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Optic Disc and Cup Segmentation Through Fuzzy

Broad Learning System for Glaucoma Screening
Riaz Ali, Bin Sheng, Ping Li, Member, IEEE, Yan Chen, Huating Li, Po Yang, Younhyun Jung, Jinman Kim,

and C. L. Philip Chen, Fellow, IEEE

Abstract—Glaucoma is an ocular disease that causes perma-
nent blindness if not cured at an early stage. Cup-to-disc ratio
(CDR), obtained by dividing the height of optic cup (OC) with
the height of optic disc (OD), is a widely adopted metric used
for glaucoma screening. Therefore, accurately segmenting OD
and OC is crucial for calculating a CDR. Most methods have
employed deep learning methods for the segmentation of OD
and OC. However, these methods are very time-consuming. We
present a new fuzzy broad learning system-based technique
for OD and OC segmentation with glaucoma screening. We
comprehensively integrated extracting a region of interest (ROI)
from RGB images, data augmentation, extracting red and green
channel images, and inputting them to the two separate fuzzy
broad learning system-based neural networks for segmenting the
OD and OC, respectively, and then calculated CDR. Experiments
show that our fuzzy broad learning system-based technique
outperforms many state-of-the-art methods.

Index Terms—Ocular disease, optic disc and cup, segmentation,
broad learning system, neural networks, fuzzy system.

I. INTRODUCTION

G
LAUCOMA is an ophthalmic disease that causes dam-

age to the optic disc (also called the optic nerve head

(ONH)). It is the second prime cause of blindness worldwide

and can affect everyone from newborn babies to older peo-

ple [1]. Glaucoma is usually assessed in three ways, which are:

measuring the intraocular pressure (IOP), conducting a visual

field test, and examining ONH [2]. However, ONH assessment

is preferred and practiced widely by experts [3]. Cup-to-

disc ratio (CDR) is a clinical measurement that is commonly
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Fig. 1: (a) Image of a normal eye. (b) Boundaries of OD and

OC in a normal eye. (c) Image of a glaucomatous eye. (d)

Boundaries of OD and OC in a glaucoma affected eye.

used by ophthalmologists for ONH assessment [3]. CDR is

calculated as the ratio of the vertical diameter of optic cup

(OC), a yellowish brighter area at the center of optic disc (OD),

to the vertical diameter of OD. Because internal structures

of an eye are affected by the increased pressure caused by

glaucoma, the size of OC increases with respect to the size of

OD; a phenomenon also called cupping [4]. Thence, usually a

larger CDR indicates the presence of glaucoma. Fig. 1 shows

a significant difference in sizes of OD and OC in a healthy and

glaucomatous eye. Traditionally, clinicians calculated CDR by

manually segmenting OD and OC. Yet, manual segmentation

takes huge time and is prone to the subjective judgment of

ophthalmologists. Hence, there is a need for automatic and

fast segmentation of OD and OC for large-scale and efficient

diagnosis of glaucoma.

Several works have been proposed for OD and OC segmen-

tation. Some of them use deep learning, and some employ non-

deep learning-based approaches. The non-deep learning-based

methods are not much time-consuming, but they usually lack

in providing as promising results as deep learning approaches

do. These methods mainly consist of color and contrast

thresholding, region segmentation, and boundary detection

techniques [5], [6]. Most of the modern techniques, which

rely on the features like texture, color, and gradient, do not
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Fig. 2: (a) The structure of a typical Deep Learning-based neural network. (b) The structure of a typical BLS.

perform well on the low contrast images and the images having

pathologies [3]. The work of [7] detected and segmented the

OD from the retinal fundus image by employing a region

growing method. However, it requires high-resolution images

for providing optimal results. Conversely, deep learning sys-

tems learn very complex features effectually due to their

powerful layer-by-layer feature learning abilities [8]–[10], and

therefore, they provide excellent results in image segmentation

tasks. Hence, some methods have used deep learning for OD

and OC segmentation. The technique of [11] used a fully

convolutional neural network (CNN) and transfer learning

for OD segmentation. Nonetheless, this method uses a large

number of parameters for its model, hence takes a lot of

time and GPU memory for training. The technique of [12]

also took a long time for predicting the results and was

complex and difficult to implement [13]. The works of [3]

and other recent deep learning-based methods have performed

well on the respective datasets used for their training and

testing, but may be unable to provide such accurate results

when used practically in hospitals because of the variations

like the camera used for capturing the images, quality of

images, and the people being diagnosed [14]. The task of

OC segmentation is more laborious than OD segmentation

because of the existence of blood vessels and the low contrast

boundary. Increasing the neural network size in deep learning

helps achieve better segmentation results, but it increases the

training time as well. Moreover, some of the methods segment

the OD and OC jointly within the same network model,

which may not produce splendid segmentation of OC. Thus,

a significant challenge in this field is to balance the trade-off

of accuracy and computation cost in utilizing deep learning

approaches for OD/OC segmentation for glaucoma detection.

The key reason leading the high computation cost of a

deep learning-based system is mainly its complex structure

with many layers and a high number of parameters, as shown

in Fig. 2(a). Besides, backpropagation is used to fine-tune

the network and re-calculate the weights. Additionally, the

entire network needs to be retrained when new inputs are

added to the network. These features make deep learning-

based methods consume a lot of time for their training even

on the powerful computers having sufficient GPU. In order

to solve the problem of balancing the trade-off of accuracy

and computation cost of deep learning technique, one new

learning technique called broad learning system (BLS) with

a simpler structure of the flat network (see Fig. 2(b)) was

introduced in [15]. It is usually less time-consuming than deep

learning networks because: (i) Its architecture mainly consists

of three parts: Mapped features, enhancement nodes, and an

output layer; (ii) Its trainable parameters are fewer than deep

learning and are easily computed through ridge regression.

Also, retraining of the full network is not required in a BLS

if the features are to be added later in the network. So, BLS

is efficient in training the models in deep structure. Recently,

many researchers like [16], [17] have employed broad learning

in image recognition, image classification, and other computer

vision applications, and outperformed the deep learning-based

methods significantly in terms of training time.

While the learning accuracy of BLS surpasses the existent

deep learning methods and other similar structures [17], [18],

one significant problem of BLS is that its generality and

stability may be easily degraded due to the existence of

outliers and noise in data [19], which may reduce accuracy

in ONH analysis because retinal images are sometimes noisy.

In order to solve this problem, some authors, like [20]and [21],

have used fuzzy neural networks (FNNs), the learning models

which have the merits of both neural networks (by having

the virtues of connections and learning behavior) and fuzzy

systems (by having IF-THEN fuzzy rules based human-like

reasoning). According to [22], FNNs have the capability to

deal with a problem where the data is imprecise or uncertain,

and the task of identifying object boundaries in an image

is fuzzy in its nature because it involves imprecision and

uncertainty. This property is particularly useful to tiny object

detection in real practice medical images or applications such

as segmentation of OC because there is no distinct outline of

where does the boundary of OC start due to its low contrast

boundary. Recently, Feng et al. [16] have integrated BLS with

fuzzy systems to propose a novel broad learning-based fuzzy

learning system called fuzzy broad learning system (FBLS)

which comprises fuzzy subsystems and enhancement nodes.

The training process in FBLS is significantly reduced because

of its flat network, and the output layer’s weights are calculated
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using pseudoinverse. This system has the combined advantages

of both BLS and fuzzy systems.

Therefore, this paper targets at finding out a practically

effective and efficient glaucoma screening solution by studying

the state-of-the-art OD and OC segmentations. Due to the

efficiency and performance capability of FBLS, we propose

a new method of OD and OC segmentation, which adopts this

learning model. We comprehensively integrated extracting a

region of interest (ROI) from RGB images, data augmenta-

tion, extracting red and green channel images, and inputting

them to the two separate fuzzy broad learning system-based

neural networks for segmenting the OD and OC, respectively,

and then calculated CDR. Experiments show that our fuzzy

broad learning system-based technique outperforms state-of-

the-art methods, and our approach significantly accelerates the

computational time and maintains high accuracy of OD/OC

segmentation and glaucoma detection.

The contributions of our work presented in this paper are:

• A novel broad learning-based fuzzy neural network is

proposed for effective and efficient OD and OC seg-

mentation for glaucoma screening, where the mapped

feature nodes of the original BLS are replaced with

Takagi-Sugeno fuzzy subsystems. Each of these fuzzy

subsystems processes the input data, hence this method

has the advantage of an ensemble structure.

• This approach extracts features more effectively from the

input image because it uses the k-means algorithm to

decide the count of fuzzy rules in every fuzzy subsys-

tem and Gaussian membership functions’ centers. The

application of the k-means technique produces different

centers from the input data for every subsystem, that

assures the generation of more distinct features and

thus results in the extraction of abundant discriminative

information from the input image as compared to BLS.

• An enhanced least square method is designed in the

proposed BLS-based fuzzy model to get the final weights

with smaller training errors. Also, an l1-norm regulariza-

tion is employed to prohibit the model from overfitting.

This makes our approach maintain high accuracy of

OD/OC segmentation and glaucoma detection.

• An extensive in-depth and thorough experimental eval-

uation is carried out to show the robustness and use-

fulness of our technique. The obtained results exhibit

that our method sufficiently outperforms state-of-the-art

algorithms in OD and OC segmentation and glaucoma

classification. Additionally, for evaluation of glaucoma,

we construct a new dataset of retinal images called

Shanghai Chinese Retinal Images Dataset (SCRID) com-

prising 566 retinal fundus images.

II. RELATED WORK

A. Morphological Operations and Reconstruction

Some of the earlier works use morphological operations and

reconstruction for segmenting OD and OC. Nugroho et al.

[4] introduced morphological reconstruction and convex hull

for segmenting OC, while OD is segmented by combining

morphological reconstruction and active contour. However,

active contour models depend on a proper initialization of

OD contour for providing optimal results [14]. In [23], the

dilation operation was used to overcome the problem of the

misclassifying area around the retina after applying threshold-

ing. They also use opening followed by dilation to remove

the irregularity of segmented OD and to give proper disc

size. For segmenting cup, they use a closing operation to

remove blood vasculature in the green color channel. The

work of [24] involved dilation and erosion operations to

eliminate blood vessels in OD, and to smoothen the intensity

around OD. Similarly, [25] also used morphological operations

for removing retinal vasculature and other pathologies and

enhancing OD for getting more accurate segmentation.

B. K-Means Clustering, Superpixel Classification, and Shape-

Based Models

Ayub et al. [26] detected glaucoma via k-means clustering

for color-based segmentation of OD and OC after applying

preprocessing and extracting ROI. K is assigned the value

2 because the entire image is divided into two regions by

preprocessing. Arumugam and Nivedha [27] also segmented

OD by applying k-means clustering after preprocessing and

removing blood vessels. Cheng et al. [2] applied the superpixel

classification technique for segmenting OD and OC. The

former two methods use a simple linear iterative clustering

(SLIC) algorithm to combine neighboring pixels into super-

pixels. The algorithms applied here are more efficient than

the conventional k-means algorithm as the size of the search

region is limited here, which results in less number of distance

calculations. In the shape-based techniques, OD is modeled

as an elliptical or circular object. These methods try to

segment OD by Hough transforms [28] or ellipse fitting [29].

However, these shape-based methods are unsuitable for images

of different color intensities and containing blood vessels.

C. Learning-Based Methods

Many methods like [30]–[32] used machine learning tech-

niques to segment OD and OC. The work of [30] segmented

OD and OC from color fundus images of the retina using

a fully automatic regression-based technique. Initially, it ap-

plies a circular Hough transform to roughly segment OD.

The preliminary shapes of OD and OC are calculated from

the approximated OD obtained from the previous step. The

method repeatedly learns the final shape of OD and OC

from the preliminary shape by a cascaded shape regression

technique. For better performance, a data augmentation tech-

nique is employed to produce artificial training data. Abràmoff

et al. [31] used stereo color photographs for the evaluation

of automatic OD segmentation. They obtained a reference

segmentation of the neuroretinal rim and OC by glaucoma

experts manually. Then, they evaluated stereo pairs and cor-

responding reference standard by pixel feature classification.

However, these approaches rely on the extracted features,

which may help them to perform well on specific datasets

but not on others. Moreover, manual feature extraction makes

these techniques time-consuming. In the recent past, many

methods have used deep learning for OD and OC segmentation
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Fig. 3: Overview of our proposed approach of OD and OC segmentation for glaucoma detection using FBLS.

because of its promising results. Lim et al. [33] applied a

CNN to segment OD and OC. First, they roughly confine

the ROI. Then the ROI is transformed into visual features.

After that, the method generates a pixel-level probability map

of retinal structures through CNN to classify the transformed

image. Finally, boundaries of OD and OC are predicted by

the segmentation of that map. The work of [3] segmented

OD and OC jointly by employing a deep CNN called M-

Net. The essential four parts of M-Net are a multi-scale input

layer, a U-shaped CNN, a side-out layer, and a multi-label

loss function. An image pyramid is built by the input layer.

The U-shaped CNN is the primary structure that learns the

hierarchical features. The side-out layer works as an initial

classifier and generates local prediction maps. Lastly, the final

segmentation map is created by the multi-label loss function.

Additionally, their method applies polar transformation to con-

vert fundus images to a polar coordinate system that produces

better-quality segmentation results. Many other methods have

also utilized deep learning for the segmentation of OD and

OC. Although deep learning-based methods provide excellent

results, they take a long time to train the models.

D. Fuzzy Logic

The authors of [24] employ fuzzy c-means and mor-

phological operations to segment OD and OC but lack in

providing exceptional results as compared to state-of-the-art

approaches. Some authors, like [34] and [35], have obtained

competent results in regression and classification by using

FNNs. Nonetheless, FNNs consume much time in training

the parameters of fuzzy rules because FNNs are trained

like usual neural networks, which take a lot of time for

training. Some researchers have proposed improved algorithms

to overcome the problems present in FNNs. The work of

[36] proposes a hierarchical hybrid FNN in which a few

fuzzy subsystems randomly combine various input features

to form an intermediary output, and then a neural network

handles these intermediate outputs and the remaining input

attributes together to decrease the number of fuzzy rules and

input dimension. An online sequential fuzzy extreme learning

machine is proposed in [37], where membership functions

are assigned the antecedent parameters randomly, and then

corresponding subsequent parameters are determined, which

reduces the learning time of the algorithm. Sun et al. [38]

have developed a fuzzy learning system that aggregates the

data through k-means clustering and derives the membership

functions in every fuzzy rule by using an extreme learning

machine.

Recently, Feng et al. [16] have proposed FBLS, which

comprises fuzzy subsystems and enhancement nodes. In this

approach, every fuzzy subsystem processes the incoming data,

and the features of input data are preserved because the

output of total fuzzy subsystems is dispatched to enhancement

nodes to be transformed nonlinearly. Finally, the weights

connecting the coefficients of every fuzzy subsystem and

output of enhancement nodes with the final output layer

are computed through pseudoinverse. The training process in

FBLS is significantly reduced because of its flat network.

Keeping the need for fast computation and accuracy in mind,

we propose a method of OD and OC segmentation, which is

less time-consuming and provides decent results.

III. PROPOSED METHOD

Fig. 3 shows an overview of our proposed method of

glaucoma detection using OD and OC segmentation. The steps

involved are discussed below:

A. Extracting the Region of Interest

As shown in Fig. 3, the first step of our segmentation

approach is the extraction of an ROI from the original RGB

fundus image. We have used the technique of [39] to get the

ROI. In addition to the OD area, the ROI also contains some

background information to help the network discriminate the

OD from the background.

B. Data Augmentation

Machine learning and deep learning methods need to be

trained on the large datasets for providing optimal perfor-

mance. However, most of the specialized tasks, such as

medical image classifications or segmentation tasks, have

insufficient data. Most of the retinal datasets also contain only

a few hundred images. The models trained with small datasets

do not generalize well and are less accurate in the testing.

Researches such as [40] demonstrated that data augmentation

could prevent this problem. Hence, we have also applied data

augmentation in our method to increase the training data size

artificially. Our data augmentation consists of flipping left-

to-right, flipping top-to-bottom, rotating 90◦ anti-clockwise,
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and adding noise (consisting of Gaussian noise, and salt and

pepper noise). Data augmentation has helped us achieve better

results. Fig. 4 shows a sample segmentation without data

augmentation, which lacks in providing promising results.

Similarly, results without data augmentation are also shown

in Fig. 6, Fig. 7, Fig. 10, and Fig. 11.

Original Image Segmented ImageGround Truth

Fig. 4: A sample of segmentation results without applying data

augmentation.

C. Extracting the Red and Green Channel Images

Compared to other channels, the red channel of an RGB

fundus image is less influenced by blood vessels and shows

more differences between the OD area and background (non-

OD area). Hence, it is a suitable choice for OD segmentation.

Likewise, the green channel is more appropriate for OC

segmentation as the brightness and contrast of OC pixels is

very high in this channel. Therefore, we have split the RGB

image and fed the red channel and green channel images into

two separate FBLSs for segmenting OD and OC, respectively.

Before inputting the red and green channel images to the

FBLSs, the mean intensity value is subtracted from the original

intensity value of each of the channel images, which exposes

the OD and OC areas more clearly for better segmentation.

D. OD and OC Segmentation

Here, we input the Red/Green channel images obtained from

the previous step to FBLS and receive the segmented OD/OC

as an output. Let n denotes the quantity of fuzzy subsystems

in FBLS and m represents the enhancement nodes in FBLS.

So, the input data is represented as X = (x1, x2, . . . , xn)
T ∈

R
n×m. Initially, the input xq = (xq1, xq2, . . . , xqm), q =

1, 2, . . . , n is mapped to the ith fuzzy system by using the

first-order Takagi-Sugeno fuzzy model. xqt denotes a first-

order polynomial in the Takagi-Sugeno fuzzy model, t =
1, 2, . . . ,m. It can be calculated as Eq. (1):

ziqk =

m
∑

t=1

αi
ktxqt (1)

where αi
kt is the coefficient and k = 1, 2, . . . ,Ki denotes the

fuzzy rule’s number in the ith fuzzy model. We have chosen

the Gaussian function as the membership function, which can

be defined as shown in Eq. (2):

µi
kt(xqt) = e

−

(

xi
qt−ci

kt

σi
kt

)

2

(2)

where cikt and σi
kt represent, respectively, width and center of

the Gaussian membership function. We have applied the k-

means technique to get Ki clustering centers. Because of the

k-means method’s randomness in the initial conditions, distinct

centers are selected from the input in every fuzzy subsystem

that helps extract more features due to the working of all fuzzy

subsystems in this ensemble manner. After that, each rule’s

weighted activation level can be calculated as Eq. (3):

ωi
qk =

∏m

t=1 µ
i
kt(xqt)

∑Ki

k=1

∏m

t=1 µ
i
kt(xqt)

(3)

where
∏m

t=1 µ
i
kt(xqt) denotes fire strength of ith fuzzy sub-

system’s kth fuzzy rule. After that, the intermediary output of

qth training sample in the ith fuzzy subsystem is defined as

Eq. (4):

Zqi =
(

ωi
q1z

i
q1, ω

i
q2z

i
q2, . . . , ω

i
qKi

ziqKi

)

(4)

Eq. (5) shows the output vector for the total training samples

in an ith fuzzy subsystem.

Zi = (Z1i, Z2i, . . . , Zni), i = 1, . . . , r (5)

The Eq. (6) shows the intermediate output matrix for r fuzzy

subsystems.

Zr = (Z1, Z2, . . . , Zr) ∈ R
n×(K1+K2+···+Kr) (6)

After that, for preserving the characteristics of inputs, Zr

is nonlinearly transformed by the enhancement nodes, which

is represented in Eq. (7):

Hj = Ψ(Zrωj + βj) , j = 1, . . . , s (7)

where Hj denotes the enhancement nodes transformed from

Zr, ωj and βj are, respectively, weights and bias terms that

connect the fuzzy subsystems’ outputs to their correspondent

enhancement layers and are selected randomly between values

from 0 to 1, Ψ(.) is Sigmoid activation function. The groups

of all the enhancement nodes are computed as Eq. (8):

Hs = (H1, H2, . . . , Hs) (8)

The output obtained from each fuzzy subsystem is trans-

mitted to the top layer, along with the output of enhancement

nodes. Every fuzzy subsystem will be a multi-output model

because the training target Y ∈ R
N×C consists of C compo-

nents. The output vector for ith fuzzy subsystem in qth training

sample is calculated as denoted by Eq. (9):

Fqi =

(

Ki
∑

k=1

λi
k1
ωi
qkz

i
qk, . . . ,

Ki
∑

k=1

λi
kC

ωi
qkz

i
qk

)

=

(

Ki
∑

k=1

λi
k1
ωi
qk

(

m
∑

t=1

αi
kt
xqt

))

, . . . ,

(

Ki
∑

k=1

λi
k1
ωi
qk

(

m
∑

t=1

αi
kC

xqt

))

=

m
∑

t=1

αi
ktxqt

(

ωi
q1, . . . , ω

i
qKi

)







λi
11 . . . λi

1C
...

...

λi
Ki1

. . . λi
KiC







(9)

Eq. (10) shows the output vector for ith fuzzy subsystem’s

total training samples.

Fi = (F1i, F2i, . . . , Fni) = DΩiλi (10)
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where D = diag
∑m

t=1 α
i
ktx1t, . . . ,

∑m

t=1 α
i
ktxnt, and

Ωi =







ωi
11 . . . ωi

1Ki

...
...

ωi
n1 . . . ωi

nKi






, λi =







λi
11 . . . λi

1C
...

...

λi
Ki1

. . . λi
KiC






.

The aggregate output of r fuzzy subsystems is calculated

as shown in Eq. (11):

F r =

r
∑

t=1

Fi =

r
∑

t=1

DΩiλi = D
(

Ω1, . . . ,Ωr
)







λ1

...

λp






= DΩΓ

(11)

where Ω = (Ω1, . . . ,Ωr) is the matrix containing the fire

strengths ωi
qk and Γ = ((λ1)T , . . . , (λr)T )T is comprised of

the parameters to be computed subsequently.

In the end, we connect the output F r of all fuzzy subsystems

and Hs of the enhancement nodes to the output of FBLS

denoted as Y , which is defined as Eq. (12):

Y = F rWf +HsWh

= DΩΓ +HsWh

= (DΩ, Hs)

(

Γ
Wh

)

= PW

(12)

where Wf and Wh, respectively, are the weights of F r and

Hs, and their value is set to 1. P = (DΩ, Hs) and W denotes

the parameter matrix of fuzzy BLS which is comprised of Γ
and Wh and can be calculated through the training targets

Y : W = P+Y .

The vector P+ can be computed by Eq. (13):

P+ = argmin
W

‖PW − Y ‖
2
2 + λ ‖W‖1 (13)

An enhanced least square method is used here to get W with

smaller errors, and λ represents the additional restraints on

the summation of squares of weights in [15]. The former

part is an l2-norm regularization and shows the training

errors. The latter part is an l1-norm regularization. The use

of l1-norm regularization makes the proposed model robust

against outliers [19] and averts our network from overfitting.

The FBLS learns the discriminative features of images and

distinguishes OD/OC from the background of retinal images

and generates the segmentation maps.

E. Area Opening and Morphological Closing

In a few images, the segmentation result generated by FBLS

contains small pixels outside OD and OC regions, which

degrade the segmentation accuracy when the morphological

closing operation is performed on these images. Therefore,

we first perform the area opening operation on the segmented

result obtained from the FBLS to remove those small objects

outside the actual OD and OC area and then perform the

morphological closing operation. We have used the closing

operation to fill the holes in the segmented OD caused by

the presence of blood vessels in that region. Fig. 5 shows

the closed OD images with and without performing an area

opening operation.

Fig. 5: The top and bottom rows show the segmentation results

without and with the area opening operation, respectively.

IV. EXPERIMENTAL RESULTS

A. Datasets

We have performed experiments on one publicly available

dataset RIM-ONE-r3 [41] and one dataset (SCRID) from

the Shanghai Sixth People’s Hospital. We could not get the

ORIGA dataset (used by [3] and [14]) due to the clinical

policies of its owner. The RIM-ONE-r3 dataset consists of

159 fundus images having a resolution of 2144×1424 pixels.

The SCRID dataset contains 566 images of 2048×1536 pixels

resolution. We divided the images in training and testing set

with a ratio of 80% and 20%, respectively, and applied the data

augmentation on only the training images. So, the number of

training images became 635 and 2265 for the RIM-ONE-r3

and the SCRID dataset, respectively.

B. Training Time

One of the significant contributions of our method is the

efficient training of the network model. Table I shows the

training time of our proposed method, along with the training

times of the state-of-the-art methods [3], [11]–[14]. We re-ran

the methods of [3] and [13] with the same division of training

and testing of 80% and 20% respectively, and present the

consumed time in Table I. The reported times of other methods

are taken from the respective papers as we could not get the

codes of other methods to run them on our machine. Some

methods have not provided their setting information. Hence,

we have put “N/A: Not Available” in place of their computing

mode. It can be observed that our method outperforms state-

of-the-art methods by a significant margin in terms of training

time. We ran our method on a workstation having Intel Xeon

E5-2630 v4 CPU with NVIDIA Tesla K80 GPU. The training

times of our method were 127.113 and 231.164 seconds for

the RIM-ONE-r3 and the SCRID datasets, respectively.

C. Quantitative Results

We evaluated the segmentation performance of our tech-

nique using the Dice coefficient (F1 score), which is used by

popular methods like [42], [43]. Dice coefficient, represented

here as DC, is calculated using Eq. (14):

DC =
2|A ∩B|

|A|+ |B|
(14)
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TABLE I: The training time of our method compared with

some of the state-of-the-art methods. (N/A: Not Available)

Method Training Time (seconds) Computing Mode

Fu et al. [3] 5241 ¶ / 18759 * GPU

Sevastopolsky [13] 4623 ¶ / 16247 * GPU

Maninis et al. [11] 11200 ‡ N/A

Zilly et al. [12] 3296 ‡ N/A

Al-Bander et al. [14] ≈ 54000 † GPU

Our Proposed 127.113 ¶ / 231.164 * GPU

The †, ‡, ¶ symbols represent ORIGA, DRIONS-DB, and RIM-ONE-r3
datasets, respectively. The * symbol represents the SCRID dataset.

where, A is the predicted segmentation map, and B is the

ground truth segmentation map.
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Fig. 6: The DC scores of our method, [11], [13], [3], [12], [14],

and [32] for OD and OC segmentation on the RIM-ONE-r3.
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Fig. 7: The DC scores of our method, [13], and [3] for OD

and OC segmentation on the SCRID dataset.

Fig. 6 and Fig. 7 show the comparison of OD and OC

segmentation results of our method with other works in the

literature. The comparison consists of the DC scores. As

discussed earlier, we re-ran the codes of [3] and [13]. The

data for other methods is taken from [13], [14], [32]. The

DC score of our method for OD segmentation for the RIM-

ONE-r3 dataset is 0.973. In addition to this, our proposed

method achieves good results on OC segmentation as we have

employed an entire FBLS-based neural network to segment

OC. As shown in Fig. 6, the DC score of our approach for

OC segmentation for the RIM-ONE-r3 dataset is 0.882. Some

methods have not reported the DC scores for OC segmentation

in their papers; that is why DC scores for OC segmentation

are not shown at some places in Fig. 6. The DC scores of our

method for OD and OC segmentation for the SCRID dataset

are 0.976 and 0.883, respectively, as presented in Fig. 7. It is

evident from these results that our method outperforms state-

of-the-art methods in OD and OC segmentation.

D. Qualitative Results

Fig. 8 and Fig. 9 show the segmentation results of our

method in comparison to [3], [13] on RIM-ONE-r3 and

SCRID datasets, respectively. The first column contains the

original ROI images; the second column shows the images

segmented by our method, the third column shows the result

of Fu et al. [3], the fourth column contains the segmentation

result of [13], and the fifth column shows the ground truth

images. These results exhibit that our method provides better

results of OD and OC segmentation when compared to the

other two techniques.

Original Image Proposed M-Net with PT Ground TruthModified U-Net

Fig. 8: Segmentation results of our method compared with [3],

[13], and the ground truth images of the RIM-ONE-r3 dataset.

Original Image Proposed M-Net with PT Ground TruthModified U-Net

Fig. 9: Segmentation results of our method compared with [3],

[13], and the ground truth images of the SCRID dataset.

E. Glaucoma Screening

We also performed a binary classification on images as

being healthy or glaucoma affected with the help of computed
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CDRs because CDR is an important clinical indicator of glau-

coma progression. CDR = V Dcup/V Ddisc where, V Dcup

and V Ddisc respectively, represent the vertical diameters of

OC and OD. Due to better segmentation of OC, we calculate

the CDR more accurately, and therefore, achieve better results

of glaucoma screening. We compared our classification results

with the experts’ evaluation results provided with the datasets

and computed the accuracy of our method. Fig. 10 and Fig.

11 show the glaucoma diagnosis performance of our method

by reporting the Receiver Operating Characteristic (ROC)

curve with AUC scores for the RIM-ONE-r3 and the SCRID

datasets, respectively. Our method achieves the best AUC

scores of 0.906 and 0.923 for glaucoma screening on the RIM-

ONE-r3 and the SCRID datasets, respectively.

TABLE II: Classification errors on RIM-ONE-r3 and SCRID

Dataset M-Net+PT Modified U-Net BLS Proposed

RIM-ONE-r3 0.156 0.218 0.125 0.093

SCRID 0.088 0.123 0.079 0.061
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Fig. 10: The ROC curves with AUC scores for glaucoma

diagnosis on the RIM-ONE-r3 dataset.
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Fig. 11: The ROC curves with AUC scores for glaucoma

diagnosis on the SCRID dataset.

We also present the classification errors (calculated as

incorrect predictions / total predictions) in the Table II. It is

obvious that our method has lesser errors, 0.093 and 0.061 for

the RIM-ONE-r3 and the SCRID datasets, respectively, than

the other methods and, hence, outperforms them here as well.

F. Significance Test

To show the statistical significance in the calculated CDRs,

we have conducted a non-parametric statistical test, called the

Friedman test [44] with α = 0.05, on the CDRs calculated by

M-Net+PT [3], Modified U-Net [13], and our proposed method

FBLS. We applied the Friedman test on the test set images,

which are 20% of each dataset. Hence, the number of values

becomes 32 from the RIM-ONE-r3 and 113 from the SCRID

dataset. Our method FBLS achieved significantly better results

by reporting p = 0.009 on the RIM-ONE-r3 dataset.

However, the Friedman test only tells that CDRs are s-

tatistically different, but it does not tell which group is

exactly different. Hence, to see where the difference exists,

we need to perform a post hoc test. We performed a post

hoc test by running the Wilcoxon signed-rank test [45]. The

Wilcoxon signed-rank test is a non-parametric test that finds

the difference between two groups of data. So, we performed

this test on different combinations of CDRs computed by

these three methods as: i) FBLS to M-Net+PT ii) FBLS to

Modified U-Net iii) M-Net+PT to Modified U-Net, to find

which one of them is significantly different. Nevertheless,

before looking at the results of Wilcoxon signed-rank, we need

to consider one more thing. As we are performing multiple

tests for comparison, some of these tests will give a p-value

less than 0.05 by chance [46]. To overcome this, we need to

apply a Bonferroni adjustment to the results obtained from

the Wilcoxon tests. The Bonferroni adjustment is computed

by dividing the initial significance level (0.05) by the number

of tests performed. In our case, the new significance level

is obtained as 0.05/3 = 0.017 because we are performing

three comparison tests. When our method is compared with M-

Net+PT, the Wilcoxon signed-rank test gave p = 0.006, which

is less than 0.017. Similarly, p = 0.003 is obtained when we

compare our method with Modified U-Net. The comparison

results of M-Net+PT and Modified U-Net were not statistically

significant because p = 0.66 was achieved when these two

methods were compared.

In the same manner, we performed the Friedman test on the

SCRID dataset. Here, also, our method obtained statistically

significant results by reporting p = 0.001. Besides, we also

conducted a post hoc test with the Wilcoxon signed-rank test

with a Bonferroni adjustment applied. There was no significant

difference between M-Net+PT and Modified U-Net p = 0.761.

Nevertheless, there was significant difference in the results of

FBLS to M-Net+PT p = 0.002 and FBLS to Modified U-Net

p = 0.003.

G. Using SCRID for Training and RIM-ONE-r3 for Testing

To further testify the robustness of our technique, we also

experimented the cross-training by using the SCRID dataset

for training and the RIM-ONE-r3 dataset for testing. The

obtained results are shown in Table III. In these cross-training

results, our approach has gotten the best DC score of 0.856
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for OC segmentation, along with the second-best DC score for

OD segmentation and the second-best AUC score of 0.953 and

0.860, respectively. By looking at these results, we can claim

that our method provides competent results on unseen images

when compared with the other state-of-the-art methods.

TABLE III: DC and AUC scores of cross-training.

Technique
DC Score for

OD Segmentation
DC Score for

OC Segmentation
AUC

Sevastopolsky [13] 0.939 0.813 0.845

Fu et al. [3] 0.948 0.838 0.864

Wang et al. [32] 0.959 0.847 0.853

BLS 0.951 0.849 0.856

Proposed 0.953 0.856 0.860

H. Results on the REFUGE and the DRISHTI-GS1 Datasets

We also performed the experiments on the REFUGE [42]

and DRISHTI-GS1 [43] datasets to show the strength and po-

tential of our method. The REFUGE dataset consists of 1200

images equally divided into three parts: training set, validation

set, and test set (each of the three parts contains 400 images).

The resolution of training set images is 2124×2056 pixels,

and the validation and test images are of the 1634×1634 pixels

size. We trained our technique on the training set and evaluated

it on the test set images. Then, we compared our results with

the results of the top three teams from the REFUGE challenge

[42] organized in conjunction with MICCAI 2018. The DC

scores compared with the best three methods in terms of OD

and OC segmentation are reported in Table IV. Our method

obtained the best DC scores of 0.9743 and 0.8845 for OD and

OC segmentation, respectively.

TABLE IV: Comparison of DC scores on the REFUGE.

Technique For OD Segmentation For OC Segmentation

Team CUHKMED 0.9602 0.8826

Team Masker 0.9464 0.8837

Team BUCT 0.9525 0.8728

BLS 0.9621 0.8823

Proposed 0.9743 0.8845

We also compared the AUC scores of our method with

the top three methods in terms of the best AUC scores.

Those results are presented in Table V. Here, our approach

obtained the third-best AUC score of 0.9721. These results

also demonstrate a satisfactory performance of our method

on the REFUGE dataset when compared with state-of-the-art

algorithms.

TABLE V: AUC scores on the REFUGE dataset.

Technique AUC Score

Team VRT 0.9885

Team SDSAIRC 0.9817

Team CUHKMED 0.9644

BLS 0.9673

Proposed 0.9721

The DRISHTI-GS1 dataset comprises 101 images having

a resolution of 2896×1944 pixels. The dataset is split into

training and test set containing 50 and 51 images, respectively.

The DC scores for OD and OC segmentation and AUC score

of our approach compared with [13], [3] and [32] are shown

in Table VI. As seen from the results in Table VI, our method

has achieved the best DC scores of 0.968 and 0.880 for

segmenting OD and OC, respectively. Moreover, our technique

has also gotten the best AUC score of 0.887. These results also

show that our method performs better than some of the best

algorithms on the DRISHTI-GS1 dataset.

TABLE VI: Comparison of our method’s DC and AUC scores

with state-of-the-art methods on the DRISHTI-GS1 dataset.

Technique
DC Score for

OD Segmentation
DC Score for

OC Segmentation
AUC

Sevastopolsky [13] 0.947 0.850 0.849

Fu et al. [3] 0.953 0.861 0.864

Wang et al. [32] 0.965 0.858 0.858

BLS 0.964 0.865 0.870

Proposed 0.968 0.880 0.887

I. Segmentation in Noisy Images

The presence of noise in the retinal images makes it hard

to perform an accurate segmentation of OD/OC. We tested

the performance of our technique on noisy images, and one

sample segmentation is shown in Fig. 12. These results also

indicate that our approach generates decent results on noisy

images.

Original Image Segmented ImageGround Truth

Fig. 12: A sample of the performance on a noisy image.

J. Limitation

One of the limitations of our method is that it requires pre-

processing and post-processing for providing optimal results.

Another limitation may be the need to extract individual

channels to perform the segmentation (red channel for OD and

green channel for OC segmentation), which is unlike some of

the other methods which directly work on RGB fundus images.

V. CONCLUSION

In this paper, we have presented a novel technique of OD

and OC segmentation, which adopts the fuzzy broad learning

system. The proposed approach outperforms the state-of-the-

art techniques in terms of network training time, OD and

OC segmentation, and glaucoma screening results. The main

advantage of our method is the efficient training process

due to which it can be trained even on machines without

having a GPU. Because of the fast training, our proposed

work uses an entire FBLS-based neural network for OC
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segmentation, which helps it attain more accurate OC seg-

mentation results. The experiments performed on the RIM-

ONE-r3 and the SCRID datasets show promising results of

OD and OC segmentation. Additionally, CDR was calculated

with the help of the segmented OD and OC. With the help of

the calculated CDR, our method provides better performance

on glaucoma diagnosis as compared to many contemporary

glaucoma screening algorithms.

REFERENCES

[1] GRF, “Glaucoma facts and stats,” https://www.glaucoma.org/glaucoma/
glaucoma-facts-and-stats.php, 2019.

[2] J. Cheng, J. Liu, Y. Xu, F. Yin, D. W. K. Wong, N.-M. Tan, D. Tao,
C.-Y. Cheng, T. Aung, and T. Y. Wong, “Superpixel classification based
optic disc and optic cup segmentation for glaucoma screening,” IEEE

Transactions on Medical Imaging, vol. 32, no. 6, pp. 1019–1032, 2013.

[3] H. Fu, J. Cheng, Y. Xu, D. W. K. Wong, J. Liu, and X. Cao, “Joint
optic disc and cup segmentation based on multi-label deep network and
polar transformation,” IEEE Transactions on Medical Imaging, vol. 37,
no. 7, pp. 1597–1605, 2018.

[4] H. A. Nugroho, W. K. Z. Oktoeberza, A. Erasari, A. Utami, and C. Cahy-
ono, “Segmentation of optic disc and optic cup in colour fundus images
based on morphological reconstruction,” in International Conference on

Information Technology and Electrical Engineering, 2017, pp. 1–5.

[5] A. Almazroa, R. Burman, K. Raahemifar, and V. Lakshminarayanan,
“Optic disc and optic cup segmentation methodologies for glaucoma
image detection: A survey,” Journal of Ophthalmology, vol. 2015, pp.
180 972:1–180 972:28, 2015.

[6] S. Aleem, B. Sheng, P. Li, P. Yang, and D. D. Feng, “Fast and accurate
retinal identification system: Using retinal blood vasculature landmarks,”
IEEE Transactions on Industrial Informatics, pp. 1–12, 2018.

[7] S. Omid, J. Shanbehzadeh, Z. Ghassabi, and S. S. Ostadzadeh, “Op-
tic disc detection in high-resolution retinal fundus images by region
growing,” in International Conference on Biomedical Engineering and

Informatics, 2015, pp. 101–105.

[8] S. Shao, S. McAleer, R. Yan, and P. Baldi, “Highly accurate machine
fault diagnosis using deep transfer learning,” IEEE Transactions on

Industrial Informatics, vol. 15, no. 4, pp. 2446–2455, 2019.

[9] C. Sun, M. Ma, Z. Zhao, S. Tian, R. Yan, and X. Chen, “Deep transfer
learning based on sparse autoencoder for remaining useful life prediction
of tool in manufacturing,” IEEE Transactions on Industrial Informatics,
vol. 15, no. 4, pp. 2416–2425, 2019.

[10] X. Yuan, B. Huang, Y. Wang, C. Yang, and W. Gui, “Deep learning-
based feature representation and its application for soft sensor modeling
with variable-wise weighted SAE,” IEEE Transactions on Industrial

Informatics, vol. 14, no. 7, pp. 3235–3243, 2018.

[11] K.-K. Maninis, J. Pont-Tuset, P. Arbeláez, and L. Van Gool, “Deep
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