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Abstract: A vertex-colored graph G is rainbow vertex-connected if two vertices are connected by a path whose
internal vertices have distinct colors. The rainbow vertex-connection number of a connected graph
G, denoted by rvc(G), is the smallest number of colors that are needed in order to make G rainbow
vertex-connected. If for every pair u, v of distinct vertices, G contains a vertex-rainbow u−v geodesic,
then G is strongly rainbow vertex-connected. The minimum k for which there exists a k-coloring of G
that results in a strongly rainbow-vertex-connected graph is called the strong rainbow vertex number
srvc(G) of G. Thus rvc(G) ≤ srvc(G) for every nontrivial connected graph G. A tree T in G is called
a rainbow vertex tree if the internal vertices of T receive different colors. For a graph G = (V,E) and
a set S ⊆ V of at least two vertices, an S-Steiner tree or a Steiner tree connecting S (or simply, an
S-tree) is a such subgraph T = (V ′, E′) of G that is a tree with S ⊆ V ′. For S ⊆ V (G) and |S| ≥ 2,
an S-Steiner tree T is said to be a rainbow vertex S-tree if the internal vertices of T receive distinct
colors. The minimum number of colors that are needed in a vertex-coloring of G such that there is a
rainbow vertex S-tree for every k-set S of V (G) is called the k-rainbow vertex-index of G, denoted by
rvxk(G). In this paper, we first investigate the strong rainbow vertex-connection of complementary
graphs. The k-rainbow vertex-index of complementary graphs are also studied.
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1. Introduction

The graphs considered in this paper are finite undirected and simple graphs. We follow the notation
of Bondy and Murty [1], unless otherwise stated. For a graph G, let V (G), E(G), n(G), m(G), and G,
respectively, be the set of vertices, the set of edges, the order, the size, and the complement graph of G.
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Let G be a nontrivial connected graph on which an edge-coloring c : E(G) → {1, 2, · · · , n}, n ∈ N,
is defined, where adjacent edges may be colored the same. A path is rainbow if no two edges of it are
colored the same. An edge-coloring graph G is rainbow connected if any two vertices are connected by
a rainbow path. Clearly, if a graph is rainbow connected, it must be connected, whereas any connected
graph has a trivial edge-coloring that makes it rainbow connected; just color each edge with a distinct
color. Thus, in [4] L. Chen, X. Li, H. Lian defined the rainbow connection number of a connected graph
G, denoted by rc(G), as the smallest number of colors that are needed in order to make G rainbow
connected. They showed that rc(G) ≥ diam(G) where diam(G) denotes the diameter of G. For more
results on the rainbow connection, we refer to the survey paper [2],[3],[4] and [12], and a new book [10]
of Li and Sun.

In [8], Krivelevich and Yuster proposed the concept of rainbow vertex-connection. A vertex-colored
graph G is rainbow vertex-connected if two vertices are connected by a path whose internal vertices have
distinct colors. The rainbow vertex-connection number of a connected graph G, denoted by rvc(G), is
the smallest number of colors that are needed in order to make G rainbow vertex-connected. For more
results on the rainbow vertex-connection, we refer to the survey paper [5] and [9]. An easy observation is
that if G is of order n, then rvc(G) ≤ n− 2 and rvc(G) = 0 if and only if G is a complete graph. Notice
that rvc(G) ≥ diam(G)− 1 with equality if the diameter is 1 or 2.

If for every pair u, v of distinct vertices, G contains a vertex-rainbow u − v geodesic, then G is
strong rainbow vertex-connected. The definition of strongly rainbow vertex-connected was defined by
Li et al. in [11]. The minimum k for which there exists a k-coloring of G that results in a strongly
rainbow vertex-connected graph is called the strong rainbow vertex-connection number srvc(G) of G.
Thus rc(G) ≤ srvc(G) for every nontrivial connected graph G.

If G is a nontrivial connected graph of order n whose diameter is diam(G), then

diam(G)− 1 ≤ rvc(G) ≤ srvc(G) ≤ n− s, (1)

where s denote the number of pendent vertices in G.

Proposition 1.1. Let G be a nontrivial connected graph of order n. Then

(a) srvc(G) = 0 if and only if G is a complete graph;

(b) srvc(G) = 1 if and only if diam(G) = 2 if and only if rvc(G) = 1.

A tree T in G is called a rainbow vertex tree if the internal vertices of T receive different colors. For a
graph G = (V,E) and a set S ⊆ V of at least two vertices, an S-Steiner tree or a Steiner tree connecting
S (or simply, an S-tree) is a such subgraph T = (V ′, E′) of G that is a tree with S ⊆ V ′. For more
problems on S-Steiner tree, we refer to [6] and [7].

For S ⊆ V (G) and |S| ≥ 2, an S-Steiner tree T is said to be a rainbow vertex S-tree if the internal
vertices of T receive distinct colors. The minimum number of colors that are needed in an vertex-coloring
of G such that there is a rainbow vertex S-tree for every k-set S of V (G) is called the k-rainbow vertex-
index of G, denoted by rvxk(G). The vertex-rainbow index of a graph was first defined by Yaping Mao
in [13].

2. The strong rainbow vertex-connection of complementary
graphs

In this section, we investigate the rainbow vertex-connection number of a graph G according to some
constraints to its complement G. We give some conditions to guarantee that srvc(G) is bounded by a
constant.

We investigate the rainbow vertex-connection number of connected complement graphs of graphs
with diameter at least 3.
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Theorem 2.1. If G is a connected graph with diam(G) ≥ 3, then

srvc(G) =

{
1, if diam(G) ≥ 4;
2, if diam(G) = 3.

Proof. We choose a vertex x with eccG(x) = diam(G) = d ≥ 3. Let N i
G(x) = {v : dG(x, v) = i} where

0 ≤ i ≤ d. So N0
G(x) = {x}, N1

G(x) = NG(x) as usual. Then
⋃

0≤i≤d N
i
G(x) is a vertex partition of V (G)

with |N i
G(x)| = ni. Let A =

⋃
i is even N

i
G(x), B =

⋃
i is odd N

i
G(x). For example, see Figure 1, a graph

with diam(G) = 5.

So, if d = 2k(k ≥ 2), then A =
⋃

0≤i≤d is even N
i
G(x), B =

⋃
1≤i≤d−1 is odd N

i
G(x); if d = 2k + 1(k ≥

2) then A =
⋃

0≤i≤d−1 is even N
i
G(x), B =

⋃
1≤i≤d is odd N

i
G(x). Then by the definition of complement

graphs, we know that G[A] (G[B]) contains a spanning complete k1-partite subgraph(complete k2-partite
subgraph) where k1 = dd+1

2 e (k2 = dd2e). For example, see Figure 1, G[A] contains a spanning complete
tripartite subgraph Kn0,n2,n4

, G[B] contains a spanning complete tripartite subgraph Kn1,n3,n5
.

Figure 1. Graphs for the proof of Theorem 2.

First of all, we see that G must be connected, since otherwise, diam(G) ≤ 2, contradicting the
condition diam(G) ≥ 3.

Case 1. d ≥ 5.

In this case, k1, k2 ≥ 3. We will show that diam(Ḡ) ≤ 2 in this case. For u, v ∈ V (G), we consider
the following cases:

Subcase 1.1. u, v ∈ A or u, v ∈ B.

If u, v ∈ A, then u, v is contained in the spanning complete k1-partite subgraph of G[A]. Thus
dG(u, v) ≤ 2. The same is true for u, v ∈ B.

Subcase 1.2. u ∈ A and v ∈ B.

If u = x, v ∈ B, then u is adjacent to all vertices in G[B] \ N1
G(x). So dG(u, v) = 1 for v ∈

G[B] \N1
G(x). For v ∈ N1

G(x), let P = ux3v, where x3 ∈ N3
G(x). Clearly, dG(u, v) = 2.

If u 6= x, without loss of generality, we assume that u ∈ N2
G(x) and v ∈ N1

G(x). Let Q = ux5v, where
x5 ∈ N5

G(x). Thus dG(u, v) = 2.

From the above, we conclude that diam(G) ≤ 2. So, by Proposition 1(b), we have srvc(G) = 1.
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Case 2. d = 4.

It is obvious that A = N0
G(x) ∪ N2

G(x) ∪ N4
G(x), B = N1

G(x) ∪ N3
G(x). So G[A](G[B]) contains a

spanning complete 3-partite subgraph Kn0,n2,n4 (complete bipartite subgraph Kn1,n3). So, we will show
that diam(G) ≤ 2.

Subcase 2.1. u, v ∈ A or u, v ∈ B.

If u, v ∈ A, then u, v is contained in the spanning complete k1-partite subgraph of G[A]. Thus
dG(u, v) ≤ 2. If u, v ∈ B, then u, v is contained in the spanning complete bipartite subgraph of G[B].
Also we have dG(u, v) ≤ 2.

Subcase 2.2. u ∈ A and v ∈ B.

If u = x, v ∈ B, then u is adjacent to all vertices in N3
G(x). For v ∈ N1

G(x), let P = ux3v, where
x3 ∈ N3

G(x). Clearly, dG(u, v) = 2. So dG(u, v) ≤ 2.

If u 6= x, then we assume that u ∈ N2
G(x) and v ∈ N1

G(x). Let Q = ux4v, where x4 ∈ N4
G(x). Thus

dG(u, v) = 2. Suppose u ∈ N4
G(x) and v ∈ N3

G(x). Let R = ux1v, where x1 ∈ N1
G(x). Thus dG(u, v) = 2.

If u ∈ N2
G(x) and v ∈ N3

G(x), then S = uxv is a path of length 2. Then diam(G) ≤ 2. So, by Proposition
1, we have srvc(G) = 1.

Case 3. d = 3.

In this case, A = N0
G(x) ∪ N2

G(x), B = N1
G(x) ∪ N3

G(x). So G[A] contains a spanning complete
bipartite subgraph Kn0,n2

. So, we give G a vertex-coloring as follows: color vertex x with 1 and color all
vertices of N3

G(x) with 2. It is easy to see that for any u ∈ N2
G(x), v ∈ N1

G(x), there is a rainbow {1, 2}
path connecting them in G. So srvc(G) = 2 in this case.

For the case of diam(G) = 2, srvc(G) can be very large since diam(G) may be very large. For
example, let G = Kn \ E(Cn), where Cn is a cycle of length n in Kn. Then G = Cn and srvc(G) ≥
diam(G)− 1 = dn2 e − 1 by (1).

3. The k-rainbow vertex-index of complete multipartite graphs

Theorem 3.1. Let Kn1,n2,···nl
be a complete multipartite graph. If k < 2`, then rvxk = 1; If k ≥ 2`,

then rvxk = 2. Where S = {v1, v2, · · · vk} (that is the rainbow S-tree we choose) and Vni , (1 ≤ i ≤ l) are
the vertices of the partition of Kn1,n2,···n`

.

Proof. If k < 2`, then we can find a partition Vni
, (1 ≤ i ≤ l) of Kn1,n2,···nl

with Vni
∩ S ≤ 1. If

Vni
∩ S = ∅, then we can choose a vertex v ∈ Vni

as the root vertex of the rainbow S tree and all the
other vertices are leaves. So rvxk(Kn1,n2,···n`

) = 1. If Vni
∩ S = 1, then we choose the vertex v ∈ Vni

as
the root vertex of the rainbow S tree, and all the other vertices are leaves. So rvxk(Kn1,n2,···n`

) = 1.

If k ≥ 2` and there exists Vni such that |S ∩ Vni | ≤ 1, then we can choose the vertex v in Vni

as the root of the rainbow tree and all the other vertices are the leaves the same as when k < 2`. So
rvxk(Kn1,n2,···nl

) = 1.

Suppose k ≥ 2` and |S ∩ Vni
| ≥ 2 for any Vni

. Now we give a rainbow vertex-coloring as follows.

c(Vni) =

{
1, if 1 ≤ i ≤ `− 1;
2, if i = `.

Next we prove it is a k-rainbow vertex-coloring. Choose one vertex v in Vn`
as the root vertex of the

rainbow tree. Obviously v is adjacent to all the vertices in Vn1
∩ S, Vn2

∩ S, . . . Vn`−1
∩ S. Then choose a

vertex in v′ ∈ Vn1
. Since v′ is adjacent to all the remaining vertices in Vn`

∩ S, one can prove that the
tree is rainbow S-tree.

160



Fengnan Yanling et al.

4. The k-rainbow vertex-index of complementary graphs

Theorem 4.1. If G is a connected graph with diam(G) ≥ 3, then rvxk(Ḡ) ≤ 2 and the bound is tight.

Proof. We choose a vertex x with eccG(x) = diam(G) = d ≥ 3 as Figure 1. Then G[A](G[B]) contains
a spanning complete k1-partite subgraph (complete k2-partite subgraph). If the rainbow S-tree contains
in G[A](G[B]), then rvxk(Ḡ) ≤ 2 by Theorem 3.1. Now we consider the rainbow S-tree does not contain
in G[A] or G[B]. If S ∩N1

G(G) = ∅, then we choose x as the root vertex, and all the other vertices are
the leaves. So one can prove that there is a rainbow S-tree. Suppose S ∩ N1

G(G) 6= ∅. Now we give a
rainbow vertex-coloring as follows. {

c(x) = 1,
c(v) = 2, v ∈ V (G)\x.

We choose the vertex x as the root of the rainbow tree. We know x is adjacent to all the vertices in
N j

G(x) ∩ S, (j ∈ {2, 3, 4, · · · }), and there must be a v ∈ N j
G(x), (j ∈ {2m + 1 and m ≥ 1}) such that v is

adjacent to N1
G(x) ∩ S. one can prove that the tree is rainbow S-tree.

Let G is a connected graph of diam(G) = 3. We have rvxk(Ḡ) = 2, so the bound is tight.
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