
This is a repository copy of Characterisation of batteries by electrochemical impedance 
spectroscopy.

White Rose Research Online URL for this paper:
http://eprints.whiterose.ac.uk/161518/

Version: Published Version

Proceedings Paper:
Middlemiss, L.A., Rennie, A.J.R., Sayers, R. et al. (1 more author) (2020) Characterisation 
of batteries by electrochemical impedance spectroscopy. In: Cruden, A., (ed.) Energy 
Reports. 4th Annual CDT Conference in Energy Storage and Its Applications, 09-10 Jul 
2019, Southampton, UK. Elsevier , pp. 232-241. 

https://doi.org/10.1016/j.egyr.2020.03.029

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse 
This article is distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs 
(CC BY-NC-ND) licence. This licence only allows you to download this work and share it with others as long 
as you credit the authors, but you can’t change the article in any way or use it commercially. More 
information and the full terms of the licence here: https://creativecommons.org/licenses/ 

Takedown 
If you consider content in White Rose Research Online to be in breach of UK law, please notify us by 
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request. 

mailto:eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/


Available online at www.sciencedirect.com

ScienceDirect

Energy Reports 6 (2020) 232–241

www.elsevier.com/locate/egyr

4th Annual CDT Conference in Energy Storage and Its Applications, Professor Andrew Cruden,
2019, 07-19, University of Southampton, U.K.

Characterisation of batteries by electrochemical impedance

spectroscopy

Laurence A. Middlemissa,∗, Anthony J.R. Rennieb, Ruth Sayersb, Anthony R. Westa

a Department of Materials Science and Engineering, The University of Sheffield, Sheffield S1 3JD, UK
b Faradion Ltd., The Innovation Centre, Sheffield S1 4DP, UK

Received 28 February 2020; accepted 22 March 2020

Abstract

In the pursuit of batteries with higher energy density and lower cost, central to advancement of the technology is the ability

to prolong cycle life. Techniques are sought which can elucidate information on battery degradation without significantly

disrupting the performance of cells. Electrochemical impedance spectroscopy (EIS) offers a non-destructive route to in-situ

analysis of the dynamic processes occurring inside a battery. The technique is relatively easy to use, but meaningful data

analysis requires assignment of spectroscopic features to battery impedance components. Three-electrode cell configurations

afford a way to potentially disentangle the impedance components. This paper examines a number of three-electrode cell

designs reported in the literature, and compares their advantages and limitations. EIS results obtained using a novel in-house,

three-electrode pouch cell are reported and the results compared with those obtained from conventional two-terminal impedance

complex plane plots. In this way, the separate contributions of anodic and cathodic impedances can be assessed.

c⃝ 2020 Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/).

Peer-review under responsibility of the scientific committee of the 4th Annual CDT Conference in Energy Storage and Its Applications, Professor

Andrew Cruden, 2019.
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1. Introduction

A growing global energy demand coupled with a need to mitigate climate change has led to dramatic growth in

the deployment of renewable energy technologies [1,2]. An important accompaniment to these is the requirement

for a greater amount of energy storage, of which batteries are a major component [3]. A key criterion with respect to

rechargeable batteries is cycle life, i.e. how many cycles a battery can undergo before significant loss of performance.

All batteries lose performance on cycling [4]. This can be evaluated using ex-situ post-mortem analysis which

involves disassembly of cells before analysis of the separated cell components [5]. However, it can be difficult to

preserve the various parts of the cell ‘intact’, without contamination of the materials to be studied; in addition,
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destructive testing eradicates the ability to gather information on dynamic processes that occur during battery

operation.

Electrochemical impedance spectroscopy (EIS) is a non-destructive technique which provides a considerable

amount of information in a relatively short space of time, while preserving integrity of the battery [6]. It allows

in situ dynamic measurements during battery cycling as well as ex situ measurements at various states of charge

and discharge. In EIS, a small ac signal is applied over a wide frequency range and the response measured. EIS is

particularly sensitive to systems that contain several impedance elements, including bulk components and interfaces,

which makes it well-suited to study a multi-component device such as a battery. Different components and processes

within a cell operate on different timescales, i.e. they have different time constants and can be separated in the

frequency domain using EIS.

2. Degradation mechanisms in batteries

All batteries experience reduction in performance with cycling. This can be due to a variety of degradation

(ageing) mechanisms, which can be associated with one or more of the components/interfaces of a cell [7].

Degradation leads to decrease in capacity and/or power [8]. For metal-ion batteries, e.g. Li- and Na-ion, degradation

pathways can be divided into three possible primary processes [9]:

• Loss of the alkali metal (lithium, sodium)

• Loss of the active cathode/anode material

• Deterioration of ionic transport through components and across interfaces

Loss of the alkali metal component or of the active cathode/anode material results in a drop in capacity, whereas

deterioration of ionic transport is detected by a rise in internal cell impedance. Table 1 summarises the major

degradation mechanisms that are known to occur in rechargeable metal-ion batteries.

Table 1. Degradation mechanisms in rechargeable metal-ion batteries [7].

Cause Effect Result

Electrolyte decomposition Loss of alkali metal, deterioration of ionic

transport

Capacity fade, impedance rise

Solid electrolyte interphase (SEI)

formation

Loss of alkali metal, deterioration of ionic

transport

Capacity fade, impedance rise

Binder decay Loss of alkali metal, loss of active electrode

material, deterioration of ionic transport

Capacity fade, impedance rise

Particle contact loss Loss of active electrode material, deterioration of

ionic transport

Capacity fade, impedance rise

Particle cracking Loss of alkali metal, loss of active electrode

material

Capacity fade

Metal plating Loss of alkali metal Capacity fade

Transition metal dissolution Loss of active electrode material Capacity fade

Structural disordering/unfavourable

phase transitions

Loss of active electrode material Capacity fade

Changes in porosity Deterioration of ionic transport Impedance rise

Decrease in electrode surface area Deterioration of ionic transport Impedance rise

Oxidation of conductive additive Deterioration of ionic transport Impedance rise

Current collector corrosion Deterioration of ionic transport Impedance rise

3. Methodology

To perform EIS on batteries, a frequency response analyser (FRA) is typically used in combination with an

electrochemical interface. The electrochemical interface applies a constant voltage (CV) or constant current (CC)

and the FRA superimposes an ac signal. A multiplexer connects the FRA to the battery test system. A typical setup

is shown in Fig. 1. The battery is connected using four wires — two for current flow and two for cell potential.

The FRA outputs a signal to the cell via the counter electrode (I-) and the signal is returned through the working

electrode (I+). It also connects to a pair of reference electrode points (V+ and V-) to measure the voltage across

the cell.
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Fig. 1. Wiring configuration for impedance measurement of a battery.

The FRA applies a small ac signal, usually in the range mHz–MHz, and measures the response. EIS can be used

in either potentiostatic (constant voltage) or galvanostatic (constant current) mode [10]. Potentiostatic mode, where

a voltage is applied at each frequency and the resultant current measured, is most common. The current responds

at the same frequency as the applied voltage but may be shifted in phase. An important factor is that a reproducible

steady state is necessary for valid impedance measurements on a battery [6] since EIS can give inaccurate results

on a system that is not at steady state. In order to ensure a steady state, EIS usually is carried out with a small

potentiostatic signal amplitude of 10 mV so that the cell response is pseudo-linear (in phase). If the system is

non-linear, the response contains harmonics of the input signal frequency. Therefore, in order to accurately perform

EIS on a cell during cycling, a ‘rest’ or open circuit voltage (OCV) period is often applied first so that the cell

voltage does not vary significantly during measurements [11]. Similarly, an additional rest period on open circuit is

often implemented following the impedance scan to allow the cell to ‘recover’ from any changes that occur during

the EIS run, prior to continuing with constant current/constant voltage (CC/CV) cycling.

4. Analysis of impedance data

EIS may be used to characterise either the static or dynamic impedance of a battery. Regardless of whether

galvanostatic or potentiostatic mode is used, the ac signal, and therefore the response, is sinusoidal [10]. The

impedance, Z, is a frequency-dependent complex number characterised by the ratio of voltage to current and the

phase angle shift between them, Φ.

Z =
V

I
= Z0e jΦ = Z0 (cosΦ + jsinΦ) = Z ′ + j Z ′′ where j =

√
−1 (1)

A generated impedance spectrum consists of resistive and reactive components. The resistance is made up of a

combination of electronic and ionic resistances. The most common form of plotting impedance data is as a Z∗

complex plane plot of Z ′′ against Z ′ on linear scales, also known as a Nyquist plot. Presenting data in this way

displays the resistance along the (real) x-axis and reactance (including capacitance) along the (imaginary) y-axis.

While EIS is relatively easy to use, the difficulty often lies in data interpretation since Z∗ plots generally consist

of a small number of often poorly-resolved arcs. Models are used in the form of equivalent electrical circuits,

comprised of resistance, R, and capacitance, C, elements, together with constant phase elements, CPE, to represent

departures from ideality, with the objective of assigning these to different physical processes and components within

the battery.

An idealised spectrum that may represent a multicomponent system, such as a metal-ion battery, is shown in

Fig. 2 together with an equivalent circuit that contains four components. There is also often a tail below the real

Z ′ axis at higher frequencies, not shown, which is due to inductive effects associated with the battery and/or the

experimental setup. With decreasing frequency, the first feature is a non-zero ohmic resistance where the spectrum

intersects the real Z ′ axis at high frequency; it is represented in the equivalent circuit by a resistor (RHF). The

two semi-circles, usually of different size, are each represented by a resistor and capacitor in parallel (known as

a parallel RC element). To account for, and model, a non-ideal or distorted semi-circle, a constant phase element

(CPE), which is a combined variable resistor and variable capacitor, is added in parallel with the parallel RC element.

The impedance of a constant phase element is defined as:

Z∗ =
1

( jω)nY0

(2)
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Fig. 2. Schematic idealised impedance complex plane plot for a multicomponent system together with its ideal equivalent electrical circuit.

where Y0 is a constant, the angular frequency (ω) is given by ω = 2π f and 0 < n < 1. The exponent n is

responsible for the depression of the semi-circle. For a value n = 1 the CPE reduces to a perfect capacitor, and

for n = 0 it is a resistor [12]. The fourth feature, at low frequency, is frequently an inclined spike, which can

be a non-ideal capacitor represented by a CPE or a Warburg element (where n = 0.5) if the spike is at 45◦ to

the Z ′ axis. [13]. The physical significance of a Warburg element is a diffusion-controlled process which adds an

additional impedance to the overall response [14,15].

5. Three-electrode arrangements

One limitation to analysing two-terminal EIS data is that it can often be difficult to deconvolute impedance

components that have similar time constants (RC products) [16]. Half-cell measurements can be used to study

separately the impedances associated with the two electrodes but may not reflect the processes occurring in a

full-cell battery at different states of charge and discharge [17]. Measurements may also be made on symmetrical

cells [18,19] in which the two cells are disassembled and the cathode of one is replaced with the anode of the

other, and vice versa. However, such approaches are limited as symmetrical cells cannot be charged and discharged

in the same way as a fully functioning battery. The arduous process of disassembling and reassembling cells must

therefore be carried out repeatedly, in order to gather information at different states of charge and states of health.

A three-electrode cell design [20] incorporates a spectator reference electrode, which does not interfere

with the cycling of the battery. The battery is then charged/discharged as usual, but as well as recording the

impedance across the entire cell, the impedances of the cathode and anode can be measured separately against

the reference. It is therefore possible to monitor how each electrode contributes to the overall impedance of the

battery. Three-electrode measurements may suffer from measurement artefacts associated with distortions caused

by electrical/electrochemical and geometrical asymmetry in the experimental setup [21]. Geometrical asymmetry is

created by misalignment of positive and negative electrodes. Electrochemical asymmetry is due to different kinetics

at each electrode [22]. Electrode polarisation processes possess different time constants and their impedances change

differently with frequency. Both geometrical and electrochemical asymmetries lead to an inhomogeneous electrolyte

current density at the reference electrode, which may be responsible for distortions in the measured impedance

spectra [23]. Care must be taken therefore to ensure that the design of the battery does not affect the cell performance

and electrode impedances [24]. To check the validity of an experimental setup, the individual impedances of the

cathode and anode can be added and the combined spectra compared with the impedance of the full-cell [25].

A number of different three-electrode configurations for lithium-ion batteries have been reported [26–28] using

a variety of cell configurations and different reference electrodes [29]. The reference electrode needs to maintain

a stable potential under prolonged and extensive testing and not interfere with the normal cell operation [30]. The
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reference electrode should be non-polarisable and have a low internal resistance [27,29]. For lithium-ion batteries,

either Li metal or a Li-containing compound are the most popular.

The shape and position of the reference electrode may also affect the impedance results [22], as well as the

geometry of the cell setup and location of the reference electrode [24]. The most popular geometries are point- [31],

wire- [32] or ring-type [33]. A point-type reference electrode is a small piece of, say, Li metal for Li-ion batteries,

which is placed away from the centre of the cell. A wire-type reference is similar to the point-type but extends

within the electrolyte into the centre of the cell. A ring-type, often utilised in coin cells, surrounds the centre of

the battery. Some of these are displayed in Fig. 3 [23,24,34].

Fig. 3. Some of the different three-electrode cell designs: (a) coin cell, where a mesh reference electrode is placed between two separators [23];

(b) coaxial cell developed from a modified Swagelok [24]; (c) commercial pouch cells retrofitted with a third reference electrode [34].

Source: Adapted from references [23,24,34].

The coin cell in (a) used a bespoke mesh reference electrode, in place of a more conventional type [23]. The

electrochemical and geometrical asymmetries are then negligible because the mesh is efficient at measuring the

potential between the electrodes, where the current distribution is homogeneous. However, the greater surface area

of the mesh creates multiple transport paths which leads to an additional polarisation process within the cell and

can cause distortions at certain frequencies. The design in (b) was developed to overcome limitations with the

imprecise electrode alignment and an asymmetric reference electrode geometry of Swagelok cells [24]. Typically,

in a three-electrode Swagelok cell (also known as a T-cell), the reference electrode contacts the electrolyte/separator

at its outer rim. The reference voltage is susceptible to fluctuation under changing current, such as during impedance
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measurements, and can lead to a distortion of data: artificial loops are often seen in the impedance response. In

the design used by these authors [24], the reference electrode is moved to a coaxial position in combination with

precise alignment of the electrode stack. This led to improved performance, but the measurements were still limited,

particularly in the high frequency region. In design (c) a commercial pouch cell was retrofitted with a reference

electrode using two different methods: “patch” and “wire” [34]. The “patch” method lead to significant disruption

in the battery structure and to deterioration in cell performance. However, the “wire” method, where a Li-plated Cu

wire was inserted down one side of the pouch, gave a performance close to that of a conventional two-electrode

cell in terms of capacity and voltage. This design was not utilised for EIS measurements.

6. Results and discussion

An in-house three-electrode pouch cell configuration (Fig. 4) was developed with the reference electrode

sandwiched between two separators. Cells were assembled in an argon-filled glove box. The composite electrodes

consist of the active material component, which was mixed with a binder and carbon black conductive additive.

Slurries were formed and drawn down onto carbon-coated Al current collector foil. The separators were soaked

in liquid electrolyte prior to cell assembly. Impedance measurements were performed using a potentiostat with a

parallel FRA. Impedance was measured by applying an ac potential between two electrodes and measuring the

resulting current (potentiostatic mode). Three EIS scans were made using different methods for connecting the

testing equipment to the electrodes: (i) the impedance was measured without using the reference electrode (full cell

measurement); (ii) the impedance of the cathode was measured against the reference electrode; (iii) the anode was

measured versus the reference electrode. The cells were cycled under constant current (CC) between 1 and 4.2 V,

using 14 mA g−1 on charging and 28 mA g−1 on discharging. A constant voltage (CV) step was applied at the

top of charge until the current dropped below 2.8 mA g−1 in order to maximise the capacity obtained from the

batteries. Four additional hours allowed equilibration after each charging/discharging step before performing EIS.

An additional one-hour open circuit voltage (OCV) hold after EIS allowed the cell to return to a steady state, prior

to continuing with the CC/CV run.

Fig. 4. The 10 mAh three-electrode pouch cell used in this study. The reference electrode sits at the top and is sandwiched between two

separators, with the cathode and anode either side, inside the cell.

Whereas impedance measurements have been performed extensively in the past on lithium-ion batteries [35,36],

and several different three-electrode cell designs developed [23,24,34], a similar amount of research has not yet

been reported on Na-ion technology. Fig. 5 shows EIS data (0.01–100,000 Hz) for a two-electrode ∼10 mAh

sodium-ion (Na-ion) battery. This pouch cell consists of the same design as in Fig. 4, but without the presence of

a spectator reference electrode. The impedance scan was performed across the entire cell between the positive and

the negative electrodes. The cathode (positive electrode) was a layered sodium transition metal oxide, the anode

(negative electrode) a non-graphitisable hard carbon, and the electrolyte a sodium salt dissolved in a mixed carbonate

solvent. The spectra presented in Fig. 5 were not corrected for geometry of the various cell components. Raw data

were collected after the Na-ion battery was discharged for the first time (at 0% state of charge).

The complex plane plot for the full-cell in (a) shows a high-frequency arc with non-zero high frequency intercept

and a larger low-frequency distorted (broadened) semi-circle. To a first approximation, the equivalent electrical

circuit for this Na-ion battery consists of two parallel RC elements and a resistor connected in series. Hence, there
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Fig. 5. Some two-electrode EIS data for an in-house constructed fully discharged sodium-ion battery: (a) impedance complex plane plots,

spectroscopic plots of Z ′(b), and Z ′′ (c).

are at least three resistive components with values roughly 5 (RHF), 20 (R1) and 90 (R2) �. The most common

form of plotting impedance data for analysis is in the form of Z ′′ plotted against Z ′ on linear scales, also known

as a Nyquist plot, as seen in (a). Data can alternatively be presented as a spectroscopic Z ′ plot in (b) and Z ′′ plot

in (c), which allows separate visualisation of the Z’, Z” components against frequency on a logarithmic scale.

Fig. 6 shows EIS data (10 mHz–1 MHz) for a three-electrode ∼10 mAh Na-ion cell after it was discharged

for the first time (at 0% state of charge). The impedance complex plane plots in Fig. 6(a) show full-cell (black),

cathode (red) and anode (blue) data sets, with respective total impedances of ∼115, ∼75 and ∼40 � respectively.

The total resistance for the full-cell equals the sum of those for the cathode and the anode, as shown by the pink data

and, therefore, no corrections to the generated impedance spectra were needed. The absence of such a requirement

suggests that the three-electrode pouch cell configuration used here affords a superior measurement to many of the

previous cell designs. Furthermore, it can be seen that these impedance plots look very similar to the two-electrode

ones in Fig. 5, which means that introduction of a reference electrode does not cause the impedance results to differ

from what is seen inside a regular two-electrode cell. Hence, using this setup, it is possible to extract meaningful

results from EIS measurements performed on three-electrode cells and make interpretations that can be applied to

commercially-relevant two-electrode batteries.

Fig. 6. Some three-electrode EIS data for an in-house constructed sodium-ion battery: (a) impedance complex plane plots, spectroscopic

plots of Z ′(b), and Z ′′ (c).

The shape of the Nyquist plots (a) for the cathode and full-cell, in the three-electrode measurement, are similar

to one another, but that for the anode is quite different, appearing to consist of just one arc. While the cathode

and full-cell data closely resemble each other at high frequency, there is much greater disparity at low frequency.
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This is demonstrated more clearly by the spectroscopic Z ′ (b) and Z ′′ (c) plots. The key point is that the anode

shows a Z ′′ peak at a similar frequency to the cathode (c), both of which, therefore, contribute to the low frequency

semicircle for the full cell in (a). However, the high frequency peak in the cathode Z ′′ plot (c) has no comparable

peak in the anode response and the cathode is responsible entirely for the high frequency semicircle in the full cell

data (a). Previous studies in the literature have rarely utilised different ways of presenting impedance data, such as

Z ′ and Z ′′ spectroscopic plots, thus constraining the interpretation of results.

Separate measurements performed on the conductivity of the liquid electrolyte [37] indicated that the combined

resistance of this and the separators is likely to be responsible for the high frequency intercept, RHF. The origin of

the other two resistive components, R1 and R2, is currently under investigation. These results are similar to those

seen with lithium-ion batteries that have a dominant cathode impedance [38]; however, there are also noticeable

differences, such as the anode making a more significant contribution to the impedance of the battery in the data

shown here.

The observed anodic resistance may be associated with formation of a solid electrolyte interphase on the surface

of the anode, which is reported to behave differently to those seen in Li-ion batteries [39]. Further work is currently

underway using different cell configurations, more in-depth analysis of the impedance data to elucidate the origins

of the different resistive components, and analysis of impedance data recorded at different states of charge/discharge.

It is anticipated that this research should help identify the major degradation mechanisms in the sodium-ion batteries

studied here.

7. Conclusions

EIS is a powerful in-situ non-destructive technique for monitoring the impedances inside a battery and how they

may change at different stages during battery cycling [40]. More extended analysis of impedance data can provide

significantly more insight than obtained by using complex plane plots alone. In order to maximise the technique

fully, a three-electrode setup is required so that the impedance contributions at each electrode can be separated and

characterised.

A novel in-house three-electrode cell has been built and tested in this work. It eliminates the need for any data

correction and appears to afford superior measurements to many of the cell designs reported in the literature. Data

obtained on a prototype sodium-ion battery using this cell and technique show that the cathode contributes at least

two components to the overall resistance of the cell whereas the anode contributes a single major component. Work

is ongoing using different cell designs and more in-depth analysis to elucidate the origins of the different individual

resistive components. It is anticipated that this research should have important consequences for optimising and

extending the cycle life of new battery systems.
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