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Abstract

Phytohormones mediate most diverse processes in plants, ranging from organ development

to immune responses. Receptor protein complexes perceive changes in intracellular phyto-

hormone levels and trigger a signaling cascade to effectuate downstream responses. The in

planta analysis of elements involved in phytohormone signaling can be achieved through

transient expression in mesophyll protoplasts, which are a fast and versatile alternative to

generating plant lines that stably express a transgene. While promoter-reporter constructs

have been used successfully to identify internal or external factors that change phytohor-

mone signaling, the range of available marker constructs does not meet the potential of the

protoplast technique for large scale approaches. The aim of our study was to provide novel

markers for phytohormone signaling in the Arabidopsis mesophyll protoplast system. We

validated 18 promoter::luciferase constructs towards their phytohormone responsiveness

and specificity and suggest an experimental setup for high-throughput analyses. We recom-

mend novel markers for the analysis of auxin, abscisic acid, cytokinin, salicylic acid and jas-

monic acid responses that will facilitate future screens for biological elements and

environmental stimuli affecting phytohormone signaling.

Introduction

Elucidating the in planta function of genes or regulatory factors is key in the process to under-

stand how individual signaling components are interconnected and contribute to signaling

pathways and networks. This task often involves generating transgenic plants which is time-

consuming, laborious and cannot easily be applied in large-scale screening approaches. The

use of transient gene expression in protoplasts is an alternative technique that offers many

advantages such as a high-throughput, cost effectiveness and great flexibility towards the com-

ponents (e.g. proteins) to be tested [1].
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The method is based on the isolation of individual cells from leaf tissue by digesting the sur-

rounding cell walls with the help of fungal enzymes such as cellulase and pectinase. The result-

ing protoplasts can then be transfected with DNA encoding the proteins of interest through

application of osmotic or electric stimuli or by microinjection [2, 3]. While protoplasts are iso-

lated cells and the cellular processes observed may not entirely reflect the complexity of signal-

ing events at the whole plant level, the protoplast system offers versatility and analytic speed

which enabled the selection of candidates from larger collections of regulatory elements that

would otherwise be difficult to identify [1]. Pioneered by using Arabidopsis thaliana leaf meso-

phyll cells, these advantages have resulted in the establishment of protoplast transient expres-

sion assays for multiple species including maize, wheat, tomato, rice and tobacco [4, 5, 6, 7, 8].

Protoplast-based assays have been essential in answering a variety of questions in plant biology

and in facilitating the analysis of protein-protein interactions [9], phosphorylation cascades

[10], subcellular localization [11] and for testing protein stability [12] or activity [6]. Large-

scale approaches using genomic and proteomic methods following cell sorting are now com-

monly used by the community [13, 14]. In the age of gene editing, protoplasts have been suc-

cessfully employed in validating the editing efficiency of CRISPR-Cas9 constructs [8]. Several

excellent articles offer support for establishing and adapting this method in a new research

context [1, 2, 3].

A particularly successful application of the technique are regulation studies between a pro-

moter-reporter construct and an added active agent. Among the elements that have been

tested for interaction with promoters in the protoplast system are immunity elicitors [15],

transcription factors [1] and microbial effectors [16]. The majority of promoters used in

marker constructs for protoplast transient expression assays are known to regulate phytohor-

mone-responsive genes. Plant hormones are essential signaling molecules involved in the

coordination of all aspects of plant life including plant growth, development and responses to

environmental signals or stresses. Phytohormone perception modulates developmental and

metabolic reprogramming in a fast and efficient manner allowing for high plasticity in the

responses to different conditions, ranging from nutrient starvation to pathogen attack [17, 18].

Not surprisingly, since most plant processes are tightly controlled by hormonal signaling net-

works, many studies of plant development or stress integration require the assessment of hor-

monal responses. In addition to the quantification of phytohormone levels the analysis of

downstream changes in gene expression has increased our understanding of hormonal signal-

ing. Phytohormone recognition is mediated by specific receptor proteins residing in different

subcellular compartments in the cell. In addition to biochemical fractionation the transient

expression of putative receptor proteins in protoplasts has contributed to pinpoint the cellular

site of phytohormone perception [19, 20]. Hormone perception by receptors triggers signaling

cascades controlling transcriptional regulators which eventually activate or suppress a set of

promoters to translate the hormonal stimulus into gene expression changes [21]. The group of

Jen Sheen established several phytohormone-responsive markers in the protoplast system. Spe-

cifically, the promoter::luciferase constructs for RD29A, GH3.3 and ARR6 were developed to

indicate abscisic acid, auxin and cytokinin signaling in protoplasts, respectively [10, 22]. These

reporters have been applied in other studies since then and have provided insights into hor-

monal signaling following environmental cues such as oxidative stress, high salinity, osmotic

stress or immune elicitors [1, 15, 22, 23, 24, 25, 26]. A previous study using the pRD29A::LUC

construct also indicated that promoter::LUCmarkers are suited for use in multiwell-based pro-

toplast assays to identify components that change hormonal signaling [1]. However, the range

of available phytohormone-responsive promoter constructs is limited and has changed little in

the past years, impeding the flexibility of large-scale applications of this technique.
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Establishing the protoplast system and new markers for any plant species including Arabi-

dopsis can be challenging and often requires optimization of the isolation and maintenance of

the cells as well as identifying the most efficient transfection method. In addition, the specific-

ity of hormone markers is often unclear. The aim of our study was to extend the toolkit of pro-

moter::luciferase constructs for the analysis of phytohormone responses in the protoplast

system and validate the markers under high-throughput conditions. We focused on responses

of the phytohormones abscisic acid, auxin, cytokinin, salicylic acid and jasmonic acid due to

their principal significance in growth, abiotic stress and disease resistance. We selected 18 pro-

moters based on information in public expression databases and the available literature. In our

effort to identify new phytohormone markers, our analyses were guided by two main criteria:

validating the responsiveness and specificity of novel as well as previously used promoters in

protoplasts. We further present additional criteria that should be considered when developing

new marker constructs for a signaling pathway of choice and provide technical details for the

establishment of our semi-automated protoplast assay system that is suitable for high-through-

put analyses. The presented markers can be co-expressed with a protein of interest, combined

with chemical or physical treatments or introduced into protoplasts isolated from a genetic

background of choice.

Materials andmethods

Plant growth

Arabidopsis thaliana ecotype Col-0 plants were grown in P24 trays in soil in a controlled envi-

ronment with 12 h light at 22˚C and 12 h dark at 20˚C (60% relative humidity). Plants were

used for protoplast isolation when 4–5 weeks old.

Plasmid construction

Hormonal reporter constructs pRD29A::LUC, pGH3.3::LUC, pARR6::LUC and pFRK1::LUC

were ordered from ABRC (CD3-912, CD3-913, CD3-917 and CD3-919). The remaining

reporter constructs were generated by recombination-based cloning (CloneEZ kit, GenScript).

The promoter fragments were amplified by PCR from genomic Col-0 DNA (see primer

sequences in S1 Table). The plasmid backbone resulted from digesting pFRK1::LUC with

BamHI and NcoI. The transfection control plasmid was pAtUBQ10::GUS.

Protoplast isolation and transfection

The isolation and transfection of mesophyll protoplasts was performed as described previously

[1, 2] with the adjustments detailed below. The vacuum infiltration step following transfer of

the leaf material into the enzyme solution was omitted. The enzymatic digestion lasted for ~3

hours. Before transfection protoplasts were diluted at 3.3 x 105 cells ml-1 in MMG. Protoplast

transfection was performed in 96-well plates with a conical bottom (Greiner BioOne 651261).

The plasmid containing a specific hormonal reporter (promoter::LUC) and a transfection con-

trol plasmid (pAtUBQ10::GUS) were added to each well as 1 μl of 1 μg/μl DNA, leaving 2 μg

total plasmid DNA in each well. Plasmid DNA was purified using the ZymoPURE plasmid

midiprep kit from Zymo Research followed by an additional cleaning step using sodium ace-

tate / ethanol precipitation.

The transfection was performed using the Tecan Freedom EVO200 liquid handling robotic

platform but can likewise be carried out manually. The indicated volumes refer to a single well.

After adding the plasmid DNA into the wells, 30 μl of protoplasts (~1 x 104) were added before

adding 32 μl of PEG 4000 solution. The plate was shaken for 1 min at 1000 rpm and incubated
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at room temperature for 15 min. After that, 170 μl of W5 solution were added and the plate

was shaken for 1 min at 1000 rpm. The plate was then centrifuged at 100 g for 2 min before

removing 160 μl of the supernatant. Finally, 140 μl of W1 solution were added before shaking

the plate for 1 min at 1000 rpm. Protoplasts were kept in the transfection plates at ambient

light conditions (50–100 μmol m-2 s-1) at 23˚C until further analysis the following day. When

establishing this assay in a new context, we recommend analyzing the transfection efficiency

by transfecting constructs encoding fluorescent proteins and counting the proportion of cells

that were transfected. We obtain transfection efficiencies around 50% with the setup described

here (S1 Fig).

Luciferase assay

Expression of the specific hormonal reporter was analyzed by detecting luciferase activity in

vivo. 100 μl of supernatant were removed from each well. 20 μl of LUC substrate mix were

added to each well of a white, round bottom 96-well plate (NUNC U96 PP 267350). Using an

8-channel pipette and cut tips cells were gently resuspended before adding them to the lucif-

erin in the white plate for luminescence reading. Treatments were added using an Eppendorf

Multipette1 before shaking the plate at 450 rpm. Plates were transferred into the dark 30 min

before luminescence reading by a photon-sensitive camera (Photek HRPCS218) for 5.5 hours.

Software Image32 (Photek) was used to analyze intensity values. Luminescence derived from

the specific hormonal reporter was normalized using GUS activity derived from the transfec-

tion control plasmid.

GUS assay

Expression of the transfection control plasmid was analyzed after the luminescence reading by

detecting β-glucuronidase activity in protoplast lysate. Excess supernatant was removed before

adding 100 μl of lysis buffer per well and shaking the plate at 450 rpm for 5 min. Plates were

centrifuged for 2 min at 1000 g to remove cell debris. 10 μl lysate were transferred to a trans-

parent, flat bottom plate before addition of 100 μl GUS substrate mix. After brief shaking the

plate was incubated at 37˚C for 1 h before analyzing the fluorescence in a plate reader with

excitation at 360 nm and detection at 465 nm.

Chemicals and reagents

Cellulase R10 and Macerozyme R10 for enzymatic digest of leaf tissue were purchased from

Melford Biolaboratories Ltd. Buffer W5 was 154 mMNaCl, 125 mMCaCl2, 5 mM KCl, 2 mM

MES pH 5.7. MMG solution was 0.4 Mmannitol, 15 mMMgCl2, 4 mMMES pH 5.7. Buffer

W1 was 0.5 Mmannitol, 20 mMKCl and 4 mMMES pH 5.7. Substances for hormonal treat-

ments were abscisic acid (ABA), 1-naphthylacetic acid (NAA), trans-zeatin (t-zeatin), salicylic

acid (SA) and methyl jasmonate (MeJA) and were purchased from Sigma Aldrich. Mock-

treated wells received the amount of solvent present in the medium concentration of the three

hormonal treatments or water. For analysis of marker specificity the treatment concentrations

were 10 μMABA, 500 nM NAA, 20 μM t-zeatin, 30 μM SA and 50 μMMeJA.

Lysis buffer was prepared as 5-fold stock solution using 125 mM Tris / H3PO4 (pH 7.8), 10

mMDTT, 10 mMDACTAA (Sigma D1383), 50% (v/v) glycerol, 5% (v/v) Triton X-100. LUC

substrate was prepared using beetle luciferin (Promega E1602) as 1 mM luciferin, 30 mM

HEPES (pH 7.8), 3 mMATP (Sigma 797189) and 15 mMMgSO4. GUS substrate was prepared

using MUG (4-Methylumbelliferyl-β-D-glucuronide, Melford Biolaboratories Ltd. M65900) as

1 mMMUG, 10 mM Tris / HCl (pH 8.0) and 2 mMMgCl2.
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Results and discussion

Selection of promoters for analysis as hormonal markers in protoplasts

Marker genes are very useful tools in the study and verification of phytohormone pathway reg-

ulation and the literature offers many examples of genes known to be induced by phytohor-

mones. Some of these genes are characterized towards their function and position within the

signaling network but many have been selected for their consistent transcriptional response to

the presence of a phytohormone. Analyzing more than one marker per phytohormonal path-

way will ideally provide additional insight into the level at which a regulatory element inter-

feres with the signaling cascade. In this study, we have validated a set of promoter::luciferase

constructs as markers for five different phytohormonal pathways: abscisic acid (ABA), auxin

(IAA), cytokinin (CK), salicylic acid (SA) and jasmonic acid (JA). Our goal was to determine

the suitability of these markers for their use in high-throughput protoplast transfection assays.

In order to compile a list of potentially suitable phytohormone-responsive genes we

searched previously published studies [27–55] and mined available databases for transcrip-

tional information. We were interested not only in the induction levels or responsiveness to

the cognate phytohormone but also in their specificity as judged by their response to other

phytohormones. Table 1 summarizes information on responsiveness and specificity of 18

genes we considered promising to test for their suitability as markers in the protoplast system.

More than one gene was selected for each of the five phytohormones. Colors indicate func-

tionality of the respective promoter::luciferase construct in protoplasts: yellow = functional,

grey = requires optimization, white = not suitable. Transcriptional information about the

selected genes from Genevestigator and BAR databases (‘transcriptome repositories’) and

selected publications (‘literature’) is presented with respect to their specific responsiveness to

the cognate phytohormone but no other phytohormones (specificity) [27–55]. Levels of

responsiveness and specificity are labelled as low (+), medium (++) or high (+++) correlating

Table 1. Summary of the properties of genes selected as potential markers for phytohormone signaling analyses in protoplasts.

Pathway Name ID Transcriptome repositories Literature Induction in protoplasts > 2-fold

Responsiveness Specificity Responsiveness Specificity

ABA RD29A At5g52310 +++ +++ ++1,2 +++3 Yes

RAB18 At5g66400 +++ +++ +++4,5 +++3 Yes

IAA GH3.3 At2g23170 +++ + ++2,6 +3 Yes

IAA5 At1g15580 +++ +++ +++7,8 +++3,9 Yes

IAA29 At4g32280 ++ +++ +++9,10 +++3,9 > 1.5-fold, variable

LBD29 At3g58190 + +++ +++9,11 +++3,9 No

CK ARR6 At5g62920 + ++ +2,12 +3 Yes

ARR5 At3g48100 + ++ ++12,13 ++3,14 Yes

NPF2.3 At3g45680 + + +3 +++3 No

ARR15 At1g74890 + ++ ++12,14 ++3,14 No

CYP735A2 At1g67110 + ++ +13,15 ++3,13 No

SA WRKY70 At3g56400 ++ ++ ++16 ++17 Yes

LURP1 At2g14560 +++ ++ ++18,19 ++17 > 1.5-fold, stable

PR1 At2g14610 ++ ++ ++17,20 ++21 > 1.5-fold, stable

CBP60G At5g26920 + + +22 ND No

JA JAZ10 At5g13220 ++ +++ +++23,24 ++3,25 Yes

MYB113 At1g66370 + +++ +++3,26 +3,27 Yes, but less specific

PDF1.2 At5g44420 ++ + +21,28 +3,29 No

https://doi.org/10.1371/journal.pone.0234154.t001
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with color intensity of the cells. The induction in protoplasts refers to the increase in relative

luminescence observed following treatment with the respective hormone.

Using the transcriptome data repositories Genevestigator and BAR (Bio-Analytic Resource

for Plant Biology) we analyzed the ability of the studied gene to be specifically induced by the

cognate phytohormonal treatment [56, 57]. We also used these databases to gather informa-

tion on different characteristics of the selected genes, such as their basal expression level in

adult leaves and their expression levels observed in leaf or mesophyll cell protoplasts. Candi-

date genes reported to be strongly induced by protoplasting were avoided. While the expres-

sion databases contain large amounts of transcriptional information, the underlying datasets

originate from individual studies that were carried out under varying conditions. Therefore,

the overview provided in Table 1 represents average experimental settings that may include

different plant tissues or developmental stages, as well as varying hormone treatment regimes

(e.g. time, concentration). The use of synthetic promoters can be an alternative approach

when studying hormonal signaling with protoplasts [58, 59]. Synthetic reporters are likely to

be regulated by a reduced set of stimuli when compared to native promoter sequences since

they contain fewer regulatory elements. Depending on the experimental question reporters

generated with synthetic sequence motifs can be a preferred choice, for example to avoid

unwanted crosstalk. However, the extent of their integration in the natural signaling network

of the plant cell distinguishes them from reporters based on native promoter sequences. For a

limited number of hormonal pathways the use of degradation-based sensors that allow to

monitor hormonal perception close to real-time and in vivo have also been demonstrated [60,

61]. In order to determine the functionality of the native promoter sequences we generated

promoter::LUC constructs and validated them by protoplast transfection assays.

Responsiveness of promoter::LUC reporters to hormone treatment

To determine the responsiveness of hormonal reporters to their cognate phytohormone and

the specificity of this response, our experimental workflow monitored the response kinetics of

up to 96 samples in parallel (Fig 1).

Protoplasts expressing promoter::LUC constructs were treated with three concentrations of

the cognate phytohormone that differed by a factor of 10 between each other (referred to as

‘low’, ‘medium’ and ‘high’ in the following). Fig 2 summarizes the normalized luminescence

monitored from 30 min to 6 hours post-treatment (hpt) and includes a snapshot of the raw

luminescence of the replicate samples. All reporter constructs in Fig 2 showed a reproducible

fold-change of> 2 between mock and treated samples for at least one of the three tested phyto-

hormone concentrations.

A visible increase in promoter activity was observed around 2 hpt and the intensity of lumi-

nescence rarely increased after 5 hpt (Fig 2). As expected, the analyzed markers differed in

their responsiveness towards the chosen hormone concentrations. The markers for ABA sig-

naling, pRD29A::LUC and pRAB18::LUC, were characterized by high sensitivity where the pro-

moter activity increases with rising treatment concentrations without reaching saturation. In

contrast, the response of the two auxin markers pGH3.3::LUC and pIAA5::LUC did not change

significantly between medium and high NAA concentrations. This observation was recently

confirmed after treatment with the auxin IAA (indoleacetic acid) using concentrations

between 1 and 100 μM IAA in protoplasts transfected with pGH3.3::LUC and pIAA5::LUC

[62]. The responsiveness of the CK markers pARR6::LUC and pARR5::LUC did not differ sig-

nificantly between treatments with 0.2 μM and 2 μM of trans-zeatin across experiments (Fig 2

and S2 Fig), but samples treated with 20 μM trans-zeatin surpassed the 2-fold induction

threshold more reliably than the lower concentrations. A marker fold change above 2 makes a
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Fig 1. Workflow. Schematic overview of how promoter::luciferase reporter constructs were tested towards their
suitability as phytohormonal markers in protoplasts. Protoplasts were isolated by enzymatic digest of Arabidopsis leaf
tissue and transfected with promoter::luciferase constructs in a 96-well format using a robotic liquid handling platform
from Tecan. Activation of the promoters following hormonal treatments was quantified as in vivo luminescence
(signal) intensity using a photon-sensitive camera. Transfection efficiencies were normalized based on β-glucuronidase
activity in cell lysates. LUC, luciferase; GUS, β-glucuronidase.

https://doi.org/10.1371/journal.pone.0234154.g001
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screen more sensitive towards weak and medium effects of a tested component, but in experi-

ments where such a fold-change threshold is less critical, the ARR5 and ARR6markers can

also successfully be used with low and medium concentrations of trans-zeatin. The pARR6::

LUC construct can be responsive to lower cytokinin treatment concentrations in protoplast

assays [63] and the observed difference in responsiveness might possibly be due to aspects of

Fig 2. Responsiveness of promoter::luciferase constructs to phytohormones. Protoplasts were transfected with promoter::luciferase constructs and treated with the
indicated substances to activate phytohormonal signaling using three different concentrations. Luminescence was recorded following phytohormonal treatment for 5.5
hours. The plots on the left of each panel show results from one out of� 3 biological repetitions; error bars represent standard deviations from 3–4 technical replicates.
The image on the right of each panel shows the luminescence signal as detected by the photon-sensitive camera. ABA, abscisic acid; AUX, auxin; CK, cytokinin; JA,
jasmonic acid; MeJA, Methyl jasmonate; NAA, 1-Naphtaleneacetic acid; SA, salicylic acid; t-zeatin, trans-zeatin; hpt, hours post-treatment.

https://doi.org/10.1371/journal.pone.0234154.g002
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our setup such as the robotic handling. The reporter construct for salicylic acid signaling,

pWRKY70::LUC, had a relatively low promoter activity but showed a stable activation with

30 μM SA. The marker for JA signaling, pJAZ10::LUC, exhibited variable response kinetics,

possibly due to changing effects of wound signaling in the different protoplast preparations.

However, pJAZ10::LUC reproducibly surpassed a 2-fold difference between LUC activity of

mock samples and those treated with 50 μMmethyl jasmonate (MeJA) at 5 hpt (Fig 2). The

integrated marker responses during 5.5 hours were compared as the area under the curve

(AUC) and are shown in S2 Fig. Taken together, all markers displayed a responsiveness upon

treatment with respective phytohormones. The observed response curves and concentration-

dependent differences in responses indicated protoplast integrity and suitability of the assay to

quantify phytohormone signaling.

Specificity of promoter::LUC reporters during treatment with other
hormones

Although marker specificity is essential, such information is rarely provided for protoplast

assays. The specificities of the marker gene responses were analyzed by testing each reporter

against the five phytohormones used in this study. All 8 promoter::LUC reporters showed a

specific induction with the cognate phytohormone when compared to the other 4 tested sub-

stances. Fig 3 shows the development of normalized luminescence over time and analyzes the

samples at the timepoint when the marker response exhibits a strong fold-change between

mock samples and cells treated with the cognate phytohormone while maintaining high

specificity towards the other phytohormones. These timepoints are recommended for experi-

mental setups which do not require continuous monitoring of the marker responses after

treatment: 2.5 hours post treatment (hpt) for the ABAmarkers pRD29A::LUC and pRAB18::

LUC and the auxin markers pGH3.3::LUC and pIAA5::LUC, 3 hpt for the SA marker

pWRKY70::LUC, 4 hpt for the CKmarkers pARR6::LUC and pARR5::LUC and 5 hpt for the JA

marker pJAZ10::LUC. It is important to emphasize that the analytic conditions defined here

provide reliable guidelines for using these promoter::LUC reporters, though individual experi-

mental setups will benefit from further optimization in the given laboratory and experimental

environment.

The results presented in Figs 2 and 3 also demonstrated that it cannot generally be predicted

from basal gene expression levels whether or not a promoter is suited for the use in reporter

constructs. An example are the SA-markers pWRKY70::LUC and pPR1::LUC, where the latter

shows a high basal activity but a low responsiveness to SA whereas pWRKY70::LUC produces a

strong and reproducible induction after SA treatment although the promoter-derived lumines-

cence will remain low (Fig 2 and S3 Fig). Although the present study validated the specificity

of 8 markers towards five different phytohormones, some of the markers might be induced by

other hormonally active substances or additional stimuli such as environmental or metabolic

clues which could not be covered here. We have clearly shown that the presented markers are

specifically induced by the phytohormone they were selected for and not by any of the other

hormones used in this study.

Additional promoter::LUC constructs with decreased responsiveness

Among the 15 newly generated promoter::luciferase constructs tested for their suitability as

hormonal markers in protoplast-based assays we evaluated 3 as requiring further optimization

and 7 as not suitable based on their responsiveness to different concentrations of the cognate

hormone (S3 Fig). Some reporters, such as pIAA29::LUC (auxin), pLURP1::LUC (SA) and

pPR1::LUC (SA) were activated following respective phytohormone treatments but did not
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reproducibly surpass the 2-fold threshold we set as recommended standard for our analyses.

The JA marker pMYB113::LUC responded with a fold-change of 2–3 in 3 of 4 experiments and

can be recommended for use in those cases where pJAZ10::LUC is not a preferred choice.

Fig 3. Specificity of promoter::luciferase constructs in detecting phytohormone signaling. Protoplasts were transfected with promoter::luciferase constructs and
treated with the indicated substances to activate phytohormonal signaling. The following treatments were used: mock, 10 μMABA, 0.5 μMNAA, 50 μMMeJA, 30 μM
SA or 20 μM t-zeatin. Luminescence was recorded following hormonal treatment for 5.5 hours. The plots show results from one out of� 3 biological repetitions; error
bars represent standard deviations from 3–4 technical replicates. Bar charts show the relative luminescence of the promoter::luciferase constructs at the following
timepoints (hours post treatment, hpt): pRD29A::LUC (2.5hpt), pRAB18::LUC (2.5hpt), pGH3.3::LUC (2.5hpt), pIAA5::LUC (2.5hpt), pARR6::LUC (4hpt), pARR5::LUC
(4hpt), pWRKY70::LUC (3hpt), pJAZ10::LUC (5hpt). Statistical analysis was performed using Student’s t-test: � p< 0.05, �� p< 0.01, ��� p< 0.001. ABA, abscisic acid;
AUX, auxin; CK, cytokinin; JA, jasmonic acid; MeJA, Methyl jasmonate; NAA, 1-Naphtaleneacetic acid; SA, salicylic acid; t-zeatin, trans-zeatin.

https://doi.org/10.1371/journal.pone.0234154.g003
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The three CK markers pNPF2.3::LUC, pARR15::LUC and pCYP735A2::LUC seemed gener-

ally unresponsive. The markers used in this study might respond differently when isolated by

other protoplasting methods [3] and can also be analyzed towards changes in their basal activ-

ity in the presence of additional factors such as chemicals, transcriptional regulators and many

others.

Conclusions

The in planta analysis of phytohormone signaling is a time-consuming and often low-through-

put process. We generated new phytohormone markers for the Arabidopsis leaf protoplast sys-

tem and validated 5 novel and 3 previously used markers as suitable for quantitative analyses

of hormonal responses in planta. These markers can be used to analyze hormonal signaling

after treatments with chemicals, environmental stimuli or endogenous and exogenous effec-

tors and also allow to compare signaling in different mutant genotypes. When working with a

96-well format we comfortably processed 4 plates per experiment, resulting in a throughput of

around 170 active agents tested against a hormone-responsive promoter of choice in duplicate

samples. The unique feature of the protoplast transfection system is its flexibility towards the

pathway of interest determined by the experimental reporter, making it an excellent method

for biological screens. It can be anticipated that additional, bespoke markers for other areas of

plant research will expand the applications of the protoplast expression system in the future.

Supporting information

S1 Fig. Transfection efficiency of protoplasts using 96-well plates and robotic handling.

Bars indicate the percentage of protoplasts transfected with a 35S::mCherry construct in the

pool of total protoplasts as determined by counting of� 100 cells in each independent trans-

fection sample. The experiment was repeated three times (exp1-3) with 8 independent trans-

fection samples for each experiment. Error bars represent the standard error (n = 8).

(TIFF)

S2 Fig. Responsiveness of promoter::luciferase constructs as area under the curve (AUC).

Integration of the signals from experiments analyzing responsiveness of the markers shown in

Fig 2 over 5.5 hours. The plots show results from one out of� 3 biological repetitions; error

bars represent standard deviations from 3–4 technical replicates. Statistical analysis was per-

formed using Student’s t-test: � p< 0.05, �� p< 0.01, ��� p< 0.001. ABA, abscisic acid; AUX,

auxin; CK, cytokinin; JA, jasmonic acid; MeJA, Methyl jasmonate; NAA, 1-Naphtaleneacetic

acid; SA, salicylic acid; t-zeatin, trans-zeatin.

(TIFF)

S3 Fig. Additional markers tested. Protoplasts were transfected with promoter::luciferase con-

structs and treated with the indicated substances to activate hormonal signaling using three

different concentrations. Luminescence was recorded following hormonal treatment for 5.5

hours. The plots show results from one out of� 2 biological repetitions; error bars represent

standard deviations from 3–4 technical replicates. AUX, auxin; CK, cytokinin; JA, jasmonic

acid; MeJA, Methyl jasmonate; NAA, 1-Naphtaleneacetic acid; SA, salicylic acid; t-zeatin,

trans-zeatin; hpt, hours post-treatment.

(TIFF)

S1 Table. Primer sequences used for PCR-amplification of the promoter fragments.

(PDF)
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