence, w(G) 6= n − 1. Because of these facts, we get p − 3 ≤ w(G) ≤ p.

From interlacing lemma, G can not contain the graphs in the following figure as an induced subgraph
because λ3(G1) = λ3(G2) = 0.

Figure 2. Graphs G1 and G2

If G is disconnected, from Lemma 2.8, components of G except one of them must be induced
subgraphs of Smith graphs. Clearly, this is impossible because G1 is forbidden and any path graph (since
they have symmetric eigenvalues) can not be a component of G. Hence G must be a connected graph.
If w(G) = p, then by Theorem 2.4., G ∼= Kitep,2. So we continue for w(G) < p. Since w(G) ≥ p − 3,
G contains at least one clique with size at least p − 3. This clique is denoted by Kw(G). There may be
at most five vertices out of the clique Kw(G). Let us label these five vertices respectively with 1, 2, 3, 4, 5
and call the set of these five vertices with A. So, we get |A| ≤ 5. Moreover, ∀i, j ∈ A we get i ∼ j since
G1, G2 are not induced subgraphs of G and there is no isolated vertex in G. Then, we can say that p ≥ 6
since w(G) ≥ p− 3.

For i ∈ A, xi denotes the number of adjacent vertices of i in Kw(G). By the fact that p−1 ≥ w(G) ≥
p− 3, for all i ∈ A we say

xi ≤ w(G)− |A|+ 1 (1)

Also, xi∧j denotes the number of common adjacent vertices in Kw(G) of i and j such that i, j ∈ A and
i < j. Similarly, if i ∼ j then

xi∧j ≤ w(G)− |A| (2)

Let d denotes the number of edges between the vertices of A and Kw(G), also α denotes the number of
cliques with size 3 which are not contained by A or Kw(G). Then, we get

m =

(
p
2

)
+ 2 =

(
w(G)
2

)
+

(
|A|
2

)
+ d. (3)

Similarly, we get

t(G) =

(
p
3

)
=

(
w(G)
3

)
+

(
|A|
3

)
+ α. (4)

On the other hand for α and d, we have

d =

|A|∑
i=1

xi (5)
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and

α =

|A|∑
i=1

(
xi
2

)
+
∑
i∼j

xi∧j . (6)

If w(G) = p− 3 then |A| = 5 and so p ≥ 8. Thus we have

d = 3p− 14 (7)

and

α =

(
p
3

)
−
(
p− 3
3

)
− 10 =

3p2

2
− 15p

2
. (8)

From (1),(2),(5),(6) and (7) we have

α =

5∑
i=1

(
xi
2

)
+
∑
i∼j

xi∧j ≤ 3

(
p− 7
2

)
+

(
7
2

)
+ 2

5∑
i=1

xi

= 3

(
p− 7
2

)
+

(
7
2

)
+ 6p− 28

=
3p2 − 33p

2
+ 77.

But obviously for p = 8 this result gives contradiction. Also for p > 8,

3p2 − 33p

2
+ 77 <

3p2 − 15p

2
= α.

So this is again a contradiction.

If w(G) = p− 2 then |A| = 4 and so p ≥ 7. Thus we have

d = 2p− 7

and

α =

(
p
3

)
−
(
p− 2
3

)
− 4 = p2 − 4p.

On the other hand we have

α =

4∑
i=1

(
xi
2

)
+
∑
i∼j

xi∧j ≤ 2

(
p− 5
2

)
+

(
3
2

)
+ 2

4∑
i=1

xi

= p2 − 7p+ 19.

Clearly for p ≥ 7,

p2 − 7p+ 19 < p2 − 4p = α.

So this is a contradiction.

Similarly, if w(G) = p− 1 then |A| = 3 and so p ≥ 6. Hence we have

d = p− 2

and

α =
p2 − 3p

2
.
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Also we have

α =

3∑
i=1

(
xi
2

)
+
∑
i∼j

xi∧j ≤
(
p− 3
2

)
+ p− 2

=
p2 − 5p

2
+ 4.

Clearly for p ≥ 6,

p2 − 5p

2
+ 4 <

p2 − 3p

2
= α.

Again we obtain a contradiction.

By all of these facts, we can conclude that our assumption is actually false, then w(G) 6< p. Hence
w(G) = p and so that by Theorem 2.4., G ∼= Kitep,2.

In the final of the paper, we give a conjecture below.

Conjecture 4.3. For q > 2, Kitep,q graphs are DAS.

Acknowledgment: The authors are grateful to the referees for many suggestions which led to an
improved version of this paper.
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