The unit group of group algebra $\mathbb{F}_{q} S L\left(2, \mathbb{Z}_{3}\right)$

Swati Maheshwari, R. K. Sharma

Abstract: Let \mathbb{F}_{q} be a finite field of characteristic p having q elements, where $q=p^{k}$ and $p \geq 5$. Let $S L\left(2, \mathbb{Z}_{3}\right)$ be the special linear group of 2×2 matrices with determinant 1 over \mathbb{Z}_{3}. In this note we establish the structure of the unit group of $\mathbb{F}_{q} S L\left(2, \mathbb{Z}_{3}\right)$.

2010 MSC: 16U60, 20C05

Keywords: Group algebra, Unit group, Finite field

1. Introduction

Let $F G$ be a group algebra of a finite group G over a field F and $\mathcal{U}(F G)$ be the group of units in $F G$. It is a classical problem to study units and their properties in group ring theory. The case, when G is a finite abelian group, the structure of $F G$ is studied by Perlis and Walker in [14]. In 2006, T. Hurley introduced a correspondence between group ring and certain ring of matrices (see [6]). As an application of units of a group ring, T. Hurley gave a method to construct convolutional codes from units in group ring (see [7]).

A lot of work has been done for finding the algebraic structure of the unit group $\mathcal{U}(F G)$ of a group algebra $F G$, when G is a finite non-abelian group. Here we are providing some literature survey for the same. For dihedral groups, the structure of the unit group $\mathcal{U}(F G)$ over a finite field F is discussed in [1, 4, 10, 12]. J. Gildea et.al. (see [3]) and R. K. Sharma et.al. (see [15]) have given the structure of the unit group $\mathcal{U}(F G)$, where G is alternating group A_{4}. Unit group of algebra of circulant matrix has been discussed in [11, 17]. The unit group of group algebras of some non-abelian groups with small orders are established in [16, 18, 19]).

In this article, we are interested in studying the structure of the unit group of $\mathbb{F}_{q} S L\left(2, \mathbb{Z}_{3}\right)$ over a finite field of characteristic greater than 3.

This work was supported by IIT Delhi, India through GATE Senior Research Fellowship.
Swati Maheshwari (Corresponding Author), R. K. Sharma; Department of Mathematics, Indian Institute of Technology Delhi, India (email: swatimahesh88@gmail.com, rksharmaiitd@gmail.com).

2. Preliminaries

The following results provide useful information about the decomposition of $A / J(A)$, where $A=F G$, $J(A)$ be its Jacobson radical and F being a field of characteristic p. For basic definitions and results, we refer to [13]. We briefly introduce some definitions and notations those will be needed subsequently.

Definition 2.1. An element $g \in G$ is said to be p-regular if $p \nmid o(g)$. Let s be the l.c.m. of the orders of the p-regular elements of G, ζ be a primitive s-th root of unity over F. Then $T_{G, F}$ be the multiplicative group consisting of those integers t, taken modulo s, for which $\zeta \mapsto \zeta^{t}$ defines an automorphism of $F(\zeta)$ over F. That is, $T_{G, F}$ is $\operatorname{Gal}(F(\zeta) / F)$ seen as a subgroup of $\mathcal{U}\left(\mathbb{Z}_{s}\right)$.

Note that if u is a power of a prime such that $(u, s)=1$ and $c=\operatorname{ord}_{s}(u)$ is the multiplicative order of u modulo s, then

$$
T_{G, F_{u}}=\left\{1, u, \ldots, u^{c-1}\right\} \bmod s
$$

and $F_{u}(\zeta) \cong F_{u^{c}}$ follow using [8, Theorem 2.21].
Definition 2.2. If $g \in G$ is a p-regular element, then the sum of all conjugates of $g \in G$ is denoted by γ_{g} and the cyclotomic F-class of g is defined to be the set

$$
S F\left(\gamma_{g}\right)=\left\{\gamma_{g^{t}} \quad \mid t \in T_{G, F}\right\} .
$$

Proposition 2.3. [2, Theorem 1.2] The number of simple components of $F G / J(F G)$ is equal to the number of cyclotomic F-classes in G.

Theorem 2.4. [2, Theorem 1.3] Suppose that $\operatorname{Gal}(F(\zeta) / F)$ is cyclic. Let w be the number of cyclotomic F-classes in G. If $K_{1}, K_{2}, \ldots, K_{w}$ are the simple components of $Z(F G / J(F G))$ and $S_{1}, S_{2}, \ldots, S_{w}$ are the cyclotomic F-classes of G, then with a suitable re-ordering of indices,

$$
|S i|=\left[K_{i}: F\right] .
$$

Lemma 2.5. [9, Observation 2.2.1, p.22] Let $\mathfrak{B}_{1}, \mathfrak{B}_{2}$ be two finite dimensional F-algebras such that \mathfrak{B}_{2} is semisimple. If $f: \mathfrak{B}_{1} \rightarrow \mathfrak{B}_{2}$ is an onto homomorphism of F-algebras, then there exists a semisimple F-algebra ℓ such that

$$
\mathfrak{B}_{1} / J\left(\mathfrak{B}_{1}\right) \cong \ell \oplus \mathfrak{B}_{2} .
$$

Throughout this article, $G=S L\left(2, \mathbb{Z}_{3}\right) . \mathbb{F}_{q}$ is a field of characteristic p, where $q=p^{k}$ and k is a positive integer. The conjugacy class of $g \in G$ is denoted by $[g]$.

3. Main result

We shall use the presentation of G given in [5],

$$
\left\langle a, b \mid a^{3}, b^{4},(a b)^{3}=b^{2},\left(a^{2} b\right)^{6}\right\rangle
$$

where $a=\left[\begin{array}{ll}1 & 0 \\ 1 & 1\end{array}\right]$ and $b=\left[\begin{array}{cc}0 & 1 \\ -1 & 0\end{array}\right]$.
We can see that G has 7 conjugacy classes as follows:

representative	elements in the class	order of element
$[a]$	$a,(b a)^{4},(a b)^{4}, b^{-1} a b$	3
$\left[a^{-1}\right]$	$a^{-1},(b a)^{2},(a b)^{2}, a b a$	3
$[b]$	$b, b^{-1}, a^{2} b a, a b a^{2}, a b^{-1} a^{2}, a^{2} b^{-1} a$	4
$\left[b^{2}\right]$	b^{2}	2
$[a b]$	$a b, b a, a^{2} b a^{2}, a b^{2}$	6
$\left[(a b)^{-1}\right]$	$(a b)^{-1}, a^{2} b^{-1}, a b^{-1} a, a^{2} b^{2}$	6

We have $(p,|G|)=1$ and so $J\left(\mathbb{F}_{p^{k}} G\right)=0$. Further, we discuss the decomposition of $\mathbb{F}_{p^{k}} G$.
Theorem 3.1. Let \mathbb{F}_{q} be a finite field of characteristic p, where $p \geq 5$. Then the Wedderburn decomposition of $\mathbb{F}_{q} G$ is given by

condition on k	$\mathbb{F}_{q} G$
k is even	$\mathbb{F}_{q}^{3} \oplus M\left(2, \mathbb{F}_{q}\right)^{3} \oplus M\left(3, \mathbb{F}_{q}\right)$
k is odd	
$p \equiv 1$ mod 3 and $p \equiv \pm 1 \bmod 4$	$\mathbb{F}_{q}^{3} \oplus M\left(2, \mathbb{F}_{q}\right)^{3} \oplus M\left(3, \mathbb{F}_{q}\right)$
k is odd	
$p \equiv-1 \bmod 3$ and $p \equiv \pm 1 \bmod 4$	$\mathbb{F}_{q} \oplus \mathbb{F}_{q^{2}} \oplus M\left(2, \mathbb{F}_{q}\right) \oplus M\left(2, \mathbb{F}_{q^{2}}\right) \oplus M\left(3, \mathbb{F}_{q}\right)$

Proof. Since $\mathbb{F}_{q} G$ is semisimple, so it has the Wedderburn decomposition which is given by

$$
\mathbb{F}_{q} G \cong \oplus_{i=1}^{r} M\left(n_{i}, \mathbb{F}_{i}\right)
$$

where for each $i, n_{i} \geq 1$ and \mathbb{F}_{i} is a finite extension of \mathbb{F}_{q}. By using Lemma 2.5, we have

$$
\begin{equation*}
\mathbb{F}_{q} G \cong \mathbb{F}_{q} \oplus_{i=1}^{r-1} M\left(n_{i}, \mathbb{F}_{i}\right) . \tag{1}
\end{equation*}
$$

Further, we find n_{i} 's and \mathbb{F}_{i} 's. Since $|G|=24$, hence any element $g \in G$ is a p - regular element. For finding cyclotomic \mathbb{F}_{q} - classes of G, first we assume that k is even. We have

$$
p^{k} \equiv 1 \bmod 4 \text { and } p^{k} \equiv 1 \bmod 3 .
$$

Then by Chinese remainder theorem

$$
p^{k} \equiv 1 \bmod 12
$$

By using above observation, we have

$$
S_{\mathbb{F}_{q}}\left(\gamma_{g}\right)=\left\{\gamma_{g}\right\} \quad \text { and }\left|S_{\mathbb{F}_{q}}\left(\gamma_{g}\right)\right|=1 .
$$

Therefore by using Equation (1), Proposition 2.3 and Theorem 2.4, we have

$$
\mathbb{F}_{q} G \cong \mathbb{F}_{q} \oplus_{i=1}^{6} M\left(n_{i}, \mathbb{F}_{q}\right)
$$

for some $n_{i} \geq 1$. As dimension of $\mathbb{F}_{q} G$ is 24 , we get

$$
\sum_{i=1}^{6} n_{i}^{2}=23
$$

Using above equality, $1 \leq n_{i} \leq 3$. Clearly any $n_{i}=n_{j}=3$ for $1 \leq i \neq j \leq 3$ not possible. So the only possible choice for n_{i} 's is

$$
n_{1}=n_{2}=1, n_{3}=n_{4}=n_{5}=2 \text { and } n_{6}=3
$$

Therefore the decomposition $\mathbb{F}_{q} G$ is given by

$$
\mathbb{F}_{q} G \cong \mathbb{F}_{q}^{3} \oplus M\left(2, \mathbb{F}_{q}\right)^{3} \oplus M\left(3, \mathbb{F}_{q}\right)
$$

Now we consider the case when k is odd. We shall discuss this case into two parts

1. $p \equiv 1 \bmod 3$ and $p \equiv \pm 1 \bmod 4$
2. $p \equiv-1 \bmod 3$ and $p \equiv \pm 1 \bmod 4$

Case 1. Suppose k is odd with $p \equiv 1 \bmod 3$ and $p \equiv \pm 1 \bmod 4$.
Observe that

$$
p^{k} \equiv p \bmod 4 \text { and } p^{k} \equiv p \bmod 3
$$

Then by Chinese remainder theorem

$$
p^{k} \equiv p \bmod 12
$$

Since $[b]=\left[b^{-1}\right]$. We have

$$
S_{\mathbb{F}_{q}}\left(\gamma_{g}\right)=\left\{\gamma_{g}\right\}
$$

Hence n_{i} 's and \mathbb{F}_{i} 's are same as above. So the decomposition of $\mathbb{F}_{q} G$ is given by

$$
\mathbb{F}_{q} G \cong \mathbb{F}_{q}^{3} \oplus M\left(2, \mathbb{F}_{q}\right)^{3} \oplus M\left(3, \mathbb{F}_{q}\right)
$$

Case 2. Suppose k is odd with $p \equiv-1 \bmod 3$ and $p \equiv \pm 1 \bmod 4$. Using the observation in case 1 , we have

$$
\begin{gathered}
p^{k} \equiv p \bmod 12 . \\
S \mathbb{F}_{q}\left(\gamma_{b}\right)=\left\{\gamma_{b}\right\}, S \mathbb{F}_{q}\left(\gamma_{b^{2}}\right)=\left\{\gamma_{b^{2}}\right\}, \\
S \mathbb{F}_{q}\left(\gamma_{a}\right)=\left\{\gamma_{a}, \gamma_{a^{-1}}\right\} \text { and } S \mathbb{F}_{q}\left(\gamma_{a b}\right)=\left\{\gamma_{a b}, \gamma_{(a b)^{-1}}\right\} .
\end{gathered}
$$

Therefore by using Equation (1), Proposition 2.3 and Theorem 2.4, we have

$$
\mathbb{F}_{q} G \cong \mathbb{F}_{q} \oplus M\left(n_{1}, \mathbb{F}_{q}\right) \oplus M\left(n_{2}, \mathbb{F}_{q}\right) \oplus M\left(n_{3}, \mathbb{F}_{q^{2}}\right) \oplus M\left(n_{4}, \mathbb{F}_{q^{2}}\right)
$$

for some $n_{i} \geq 1$.
As dimension of $\mathbb{F}_{q} G$ is 24 , we get

$$
n_{1}^{2}+n_{2}^{2}+2 n_{3}^{2}+2 n_{4}^{2}=23
$$

and hence, $1 \leq n_{i} \leq 3, \forall 1 \leq i \leq 4$. Clearly n_{3} and n_{4} can not be equal to 3 . So the only possible choice for n_{i} 's is $n_{1}=2, n_{2}=3, n_{3}=1, n_{4}=2$. Therefore the decomposition of $\mathbb{F}_{q} G$ is given by

$$
\mathbb{F}_{q} G \cong \mathbb{F}_{q} \oplus \mathbb{F}_{q^{2}} \oplus M\left(2, \mathbb{F}_{q}\right) \oplus M\left(2, \mathbb{F}_{q^{2}}\right) \oplus M\left(3, \mathbb{F}_{q}\right)
$$

Corollary 3.2. Let $q=p^{k}$, where $p \geq 5$ is a prime. Then the structure of $\mathcal{U}\left(\mathbb{F}_{q} G\right)$ is given by

condition on k	$\mathcal{U}\left(\mathbb{F}_{q} G\right)$
k is even	$\mathcal{C}_{q-1}^{3} \oplus G L\left(2, \mathbb{F}_{q}\right)^{3} \oplus G L\left(3, \mathbb{F}_{q}\right)$
k is odd	
$p \equiv 1 \bmod 3$ and $p \equiv \pm 1 \bmod 4$	$\mathcal{C}_{q-1}^{3} \oplus G L\left(2, \mathbb{F}_{q}\right)^{3} \oplus G L\left(3, \mathbb{F}_{q}\right)$
k is odd	$\mathcal{C}_{q-1} \oplus \mathcal{C}_{q^{2}-1} \oplus G L\left(2, \mathbb{F}_{q}\right) \oplus G L\left(2, \mathbb{F}_{q^{2}}\right) \oplus G L\left(3, \mathbb{F}_{q}\right)$
$p \equiv-1 \bmod 3, \pm 1 \bmod 4$	

Proof. It follows by the fact that, if R and S are two rings then

$$
\mathcal{U}(R \oplus S)=\mathcal{U}(R) \oplus \mathcal{U}(S)
$$

References

[1] L. Creedon, J. Gildea, The structure of the unit group of the group algebra $\mathbb{F}_{2^{k}} D_{8}$, Canad. Math. Bull. 54(2) (2011) 237-243.
[2] R. A. Ferraz, Simple components of the center of $\mathbb{F} G / J(\mathbb{F} G)$, Comm. Algebra 36(9) (2008) 3191-3199.
[3] J. Gildea, The structure of the unit group of the group algebra $\mathbb{F}_{2}^{k} A_{4}$, Czechoslovak Math. J. 61(2) (2011) 531-539.
[4] J. Gildea, F. Monaghan, Units of some group algebras of groups of order 12 over any finite field of characteristic 3, Algebra Discrete Math. 11(1) (2011) 46-58.
[5] P. R. Helm, A presentation for $S L\left(2, \mathbb{Z}_{p^{r}}\right)$, Comm. Algebra 10 (15) (1982) 1683-1688.
[6] T. Hurley, Group rings and ring of matrices, Int. J. Pure Appl. Math. 31(3) (2006) 319-335.
[7] T. Hurley, Convolutional codes from units in matrix and group rings, Int. J. Pure Appl. Math. 50(3) (2009) 431-463.
[8] R. Lidl, H. Niederreiter, Introduction to finite fields and their applications, Cambridge University Press, New York, 2000.
[9] N. Makhijani, Units in finite group algebras, IIT Delhi, 2014.
[10] N. Makhijani, R. K. Sharma, J. B. Srivastava, A note on units in $\mathbb{F}_{p^{m}} D_{2 p^{n}}$, Acta Math. Acad. Paedagog. Nyházi. 30(1) (2014) 17-25.
[11] N. Makhijani, R. K. Sharma, J. B. Srivastava, The unit group of algebra of circulant matrices, Int. J. Group Theory. 3(4) (2014) 13-16.
[12] N. Makhijani, R. K. Sharma, J. B. Srivastava, The unit group of $\mathbb{F}_{q}\left[D_{30}\right]$, Serdica Math. J. 41(2-3) (2015) 185-198.
[13] C. P. Milies, S. K. Sehgal, An introduction to group rings, Kluwer Academic Publishers, 2002.
[14] S. Perlis, G. L. Walker, Abelian group algebras of finite order, Trans. Amer. Math. Soc. 68(3) (1950) 420-426.
[15] R. K. Sharma, J. B. Srivastava, M. Khan, The unit group of $\mathbb{F} A_{4}$, Publ. Math. Debrecen 71(1-2) (2007) 21-26.
[16] R. K. Sharma, J. B. Srivastava, M. Khan, The unit group of $\mathbb{F} S_{3}$, Acta Math. Acad. Paedagog. Nyházi. 23(2) (2007) 129-142.
[17] R. K. Sharma, P. Yadav, Unit group of algebra of circulant matrices, Int. J. Group Theory. 2(4) (2013) 1-6.
[18] R. K. Sharma, P. Yadav, The unit group of $\mathbb{Z}_{p} Q_{8}$, Algebras Groups Geom. 25(4) (2008) 425-429.
[19] G. Tang, Y. Wei, Nanning, Y. Li, Units group of group algebras of some small groups, Czechoslovak Math. J. 64(1) (2014) 149-157.

