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Abstract 10 

The representative elemental volume (REV) study provides a bridge between macro and micro 11 

properties’ research, which is critical for understanding and predicting the heterogeneous properties of 12 

a porous media. Permeability, one of the essential properties, dominates the capability of fluid flow in 13 

porous media, which is scale dependent and thus one of the most rationale way to predict macro scale 14 

permeability is to calculate the permeability at REV. Porosity is the most common parameter to 15 

determine REV, however, the porosity based REV works less satisfactory for complex pore system. In 16 

this work, we determined the REV based on fractal dimension, which is a fundamental parameter to 17 

characterize the complex pore network, and then the relation between fractal dimension and sample 18 

size was investigated extensively. We then determined and compared the REV from the porosity and 19 

fractal dimension that calculated from various sample sizes. Our results reveal that the relationship 20 

between fractal dimension-based REV and porosity-based REV can be classified as four cases, and the 21 

most common case is porosity declines if the domain is larger than fractal dimension-based REV size. 22 

The relation discussed above can be applied to existing fractal permeability models to predict the 23 

permeability at different scales. 24 
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1 Introduction 27 

Multiscale modelling is a common approach to predict the macro properties of porous media, such 28 

as sandstones, shales and coals. In some cases, the macro properties can be well characterized by micro 29 

scale study, and the minimum size of the sample that can be utilized to represent the macro scale 30 

sample is termed as REV, which was proposed by Bear [1] and the schematic was given as Fig. 1. As 31 

shown in this figure, the erratic fluctuations in region I reduce with the increasing sample size. In 32 

region II, the fluctuation becomes insignificant, which means the certain property of the sample 33 

becomes a constant that is not affected by sample size. Therefore, the left-hand side boundary of region 34 

II is taken as REV, for some physical properties of some porous mediums, the property values may 35 

change again as the sample size increases (region III in Fig. 1).  36 



 

Fig. 1.  Schematic of how REV is determined for a special property (modified from [1]) 

REV for different materials, such as reservoir rocks, including sandstones, siltstones, shales and 37 

limestones [2-4], soil [5,6] and cementitious materials [7], have been studied extensively. The most 38 

commonly used parameter to characterize REV is porosity [3,8], while other parameters, includes 39 

water saturation [9], tortuosity [6], Euler connectivity, average pore and throat volumes [7] have also 40 

been proposed to determine REV. However, the fractal dimension, one of the key parameters that 41 

describes complex pore system, has been rarely used to analyse REV for reservoir rocks.  42 

Fractal theory was proposed by Mandelbrot [10], which gives a function to describe the relation 43 

between pore size and the cumulative number of pores. Since then fractal theory have been widely used 44 

to characterize the pore size distribution of reservoir rocks [11-13]. As for the calculation of fractal 45 

dimension, box counting method is one of the most effective methods to get fractal dimension value 46 

[14]. Box counting method is based on high resolution images, the fractal dimension that calculated 47 

using this method represents the fractal dimension of pore size and spatial distribution. Besides the 48 

image-based approach, fractal dimension could also be evaluated from different experiment 49 

measurements, such as volumetric fractal dimension by mercury intrusion experiment, surface and 50 

volumetric roughness fractal dimension from N2 adsorption experiment and pore size distribution 51 

fractal dimension from NMR experiments. Furthermore, fractal theory has been widely used to 52 

characterize pore structures and seepage phenomenon in porous media, such as tortuosity, permeability 53 

and imbibition [15-18]. It is noticed that fractal theory is a powerful tool to better understand the 54 

complex pore structure and seepage procedures in porous media [19].  55 

The recent advanced high-resolution imaging techniques (e.g. FIB-SEM, and X-ray micro-CT) 56 

make it easier and more effective to study the micro structure of porous media. Unlike conventional 57 

experiments such as mercury intrusion, both CT and FIB-SEM are non-destructive for pore structures 58 

characterization of reservoir rocks, especially in coal, whose pore structure is easy to be deformed [20]. 59 

Micro and mesoporous pore systems in coal that can be detected by μ-CT and FIB-SEM tomography 60 

are primary for gas adsorption [21], and the high resolution (2.5 nm for FIB-SEM and 1.1μm for CT in 61 

this work) of these techniques helps to extract the pore structure more accurately. These two different 62 

techniques with different resolutions make it possible to study and compare the multi-scale properties 63 



of coal, like porosity, 3-D pore-throat characteristics and its connectivity [21, 22]. This helps to 64 

compare with and develop the numerical simulation of physical properties of reservoir rocks, which has 65 

been intensively developed in last few years [23]. These simulations are mainly performed in the micro 66 

tomography images of reservoirs rocks, so it is important to use high resolution techniques to 67 

characterize pore structure of reservoir rocks. However, as discussed above, REV has not been studied 68 

intensively using fractal dimension method based on high resolution images. 69 

Coal is normally considered as a dual porosity media, including matrix and cleat system, in which 70 

the matrix is the main storage place for gas and cleats are the main pathway for gas flow. Recently, 71 

some researchers investigated the permeability model for fractured porous media based on fractal 72 

theory [24-27]. According to Miao et al. [24], properties like fractal dimension, porosity, maximum 73 

fracture length, maximum pore diameter in matrix, are the main parameters that determines the 74 

permeability. However, fractal dimension and sample size, porosity and sample size are normally 75 

related. According to the theory proposed by Yu et al. [28] and Yu et al. [29], the relation between 76 

porosity and fractal dimension can be characterized using a mathematic equation for fractal objectives. 77 

Based on the fractal permeability model proposed by Miao et al. [24], a novel model that can be used to 78 

predict permeability was obtained by combining the relation between fractal dimension REV and 79 

porosity REV. Some works have been done on predicting field scale permeability of shale [30,31], 80 

while in this work, we predicted the permeability at micro scale using high resolution coal images. 81 

In this work, FIB-SEM and μ-CT scanner were utilized to accurately calculate the micro 82 

properties of anthracite coal samples. The images were processed, including denoise and binarization, 83 

and then the fractal dimension and porosity of these pre-processed images were estimated. The relation 84 

between fractal dimension-based REV and porosity REV were also discussed extensively. Finally, the 85 

relation between porosity and fractal dimension REV was applied to predict the permeability at 86 

different scales using the improved mathematic model. 87 

2 Materials and Methods 88 

2.1 Samples and coal analyses 89 

Three different coal samples (DS, HC and YA) used in this study for X-ray μ-CT experiment were 90 

collected from Qinshui Basin, China, the maximum vitrinite reflectance are 2.92%, 4.06% and 4.69%, 91 

respectively, which means they are all anthracite in general. The sample AC was for FIB-SEM imaging, 92 

collected from Yangquan mine in Qinshui Basin, China, whose maximum vitrinite reflectance is 2.61%. 93 

The maximum vitrinite reflectance, maceral composition analyses followed the standards GB/T 6948-94 

2008 and GB/T 8899-2013. The Automatic Proximate Analyzer 5E-6600 was utilized to complete the 95 

coal proximate analyses. Table 1 shows the results of the maximum vitrinite reflectance, coal maceral 96 

composition and coal proximate analyses of these samples.  97 

Table 1.  Vitrinite reflectance, maceral composition and proximate analysis of the coal samples 98 

Sample NO. Ro (%) Coal maceral composition (vol. %)  Coal Proximate analysis (%) 



2.2 μ-CT scanning  99 

Three smaller coal samples were drilled from each of the three original block samples. In order to 100 

avoid the influence of water dissipation on the experimental results, these three coal pillars were sealed 101 

in wax. The X-ray μ-CT scanning experiments were then performed utilizing the GE Phoenix X-ray 102 

Nanotom Industrial CT Instrument, which consists of X-ray source system, detector system, 103 

mechanical turntable system and image processing system [13]. The samples were placed 104 

perpendicular to the sample couch, then several typical coal samples were utilized to do preliminary 105 

experiments, which aimed to find out the best settings to reduce noise. The detector resolution was set 106 

to 2048×2048 pixels, in total, 2010 grey slices with the resolution of 1.1 μm were obtained for each 107 

sample. As shown in Supplementary materials, micro cleat systems can be detected using such a 108 

technique. 109 

2.3 FIB-SEM imaging 110 

Before the FIB-SEM experiment, cuboidal shaped coal sample with a size of 0.5×1×1 cm3 was 111 

polished using dry emery paper to make the surface flat, then the sample was polished further by argon 112 

ion. Subsequently, sample was inserted into FEI Helios Nano Lab 650 FIB-SEM Dual-Beam system 113 

for imaging after being dried by putting it into the oven at 65 °C for 12 hours, details of this procedure 114 

followed the work of Holzer et al. [32] and Munch et al. [33]. A series of SEM images of the coal 115 

sample AC were obtained with a high resolution of 2.5 nm, the acceleration voltage is 2 kV and the 116 

working distance is 4 mm. Different from CT images, nanopores can be clearly observed in SEM 117 

images, so the comparison of the results computed from CT images and FIB-SEM images represents 118 

the different pore systems in coal. 119 

2.4 Image processing 120 

In order to eliminate the impact of the background edges, the three CT samples were cropped into 121 

three smaller cubes with different sizes according to their respective effective areas (see Supplementary 122 

materials). The side lengths of DS, HC and YA are 900 voxels, 400 voxels and 400 voxels, respectively. 123 

Side length of AC is 700 voxels.  124 

Then each of these samples were cropped into different smaller cubes from nine different 125 

positions (A-I in Fig. 2A), and these smaller cubes can be regarded as ROI (selected region of interest 126 

in the image). The subvolume selection scheme that utilized in this work was proposed by Wu et al. 127 

[13], which can also be regarded as nine different grow regimes (self-similar regime) of a small cube to 128 

the original big cube (See Fig. 2). From each position, follow the certain direction, a new bigger cube 129 

was generated while the side length increases every 10 voxels until the side length reaches the original 130 

sample size (see Fig. 2B, which is an example from position I). Fox example, the side length of original 131 

  Vitrinite    Inertinite  Exinite Mad Ad Cdaf 

AC 2.61 83.55 12.15 0.0  1.20 13.30 73.01 

DS 2.92 66.10 0.20 0.0  0.93 34.02 84.55 

HC 4.06 63.80 31.70 0.0  1.03 9.33 83.35 

YA 4.69 76.20 19.00 0.0  0.76 12.22 81.01 



DS is 900 voxels, then 90 cubes will be generated for each selection scheme, side lengths of these 132 

small cubes range from 10 to 900, so there will be 802 (because nine cubes whose side lengths are 900 133 

voxels are the same cube) different subvolumes. 134 

  

A B 

Fig. 2. Subvolume (SV) selection schemes, A shows all nine schemes, B is an example of scheme I. 135 

The raw grey images were processed with two main steps before being analysed. The first step is 136 

denoise, and it was applied to mitigate the noise in the original grey images using the median filter 137 

method with a radius equals to 2 voxels. The second step is binarization and segmentation. Coal is 138 

composed of three components, pores/fractures, coal matrix and minerals [34], each component has a 139 

special range of grey scale, and then these three parts can be separated by setting threshold values 140 

which are certain grey scale numbers. In this study, the threshold value was determined using Digital 141 

Terrain Model (DTM), which was proposed by Taud et al. [35]. Then the grey scale number of each 142 

pixel in the image was set to be 0 or 255 if the number is smaller or bigger than the threshold value, 143 

which is called binarization. The result of binarization is that image only contains black and white 144 

colour, which represent pores/fractures and other components, respectively. 145 

2.5 Calculations 146 

2.5.1 Calculation of porosity 147 

Porosity of the porous media is given by 148 

φ =
𝑉𝑝

𝑉𝑡
  (1) 149 

where φ  is porosity, while 𝑉𝑝  and 𝑉𝑡  are the volume of pores and the volume of the sample, 150 

respectively. In this work, the porosity of these binarized images were determined by taking the ratio of 151 

the total voxels of void and the total voxels of the images and it was implemented in MATLAB. 152 

2.5.2 Calculation of fractal dimension 153 

According to the fractal theory proposed by Mandelbrot [10], numerous structures in the natural 154 

world, such as coastlines of the islands, shape of rivers and branches of a tree, are disordered and did 155 

not follow the Euclidean description, because their lengths, areas or volumes are not constants, but 156 

scale-dependent. The measure of a fractal structure can be done using box-counting method [13,14]  157 
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𝐷𝑓 = lim
𝑟→0

log⁡(𝑁𝑟)

log⁡(
1

𝑟
)

  (2) 158 

where,⁡𝐷𝑓 is the 2D/3D fractal dimension, 𝑁𝑟 is the number of boxes needed to cover the slices/cubes, r 159 

is the side length of the boxes. 160 

3 Results and Discussion 161 

3.1 Results of porosity-based REV and fractal dimension-based REV 162 

Figs. 3-6 show REV analysis for fractal dimension of these coal samples. The x-axis represents 163 

the side length (voxels) of cubes, while y-axis represents fractal dimension of the 3D domain. As 164 

shown in these figure, erratic fluctuations in fractal dimension if the sample size is relatively small, this 165 

is consistent with the region I in Fig. 1. As the sample size increase, some lines begin to be steady (Fig. 166 

1, region II). It can also be observed that different lines have different REV side lengths, this is due to 167 

the heterogeneity of coal. In this study, the biggest REV side length of these nine lines should be taken 168 

as the REV side length of the original sample. However, as shown in Figs. 3-6, some selection schemes 169 

(Figs. 4H, 4I, 5H) do not have REV, which means there is no REV for the original sample, so the REV 170 

discussed in this study is the REV for certain selection scheme. And this means that the fractal 171 

dimension REV can only be selected at certain positions for some coal samples. The smallest REV 172 

sizes of these 4 samples are 240 voxels, 320 voxels, 120 voxels and 90 voxels, respectively, while side 173 

lengths of these samples are 700 voxels, 900 voxels, 400 voxels and 400 voxels, respectively.  Porosity 174 

REV of coal does not always exist (see Supplementary materials), which is inconsistent with the 175 

previous studies of sandstone, shale and other porous mediums [8,23,36]. However, REV exists for 176 

averaged porosity of these nine positions [13]. Another thing that can be observed from our 177 

experimental data is, for most schemes, porosity is not constant while fractal dimension already reaches 178 

REV, which shows trends that when fractal dimension reaches REV, porosity can also reach REV or 179 

increase or decrease. 180 



 181 

Fig.3. Fractal dimension stability with variation of cube length of AC, A-I represents different 182 

subvolume (SV) selection schemes (see Fig. 2) 183 

 184 

Fig. 4. Fractal dimension stability with variation of cube length of DS, A-I represents different 185 

subvolume (SV) selection schemes (see Fig. 2) 186 



 187 

Fig. 5. Fractal dimension stability with variation of cube length of HC, A-I represents different 188 

subvolume (SV) selection schemes (see Fig. 2) 189 

 190 

Fig. 6. Fractal dimension stability with variation of cube length of YA, A-I represents different 191 

subvolume (SV) selection schemes (see Fig. 2) 192 

3.2 Discussion of porosity-based REV and fractal dimension-based REV 193 

As shown above, the smallest fractal dimension REV side length of each sample relates to the size 194 

(voxel unit) of the sample and this relation is positive. This is because the bigger size of the sample, the 195 



more data are needed to yield a value representative of the whole sample. The size here used is 196 

pixel/voxel unit, which is not the real size of these samples, for example side length of the smallest 197 

fractal dimension REV side length of AC is 240 voxels, and the resolution is 2.5 nm/voxel, which 198 

means that the actual side length is 0.6 μm. The side length of the smallest fractal dimension REV of 199 

YA is 90 voxels and the resolution is 1.1 μm, so the actual side length is 99 μm, which indicates that 200 

the size of REV is influenced by the resolution of the image: for images have similar size in voxel unit, 201 

the higher resolution, the smaller actual REV size. The fluctuation of fractal dimension REV and 202 

porosity REV values of each sample also indicates the heterogeneity of coal (Fig. 2). It is also noticed 203 

that REV exists only on some schemes, not all the schemes.  204 

The relation between fractal dimension REV and porosity REV can be studied using fractal theory 205 

[28]. According to our experimental data, the⁡ relation⁡ between⁡ fractal⁡ dimension⁡REV⁡ and⁡ porosity⁡206 

REV⁡are⁡concluded⁡as⁡four⁡cases⁡and⁡they⁡can⁡be⁡described⁡using⁡four⁡examples: 207 

 208 

Fig. 7. A, B, C and D are porosity and fractal dimension stability with variation of cube length of 209 

scheme A of AC, scheme I of YA, scheme F of HC and scheme C of AC 210 

These four examples can be concluded as four cases: Case 1: Fractal dimension reaches REV, 211 

while porosity declines (Fig. 7A); Case 2: Fractal dimension reaches REV, while porosity also reaches 212 

REV (Fig. 7B); Case 3: Fractal dimension increases, while porosity reaches REV (Fig. 7C); Case 4: 213 

Fractal dimension reaches REV, while porosity increases (Fig. 7D, which is combination of Case 1, 2, 214 

4, and the middle part is Case 4). 215 

Then all the schemes of these samples were counted (Table. 2) to find which case is the most 216 

common case for our coal samples, if a scheme contains more than one case, then count all of the cases. 217 



The results show that Case 1 is the most common relation between fractal dimension REV and porosity 218 

for coal, which is porosity decreases when fractal dimension reaches REV. 219 

Table2.  Statistical results of the number of each case 220 

 Case 1 Case 2 Case 3 Case 4 No REV 

Number 25 4 5 6 6 

3.3 Application in fractal permeability model 221 

As discussed above, the relationship between fractal dimension REV and porosity REV can be 222 

categorised as four cases. When fractal dimension reaches REV, the relation between porosity and side 223 

length can be expressed as a mathematical correlation, and other parameters that used in the 224 

permeability model (Eq.3) could also described as a function of porosity, so that these parameters can 225 

be related to fractal dimension and side length. For example, the model proposed by Miao et al. [24] to 226 

analyse the permeability fractured porous media embedded with random fractures. In their model, 227 

permeability of fractal fracture network can be expressed as 228 

𝐾 =
𝛽3

12𝐴𝑓

𝐷𝑓,2𝐷(1−cos
2 𝛼 sin2 𝜃)

4−𝐷𝑓,2𝐷
𝑙𝑚𝑎𝑥
4    (3) 229 

where Df is the 2D fractal dimension of fractures, β is a proportionality coefficient, which is influenced 230 

by fracture toughness, Poison’s ratio and Young’s modulus [37], α and θ are the averaged fracture 231 

azimuth and the averaged fracture dip for fracture networks, respectively (Fig. 8). Af is the cross-232 

sectional area of a representative unit for fractal fracture networks, which is related to fractal dimension 233 

and porosity. lmax is the maximum fracture length, which is commonly related to the samples size 234 

positively [24]. If consider α, β and θ are constants, then permeability is influenced by Df and lmax. As 235 

discussed above, when the model is used to predict permeability of different scales by changing sample 236 

size within a certain scale, just need to estimate the relation between Df, lmax, φ and sample size. Then, 237 

because there exists REV for Df, and lmax is commonly related to the samples size, so permeability can 238 

be related to sample size by then considering the relation between porosity and sample size. However, 239 

not all samples may have fractal dimension REV, and not all of their porosity values show decrease 240 

trend while fractal dimension reaches REV, what discussed in this part is the most common case. For 241 

example, for coal samples, Case 1 is mostly likely to happen, which means fractal dimension will be 242 

constant as the computation domain increase, while porosity will decrease, then according to the 243 

relation between porosity and cross-sectional area to estimate the change of the parameter cross-244 

sectional area Af. 245 



246 
 Fig.8 A single fracture in a representative structural unit, where α and θ are the fracture azimuth and 247 

the fracture dip, respectively, L is the sample length [24]. 248 

According to Miao et al. [24], cross-sectional area Af  can be expressed as  249 

𝐴𝑓 =
𝛽𝐷𝑓,2𝐷𝑙𝑚𝑎𝑥

2

2−𝐷𝑓,2𝐷
⁡
1−𝜑

𝜑
    (4) 250 

where φ is porosity of fractures in the rock, 𝐷𝑓 is the average two-dimension fractal dimension, which 251 

is approximately equal to three-dimension fractal dimension minus one [13]. 252 

Inserting Eq. (4) into Eq. (3) yields  253 

𝐾 =
𝛽2

12
⁡
𝜑

1−𝜑

(2−𝐷𝑓,2𝐷)(1−cos
2 𝛼 sin2 𝜃)

4−𝐷𝑓,2𝐷
𝑙𝑚𝑎𝑥
2    (5) 254 

The relation between porosity and side length can be estimated according to Case 1, which is a 255 

linear equation that can be obtained by adding a trend line, and then porosity is a function of side 256 

length of the sample, 257 

𝜑 = a𝐿 + b    (6) 258 

where a and b are constants, L is side length. 259 

The maximum fracture length is also a function of the side length, because the fractures in coal are 260 

straight (see Fig. 8), so the function can also be regarded as a linear equation as 261 



𝑙𝑚𝑎𝑥 =
𝐿

cos𝜃
⁡    (7) 262 

 Inserting Eq. (6) and Eq. (7) into Eq. (5) yields 263 

𝐾 =
𝛽2

12
⁡
𝑎𝐿+𝑏

1−a𝐿−b

(2−𝐷𝑓,2𝐷)(1−cos
2 𝛼 sin2 𝜃)

4−𝐷𝑓,2𝐷

𝐿2

cos2 𝜃
   (8) 264 

The only variable in Eq. (8) is side length L, so that Eq. (8) can be used to predict permeability of 265 

different scales. However,  this equation is only applicable in certain scale ranges, as Eq. (6) only exists 266 

in a certain range of the sample side length. Eq. (8) was deduced based on the Case 1, which is the 267 

most common case, but other three equations can be deduced based on other three cases, which are 268 

uncommon. 269 

In order to verify Eq. (8), the permeability of DS was simulated using LB (lattice Boltzmann) 270 

method, the simulation process was conducted through Palabos, which is an open non-commercial 271 

software that provides a framework for computational fluid dynamics. Then computation results can be 272 

visualized using Paraview, which is a powerful tool for visualization of scientific data (Fig. 9). As 273 

shown in Fig. 9, fracture is the main seepage pathway in coal. Fig.10 shows the results of LBM 274 

simulation. 275 

Then pore network parameters needed in Eq. (8) were set according to sample DS scheme B: a is -276 

0.0002, b is 0.3219, 𝜃 is 0° and 𝐷𝑓,2𝐷 is 1.62. Side length was chosen from 600 to 900 voxels, which is 277 

because porosity decreases from 600 voxels. The data of these samples with side length from 600 to 278 

850 were utilized to obtain β using Excel programming solver. Then this β value was utilized to 279 

calculate permeability of 900 voxels according to Eq. (8), after that, the error between computation 280 

result and simulation result was compared. Value of β using programming solver is 0.0018, and then 281 

the computation result for 900 voxels is 0.0062 μm2, while the LBM result is 0.0063 μm2, then the 282 

absolute error is 0.0001 μm2, while the relative error is 1.6% (Fig.10). 283 

 However, the fractal dimension-based REV does not always exist, and porosity relates to side 284 

length linearly only within some range of the side length. Therefore, Eq. (6) is only applicable in some 285 

range of side length, so Eq. (8) is effective only within a certain range. Moreover, there may be some 286 

errors while conduct LBM permeability simulation, because the iteration is set as 60000 times. But 287 

60000 times may not be big enough to ensure the simulation converge, even if the default value is only 288 

30000 times for this simulation. 289 



 290 

Fig.9 Fluid flow in the main fracture 291 

 292 

Fig. 10 Simulation results of sample permeability using LBM 293 

4 Summary and Conclusions 294 

In this work, high resolution μ-CT and FIB-SEM images of coal were utilized to obtain the 295 

accurate pore and fracture structure of coal, which were utilized further to analyse the porosity and 296 

fractal dimension of these samples. Based on the calculated results, the relation between fractal 297 

dimension REV and porosity REV was studied extensively. In conclusion, the main achievements 298 

presented in this work are: 299 

(1)  Fractal dimension-based REV does exist for coal, and the size (voxel unit) of the fractal 300 

dimension REV of each sample relates to the size (voxel unit) of the sample positively.  301 

(2) For coal samples, REV should be selected at certain positions, even if the size of the REV is 302 

close to the original sample size. 303 
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(3) The relation between fractal dimension REV and porosity REV are concluded as four cases, 304 

while Case 1 is the most common relation in coal. And the relation can be applied to existing 305 

fractal permeability models to predict the permeability of different scales. 306 

a) Case 1: Fractal dimension reaches REV, while porosity declines; 307 

b) Case 2: Fractal dimension reaches REV, while porosity also reaches REV; 308 

c) Case 3: Fractal dimension increases, while porosity reaches REV; 309 

d) Case 4: Fractal dimension reaches REV, while porosity increases. 310 

Future work of this study will be carried on other reservoir rocks (e.g. shale, sandstone and 311 

limestone) with the proposed approach in this study, then for different permeability models, try to 312 

characterise more parameters. More effort should be made to investigate the relation between 313 

maximum fracture length and sample size. 314 
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Appendix A. Supplementary materials 414 
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DS HC YA AC 

 417 

CT Slices (DS, HC and YA) and SEM image (AC) of coal samples 418 
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Selection of effective area in CT images 422 
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Porosity stability with variation of cube length of AC, A-I represents different subvolume (SV) selection 425 

schemes (see Fig. 2) 426 

0

0.1

0.2

0.3

0.4

0.5

0 100 200 300 400 500 600 700

p
o
ro

si
ty

side length (voxels)

A B C D E F G H I

900  pixels 4 00  pixels 4 00  pixels 



 427 

 428 

Porosity stability with variation of cube length of DS, A-I represents different subvolume (SV) selection 429 

schemes (see Fig. 2) 430 
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 432 

Porosity stability with variation of cube length of HC, A-I represents different subvolume (SV) selection 433 

schemes (see Fig. 2) 434 

 435 

Porosity stability with variation of cube length of YA, A-I represents different subvolume (SV) selection 436 

schemes (see Fig. 2) 437 
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