
This is a repository copy of Management of container-based genetic algorithm workloads 
over cloud infrastructure.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/161610/

Version: Accepted Version

Proceedings Paper:
Alrefai, Thamer and Soares Indrusiak, Leandro orcid.org/0000-0002-9938-2920 (2020) 
Management of container-based genetic algorithm workloads over cloud infrastructure. In: 
CF '20: Proceedings of the 17th ACM International Conference on Computing Frontiers. 
ACM , pp. 229-232. 

https://doi.org/10.1145/3387902.3394031

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse 
Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless 
indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by 
national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of 
the full text version. This is indicated by the licence information on the White Rose Research Online record 
for the item. 

Takedown 
If you consider content in White Rose Research Online to be in breach of UK law, please notify us by 
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request. 



Management of Container-based Genetic Algorithm Workloads
over Cloud Infrastructure

Thamer Alrefai and Leandro Soares Indrusiak
Department of Computer Science

University of York

United Kingdom

ta835@york.ac.uk,leandro.indrusiak@york.ac.uk

ABSTRACT

This paper proposes two approaches to managing the workload

of multiple instances of genetic algorithms (GAs) running as con-

tainers over a cloud environment. The aim of both approaches is

to obtain, for as many instances as possible, a GA output which

achieves a user-defined fitness level by a user-defined deadline. To

reach such a goal, the proposed approaches allocate the GA contain-

ers to cloud nodes and carefully control the execution of every GA

instance by forcing them to run in stages. The paper proposes two

approaches, fitness tracking (FT) and fitness prediction (FP), with

both approaches compared against state-of-the-art container-based

orchestration approaches.

CCS CONCEPTS

· Computer systems organization → Cloud computing; Re-

sourcemanagement;Container-based technology; ·Comput-

ing methodologies → Genetic algorithms.

KEYWORDS

Cloud computing, Container-based technology, Genetic algorithm,

Resource management, Workload

ACM Reference Format:

ThamerAlrefai and Leandro Soares Indrusiak. 2020.Management of Container-

based Genetic AlgorithmWorkloads over Cloud Infrastructure. In 17th ACM

International Conference on Computing Frontiers (CF ’20), May 11–13, 2020,

Catania, Italy. ACM, 4 pages.

1 INTRODUCTION

Application domains such as healthcare and engineering often need

a computational workload to be executed within a specified dead-

line [1][8]. The outcome of the application typically has a financial

value to the organisation, or is a prerequisite of another activity that

does. Such applications are typically executed on high-performance

computing infrastructures or the cloud, which are costly resources

in terms of computer infrastructure, staff and energy consump-

tion. Therefore, effective resource management is necessary. Such

management has to make decisions on the allocation of compu-

tational resources to meet user-driven Quality of Service (QoS)

requirements [3].

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

CF ’20, May 11–13, 2020, Catania, Italy

© 2020 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-7956-4/20/05.
https://doi.org/10.1145/3387902.3394031

One specific type of load that often appears as part of engineering

applications is optimisation. In many cases, optimisation software

uses meta-heuristics such as a genetic algorithm (GA) [12]. GAs

are known for providing optimisation solutions in a variety of

domains, such as smart factories [5] and embedded multiprocessors

[11]. The number of generations, the initial population and a set of

application specific parameters are example parameters that can

be an input to a GA. We often need to achieve a solution that has a

desired fitness for a specific problem, with this fitness fulfilled by a

given deadline [6]. A prediction feature can be used when executing

the GA workload to determine the fitness by a given deadline.

In a situation where a container orchestrator (Docker Swarm

or Kubernetes) has been used to deploy and manage the execution

of the application, the resource scheduling process is part of the

orchestrator and makes the decision on where to allocate the task.

Thus, container-based orchestration systems allow applications to

be executed in shared resources with fast and flexible deployment.

One platform that can be used to deploy workloads is Docker,

which is an abstraction to help organise the workload, hide the

details and deploy the application in an isolated environment [2].

Docker Swarm and Kubernetes are considered to be state-of-the-art

container-based orchestration systems [9].

The above observations suggest that an important feature for

particular kinds of GA workload is improving resource manage-

ment. This allows the task to meet the deadline and achieve the

fitness level required by the user. Therefore, this paper compares

different resource managers, examining how well they improved

the number of tasks executed on time, and whether they achieved

the fitness level. Several metrics are considered in this compari-

son: the number of tasks executed on time; and, the number of

tasks that achieve the required fitness. The paper proposes two

approaches that keep track of and predict the fitness achieved in

order to improve the number of tasks that meet the criteria.

2 RELATED WORK

As cloud QoS systems and resource management of GAs are impor-

tant in our work, the main purpose of this paper is to control the

execution of the GA application in a way that the results meet the

user-defined requirements (deadline and fitness required). Thus,

this section focuses on the literature related to cloud QoS and re-

source management of GAs.

QoS requirements vary and resources are allocated to fullfil them.

Singh et al. highlight several dynamic resource allocations [11].

One dynamic resource allocation is a guaranteed admission control

approach, which considers two factors when allowing a task to be

scheduled, task execution time and task deadline. In addition, this



CF ’20, May 11–13, 2020, Catania, Italy Thamer Alrefai and Leandro Soares Indrusiak

approach ensures that all applications admitted into a system will

meet their respective deadlines without interrupting other running

applications. In order for an application to be schedulable using

admission control, the worst-case execution time (WCET) of the

application and its tasks needs to be less than the deadline. If so,

then the application can be admitted for execution. Otherwise, the

application is not schedulable and the allocation will not proceed

[11].

Kim et al. [7] uses prediction to achieve specific QoS. They take a

proactive approach using Local Linear Regression (LLR) to improve

cost and performance. The system uses several strategies. These

are an accurate and dynamic task execution time predictor, a re-

source evaluation scheme that balances cost and performance, and

an availability-aware task scheduling algorithm. The prediction

module has additional sub-components.

There are numerous studies on managing GA execution in the

cloud for example [10, 13]. Shuai et al. [13] propose an approach

that allows multi-objective GA to be executed on multiple sub-

populations (islands). Their goal is to increase responsiveness and

profit when a new manufacturing order arrives or there is a change

in the factory state. Therefore, the research considers real-world

smart factories. Salza and Ferruci [10] propose an approach to dis-

tributing GAs using a master-slave model, where the master places

the individuals in a request queue which then distributes them in

a round-robin fashion to the slaves nodes. Once the slaves have

finished processing the individuals they place them in a response

queue and returned to the master node.

The research presented in this paper considers the specific nature

of the workload posed by GAs when used as optimisation engines.

GAs are population-based metaheuristics that emulate the process

of natural selection in order to gradually improve the fitness of

potential solutions to a specific problem [4].

GAs can be configured to guarantee that the maximum fitness

within a population in a given generation will never be worse than

the maximum fitness in the previous generations (e.g. by always

passing the best individuals to the next generation unaltered). Such

GA configuration is called elitism, and we assume in this paper that

we are always dealing with elite GAs.

However, in order to provide compelling experimental work

and to validate our approach, we identified a specific optimisation

problem as a case study. It considers the problem of allocating

real-time tasks to a multiprocessor system. In an application with a

given number of real-time tasks and a multiprocessor system with a

given number of cores, the GA will try to optimise the allocation of

tasks to cores so that they can meet their real-time constraints, even

in the worst case scenario (using the fitness function developed

in [6]).

3 SYSTEM ARCHITECTURE

In order to manage different GAs, we created an approach that

containerises the GA in such a way that the resource manager

could instantiate containers for the GA and its parameters. This is

illustrated in Figure 1, which shows the inputs and outputs of the

GA which can be executed in a container.

The orchestrator, which is used with the proposed approaches,

consists of several components which manage the deployment of

Genetic Algorithm

Final population

Fitness of each
individual of population

Set of
application

specific
parameters

Number of
generations

Initial population

Visual Paradigm Online Diagrams Express Edition

Visual Paradigm Online Diagrams Express Edition

Figure 1: Inputs and outputs of the GA.

the GA workload. Firstly, we have an infrastructure with several

nodesN={1,2,3,. . . ,n} that are able to execute Docker containers, such

as the GA containers discussed previously. Secondly, the client can

submit numerous GA tasks, T={t1,t2,t3,. . . ,tc}, each providing a set

of application-specific parameters, fitness required and deadline.

Thirdly, as illustrated in Figure 2, once the Resource Allocation

component receives the task, it requests information about the

cluster from the Node Observer component in order to allocate the

task to a suitable node. We assume that each node is able to run

only one task at a time.

The Resource Allocation sets the number of generations and ini-

tial population for the GA. The Node Observer will receive updated

information about the cluster from the Docker Manager, which

helps in making the right decision when allocating the task.

The next component (Docker Manager) handles the execution

of the task and collects the results, as well as allocating resources

to the nodes.

Client

Resource
Allocation

Docker
Manager

Node
Observer

Node-1 Node-2 Node-n

Request task

Allocate task to node Request / get node
 information

Execute task

Collect information

Orchestrator

Update information

Visual Paradigm Online Diagrams Express Edition

Visual Paradigm Online Diagrams Express Edition

Figure 2: Proposed orchestrator.

4 COMPARING DIFFERENT ALLOCATION
TECHNIQUES

The Docker Manager and Resource Allocation have information

coming from the client and the cloud platform. Based on this in-

formation, Resource Allocation can make a decision about which

node a task is submitted to for execution. Many allocation decisions

are possible. In this paper, we propose two approaches which are

compared against the baseline Docker Swarm spread strategy and

Kubernetes. In addition to the baseline, we evaluate the following

approaches, fitness tracking (FT) and fitness prediction (FP).

4.1 Fitness Tracking (FT):

The goal of this approach is to keep track of the achieved fitness and

compare it with the user-defined fitness. In addition, the approach



Management of Container-based Genetic Algorithm Workloads over Cloud Infrastructure CF ’20, May 11–13, 2020, Catania, Italy

aims to improve the number of tasks which are a) executed on time,

and b) achieve the fitness required by the user. As the deadline

of the task and the achieved fitness are important, the task will

continue executing and tracking until one of them is reached.

Furthermore, the task goes through several stages. It has a fixed

number of generations at each stage, to keep track of the time taken

to execute the task and the fitness achieved, as illustrated in Figure

3. Once the task is received, either there is an available node to

execute the task or it is placed in a queue. After the task is allocated

to a node, the task starts at the initial stage and stores the time it

took and the fitness achieved, and sets the maximum number of

stages that the task can go through. At each of the stages, the task

will continue to execute for an additional number of generations

using the best results from the previous execution because every

time we execute the GA application, it gives similar or better results

than the previous time. This process continues until either the task

reaches the deadline, the fitness achieved is higher than required

or it reaches the maximum number of stages.

Ready State Node Selection Initial Stage

Process S stages

Received task/
find a node

Node found / 
Start executing the task

[Time >= deadline] / drop task and write result

[Fitness achieved >= fitness required] / done and write result

[Time < deadline &
fitness achieved < 
fitness required] /
 set max stage

[Time < deadline &
fitness achieved < fitness required &
currentStage(S) < maxStage] /
 S +1

[Time >= deadline] / drop task and write result

[Fitness achieved >= fitness required] / done and write result

[current stage > max stage] / done and write result

[nodes = 0] / Insert into queue

Visual Paradigm Online Diagrams Express Edition

Visual Paradigm Online Diagrams Express Edition

Figure 3: State machine of fitness tracking approach (FT).

4.2 Fitness prediction (FP):

In FP, although we are executing an additional number of genera-

tions at each stage, in a similar way to FT, here we use polynomial

prediction to predict the fitness achieved at a given time. In this pa-

per, we assume a second degree polynomial prediction model. The

prediction is used to find the relationship between the independent

variable (time taken) and the dependant variable (fitness achieved).

In this approach, we use prediction to predict the fitness achieved

by the deadline. In addition to the conditions from the FT approach,

each of the stages will check whether the fitness predicted is better

than or equal to the fitness required, based on the previously ob-

served current task data. Based on Figure 3, we set the predicted

fitness as the fitness required to go to the next stage, and then collect

more points that can be used in the prediction. In processing the

stages an additional condition is also used (the fitness prediction) to

determine whether the task can achieve the fitness by the deadline

or not. After the second stage the prediction value is updated based

on the observation points from the first and second stages.

5 EXPERIMENTAL SETUP

In this experiment, we consider specific kinds of GA workload, as

discussed in Section 2. The GA problem considered is allocating

real-time tasks to a multiprocessor system. The GA tries to optimise

the number of tasks to cores in a multiprocessor system and meet

the desired QoS constraints. Thus, the number of tasks (x dimen-

sion) and cores (y dimension) are passed as application-specific

parameters to the container.

In order to make a fair comparison, we consider Docker Swarm

and Kubernetes as the baselines to compare the FT and FP ap-

proaches. We used the proposed orchestrator in Figure 2 which is

implemented using Java, and tried to replicate the same policy as

the Docker Swarm spread strategy. Thus, we created a cluster of 12

nodes in the baselines, including a master node. The master node

received an incoming task randomly every S seconds (between 10

and 20 seconds). Then, following the spread strategy the master

node allocates the task to a suitable node. Once the task has finished

the execution, the result is written to a log file and the container is

removed.

We generated real-time tasks with a task ID, x dimension, y di-

mension and navs which is the total number of tasks in x and y

dimensions. These parameters will be passed to the genetic algo-

rithm for a specific application domain. The x and y are the number

of processors in a multiprocessor system and navs contain the num-

ber of real-time tasks. In addition, for each task, we generated the

fitness that needed to be met when the task finished executing.

Therefore, the last value of the task is the fixed deadline in seconds.

In our experiment, we used Amazon Web Services EC2 instances

to deploy our orchestrators and run the experiments. The node

used was t2.micro (1 VCPU and 1GB memory) running on the

Ubuntu Linux operating system. There were two EC2 nodes for

each client and resource allocation, so the client could send a task

to the resource allocation.

6 EXPERIMENTAL RESULTS

After running 10 experiments, each executing 150 tasks on the

FT approach, FP approach, Docker Swarm and Kubernetes, we

collected a number of metrics: response time, fitness required and

achieved, and the deadline. The results show that the approaches

we implemented (FT and FP) performed better than Docker swarm

and Kubernetes, as shown in Figure 4.

The reason for such results in Docker Swarm and Kubernetes is

that both execute the task without taking into consideration the

user-defined fitness level by the deadline. Therefore, the container

executed and reported back the result, regardless of the condition.

However, in FT and FP we forced the GA containers to run in

stages to keep track and predict fitness, taking into consideration

task deadlines. Once the results were obtained, we compared them

with the desired results. In addition, FT and FP were able to tune

the number of generations passed to the GA container to ensure

that they did not exceed the deadline of the current task.

More results from the FT and FP approaches were analysed to

check which approach performed better at giving the achieved

result and in terms of improving the number of tasks achieving the

desired result. A number of points can be observed from Figures 5

and 6. One of them is related to the number of stages that the tasks



CF ’20, May 11–13, 2020, Catania, Italy Thamer Alrefai and Leandro Soares Indrusiak

FT FP Docker_Swarm Kubernetes
50

60

70

80

90

100

110

N
u
m

b
er

 o
f 

ta
sk

s

Figure 4: Result of 10 Experiments of different approaches

and different GA workloads in terms of task being on time

and achieving desired fitness.

1 2 3 4 5 6 7 8 9 10 11
Stages

0

10

20

30

40

50

60

70

80

90

N
um

be
r 

of
 t

as
ks

Done
Dropped

Figure 5: Number of tasks in each stage in FT approach.

1 2 3 4 5 6 7 8
Stages

0

10

20

30

40

50

60

70

80

90

N
um

be
r o

f t
as

ks

Done
Dropped

Figure 6: Number of tasks in each stage in FP approach.

go through to achieve the desired result. As illustrated in Figure 6,

The FP approach shows a better result and was able to reduce the

number of stages compared to the FT approach in Figure 5. The

reason for reducing the number of stages is that some tasks were

dropped earlier due to the fitness prediction condition in the FP

approach.

As the GA application is configured to achieve similar or better

results, as explained in Section 2, some tasks can be dropped using

FP, which reduces the computational cost of running the task. Thus,

the prediction approach can identify whether the task can reach

the user-defined fitness or not based on the observed data points of

the current task. Based on this approach, the task can continue to

execute or be dropped early.

7 CONCLUSION AND FUTUREWORK

This paper tries to manage the GA workload in a container-based

environment. We proposed two approaches, FT and FP, to improve

the number of tasks executed on time and achieve the user-defined

fitness level. As future work, we are planning to improve prediction

and queue management.

REFERENCES
[1] Yong Ahn, Albert Mo, and Kim Cheng. 2014. Automatic Resource Scaling for Med-

ical Cyber-Physical Systems Running in Private Cloud Computing Architecture.
Medical CPS (2014), 58ś65.

[2] Isam Mashhour Al Jawarneh, Paolo Bellavista, Filippo Bosi, Luca Foschini,
Giuseppe Martuscelli, Rebecca Montanari, and Amedeo Palopoli. 2019. Con-
tainer Orchestration Engines: A Thorough Functional and Performance Com-
parison. IEEE International Conference on Communications 2019-May (2019), 1ś6.
https://doi.org/10.1109/ICC.2019.8762053

[3] Danilo Ardagna, Giuliano Casale, Michele Ciavotta, J.F. Pérez, and Weikun Wang.
2014. Quality-of-service in cloud computing: modeling techniques and their
applications. Journal of Internet Services and Applications 5, 1 (2014), 1ś17. https:
//doi.org/10.1186/s13174-014-0011-3

[4] Christian Blum and Andrea Roli. 2003. Metaheuristics in Combinatorial Opti-
mization: Overview and Conceptual Comparison. ACM Comput. Surv. 35, 3 (Sept.
2003), 268ś308. https://doi.org/10.1145/937503.937505

[5] Piotr Dziurzanski, Jerry Swan, and Leandro Soares Indrusiak. 2018. Value-based
manufacturing optimisation in serverless clouds for industry 4.0. Proceedings
of the Genetic and Evolutionary Computation Conference on - GECCO ’18 (2018),
1222ś1229. https://doi.org/10.1145/3205455.3205501

[6] Leandro Soares Indrusiak. 2014. End-to-end schedulability tests for multiproces-
sor embedded systems based on networks-on-chip with priority-preemptive
arbitration. Journal of Systems Architecture 60, 7 (2014), 553ś561. https:
//doi.org/10.1016/j.sysarc.2014.05.002

[7] In Kee Kim, Jacob Steele, Yanjun Qi, and Marty Humphrey. 2014. Comprehensive
elastic resource management to ensure predictable performance for scientific
applications on public IaaS clouds. Proceedings - 2014 IEEE/ACM 7th International
Conference on Utility and Cloud Computing, UCC 2014 (2014), 355ś362.

[8] Norman Lim, Shikharesh Majumdar, and Peter Ashwood-Smith. 2014. Engi-
neering resource management middleware for optimizing the performance of
clouds processing mapreduce jobs with deadlines. (2014), 161ś172. https:
//doi.org/10.1145/2568088.2576796

[9] Maria A. Rodriguez and Rajkumar Buyya. 2018. Container-based Cluster Or-
chestration Systems: A Taxonomy and Future Directions. April (2018), 1ś19.
https://doi.org/arXiv:1807.06193v1 arXiv:1807.06193

[10] Pasquale Salza and Filomena Ferrucci. 2016. An Approach for Parallel Genetic
Algorithms in the Cloud using Software Containers. (2016), 1ś7. arXiv:1606.06961
http://arxiv.org/abs/1606.06961

[11] Amit Kumar Singh, Piotr Dziurzanski, Hashan Roshantha Mendis, and Lean-
dro Soares Indrusiak. 2017. A Survey and Comparative Study of Hard and
Soft Real-Time Dynamic Resource Allocation Strategies for Multi-/Many-Core
Systems. Comput. Surveys 50, 2 (2017), 1ś40. https://doi.org/10.1145/3057267
arXiv:arXiv:1502.07526v1

[12] Mujahid Tabassum and Kuruvilla Mathew. 2014. a Genetic Algorithm Analysis
Towards Optimization Solutions. International Journal of Digital Information and
Wireless Communications 4, 1 (2014), 124ś142. https://doi.org/10.17781/p001091

[13] Shuai Zhao, Piotr Dziurzanski, Michal Przewozniczek, Marcin Komarnicki, and
Leandro Soares Indrusiak. 2019. Cloud-based Dynamic Distributed Optimisation
of Integrated Process Planning and Scheduling in Smart Factories. GECCO 2019 -
Proceedings of the 2019 Genetic and Evolutionary Computation Conference (2019),
1381ś1389. https://doi.org/10.1145/3321707.3321826


	Abstract
	1 Introduction
	2 Related work
	3 System Architecture
	4 Comparing different allocation techniques
	4.1 Fitness Tracking (FT):
	4.2 Fitness prediction (FP):

	5 Experimental setup
	6 Experimental results
	7 Conclusion and future work
	References

