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Abstract 

The history of oceanic oxygenation from the late Neoproterozoic to the early 

Cambrian is currently debated, making it difficult to gauge whether, and to what 

extent environmental triggers played a role shaping the trajectory of metazoan 

diversification. Uranium isotope 238U) records from carbonates have recently been 

used to argue for significant swings in the global marine redox states from the late 

Neoproterozoic to the early Cambrian. However, geochemical signatures in 

carbonates the U isotope archive most commonly employed to argue for redox 

shifts are susceptible to diagenetic alteration and have variable offsets from 

seawater values. Therefore, there is an impetus to reconstruct seawater U isotopic 

evolution using another sedimentary archive, in order to crosscheck that these 

excursions can indeed be linked to global shifts in marine redox landscape. Here we 
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report new U isotope data from two fine-grained siliciclastic upper Ediacaran to lower 

Cambrian (ca. 551 Ma 515 Ma) successions in South China. We find 238U 

swings between -0.  for calculated values of authigenic U in the 

siliciclastic rocks, consistent with correlative records from the carbonates. The 

replication of these patterns in both carbonate and siliciclastic units provides 

confirmatorycompelling evidence that the early Cambrian seawater was characterized 

by did indeed experiences highly variable variable U isotope compositionsmarine 

redox conditions. These new 238U data also provide higher-resolution records of 

global oceanic redox during the Cambrian Age 3, coeval with a critical interval of the 

Cambrian explosion. These 238U data bolster the case that the Ediacaran-Cambrian 

transition did indeed experienced massive swings in marine redox state, providing a 

dynamic environmental backdrop for and potentially even a key driver of the 

emergence and radiation of metazoans. 

Keywords 

uranium isotopes; siliciclastic strata; early Cambrian; marine redox dynamics; animal 

innovations 

1. Introduction 

There has been longstanding debate overregarding  whether the 

Ediacaran Cambrian emergence and diversification of metazoans coincided with 

progressive oxidation of the ocean-atmosphere system and, if so, to what extent this 

environmental transition may have directly influenced the trajectory or pace of 



metazoan evolution (Och and Shields-Zhou, 2012; Lyons et al., 2014; Sperling et al., 

2013, 2015). In contrast to the standard view of a largely unidirectional redox 

transition, several recent studies have suggested that, during the interval spanning the 

Ediacaran to the early Cambrian, pulsesd episodes of widespread marine anoxia were 

common and recurrent (Wei et al., 2018; Wood et al., 2018; Zhang et al., 2018, 2019; 

Tostevin et al., 2019; Dahl et al., 2019). Building uponfrom this emerging record of 

environmental variability, it has been suggested that temporally and spatially dynamic 

environmental conditions, rather than stymying the emergence of complex life, 

actually spurred the development and dissemination of biotic novelties, and thus the 

rapid diversification,  and turnover and ecosystem restructuring characteristic of this 

interval (Wei et al., 2018; Wood and Erwin, 2018; Wood et al., 2019). Uranium (U) 

isotopes have played a key role in reconstructing ancient marine redox landscapes, 

based on the framework that seawater U isotopic compositions are controlled by the 

balance betweenof different marine U sinks with distinct isotopic fractionations 

relative to seawater (Andersen et al., 2017). For instance, extensive euxinia (anoxic 

and sulfidic conditions) in open-ocean settings will drive seawater towards very light 

dissolved U isotopic compositions;, whereas more limited euxinic and extensive 

oxygenated waters result in isotopically heavier seawater with heavy U isotope values 

(Andersen et al., 2017). Marine carbonates record seawater U isotope 

values providing a seemingly ideal and simple means of tracking global oceanic 

redox evolution. To date marine carbonates have been the chief geologic archive for 

reconstructing global seawater U isotope compositions from the Ediacaran to the 



Cambrian Age 2 (ca. 635 520 Ma) (Wei et al., 2018; Zhang et al., 2018, 2019; 

Tostevin et al., 2019; Dahl et al., 2019). However, carbonate-hosted U isotopes can be 

extensively modified during the diagenesis. Early marine diagenesis typically results 

in more positive carbonate U isotope values, but late-stage alteration of carbonates 

can result in more negative U isotope values (e.g., Hood et al., 2016, 2018; Chen et al., 

2018; Tissot et al., 2018), which can hamper the use of carbonate as a seawater 

archive. Therefore, there is an obvious motivation to explore other U isotope archives 

to track global marine redox evolution. 

Modern reducing sediments 238U values, relative to 

seawater (Weyer et al., 2008; Andersen et al., 2014; Holmden et al., 2015; Abshire et 

al., 2020; Brüske et al., 2020) because 238U is preferentially reduced and accumulates 

in reducing sediments via microbially mediated reduction of U (VI) (e.g. Basu et al., 

2014; Stirling et al., 2015; Stylo et al., 2015). Observed U isotopic differences 

between reducing sediments and seawater are sensitive to variations in local 

depositional environment, including local productivity and sedimentation rates, basin 

connectivity and bottom-water redox state (Bura-

2018; Brüske et al., 2020; Lau et al., 2020), which adds complexity to precise 

reconstruction of seawater 238U values. However, given that exposure to reducing 

238U values in the sediments relative to seawater, 

reducing sediments can provide a robust maximum estimate for seawater values. 

Further, integration of 238U analysis of reducing sediments with detailed 

characterization of the hosting facies can be used to track secular changes in seawater 



238U values. In this light, shale- and mudstone-hosted U isotope records can be used 

to independently test whether the widespread anoxia reconstructed for the Ediacaran 

and Cambrian, on the basis of carbonate archives, accurately reflects ancient marine 

conditions. 

In this study, we report new high-resolution 238U data from two marine 

siliciclastic successions (Daotuo drill core and Yanjia section) (Fig. 1) in the Yangtze 

block, South China, which span the terminal Ediacaran to Cambrian Stage 3 (ca. 

551 515 Ma). We focus on U-enriched silicified shaleshaly chert, shale and mudstone, 

given that the presence of authigenic U enrichments in these lithologies can provide 

an archive of seawater 238U values, independent offrom that of shallow carbonates. 

We measured 238U values from these lithologies, and coupled these to trace element 

and iron speciation analyses, in order to provide new insights into global seawater 

238U evolution and compare these to 238U records. 

2. Geological background 

The Daotuo drill core, collected from Songtao County of northeastern Guizhou 

Province, South China, is interpreted to record a weakly restricted mid-depth slope 

environment during the early Cambrian (Wei et al., 2017). The studied Daotuo drill 

core samples were collected from the upper Liuchapo Formation to the Jiumenchong 

Formation, which compriseconsist of black chert, black shale, mudstone and 

calcareous mudstone (Fig. 1). The upper Liuchapo Formation spans the 

Ediacaran-Cambrian boundary (ca. 542 Ma), based on a U-Pb zircon 



geochronologydating (Chen et al., 2015a). The lower Jiumenchong Formation 

contains a polymetallic sulfide-rich layer whose age is 521 ± 5 Ma based on Re-Os 

daing (Xu et al., 2011) or younger than 522.7 ± 4.9 Ma based on U-Pb zircon dating 

(Wang et al., 2012) offor the correlated strata in other sections from South China. The 

Yanjia section is exposed in Zhejiang Province, South China and 

interpreted to have been deposited in a deep basin, relatively well connected to the 

open ocean (Wang et al., 2018). The Yanjia section comprises the Piyuancun 

Formation and the overlying Hetang Formation, both of which are composed of 

organic-rich chert, siliceous shale and black shale. The Piyuancun and Hetang 

formations in the Yanjia section can be correlated to the Liuchapo and Jiumenchong 

ormations in the Daotuo drill core section, respectively (cf. Wang et al., 2018). 

Stratigraphic correlations on the Yangtze block are shown in Fig. 1, including 

two sections from the inner shelfal and intrashelf basinal settings (Wei et al., 2018). 

The studied strata of the Daotuo drill core and Yanjia section are highly condensed in 

the Cambrian Fortunian and Stage 2 (ca. 541 521 Ma), which are age-equivalent 

tocompared with more expanded  carbonate successions in the Xiaotan and Yanjiahe 

sections (cf. Wei et al., 2018; Dahl et al., 2019). Most samples in this study (middle 

and upper Jiumenchong and Hetang formations) were deposited during Cambrian Age 

3 (ca. 520 515 Ma), an interval during which deposition of chert, black shale and 

siliceous-calcareous mudstones was widespread across the Yangtze block. 

3. Materials and methods 

The studied samples with relatively low Ca concentrations (< 3%) were carefully 



selectedpetrographically screened in order to avoidfor the effects of any carbonate 

components and obvious late-stage veins, and then analyzed for U isotopic 

composition as well as trace element concentration and total organic carbon. HF, 

HNO3 and HCl acids were used to fully digest the samples. Trace element 

concentrations of the studied samples were measured on a Thermo Finnigan Element 

XR ICP-MS at Yale University and Nanjing University with errors lower than 5%. 

Uranium isotopes were measured on a Thermo Finnigan Neptune Plus MC-ICP-MS at 

Yale University following column chromatography using UTEVA resin, using the 

method described in Wei et al. (2018). Long-

(2SD), based on replications of the NOD-A-1 geostandard (-  0.05, n = 5) and 

 

From among the studied samples for U isotope analyses, representative ones 

were selected for iron speciation analyses in order to further constrain the local redox 

conditions.  Iron speciation analyses were completedfinished at Nanjing University 

and Nanjing Institute of Geology and Palaeontology, Chinese Academy of Sciences, 

following the sequential extraction procedure of Poulton and Canfield (2005) in order 

to analyze highly reactive Fe in carbonate, oxides and magnetite, and following the 

Cr-reduction method of Canfield et al. (1986) for extraction of pyrite-associated Fe. 

Iron concentrations of extracted highly reactive Fe were measured on an atomic 

absorption spectroscope (AAS) and ICP-OES with errors lower than 5%. The yield of 

pyrite- Fe was better than 90% based on the repeated analyses of the Chinese 

GBW07267 pyrite standard. The dDetails of all the analytical methods are shown in 



the Supplementary Materials. 

4. Results and discussion 

4.1 Uranium isotopes in uppermost Ediacaran through lower Cambrian 

fine-grained siliciclastic strata: local depositional or global marine redox 

control? 

Results of U isotope, Fe speciation, total organic carbon and trace element 

concentration analyses are shown in Table S1 and Fig. 2. High bulk U/Th ratios 

(distinctly higher than those of terrestrial detrital materials, U/Thdetrital = 0.282 ± 0.102, 

2SD) (Cole et al., 2017) and no a lack of any clear covariationcorrelations between 

bulk U concentrations ([U]bulk), bulk 238U values ( 238Ubulk) and Al or Th 

concentrations (Fig. 3A, B, C, D) suggest only negligible trivial detrital U 

contribution to our reported U isotope signatures produced from the analyzed samples. 

238U signatures to record the behavior of 

predominantly authigenic (seawater-sourced) U deposited in the sediments under 

potentially anoxic conditions. In order to further disentangle marine authigenic signals 

from any potential detrital signals in the bulk sample U isotope data, we calculated U 

concentrations and 238U values of marine authigenic uranium ([U]auth and 238Uauth), 

by using the equations published in Andersen et al. (2017) with a simple Monte Carlo 

simulation 238Uauth values (see 

Supplementary materials for detail). The Daotuo drill core and Yanjia section exhibit 

consistent trends and a wide range but consistently varying trend of 238Uauth values 

from -0.63  to +0.39 from -0.42  to +0.32  (Fig. 2). Although 



[U]auth 238Uauth of the studied samples vary greatly in the Daotuo and Yanjia 

sections, no covariation between [U]auth and 238Uauth values show no correlation with 

Fe contents (Fig. 3E, F)but clear covariation between [U]auth and TOC (total organic 

carbon) contents (Fig. 4) likely , which likely suggests that U precipitation was 

dominated by bacterially mediated U reduction, rather than abiotic Fe (II)-mediated U 

reduction (e.g., Stylo et al., 2015), which highlights the importance of organic 

substrates on U precipitation in the anoxic sediments (e.g., Tribovillard et al., 2006).  

Samples from the lowest Jiumenchong and Hetang formations (upper Cambrian 

Stage 2), show strongly 238Uauth values ), equivalent 

to or slightly higher than the heaviest reported U isotope compositions of modern 

euxinic sediments (e.g., as high as that of Black Sea unit II) (Andersen et al., 2014). 

Although the units with high 238Uauth values in the lowest Jiumenchong and Hetang 

formations display relativelysignificantly high [U]auth and total organic carbon (TOC) 

contents (Figs. 2 and 4), given the lack of significant covariation between 238Uauth and 

TOC (Fig. 4D), such high 238Uauth values (up to ) are unlikely to have been 

driven primarily by high organic carbon burial fluxes because increased organic carbon 

delivery within the sediments generally results in rapid U reduction and more 

quantitative precipitation of U in the sediments, reducing the U isotopic fractionation 

between sediments and seawater (Andersen et al., 2018; Brüske et al., 2020; Lau et al., 

2020). Instead, we suggest that this stratigraphic interval records greater water column 

or water-sediment interface reduction of U (rather than reduction within the sediment 

pile) under highly productive conditions, which is consistent with the U isotopic 



behavior expected in very highly -productive regions (cf. Rolison et al., 2017; Abshire 

et al., 2020; Cheng et al., 2020). Uranium reduction in an unrestricted water column or 

at the water sediment interface may result in a higher effective U isotopic fractionation 

between the sediment and coevalconcurrent seawater (Rolison et al., 2017; Andersen et 

al., 2017; Brüske et al., 2020; Abshire et al., 2020). Nonetheless, even if the U isotope 

238U wasis large, comparable to the largest 

offsets observed in modern anoxic depositional systems (Rolison et al., 

2017; Brüske et al., 2020), 238Uauth values recorded here likely 

reflect near-modern 238U values. In this view, h 238U values in 

this interval indicatesuggest a relatively limited extent of anoxic seawater during late 

Cambrian Age 2, which is consistent with previously published Mo isotope records 

(Chen et al., 2015b). 

In contrast, the Liuchapo and upper Piyuancun formations and the middle to 

upper Jiumenchong and Hetang formations are marked by 238Uauth values (< 

- that are notably lower than that of modern seawater (Fig. 2). In fact, these are 

the most negative shale U isotopic values (as low as -0.63 ) that have ever been 

reported (cf. Wang et al., 2018). These values likely reflect nearly complete U 

reduction (which can occur in an isolated basin or in porewaters beneath suboxic 

bottom water). With near quantitative capture of a U reservoir, 238Uauth values of 

sediments can approach that of seawater (Noordmann et al., 2015; Andersen et al., 

2016, 2018; Bura- . However, even if there is no appreciable U 

isotopic difference between sediments and seawater, the remarkably 238Uauth 



values in the Liuchapo and upper Piyuancun formations and middle to upper 

Jiumenchong and Hetang formations imply remarkablymarkedly 238U 

values (as low as - across the Ediacaran-Cambrian boundary and during 

Cambrian Age 3, suggesting widespread marine anoxia during these intervals. 

To further determine local depositional conditions and thus constrain U isotopic 

differences between open seawater and the local sediments, we conducted iron 

speciation analyses (FeHR/FeT and FePy/FeHR) and Mo, U enrichment factors (MoEF 

and UEF) (see Supplementary materials for calculations). Using the standard iron 

speciation framework (Poulton and Canfield, 2011), essentially all the samples 

included in this study were deposited under anoxic but not persistently and strongly 

sulfidic bottom water (Fig. 54A). We do not observe any systematic relationships 

between 238Uauth and FeHR/FeT, FePy/FeHR (Fig. 65), which suggests that redox 

conditions of local bottom water may have not been the dominant factor controlling 

238Uauth values of the studied samples. Covariation of MoEF and UEF is used to further 

evaluate the depositional environment of the samples in this study and to compare 

these with modern low-oxygen marine sedimentary systems (cf. Algeo and 

Tribovillard, 2009; Tribovillard et al., 2012). As shown in Fig. 54B, most of the 

samples in this study fall within the iron speciation field characteristic of deposition 

under anoxic conditions and show a MoEF UEF trend analogous to that of modern 

open-ocean settings (cf. Algeo and Tribovillard, 2009; Tribovillard et al., 2012), 

which with the standard interpretation would suggest that the Yangtze continental 

margin was likely well-connected to the open ocean during the early Cambrian. A few 



samples with relatively low MoEF and UEF 238Uauth 

values, potentially representing a locally suboxic  local depositional environment 

with less U isotopic fractionation between the sediments and seawater. Collectively, 

these observations Fe speciation and MoEF UEF covariation imply that, during the 

early Cambrian, local bottom waters in these regions were well connected to the open 

-ocean waters and experienced relatively prolonged intervals of strong anoxia. Taken 

together, we suggest that swings in 238Uauth values from the Daotuo drill core and 

Yanjia section wereare not solely controlled by local variabilityvariation in basin 

restriction, organic carbon delivery or bottom water redox conditions. Highly 

consistent 238Uauth variations in these two sections, in part, reflect frequent 

fluctuations in seawater 238U values. Most importantlyForemost, the anomalously 

238Uauth values ofin upper Cambrian Stage 2 and 238Uauth values 

ofin Stage 3 strata provide evidence, independent of 238U records, for 

substantialintense and rapid oscillations inof oceanic redox states throughout the 

Cambrian explosion. 

4.2 238U from the late Ediacaran to early Cambrian 

via siliciclastic archives 

Based on the above Fe speciation and MoEF UEF analyses, we reconstruct 

temporal changes in seawater U isotopic 238USW, Fig. 76C) from the 

reducing sedimentary records of this study by using +0.8  , 

respectively, as the U isotopic offsets for 1) authigenic U reduction within the 



high-productive water column or water-sediment interface with efficient 

replenishment of dissolved U (Rolison et al., 2017; Brüske et al., 2020); 2) within 

sulfidic sediments of an unrestricted basin (Holmden et al., 2015; Andersen et al., 

2018) and 3) within suboxic sediments  (Weyer et al., 2008; Andersen et al., 2016). 

Although U isotopic behaviors in the reducing sediments may be more complex, 

simplified estimation of U isotopic offsets under different local conditions can provide 

insights into secular changes 238USW values. Despite the relatively 

low-resolution nature of upper Ediacaran and Cambrian Fortunian 238Uauth data (e.g., 

three points from potentially suboxic samples for Fortunian excursion P1 in Fig. 7C) 

and the errors inherent to estimating an effective U isotopic fractionation, secular 

238USW reconstructed from siliciclastic rocks are strikingly consistent with 

correlative 238U profiles (Fig. 76A). This supports the interpretation that 

238Uauth mainly reflect global oceanic redox changes. Further, compared to 

previous studies of carbonate-hosted U isotopic signatures (Fig. 76A), the new 

238USW curve documented in siliciclastic strata provides a higher-resolution record of 

global oceanic redox states through Cambrian Age 3, and suggests that this critical 

interval of the Cambrian explosion is marked by large swings in marine redox states. 

4.3 Implications for co-evolution of marine environments and early metazoans 

We provide estimates of late Ediacaran to early Cambrian (ca. 551 Ma 515 Ma) 

seawater 238U records from fine-grained siliciclastic rocks that closely match 

previous estimates from carbonates (Fig. 76). This provides compelling evidence that 

the early Cambrian was indeed marked by frequentrapid 238U 



(negative excursion N1 N3 and positive excursion P1 P3 in Fig. 76). These swings 

demonstrate that there were largescale fluctuations in the marine redox landscape 

(with the U mass balance being tied foremost to the areal extent of anoxic conditions). 

The frequently fluctuating redox states of the early Cambrian ocean are likely linked 

to effects of dynamic nutrient supply, shallow marine productivity and ocean 

ventilation in the ocean with relatively lower baseline oxygenation level than the 

modern ocean (cf. Wang et al., 2018; He et al., 2019; Dahl et al., 2019; Wei et al., 

2020). Further studies are needed to better constrain the triggers for the dramatic 

changes in marine redox states during this period. The synchronicity of this dynamic 

redox variation with animal evolutionaryl clades, increased physiological and 

ecological complexity and expansion into a wider range of benthic habitats and water 

depths may, moreover, not be coincidental. In fact, this concurrence provides further 

empirical evidence in favor of recent proposals that habitat fragmentation and 

ecological restructuring mediated by redox instability may have facilitated higher 

rates of generation of evolutionary novelties and thus enhanced biological innovation 

and turnover thus serving as a spur, rather than an impediment, to diversification 

among animal lineages over this interval (Reinhard et al., 2016; Wood and Erwin, 

2018). In this light, the 

Ediacaran Cambrian protracted emergence and subsequent rapid radiations of 

complex animal life (and Ediacaran Ordovician emergence of modern-style 

ecological strategies and ecosystem structure) against a backdrop of pronounced 

environmental instability (Droser et al., 2017; Tarhan et a., 2018; Servais and Harper, 



2018; Wood et al., 2019), broadly resembles patterns of emergence and turnover 

characteristic of Sepkoskian Phanerozoic Evolutionary Faunas (e.g., Tarhan et al., 

2018). 

5. Conclusions 

New high-resolution uranium isotope data from two upper Ediacaran through 

Cambrian Stage 3 siliciclastic sections in South China are reported in this study. Both 

of the studied sections show mutually consistent,ly large swings in authigenic 238U 

values. Given that local depositional conditions didmay have not dominated 

authigenic 238U values of the studied samples, we interpret much of this variability to 

be driven by secular changes in seawater 238U values. Notably high authigenic 238U 

values in upper Cambrian Stage 2 and lowest Stage 3 suggest that host sediments 

were deposited in and ocean with limited anoxic seafloor areaanoxia, whereas 

anomalously negative authigenic 238U values in the terminal Ediacaran and 

Cambrian Stage 3 are indicative of extensive deep-marine anoxia. Paired 238U 

records from marine carbonates (Wei et al., 2018; Zhang et al., 2018; Tostevin et al., 

2019; Dahl et al., 2019) and siliciclastic strata strengthens the case that anomalously 

high 238U variability (e.g., Wei et al., 2018; Dahl et al., 2019) is indeed tied to 

episodicthe frequent swings in global marine redox states from the late Ediacaran 

through the early Cambrian (ca. 551 Ma 510 Ma), rather thaninstead of diagenetic 

overprinting. This bolsters the hypothesis that the diversification of early animals 

during the Cambrian explosion occurred against a backdrop of (and may even have 

been mediated by) highly spatiotemporally variable marine redox conditions. 
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Figure captions 

Figure 1. Stratigraphic columns of the Daotuo drill core and Yanjia sections, and their 

correlations to inner shelf Xiaotan section and Gaojiaxi Yanjiahe section in South China (cf. 

Wei et al., 2018). The shaded areas represent the correlative stratigraphic units of these 

sections for the Ediacaran (blue), Cambrian Fortunian and Stage 2 (green) and Stage 3 

(yellow). The red line represents a Ni-Mo polymetallic layer with an age of 521± 5 Ma 

(Re-Os dating from Xu et al., 2011) or < 522.7 ± 4.9 Ma (U-Pb zircon dating from Wang et al., 

2012). 

Figure 2. Uranium isotope ( 238Uauth) values, iron speciation, Uauth concentrations and total 

organic carbon (TOC) contents of the upper Ediacaran to lower Cambrian Daotuo drill core 

and Yanjia section. Uranium isotope values 238Uauth for authigenic uranium 

in bulk samples. 238Uauth calculation are shown in Supplementary materials. The error bar 

238Uauth for each sample, using a Monte 

Carlo approach. The shaded vertical bars are estimated average 238U ranges of suboxic and 

euxinic sediments (Andersen et al., 2017). 

Figure 3. Cross-plots of (A) bulk U concentration vs. Al concentration, (B) bulk 238U vs. Al 

concentration, (C) bulk U concentration vs. Th concentration, (D) bulk 238U vs. Th 

concentration, (E) authigenic U concentration vs. Fe concentration, (F) authigenic 238U vs. 

Fe concentration for samples from the Daotuo drill core and Yanjia section. R2 represents the 



coefficient of determination of the covariation. 

Figure 4. Cross plots of (A) authigenic U concentration vs. Fe concentration, (B) authigenic 

238U vs. Fe concentration, (C) authigenic U concentration vs. TOC concentration, (D) 

238U vs. TOC concentration for samples from the Daotuo drill core and Yanjia 

section. R2 represents the coefficient of determination of the covariation. 

Figure 54. (A) FeHR/FeT vs. FePy/FeHR for the samples from the Daotuo drill core and Yanjia 

section analyzed in this study. The divisions between oxic and anoxic conditions (FeHR/FeT = 

0.22 0.38) and between ferruginous and euxinic conditions (FePy/FeHR = 0.7 0.8) are derived 

from Poulton and Canfield (2011). (B) Cross-plots of MoEF vs. UEF for the samples from the 

Daotuo drill core and Yanjia section in this study as a proxy for local marine sedimentary 

environment. The shaded zones for different sedimentary environment of the modern ocean 

are modified after Algeo and Tribovillard (2009) and Tribovillard et al. (2012). Particulate 

shuttle zone: the transport of Mo within the water column by Fe-Mn-oxyhydroxide 

particulates (e.g., as in the Cariaco Basin); Open marine zone: benthic redox variations in 

modern open-ocean systems; Strongly restricted basin: sedimentary basin weakly connected 

to the open-ocean (e.g, as in the Black Sea). 

Figure 65. Cross-plots of (A) authigenic 238U vs. FeHR/FeT, (B) authigenic 238U vs. 

FePy/FeHR for the samples in the Daotuo drill core and Yanjia section. 

Figure 76. (A) (B) Secular changes in U isotopic compositions of carbonates (data from Wei 

et al., 2018; Zhang et al., 2018; Tostevin et al., 2019; Dahl et al., 2019) and siliciclastic rocks 

from the late Ediacaran to early Cambrian 238USW values derived from 

238Uauth records in this study. The solid curves are LOWESS smoothing fits for U isotope 



data. Based on TOC, MoEF UEF and Fe speciation analyses, U isotopic differences between 

reducing sediment and seawater are estimated to be +0. organic-rich anoxic or sulfidic 

samples with TOC > 5 wt% and MoEF and UEF > 20 (purple circles); anoxic 

samples with TOC < 5wt%, MoEF and UEF >10 (orange circles); 

suboxic samples with MoEF and UEF < 10 (gray circles). The shaded vertical bars are 

estimated average 238U ranges of modern non-skeletal carbonates, suboxic sediments and 

euxinic sediments (Andersen et al., 2017). N1 N3 and P1 P3 represent negative and positive 

U isotopic excursions from the late Ediacaran though the early Cambrian. 
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 High-resolution U isotope data from early Cambrian siliciclastic sections 
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 Frequent marine redox fluctuations likely trigger the early animal innovation 
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Abstract 

The history of oceanic oxygenation from the late Neoproterozoic to the early 

Cambrian is currently debated, making it difficult to gauge whether, and to what 

extent environmental triggers played a role shaping the trajectory of metazoan 

diversification. Uranium isotope 238U) records from carbonates have recently been 

used to argue for significant swings in the global marine redox states from the late 

Neoproterozoic to the early Cambrian. However, geochemical signatures in 

carbonates the U isotope archive most commonly employed to argue for redox 

shifts are susceptible to diagenetic alteration and have variable offsets from 

seawater values. Therefore, there is an impetus to reconstruct seawater U isotopic 

evolution using another sedimentary archive, in order to crosscheck that these 

excursions can indeed be linked to global shifts in marine redox landscape. Here we 

*Manuscript
Click here to view linked References



report new U isotope data from two fine-grained siliciclastic upper Ediacaran to lower 

Cambrian (ca. 551 Ma 515 Ma) successions in South China. We find 238U 

swings between -0.  for calculated values of authigenic U in the 

siliciclastic rocks, consistent with correlative records from the carbonates. The 

replication of these patterns in both carbonate and siliciclastic units provides 

confirmatory evidence that the early Cambrian seawater was characterized by highly 

variable U isotope compositions. These new 238U data also provide higher-resolution 

records of global oceanic redox during Cambrian Age 3, coeval with a critical interval 

of the Cambrian explosion. These 238U data bolster the case that the 

Ediacaran-Cambrian transition experienced massive swings in marine redox state, 

providing a dynamic environmental backdrop for and potentially even a key driver of 

the emergence and radiation of metazoans. 

Keywords 

uranium isotopes; siliciclastic strata; early Cambrian; marine redox dynamics; animal 

innovations 

1. Introduction 

There has been longstanding debate over whether the Ediacaran Cambrian 

emergence and diversification of metazoans coincided with progressive oxidation of 

the ocean-atmosphere system and, if so, to what extent this environmental transition 

may have directly influenced the trajectory or pace of metazoan evolution (Och and 

Shields-Zhou, 2012; Lyons et al., 2014; Sperling et al., 2013, 2015). In contrast to the 



standard view of a largely unidirectional redox transition, several recent studies have 

suggested that, during the interval spanning the Ediacaran to the early Cambrian, 

pulses of widespread marine anoxia were common and recurrent (Wei et al., 2018; 

Wood et al., 2018; Zhang et al., 2018, 2019; Tostevin et al., 2019; Dahl et al., 2019). 

Building upon this emerging record of environmental variability, it has been 

suggested that temporally and spatially dynamic environmental conditions, rather than 

stymying the emergence of complex life, actually spurred the development and 

dissemination of biotic novelties, and thus the rapid diversification, turnover and 

ecosystem restructuring characteristic of this interval (Wei et al., 2018; Wood and 

Erwin, 2018; Wood et al., 2019). Uranium (U) isotopes have played a key role in 

reconstructing ancient marine redox landscapes, based on the framework that 

seawater U isotopic compositions are controlled by the balance between different 

marine U sinks with distinct isotopic fractionations relative to seawater (Andersen et 

al., 2017). For instance, extensive euxinia (anoxic and sulfidic conditions) in 

open-ocean settings will drive seawater towards very light dissolved U isotopic 

compositions, whereas more limited euxinic and extensive oxygenated waters result 

in isotopically heavier seawater (Andersen et al., 2017). Marine carbonates record 

seawater U isotope values providing a seemingly ideal and simple means of tracking 

global oceanic redox evolution. To date marine carbonates have been the chief 

geologic archive for reconstructing global seawater U isotope compositions from the 

Ediacaran to the Cambrian Age 2 (ca. 635 520 Ma) (Wei et al., 2018; Zhang et al., 

2018, 2019; Tostevin et al., 2019; Dahl et al., 2019). However, carbonate-hosted U 



isotopes can be extensively modified during diagenesis. Early marine diagenesis 

typically results in more positive carbonate U isotope values, but late-stage alteration 

of carbonates can result in more negative U isotope values (e.g., Hood et al., 2016, 

2018; Chen et al., 2018; Tissot et al., 2018), which can hamper the use of carbonate as 

a seawater archive. Therefore, there is an obvious motivation to explore other U 

isotope archives to track global marine redox evolution. 

Modern reducing sediments 238U values, relative to 

seawater (Weyer et al., 2008; Andersen et al., 2014; Holmden et al., 2015; Abshire et 

al., 2020; Brüske et al., 2020) because 238U is preferentially reduced and accumulates 

in reducing sediments via microbially mediated reduction of U (VI) (e.g. Basu et al., 

2014; Stirling et al., 2015; Stylo et al., 2015). Observed U isotopic differences 

between reducing sediments and seawater are sensitive to variations in local 

depositional environment, including local productivity and sedimentation rates, basin 

connectivity and bottom-water redox state (Bura-  et al., 2018; Andersen et al., 

2018; Brüske et al., 2020; Lau et al., 2020), which adds complexity to precise 

reconstruction of seawater 238U values. However, given that exposure to reducing 

238U values in the sediments relative to seawater, 

reducing sediments can provide a robust maximum estimate for seawater values. 

Further, integration of 238U analysis of reducing sediments with detailed 

characterization of the hosting facies can be used to track secular changes in seawater 

238U values. In this light, shale- and mudstone-hosted U isotope records can be used 

to independently test whether the widespread anoxia reconstructed for the Ediacaran 



and Cambrian, on the basis of carbonate archives, accurately reflects ancient marine 

conditions. 

In this study, we report new high-resolution 238U data from two marine 

siliciclastic successions (Daotuo drill core and Yanjia section) (Fig. 1) in the Yangtze 

block, South China, which span the terminal Ediacaran to Cambrian Stage 3 (ca. 

551 515 Ma). We focus on U-enriched silicified shale, shale and mudstone, given that 

the presence of authigenic U enrichments in these lithologies can provide an archive 

of seawater 238U values, independent of that of shallow carbonates. We measured 

238U values from these lithologies, and coupled these to trace element and iron 

speciation analyses, in order 238U 

evolution and compare these to 238U records. 

2. Geological background 

The Daotuo drill core, collected from Songtao County of northeastern Guizhou 

Province, South China, is interpreted to record a weakly restricted mid-depth slope 

environment during the early Cambrian (Wei et al., 2017). The studied Daotuo drill 

core samples were collected from the upper Liuchapo Formation to the Jiumenchong 

Formation, which comprise black chert, black shale, mudstone and calcareous 

mudstone (Fig. 1). The upper Liuchapo Formation spans the Ediacaran-Cambrian 

boundary (ca. 542 Ma), based on U-Pb zircon geochronology (Chen et al., 2015a). 

The lower Jiumenchong Formation contains a polymetallic sulfide-rich layer whose 

age is 521 ± 5 Ma based on Re-Os daing (Xu et al., 2011) or younger than 522.7 ± 4.9 

Ma based on U-Pb zircon dating (Wang et al., 2012) of correlated strata in other 



sections from South China. The Yanjia section is exposed in 

Zhejiang Province, South China and interpreted to have been deposited in a deep 

basin, relatively well connected to the open ocean (Wang et al., 2018). The Yanjia 

section comprises the Piyuancun Formation and the overlying Hetang Formation, both 

of which are composed of organic-rich chert, siliceous shale and black shale. The 

Piyuancun and Hetang formations in the Yanjia section can be correlated to the 

Liuchapo and Jiumenchong formations in the Daotuo drill core section, respectively 

(cf. Wang et al., 2018). 

Stratigraphic correlations on the Yangtze block are shown in Fig. 1, including 

two sections from the inner shelfal and intrashelf basinal settings (Wei et al., 2018). 

The studied strata of the Daotuo drill core and Yanjia section are highly condensed in 

the Cambrian Fortunian and Stage 2 (ca. 541 521 Ma), compared with more 

expanded carbonate successions in the Xiaotan and Yanjiahe sections (cf. Wei et al., 

2018; Dahl et al., 2019). Most samples in this study (middle and upper Jiumenchong 

and Hetang formations) were deposited during Cambrian Age 3 (ca. 520 515 Ma), an 

interval during which deposition of chert, black shale and siliceous-calcareous 

mudstones was widespread across the Yangtze block. 

3. Materials and methods 

The studied samples with relatively low Ca concentrations (< 3%) were carefully 

selected in order to avoid the effects of any carbonate components and obvious 

late-stage veins, and then analyzed for U isotopic composition as well as trace 

element concentration and total organic carbon. HF, HNO3 and HCl acids were used 



to fully digest the samples. Trace element concentrations of the studied samples were 

measured on a Thermo Finnigan Element XR ICP-MS at Yale University and Nanjing 

University with errors lower than 5%. Uranium isotopes were measured on a Thermo 

Finnigan Neptune Plus MC-ICP-MS at Yale University following column 

chromatography using UTEVA resin, using the method described in Wei et al. (2018). 

Long-

NOD-A-1 geostandard (-  0.05, n = 5) and CRM 112a standard 

n = 42). 

From among the studied samples for U isotope analyses, representative ones 

were selected for iron speciation analyses in order to further constrain the local redox 

conditions. Iron speciation analyses were completed at Nanjing University and 

Nanjing Institute of Geology and Palaeontology, Chinese Academy of Sciences, 

following the sequential extraction procedure of Poulton and Canfield (2005) in order 

to analyze highly reactive Fe in carbonate, oxides and magnetite, and following the 

Cr-reduction method of Canfield et al. (1986) for extraction of pyrite-associated Fe. 

Iron concentrations of extracted highly reactive Fe were measured on an atomic 

absorption spectroscope (AAS) and ICP-OES with errors lower than 5%. The yield of 

pyrite- Fe was better than 90% based on repeated analyses of the Chinese GBW07267 

pyrite standard. Details of all analytical methods are shown in the Supplementary 

Materials. 

4. Results and discussion 

4.1 Uranium isotopes in uppermost Ediacaran through lower Cambrian 



fine-grained siliciclastic strata: local depositional or global marine redox 

control? 

Results of U isotope, Fe speciation, total organic carbon and trace element 

concentration analyses are shown in Table S1 and Fig. 2. High bulk U/Th ratios 

(distinctly higher than those of terrestrial detrital materials, U/Thdetrital = 0.282 ± 0.102, 

2SD) (Cole et al., 2017) and a lack of any clear covariation between bulk U 

concentrations ([U]bulk), bulk 238U values ( 238Ubulk) and Al or Th concentrations (Fig. 

3) suggest only negligible detrital contribution to our reported U isotope signatures. 

238U signatures to record the behavior of 

predominantly authigenic (seawater-sourced) U deposited in the sediments under 

potentially anoxic conditions. In order to further disentangle marine authigenic signals 

from any potential detrital signals in the bulk sample U isotope data, we calculated U 

concentrations and 238U values of marine authigenic uranium ([U]auth and 238Uauth), 

by using the equations published in Andersen et al. (2017) with a simple Monte Carlo 

simulation 238Uauth values (see 

Supplementary materials for detail). The Daotuo drill core and Yanjia section exhibit 

consistent trends and a wide range of 238Uauth values from -0.63  to +0.39

from -0.42  to +0.32  (Fig. 2). Although [U]auth 238Uauth of the 

studied samples vary greatly in the Daotuo and Yanjia sections, no covariation 

between [U]auth and Fe contents but clear covariation between [U]auth and TOC (total 

organic carbon) contents (Fig. 4) likely suggests that U precipitation was dominated 

by bacterially mediated U reduction, rather than abiotic Fe (II)-mediated U reduction 



(e.g., Stylo et al., 2015), which highlights the importance of organic substrates on U 

precipitation in the anoxic sediments (e.g., Tribovillard et al., 2006).  

Samples from the lowest Jiumenchong and Hetang formations (upper Cambrian 

Stage 2), show strongly 238Uauth values ), equivalent 

to or slightly higher than the heaviest reported U isotope compositions of modern 

euxinic sediments (e.g., as high as that of Black Sea unit II) (Andersen et al., 2014). 

Although the units with high 238Uauth values in the lowest Jiumenchong and Hetang 

formations display relatively high [U]auth and TOC contents (Figs. 2 and 4), given the 

lack of significant covariation between 238Uauth and TOC (Fig. 4D), such high 238Uauth 

values (up to ) are unlikely to have been driven primarily by high organic 

carbon burial fluxes because increased organic carbon delivery within the sediments 

generally results in rapid U reduction and more quantitative precipitation of U in the 

sediments, reducing the U isotopic fractionation between sediments and seawater 

(Andersen et al., 2018; Brüske et al., 2020; Lau et al., 2020). Instead, we suggest that 

this stratigraphic interval records greater water column or water-sediment interface 

reduction of U (rather than reduction within the sediment pile) under highly productive 

conditions, which is consistent with the U isotopic behavior expected in very highly 

productive regions (cf. Rolison et al., 2017; Abshire et al., 2020; Cheng et al., 2020). 

Uranium reduction in an unrestricted water column or at the water sediment interface 

may result in a higher effective U isotopic fractionation between the sediment and 

coeval seawater (Rolison et al., 2017; Andersen et al., 2017; Brüske et al., 2020; 

Abshire et al., 2020). Nonetheless, even if the U isotope offset between sediment and 



238U was large, comparable to the largest offsets observed in 

modern anoxic depositional systems (Rolison et al., 2017; Brüske et al., 2020), high 

238Uauth values recorded here likely reflect near-modern seawater 

238U values. In this view, h 238U values in this interval indicate a 

relatively limited extent of anoxic seawater during late Cambrian Age 2, which is 

consistent with previously published Mo isotope records (Chen et al., 2015b). 

In contrast, the Liuchapo and upper Piyuancun formations and the middle to 

upper Jiumenchong and Hetang formations are marked by 238Uauth values (< 

- that are notably lower than that of modern seawater (Fig. 2). In fact, these are 

the most negative shale U isotopic values (as low as -0.63 ) that have ever been 

reported (cf. Wang et al., 2018). These values likely reflect nearly complete U 

reduction (which can occur in an isolated basin or in porewaters beneath suboxic 

bottom water). With near quantitative capture of a U reservoir, 238Uauth values of 

sediments can approach that of seawater (Noordmann et al., 2015; Andersen et al., 

2016, 2018; Bura- . However, even if there is no appreciable U 

isotopic difference between sediments and seawater, the remarkably 238Uauth 

values in the Liuchapo and upper Piyuancun formations and middle to upper 

Jiumenchong and Hetang formations imply remarkably 238U values (as 

low as - across the Ediacaran-Cambrian boundary and during Cambrian Age 3, 

suggesting widespread marine anoxia during these intervals. 

To further determine local depositional conditions and thus constrain U isotopic 

differences between open seawater and the local sediments, we conducted iron 



speciation analyses (FeHR/FeT and FePy/FeHR) and Mo, U enrichment factors (MoEF 

and UEF) (see Supplementary materials for calculations). Using the standard iron 

speciation framework (Poulton and Canfield, 2011), essentially all the samples 

included in this study were deposited under anoxic but not persistently and strongly 

sulfidic bottom water (Fig. 5A). We do not observe any systematic relationships 

between 238Uauth and FeHR/FeT, FePy/FeHR (Fig. 6), which suggests that redox 

conditions of local bottom water may have not been the dominant factor controlling 

238Uauth values of the studied samples. Covariation of MoEF and UEF is used to further 

evaluate the depositional environment of the samples in this study and to compare 

these with modern low-oxygen marine sedimentary systems (cf. Algeo and 

Tribovillard, 2009; Tribovillard et al., 2012). As shown in Fig. 5B, most of the 

samples in this study fall within the iron speciation field characteristic of deposition 

under anoxic conditions and show a MoEF UEF trend analogous to that of modern 

open-ocean settings (cf. Algeo and Tribovillard, 2009; Tribovillard et al., 2012), 

which with the standard interpretation would suggest that the Yangtze continental 

margin was likely well-connected to the open ocean during the early Cambrian. A few 

samples with relatively low MoEF and UEF 238Uauth 

values, potentially representing a locally suboxic depositional environment with less 

U isotopic fractionation between the sediments and seawater. Collectively, these 

observations Fe speciation and MoEF UEF covariation imply that, during the early 

Cambrian, local bottom waters in these regions were well connected to the open ocean 

and experienced relatively prolonged intervals of strong anoxia. Taken together, we 



suggest that swings in 238Uauth values from the Daotuo drill core and Yanjia section 

were not solely controlled by local variability in basin restriction, organic carbon 

delivery or bottom water redox conditions. Highly consistent 238Uauth variations in 

these two sections, in part, reflect frequent fluctuations in seawater 238U values. Most 

importantly, the anomalously 238Uauth values of upper Cambrian Stage 2 and 

238Uauth values of Stage 3 strata provide evidence, independent of carbonate 

238U records, for substantial oscillations in oceanic redox states throughout the 

Cambrian explosion. 

4.2 238U from the late Ediacaran to early Cambrian 

via siliciclastic archives 

Based on the above Fe speciation and MoEF UEF analyses, we reconstruct 

temporal changes in seawater U isotopic 238USW, Fig. 7C) from the 

reducing sedimentary records of this study by using +0.8  , 

respectively, as the U isotopic offsets for 1) authigenic U reduction within the 

high-productive water column or water-sediment interface with efficient 

replenishment of dissolved U (Rolison et al., 2017; Brüske et al., 2020); 2) within 

sulfidic sediments of an unrestricted basin (Holmden et al., 2015; Andersen et al., 

2018) and 3) within suboxic sediments (Weyer et al., 2008; Andersen et al., 2016). 

Although U isotopic behavior in reducing sediments may be more complex, 

simplified estimation of U isotopic offsets under different local conditions can provide 

insights into secular changes 238USW values. Despite the relatively 



low-resolution nature of upper Ediacaran and Cambrian Fortunian 238Uauth data (e.g., 

three points from potentially suboxic samples for Fortunian excursion P1 in Fig. 7C) 

and the errors inherent to estimating an effective U isotopic fractionation, secular 

238USW reconstructed from siliciclastic rocks are strikingly consistent with 

correlative 238U profiles (Fig. 7A). This supports the interpretation that 

238Uauth mainly reflect global oceanic redox changes. Further, compared to 

previous studies of carbonate-hosted U isotopic signatures (Fig. 7A), the 238USW 

curve documented in siliciclastic strata provides a higher-resolution record of global 

oceanic redox states through Cambrian Age 3, and suggests that this critical interval 

of the Cambrian explosion is marked by large swings in marine redox states. 

4.3 Implications for co-evolution of marine environments and early metazoans 

We provide estimates of late Ediacaran to early Cambrian (ca. 551 Ma 515 Ma) 

238U records from fine-grained siliciclastic rocks that closely match 

previous estimates from carbonates (Fig. 7). This provides compelling evidence that 

the early Cambrian was indeed marked by frequent 238U 

(negative excursion N1 N3 and positive excursion P1 P3 in Fig. 7). These swings 

demonstrate that there were largescale fluctuations in the marine redox landscape 

(with the U mass balance being tied foremost to the areal extent of anoxic conditions). 

The frequently fluctuating redox states of the early Cambrian ocean are likely linked 

to effects of dynamic nutrient supply, shallow marine productivity and ocean 

ventilation in the ocean with relatively lower baseline oxygenation level than the 

modern ocean (cf. Wang et al., 2018; He et al., 2019; Dahl et al., 2019; Wei et al., 



2020). Further studies are needed to better constrain the triggers for the dramatic 

changes in marine redox states during this period. The synchronicity of this dynamic 

redox variation with animal evolutionary clades, increased physiological and 

ecological complexity and expansion into a wider range of benthic habitats and water 

depths may, moreover, not be coincidental. In fact, this concurrence provides further 

empirical evidence in favor of recent proposals that habitat fragmentation and 

ecological restructuring mediated by redox instability may have facilitated higher 

rates of generation of evolutionary novelties and thus enhanced biological innovation 

and turnover thus serving as a spur, rather than an impediment, to diversification 

among animal lineages over this interval (Reinhard et al., 2016; Wood and Erwin, 

2018). In this light, 

Ediacaran Cambrian protracted emergence and subsequent rapid radiations of 

complex animal life (and Ediacaran Ordovician emergence of modern-style 

ecological strategies and ecosystem structure) against a backdrop of pronounced 

environmental instability (Droser et al., 2017; Tarhan et a., 2018; Servais and Harper, 

2018; Wood et al., 2019), broadly resembles patterns of emergence and turnover 

characteristic of Sepkoskian Phanerozoic Evolutionary Faunas (e.g., Tarhan et al., 

2018). 

5. Conclusions 

New high-resolution uranium isotope data from two upper Ediacaran through 

Cambrian Stage 3 siliciclastic sections in South China are reported in this study. Both 

of the studied sections show mutually consistent, large swings in authigenic 238U 



values. Given that local depositional conditions did not dominate authigenic 238U 

values of the studied samples, we interpret much of this variability to be driven by 

secular changes in seawater 238U values. Notably high authigenic 238U values in 

upper Cambrian Stage 2 and lowest Stage 3 suggest that host sediments were 

deposited in and ocean with limited anoxic seafloor area, whereas anomalously 

negative authigenic 238U values in the terminal Ediacaran and Cambrian Stage 3 are 

indicative of extensive deep-marine anoxia. Paired 238U records from marine 

carbonates (Wei et al., 2018; Zhang et al., 2018; Tostevin et al., 2019; Dahl et al., 

2019) and siliciclastic strata strengthens the case that anomalously high 238U 

variability (e.g., Wei et al., 2018; Dahl et al., 2019) is tied to episodic swings in global 

marine redox states from the late Ediacaran through the early Cambrian (ca. 551 

Ma 510 Ma), rather than diagenetic overprinting. This bolsters the hypothesis that the 

diversification of early animals during the Cambrian explosion occurred against a 

backdrop of (and may even have been mediated by) highly spatiotemporally variable 

marine redox conditions. 
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Figure captions 

Figure 1. Stratigraphic columns of the Daotuo drill core and Yanjia sections, and their 

correlations to inner shelf Xiaotan section and Gaojiaxi Yanjiahe section in South China (cf. 

Wei et al., 2018). The shaded areas represent the correlative stratigraphic units of these 

sections for the Ediacaran (blue), Cambrian Fortunian and Stage 2 (green) and Stage 3 



(yellow). The red line represents a Ni-Mo polymetallic layer with an age of 521± 5 Ma 

(Re-Os dating from Xu et al., 2011) or < 522.7 ± 4.9 Ma (U-Pb zircon dating from Wang et al., 

2012). 

Figure 2. Uranium isotope ( 238Uauth) values, iron speciation, Uauth concentrations and total 

organic carbon (TOC) contents of the upper Ediacaran to lower Cambrian Daotuo drill core 

and Yanjia section. Uranium isotope values 238Uauth for authigenic uranium 

in bulk samples. The 238Uauth calculation are shown in Supplementary materials. The error 

238Uauth for each sample, using a 

Monte Carlo approach. The shaded vertical bars are estimated average 238U ranges of 

suboxic and euxinic sediments (Andersen et al., 2017). 

Figure 3. Cross-plots of (A) bulk U concentration vs. Al concentration, (B) bulk 238U vs. Al 

concentration, (C) bulk U concentration vs. Th concentration, (D) bulk 238U vs. Th 

concentration for samples from the Daotuo drill core and Yanjia section. R2 represents the 

coefficient of determination of the covariation. 

Figure 4. Cross-plots of (A) authigenic U concentration vs. Fe concentration, (B) authigenic 

238U vs. Fe concentration, (C) authigenic U concentration vs. TOC concentration, (D) 

238U vs. TOC concentration for samples from the Daotuo drill core and Yanjia 

section. R2 represents the coefficient of determination of the covariation. 

Figure 5. (A) FeHR/FeT vs. FePy/FeHR for the samples from the Daotuo drill core and Yanjia 

section analyzed in this study. The divisions between oxic and anoxic conditions (FeHR/FeT = 

0.22 0.38) and between ferruginous and euxinic conditions (FePy/FeHR = 0.7 0.8) are derived 

from Poulton and Canfield (2011). (B) Cross-plots of MoEF vs. UEF for the samples from the 



Daotuo drill core and Yanjia section in this study as a proxy for local marine sedimentary 

environment. The shaded zones for different sedimentary environment of the modern ocean 

are modified after Algeo and Tribovillard (2009) and Tribovillard et al. (2012). Particulate 

shuttle zone: the transport of Mo within the water column by Fe-Mn-oxyhydroxide 

particulates (e.g., as in the Cariaco Basin); Open marine zone: benthic redox variations in 

modern open-ocean systems; Strongly restricted basin: sedimentary basin weakly connected 

to the open-ocean (e.g, as in the Black Sea). 

Figure 6. Cross-plots of (A) authigenic 238U vs. FeHR/FeT, (B) authigenic 238U vs. FePy/FeHR 

for the samples in the Daotuo drill core and Yanjia section. 

Figure 7. (A) (B) Secular changes in U isotopic compositions of carbonates (data from Wei 

et al., 2018; Zhang et al., 2018; Tostevin et al., 2019; Dahl et al., 2019) and siliciclastic rocks 

from the late Ediacaran to early Cambrian 238USW values derived from 

238Uauth records in this study. The solid curves are LOWESS smoothing fits for U isotope 

data. Based on TOC, MoEF UEF and Fe speciation analyses, U isotopic differences between 

reducing sediment and seawater are estimated to be +0. organic-rich anoxic or sulfidic 

samples with TOC > 5 wt% and MoEF and UEF > 20 (purple circles); anoxic 

samples with TOC < 5wt%, MoEF and UEF >10 (orange circles); 

suboxic samples with MoEF and UEF < 10 (gray circles). The shaded vertical bars are 

estimated average 238U ranges of modern non-skeletal carbonates, suboxic sediments and 

euxinic sediments (Andersen et al., 2017). N1 N3 and P1 P3 represent negative and positive 

U isotopic excursions from the late Ediacaran though the early Cambrian. 
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