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Abstract: In this study, we consider linear and especially cyclic codes over the non-chain ring Zp[v]/〈vp − v〉
where p is a prime. This is a generalization of the case p = 3. Further, in this work the structure of
constacyclic codes are studied as well. This study takes advantage mainly from a Gray map which
preserves the distance between codes over this ring and p-ary codes and moreover this map enlightens
the structure of these codes. Furthermore, a MacWilliams type identity is presented together with
some illustrative examples.
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1. Introduction

Recently, codes over some special finite rings especially chain rings have been studied. More recently,
codes over finite non-chain rings have been also considered. However, the study on non-chain rings has
proved to be challenging due to the algebraic structure of these rings which does not allow to give a nice
and compact presentation of linear codes over these rings. Study on codes over such rings or rings in
general is motivated by the existence of some special maps called Gray maps whose images give codes
over fields. The existence of such maps is not guaranteed in general. First substantial paper which
relates codes over the quaternary ring Z4 to binary codes is studied initially in [9] where a Gray map
is presented. Some important results of this study are the generation of some optimal non-binary codes
such as Kerdock, Preparata codes via a Gray map. This particular work motivated the researchers and
since then codes over rings have been of great importance to the study. We can list some related studies
on this subject that study codes over chain rings such as the ring of four elements F2 + uF2, the ring of
8 elements F2 + uF2 + u2F2, and a more general chain ring F2[u]/〈us〉 are presented in [2–4, 6, 11, 13].
Some Euclidean and Hermitian self-dual codes over the ring F2[v]/〈v2− v〉 are related to binary self-dual
and formally self-dual codes and optimal self-dual binary codes obtained in [5] which inspired the original
work of the authors [4]. Gao studied a new generalization of [4] over Fp under the restriction v3 − v in
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[8]. Here, the authors mainly further generalize the results in [4] to codes over the ring Zp[v]/〈vp − v〉
and study algebraic structure, that is, its ideals, units, etc. Furthermore, the authors also determine the
algebraic structure of linear, cyclic and constacyclic codes over this generalized ring by means of a Gray
map.

In this work, we consider codes over the non-chain ring Zp[v]/〈vp − v〉 = {a0 + a1v + ... +
ap−1v

p−1|a0, a1, ..., ap−1 ∈ Zp and vp = v}. In the first section we analyze the structure of the ring
and investigate its algebraic properties. Furthermore, linear codes over Zp[v]/〈vp − v〉 are taken into
account and the generator matrices of their Gray images are examined. Then, the dual of a linear code is
defined by defining an inner product and relation between linear code and further its dual is presented.
The relation between cyclic codes and their duals over Zp[v]/〈vp − v〉 are also studied. Finally, a class of
constacyclic codes have been introduced and dual codes of them are studied.

2. Preliminaries

The ring Rp = Zp[v]/〈vp − v〉 has pp elements where p is a prime number. In order to study the
structure of this ring, we introduce a linear map φ which we refer as a Gray map in the following way:

φ :Rp = Zp[v]/〈vp − v〉 → Zpp

α = a0 + a1v + ...+ ap−1v
p−1 → φ(α) = φ(a0 + a1v + ...+ ap−1v

p−1) = (α(0), α(1), ..., α(p− 1))
(1)

where α(i) = a0 + a1i+ ...+ ap−1i
p−1 (mod p) for all i ∈ {0, 1, ..., p− 1}.. Indeed, this map is basically

the natural one that gives the Chinese Remainder Theorem and hence this map relates the rings Rp and
Zpp . Due to the fact that the map φ is a ring isomorphism, we have

Rp ∼= Zp[v]/〈v〉 ⊕ Zp[v]/〈v − 1〉 ⊕ · · · ⊕ Zp[v]/〈v − (p− 1)〉 ∼= Zpp .

It is not easy to find the structure of lattices of ideals of non-chain rings in general. Here by using the
Gray map introduced above, we are able to give the structure of ideals of Rp and further count the
number of ideals as follows:

Lemma 2.1. Rp has exactly 2p ideals.

Proof. Since Zp is a field then its ideals are exactly the zero ideal and Zp itself, then the number of
ideals of Zpp is the product of the number of the trivial ideals. Therefore the number of ideals of Rp is
2p.

Example 2.2. Consider the ring R5. Prior to listing the ideals of R5 we introduce a short notation
such as 11010 which means that the ideal in Z5

5 which is composed by the zero ideals in its third and fifth
coordinates and the all ring in the rest. Also, we note that a1a20a40 where ai 6= 0 for i ∈ {1, 2, 4} gives
the same ideals since the nonzero elements in the field generate the all field. Therefore, the ideals that
generate the all ring have 55 = 3125 elements and naturally the elements that generate these ideals are
units of R5:

• 11111→ 〈1〉 = 〈2〉 = 〈3〉 = 〈4〉 = 〈2 + v2〉 = ... = 〈1 + v + 2v2〉.
The maximal ideals with 625 elements:

• 11110→ 〈1+ v〉 = 〈2+2v〉 = 〈3+3v〉 = 〈4+4v〉 = 〈1+2v+ v2〉 = ... = 〈4+3v+4v2 +4v3 +4v4〉.

• 11101→ 〈2+ v〉 = 〈4+2v〉 = 〈1+3v〉 = 〈3+4v〉 = 〈4+4v+ v2〉 = ... = 〈3+3v+4v2 +4v3 +4v4〉.

• 11011→ 〈3 + v〉 = 〈1 + 2v〉 = 〈4 + 3v〉 = 〈2 + 4v〉 = 〈4 + v+ v2〉 = ... = 〈2 + 3v+ 4v2 + 4v3 + 4v4〉.

• 10111→ 〈4+ v〉 = 〈3+2v〉 = 〈2+3v〉 = 〈1+4v〉 = 〈1+3v+ v2〉 = ... = 〈4+4v+4v2 +4v3 +4v4〉.

• ...
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• 11100→ 〈2+3v+v2〉 = 〈4+v+2v2〉 = 〈1+4v+3v2〉 = 〈3+2v+4v2〉 = ... = 〈1+3v+2v2+4v3+4v4〉.
The ideals with 25 elements:

• 00011→ 〈2v + 2v2 + (v3)〉 = 〈4v + 4v2 + 2v3〉 = 〈v + v2 + 3v3〉 = ... = 〈1 + 3v + 2v2 + 4v3 + 4v4〉.

• 00101→ 〈3v+v2+v3〉 = 〈v+2v2+2v3〉 = 〈4v+3v2+3v3〉 = 〈2v+4v2+4v3〉 = ... = 〈2v2+4v3+4v4〉.

• ...

• 11000→ 〈1+v+v2+v3〉 = 〈1+2v+2v2+2v3〉 = 〈3+3v+3v2+3v3〉 = ... = 〈4+3v+3v2+3v3+4v4〉.
The ideals with 5 elements:

• 10000→ 〈4 + v4〉 = 〈3 + 2v4〉 = 〈2 + 3v4〉 = 〈1 + 4v4〉.

• 01000→ 〈v+v2+v3+v4〉 = 〈2v+2v2+2v3+2v4〉 = 〈3v+3v2+3v3+3v4〉 = 〈4v+4v2+4v3+4v4〉.

• 00100→ 〈3v+4v2+2v3+v4〉 = 〈v+3v2+4v3+2v4〉 = 〈4v+2v2+v3+3v4〉 = 〈2v+v2+3v3+4v4〉.

• 00010→ 〈2v+4v2+3v3+v4〉 = 〈4v+3v2+v3+2v4〉 = 〈v+2v2+4v3+3v4〉 = 〈3v+v2+2v3+4v4〉.

• 00001→ 〈4v+v2+4v3+v4〉 = 〈3v+2v2+3v3+2v4〉 = 〈2v+3v2+2v3+3v4〉 = 〈v+4v2+v3+4v4〉.
and the zero ideal:

• 00000→ 〈0〉.

Let R be a ring and a ∈ R. If a is nonzero then its Hamming weight denoted by w(a) equals to 1
otherwise it is equal to 0. This is generalized to an n-tuple such that if a = (a1, a2, . . . , an) ∈ Rn, then
the Hamming weight of a is defined by w(a) =

∑n
i=1 w(ai). The Hamming distance between two n-tuples

is d(x, y) = w(x− y) where x, y ∈ Rn. It is well known that the Hamming distance is a metric on Rn.

It is possible to characterize the unit elements of Rp and further give the number of elements in an
ideal by considering the definition of φ together with its properties.

Lemma 2.3. Suppose that I = 〈α〉 where α = a0 + a1v + . . . + ap−1v
p−1 ∈ Rp. |I| = p

∑p−1
i=0 w(α(i)).

Especially, if α(i) 6= 0 for all i, Then α is a unit in Rp and vice versa.

Since the map φ is a ring isomorphism, the inverse map of φ denoted by φ−1 : Zpp → Rp exists. In
the following example we present the inverse map explicitly:

Example 2.4. The inverse map is defined by
φ−1 : Z5

5 → R5

(k, l,m, n, t)→ k+(4l+2m+3n+ t)v+(4l+m+n+4t)v2+(4l+3m+2n+ t)v3+4(k+ l+m+n+ t)v4.

Definition 2.5. (Gray weight) Let α = a0 + a1v + ...+ ap−1v
p−1 ∈ Rp. Then

wG(α) = w(φ(α)) (2)

is called the Gray weight of α.

The Gray distance between two elements α and β of Rp is described by dG(α, β) = w(φ(α)− φ(β))
which also happens to be a linear distance preserving map from (Rnp , dG) to (Zpnp , d).

Example 2.6. Let p = 7. If α = 1 + v + 5v2 + 5v3 and β = 6v + 4v2 + 5v3, then wG(α) = w(φ(1 +
v + 5v2 + 5v3)) = w(1, 5, 0, 2, 6, 0, 0) = 4 and wG(β) = w(φ(6v + 4v2 + 5v3)) = w(0, 1, 5, 0, 2, 6, 0) = 4
hence dG(α, β) = w(φ(α) − φ(β)) = w((1, 5, 0, 2, 6, 0, 0) − (0, 1, 5, 0, 2, 6, 0)) = w((1, 4, 2, 2, 4, 1, 0)) =
w(1 + 2v + v2) = 6.

Definition 2.7. Let a = (a1, a2, .., ap) ∈ Zpp . Then, supp(a) = {i|ai 6= 0} ⊆ {1, 2, ..., p}.
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We can easily check that:

• If supp(φ(α)) = supp(φ(β)) then wG(α) = wG(β) where α, β ∈ Rp.

• Assume that 〈α〉 and 〈β〉 are two ideals in Rp. Then, supp(φ(α)) = supp(φ(β)) if and only if
〈α〉 = 〈β〉.

Therefore, Rp is a principal ideal ring, that is, all ideals in Rp are generated by a single element of Rp
similar to the special case p = 3 [4] .

Theorem 2.8. If I = 〈α1, α2, . . . , αs〉 is a finitely generated ideal of Rp, then I = 〈β〉 for some β ∈ Rp
where supp(φ(β)) =

⋃s
i=1 supp(φ(αi)).

Example 2.9. Let I = 〈α1, α2〉 where α1 = 3v+ v2 + v3 and α2 = 1+ 3v+3v2 +3v3 +2v4 ∈ R5. Since

supp(φ(α1)) = supp(φ(3v + v2 + v3)) = supp((0, 0, 3, 0, 2)) = {3, 5}

and

supp(φ(α2)) = supp(φ(1 + 3v + 3v2 + 3v3 + 2v4)) = supp((1, 2, 0, 0, 0)) = {1, 2}

supp(φ(β)) =

2⋃
i=1

supp(φ(αi)) = {1, 2, 3, 5},

then β can be selected as 4 + 2v + 3v2 + 3v3 + 2v4 which generates a maximal ideal in R5.

The units and the elements which generate the maximal ideals in Rp can be classified by means of
their Gray images:

Lemma 2.10. Let α ∈ Rp. The follows hold:
i) supp(φ(α)) = {1, ..., p} if and only if α is a unit. Hence, Rp has exactly (p− 1)p units .
ii) Suppose I = 〈α〉. Then, | supp(φ(α))| = p− 1, if and only if I is maximal.

3. Linear Codes over Rp

A minimal generating set is comprised for all linear codes by a set of linearly independent and
spanning vectors called basis for codes over fields. However, in the case for codes over rings, this is a
challenging problem and in most cases impossible since we do not have basis in general for modules. In
[2] and in [3], authors gave a basis or a minimal spanning set for the codes of even length over Z2 + uZ2

and Z2 + uZ2 + u2Z2 + · · ·+ uk−1Z2, respectively. These are all chain rings, that is, the set of all ideals
is a chain under set-theoretic inclusion.

Since Rp is not a chain ring, we can not get a generating matrix, easily. To overcome this problem in
linear code case some special definitions (modular dependence) and cases of codes over rings are presented
in [12] and in [15]. Here, based on the Gray image of the code, the generator matrix of the image code
is presented and some results are obtained:

Theorem 3.1. Assume that the set {g1, g2, . . . , gk} ⊂ Rnp is a generating set of a linear code C over Rp
of length n where gi = (gi1, gi2, . . . , gin). Then, the matrix
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φ(G) =



φ(g11) φ(g12) · · · φ(g1n)
φ(vg11) φ(vg12) · · · φ(vg1n)
φ(v2g11) φ(v2g12) · · · φ(v2g1n)

...
...

...
φ(vp−1g11) φ(vp−1g12) · · · φ(vp−1g1n)

...
...

...
φ(gk1) φ(gk2) · · · φ(gkn)
φ(vgk1) φ(vgk2) · · · φ(vgkn)
φ(v2gk1) φ(v2gk2) · · · φ(v2gkn)

...
...

...
φ(vp−1gk1) φ(vp−1gk2) · · · φ(vp−1gkn


generates φ(C).

Example 3.2. Let p = 5 and suppose that

G =

[
2v + 4v2 + 3v3 + v4 0

0 4v + v2 + 4v3 + v4

]
is a generator matrix of C of length 2 over R5 = Z5[v]/〈v5 − v〉.

Then

φ(G) =



00000 00000
00000 00000
00000 00000
00000 00000
00000 00004
00000 00000
00000 00000
00000 00000
00040 00000
00000 00000


.

Hence φ(G) is a generator matrix of φ(C), with length 10, dimension 2 and size 52 = 25.

Another simple and compact way to represent the structure of a generator matrix of φ(G) is given
below. Let α = g0 + g1v + ...+ gp−1v

p−1 ∈ Rp and α(i) = g0 + g1i+ ...+ gp−1i
p−1 (mod p).

φ(α) = φ(g0 + g1v + ...+ gp−1v
p−1) = (α(0), α(1), ..., α(p− 1)).

Alternatively, after some row operations the generator matrix is then equivalent to a block matrix
with blocks (Gij)p×p = diag(αij(0), αij(1), . . . , αij(p− 1)).

As mentioned above, we again emphasize that it is a difficult problem to determine the minimal
independent sets that generate a linear code over Rp in general due to the fact that Rp is not a chain
ring. However, one can adopt a similar approach as presented in both [12] and [15] to capture the size of
linear codes over R for some special cases.

Definition 3.3. A set {g1, g2, . . . , gk} ⊂ Rnp is called a minimal independent generating set for a code
C, if

{φ(g1), φ(vg1), . . . , φ(vp−1g1), φ(g2), φ(vg2), . . . , φ(vp−1g2), . . . , φ(gk), φ(vgk), . . . , φ(vp−1gk)} ⊂ Zpnp

is a Zp-linearly independent set.
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Now, having this definition at hand one can determine the size of a code with a generating set which
is Zp-linearly independent:

Lemma 3.4. If C = 〈{g1, g2, . . . , gk}〉 where the set {g1, g2, . . . , gk} ⊂ Rnp is a minimal independent
generating set, then |C| = ppk.

3.1. The Dual Code

In this subsection, an inner product which is introduced as below helps us to construct the dual code
of a linear code where the inner product is obtained with the Gray image. We also show the proof of a
lemma which relates dual of the code and its Gray image:

Let g = [g1, g2, . . . , gn], h = [h1, h2, . . . , hn] ∈ Rnp , gi = gi1 + gi2v + . . . + gipv
p−1,hi = hi1 + hi2v +

. . .+hipv
p−1 , gi(j) = gi1 + gi2j+ . . .+ gipj

p−1 (mod p) and hi(j) = hi1 +hi2j+ . . .+hipj
p−1 (mod p).

〈g, h〉φ =

n∑
i=1

p−1∑
j=1

(gi(j)hi(j)) .

If C is a linear code of length n over the ring Rp, then the dual code is defined by

C⊥ = {h ∈ Rnp |〈g, h〉φ = 0 for all g ∈ C}. (3)

Lemma 3.5. φ(C)⊥ = φ(C⊥).

Proof. The proof follows from the definitions: If h ∈ C⊥, then, 〈g, h〉φ = 0 for all g ∈ C. This implies
that 〈φ(g), φ(h)〉 = 0 for all φ(g). Hence, φ(h) ∈ (φ(C))

⊥
. Thus, φ(C⊥) ⊂ φ(C)⊥. The reverse follows

directly by reversing the steps.

Example 3.6. Let

G =

[
2 + 4v4 3 + 3v + v2 + 2v3 + 3v4

2v3 + 2v4 3 + 4v + 3v4

]
be a generator matrix of a linear code C over R5 = Z5[v]/〈v5−v〉, Then the image of this code is generated
by

φ(G) =



φ(2 + 4v4) φ(3 + 3v + v2 + 2v3 + 3v4)
φ(v(2 + 4v4)) φ(v(3 + 3v + v2 + 2v3 + 3v4))
φ(v2(2 + 4v4)) φ(v2(3 + 3v + v2 + 2v3 + 3v4))
φ(v3(2 + 4v4)) φ(v3(3 + 3v + v2 + 2v3 + 3v4))
φ(v4(2 + 4v4)) φ(v4(3 + 3v + v2 + 2v3 + 3v4))
φ(2v3 + 2v4) φ(3 + 4v + 3v4)
φ(v(2v3 + 2v4)) φ(v(3 + 4v + 3v4))
φ(v2(2v3 + 2v4)) φ(v2(3 + 4v + 3v4))
φ(v3(2v3 + 2v4)) φ(v3(3 + 4v + 3v4))
φ(v4(2v3 + 2v4)) φ(v4(3 + 4v + 3v4))


=



2 0 0 0 0 3 0 0 0 0
0 1 0 0 0 0 2 0 0 0
0 0 1 0 0 0 0 2 0 0
0 0 0 1 0 0 0 0 3 0
0 0 0 0 1 0 0 0 0 2
0 0 0 0 0 3 0 0 0 0
0 4 0 0 0 0 0 0 0 0
0 0 3 0 0 0 0 4 0 0
0 0 0 1 0 0 0 0 3 0
0 0 0 0 0 0 0 0 0 2
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∼



1 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 3 0
0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 1


over Z5, then |C| = 59. Let

H =
[
0 0 0 1 0 0 0 0 3 0

]
.

is a parity check matrix of φ(C).

Hence
∣∣φ(C)⊥∣∣ = 5. Conversely, for all h = [h] ∈ C⊥ such that

h =
[
h1 + h2v + h3v

2 + h4v
3 + h5v

4 h
′

1 + h
′

2v + h
′

3v
2 + h

′

4v
3 + h

′

5v
4
]

then

C⊥ = { h =
[
(2v + 4v2 + 3v3 + v4)h5 (v + 2v2 + 4v3 + 3v4)h5

]
, h5 ∈ Z5}

Hence,∣∣∣C⊥ ∣∣∣ = 5. Therefore, φ(C⊥) = φ(C)⊥.

3.2. MacWilliams Identity for Codes over Rp

The MacWilliams identity is one of the prominent results in coding theory, which supplies the
relationship between the weight enumerator of a linear code and that of its dual code [10]. The distribution
of weights for a linear code is crucial to its performance analysis such as, linear programming bound, error
correcting capabilities, the extremal weight enumerators related to the dual codes, etc. In this section,
we state several lemmas and the main theorem. We also illustrate the theorem with a moderate example.

In this work, we assume that the character χ is described by χ(a) = ξa(0)+a(1)+a(2)+...+a(p−1) where
ξ = e2πi/p.

The Gray weight enumerator of a linear code C over Rp is defined by

W (x, y) =
∑
c∈C

xpn−wG(c)ywG(c).

This section is a generalization of Section 3.2 in [4], so we will not give all proofs in detail here. Therefore
we present the statement of lemmas and the main theorem and state an example to show the result.

Lemma 3.7. 1. Assume that I 6= {0} be an ideal of the ring Rp. Then,∑
a∈I

χ (a) = 0.

2. For a ∈ Rp, we have ∑
r∈Rp

χ (ar) =

{
pp, a = 0
0, a 6= 0.
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3. If β ∈ Rp, then

∑
α∈Rp

χ (〈β, α〉)xp−wG(α)ywG(α) = (x+ (p− 1)y)
p−wG(β)

(x− y)wG(β)
.

The following well known result plays an important role in finalizing the proof of the main theorem:

Lemma 3.8. [10] If C and its dual C⊥ are linear codes over the ring Rp with

f̂ (u) =
∑
v∈Rn

p

χ (〈u, v〉)f (v) ,

then ∑
v∈C⊥

f (v) =
1

|C|
∑
u∈C

f̂ (u).

By combining the lemmas above we get the main theorem that relates the Gray weight enumerators
of the code and its dual:

Theorem 3.9. Suppose that C is a linear code over Rp, then

WC⊥ (x, y) =
1

|C|
WC (x+ (p− 1)y, x− y) .

Example 3.10. Assume that

G =

[
2 + 3v4 0

0 3v + 3v2 + 3v3 + 3v4

]
generates a linear code C over R5. Then, its Gray weight enumerator is

WC(x, y) = x10 + 8x9y + 16x8y2.

Therefore, by applying the necessary change of variables in the main theorem, we obtain

WC⊥(x, y) = x10 + 32x9y + 448x8y2 + 3584x7y3 + 17920x6y4 + 57344x5y5 + 114688x4y6 + 131072x3y7

+65536x2y8.

4. Cyclic Codes over Rp

A very significant and well know class of linear codes is the class of cyclic codes which plays a crucial
role in coding theory due to their easy implementation. Since cyclic codes can be described as ideals in
some polynomial rings, they have considerable inherent algebraic structure.

In this part we consider the algebraic structure of cyclic codes over the ring Rp. We also study the
structure of their duals.

Definition 4.1. Let σ be a cyclic right shift on the entries of an n-tuple in Rn such that σ(c0, c1, . . . ,
cn−1) = (cn−1, c0, . . . , cn−2). For a linear code C, if σ(C) = C, then C is called a cyclic code of length n.

8
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After associating a polynomial c(x) = c0 + c1x+ · · ·+ cn−1x
n−1 to a codeword c = (c0, c1, . . . , cn−1)

∈ C, if C is a cyclic code then, C becomes an ideal of the quotient ring R[x]/〈xn − 1〉.
Let R(n,p) = Rp[x]/〈xn − 1〉. Since Rp ∼= Zpp , then

Rp[x]/〈xn − 1〉 ∼= Zp[x]/〈xn − 1〉 × Zp[x]/〈xn − 1〉 × . . .× Zp[x]/〈xn − 1〉.

Let

L(n,p) = Zp[x]/〈xn − 1〉 × Zp[x]/〈xn − 1〉 × . . .× Zp[x]/〈xn − 1〉.

Now as a natural extension of φ ,we can get an isomorphism between the rings R(n,p) and L(n,p).
We define a projection map

πi : Z
p
p → Zp,

such that πi((a1, a2, . . . ap)) = ai for 1 ≤ i ≤ p. Then, we identify

φ :R(n,p) → L(n,p)

φ(

n∑
i=0

aix
i) = (

n∑
i=0

π1(φ(ai))x
i,

n∑
i=0

π2(φ(ai))x
i, . . . ,

n∑
i=0

πp(φ(ai))x
i).

Example 4.2. Let f(x) = (1 + v2)x3 + (1 + 3v + v3)x2 + (3v2 + v4)x + 1 in R(4,5). Then, φ(f(x)) =

(x3 + x2 + 1, 2x3 + 4x+ 2, 3x+ 1, 2x2 + 3x+ 1, 2x3 + 2x2 + 4x+ 1).

It is easy to get the structure of R[x]/〈xn − 1〉 since this map is an isomorphism.

R(n,p) is a principal ideal ring. We can determine the generator of ideals as follows: Suppose that
I = 〈f1(x), f2(x), . . . , fs(x)〉 is a finitely generated ideal of R(n,p) where fi(x) =

∑n
j=0 fijx

j . Then, for
i = 1, 2, . . . , p let gi = gcd1≤j≤s(πi(φ(fj))), x

n − 1). Hence, I = 〈g(x)〉 where

g(x) = φ−1((g1(x), g2(x), . . . , gp(x))).

Example 4.3. Let I = 〈f1(x) = (1+v+2v2+x+(1+2v+v2)x2, f2(x) = 2+2v2+(1+v+v2)x+(v+2v2)x2〉
be an ideal of R(4,3). Then, φ(f1(x)) = ((2+x)2, (2+x)2, 2+x) and φ(f2(x)) = (2+x, 1, (2+x)2). Next,
g1 = gcd((2+x)2, 2+x, x3−1) = 2+x, g2 = gcd((2+x)2, 1, x3−1) = 1, g3 = gcd(2+x, (2+x)2, x3−1) =
2 + x. So we have φ(I) = 〈(2 + x, 1, 2 + x)〉. Therefore, I = φ−1(φ(I)) = 〈φ−1(2 + x, 1, 2 + x)〉 =
〈2 + v + v2 + (1 + v + v2)x〉.

The following lemma can be observed as a straightforward result of the above statements and the
example:

Lemma 4.4. If C = 〈g(x)〉 is a cyclic code of length n over Rp and φ(g(x)) = (g1, g2, . . . , gp) with
deg(gcd(gi, x

n − 1)) = n− ki for 1 ≤ i ≤ p, then |C| = p
∑p

i=1 ki .

4.1. The Dual of Cyclic Codes

In this subsection, we study the algebraic structure of the dual of a cyclic code over Rp. Let
C = 〈g(x)〉 be a cyclic code of length n over Rp. Assume that, φ(C) = J = 〈(g1(x), g2(x), . . . gp(x))〉
where gi = πi(φ(g(x))). The dual of J is the cyclic code

J⊥ = 〈(h1R(x), h2R(x), . . . , hpR (x))〉,

where hi(x) = (xn − 1)/(gcd(xn − 1, gi) and hi
R
(x) is the reciprocal polynomial of hi(x). Hence, C⊥ =

〈φ−1(h1
R
(x), h2

R
(x), . . . , hp

R
(x))〉.

9
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Example 4.5. Let I = 〈f(x) = (3v4+3v3+4v)x3+(4v4+4v3+2v2+1)x2+(2v4+4v2+3)x+(v3+4v+2) >
be an ideal of R(5,4). Then, φ(f(x)) = (x2+3x+2, x2+4x+2, x+3, x3+x2+x+1, x3+3x2+4x+2). Next,
g1 = gcd(x2+3x+2, x4−1) = x2+3x+2, g2 = gcd(x2+4x+2, x4−1) = x2+4x+2, g3 = gcd(x+3, x4−1) =
x+3, g4 = gcd(x3+x2+x+1, x4−1) = x3+x2+x+1, g5 = gcd(x3+3x2+4x+2, x4−1) = x3+3x2+4x+2.
Thus, |〈I〉| = 59. C⊥ = 〈φ−1(h1R(x), h2R(x), h3R(x), h4R(x), h5R(x))〉 = 〈φ−1((2x2 + 2x + 1, 3x2 + 4x +
1, x3+x2+x+1, 4x+1, 2x+1))〉 = 〈(4v4+3v3+v2+2v)x3+(4v4+3v2+4v+2)x2+(4v3+4v2+2v+2)x+1〉.
Therefore,

∣∣〈C⊥〉∣∣ = 511.

5. Constacyclic Codes over Rp

In this section, we study constacyclic codes over Rp.

Definition 5.1. Let α = a0+a1v+ ...+ap−1v
p−1 be a unit element of Rp and C be a linear code of length

n over Rp. If for all c = (c0, c1, . . . , cn−1) ∈ C and a unit in Rp we have (αcn−1, c0, c1, . . . , cn−2) ∈ C,
then C is called an α-constacyclic code or shortly constacyclic code.

Similar to the cyclic codes case if we associate each codeword c = (c0, c1, . . . , cn−1) ∈ C with
a polynomial c = c0 + c1x + · · · + cn−1x

n−1 ∈ R[x], then C can be viewed as an ideal in S(n,p) =
Rp[x]/〈xn − α〉. By applying the Chinese Remainder Theorem, we have the following result:

Let S(n,p) = Rp[x]/〈xn − α〉. Since Rp ∼= Zpp , Then

S ∼= Zp[x]/〈xn − α(0)〉 × Zp[x]/〈xn − α(1)〉 × . . .× Zp[x]/〈xn − α(p− 1)〉.

For example, let I = 〈f(x) = (4+3v+v3+v4+(1+3v+v2+4v3+4v4)x+(3v+4v2+2v3+2v4)x2+(2v+
v2+3v3+4v4)x3)〉, be an ideal of R(4,5) then φ(f(x)) = (4+x, 4+3x+x2, 4+2x+x3, 1+x+x2, 1+4x+x2).

Since α is a unit element of Rp, then α(i) 6= 0 for all 0 ≤ i ≤ p− 1, the number of constacyclic codes
over Rp can be obtain as follows:

Theorem 5.2. The number of α-constacyclic codes of length n is equal to
∏p−1
i=0 δ(i) where

δ(i) =

{
σn, i = 1,
η(n,i), i = 2, ..., (p− 1).

σn and η(n,i) are equal to the number of cyclic and α(i)− constacyclic codes of length n over Zp, respec-
tively.

Proof. Since α is a unit element of Rp, the Gray image consists of non zero elements of Zp. If the Gray
image contains 1 as a component then the projection code corresponding to that particular component
is cyclic which has a generator polynomial as a divisor of xn − 1 over Zp. In addition, if Gray image
contains non zero elements different from 1, call it α(i), then the projection is a α(i)− constacyclic code
of length n over Zp. Therefore, if σn and η(n,i) are equal to the number of cyclic and α(i)− constacyclic
codes of length n over Zp, respectively, then the number of α-constacyclic codes of length n is equal to∏p−1
i=0 δ(i).

Example 5.3. Let φ(4+ v+2v3) = (4, 2, 2, 1, 1) ∈ Z5. Since the number of 2− constacyclic , negacyclic
and cyclic codes over Z5 are δ(2) = η(4,2) = 2, δ(4) = η(4,4) = 22 and δ(1) = σ4 = 8, respectively then the
number of all (4+ v+2v3)− constacyclic code length 4 over R5 is equal to 4.2.2.8.8 = 22+1+1+3+3 = 210.

The algebraic structure of a dual constacyclic code can be obtained as follows: Suppose C = 〈g(x)〉
is an α-constacyclic code of length n over Rp. Let gi = πi(φ(g(x))), then φ(C) = 〈(g1(x), g2(x),
. . . gp(x))〉. The dual of C is an α-constacyclic code which is equal to 〈φ−1(h1(x), h2(x), . . . hp(x))〉,
where hi(x) = (xn − α(i))/(gi(x)).
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Example 5.4. Let C be a (1+v+4v2+3v3)−constacyclic code over R7 generated by f(x) = (4v6+4v5+
6v3+v)x3+(5v6+v5+6v4+v3+6v2+v+1)x+(v6+5v5+4v3+v2+5v+3) which is an ideal of R(3,7).

Since φ(1+ v+4v2 +3v3) = (1, 2, 1, 2, 2, 5, 1) and φ(f(x)) = (x+3, x3 +5, 0, 0, x3 +5, x3 +2, x+5) then
g1 = x+3 and h1(x) = (x3 − 1)/(x+3) = (x2 +4x+2), g2 = x3 +5 and h2(x) = (x3 − 2)/(x3 +5) = 1,
g3 = 0 and h3(x) = 0, g4 = 0 and h4(x) = 0, g5 = x3 +5 and h5(x) = (x3 − 2)/(x3 +5) = 1, g6 = x3 +5
and h6(x) = (x3 − 5)/(x3 + 2) = 1, g7 = x + 5 and h7(x) = (x3 − 1)/(x + 5) = x2 + 2x + 4. So,
φ−1(h1(x), h2(x), h3(x), h4(x), h5(x), h6(x), h7(x)) = φ−1(x2 + 4x + 2, 1, 0, 0, 1, 1, x2 + 2x + 4) = (5v6 +
v5+6v4+v3+6v2+v+1)x2+(v6+2v5+5v4+2v3+5v2+2v+4)x+(5v6+v5+3v4+3v3+3v2+5v+2)
Therefore, C⊥ = 〈(5v6 + v5 +6v4 + v3 +6v2 + v+1)x2 + (v6 +2v5 +5v4 +2v3 +5v2 +2v+4)x+ (5v6 +
v5 + 3v4 + 3v3 + 3v2 + 5v + 2)〉.

6. Conclusions

We have explored further a new family of codes over a special non-chain ring by generalizing some
results in [4]. In general, non-chain rings are very complicated to be studied. Here, by introducing a
Gray map the problem has been resolved. Linear, cyclic and constacyclic codes have been introduced. A
MacWilliams Type Identity is also proven. This results can be easily generalized to codes over the ring
Fq[v]/〈vq − v〉 where Fq is a field with q elements.

Acknowledgment: The preliminary results of this paper are presented in Proceedings of the 2013
International Conference on Computational and Mathematical Methods in Science and Engineering-
CMMSE 2013, June 24-27 2013, Almeria, Spain.
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