This is a repository copy of Synthesis, structure and dielectric properties of a new family of phases, ABC3O11 : A = La, Pr, Nd, Sm, Gd; B = Zr, Hf; C = Ta, Nb.

White Rose Research Online URL for this paper:
http://eprints.whiterose.ac.uk/161431/

Version: Accepted Version

Article:

Ros, F.C., Reeves-McLaren, N. orcid.org/0000-0002-1061-1230, Masó, N. et al. (1 more author) (2019) Synthesis, structure and dielectric properties of a new family of phases, ABC3O11 : A = La, Pr, Nd, Sm, Gd; B = Zr, Hf; C = Ta, Nb. Journal of the Australian Ceramic Society, 55 (2). pp. 305-314. ISSN 2510-1560
https://doi.org/10.1007/s41779-018-0236-x

This is a post-peer-review, pre-copyedit version of an article published in Journal of the Australian Ceramic Society. The final authenticated version is available online at: http://dx.doi.org/10.1007/s41779-018-0236-x

Reuse

Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of the full text version. This is indicated by the licence information on the White Rose Research Online record for the item.

Takedown

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

- Authors

Fadhlina Che Ros, Nik Reeves-McLaren, Nahum Masó and Anthony R West

- Title

Synthesis, structure and dielectric properties of a new family of phases, $\mathrm{ABC}_{3} \mathrm{O}_{11}: \mathbf{A}=\mathrm{La}, \mathrm{Pr}$, Nd, Sm, Gd; B = Zr, Hf; C = Ta, Nb

- Affiliations and addresses of authors

Nik Reeves-McLaren, Anthony R West
Department of Materials Science and Engineering, Mappin Street, University of Sheffield, Sheffield S13JD, United Kingdom

Nahum Masó
Institute of Chemical Technology (ITQ), Technical University of Valencia (UPV), Camino de Vera, s/n 46022, Valencia, Spain

Corresponding author
Fadhlina Che Ros
Physics Department, Centre for Defence Foundation Studies, National Defence University of Malaysia, Sungai Besi Camp, 57000 Kuala Lumpur, Malaysia
fadhlina@upnm.edu.my
Tel: +603-90514437

Abstract

: Eight new phases with the general formula of $\mathrm{ABC}_{3} \mathrm{O}_{11}$ with different rare-earth, (Zr, Hf), (Nb, Ta) combinations, have been prepared by solid-state reactions at a temperature range of $1200^{\circ}-1500^{\circ} \mathrm{C}$. The new phases: LaHfTa, LaHfNb, LaZrNb, PrHfTa, NdHfTa, NdHfNb, SmHfTa and GdHfTa are characterised by X-ray and neutron diffraction data at room temperature and variable frequency impedance measurements. They are isostructural with $\mathrm{LaZrTa}_{3} \mathrm{O}_{11}$ which consist of alternating single layers of UO_{7} pentagonal bipyramids and octahedra as shown by Rietveld refinement of X-ray and neutron powder diffraction data. Lattice parameters decrease with decreasing size of rare earth elements substitution at A -site and of all, Gd is the smallest rare earth that formed $\mathrm{LaZrTa} \mathrm{O}_{3} \mathrm{O}_{11}$ analogues. Detailed attempts of attained and unattainable $\mathrm{LaZrTa}_{3} \mathrm{O}_{11}$ analogues with different temperatures are included in this paper. All phases are highly insulating with temperature-independent bulk permittivities in the range 17 to 50 ; LaHfNb demonstrates the highest permittivity. Arrhenius plot shows that the activation energies are in the range 0.8 to 1.94 eV .

Keywords: $\mathrm{U}_{3} \mathrm{O}_{7}$ pentagonal bipyramids; Rare-earth; Low permittivity; Rietveld refinement

- Acknowledgments

We thank EPSRC and The Ministry of Higher Education of Malaysia for their financial support through the research grant of Fundamental Research Grant Scheme (FRGS) no. FRGS/1/2017/STG07/UPNM/02/2.

Introduction

The crystal structure of $\mathrm{LaZrTa}_{3} \mathrm{O}_{11}$ was first reported [1] in 1991 and was indexed on an orthorhombic unit cell, $\mathrm{a}=10.890(3) \AA, \mathrm{b}=12.450(3) \AA$ and $\mathrm{c}=6.282(2) \AA$. However, its true symmetry was subsequently shown to be hexagonal with a geometrically-related unit cell and space group $\mathrm{P}_{3} 22\left(\mathrm{~N}^{\mathrm{o}}\right.$ 182) with $\mathrm{a}=6.2824(2) \AA, \mathrm{c}=12.4469 \AA$ and $\mathrm{Z}=2$ [2].
$\mathrm{LaZrTa}_{3} \mathrm{O}_{11}$ is isostructural with $\mathrm{CaTa}_{4} \mathrm{O}_{11}$ [3] which belongs to a series of compounds [4] with general formula $\mathrm{Me}_{\mathrm{x}}(\mathrm{Nb}, \mathrm{Ta})_{3 \mathrm{n}+1} \mathrm{O}_{8 \mathrm{n}+3}$, e.g. $\mathrm{n}=1: \mathrm{CaTa}_{4} \mathrm{O}_{11}, \mathrm{Na}_{2} \mathrm{Nb}_{4} \mathrm{O}_{11}, \mathrm{Na}_{2} \mathrm{Ta}_{4} \mathrm{O}_{11}, \mathrm{~K}_{2} \mathrm{Ta}_{4} \mathrm{O}_{11}, \mathrm{Ag}_{2} \mathrm{Nb}_{4} \mathrm{O}_{11}$, $\mathrm{Ag}_{2} \mathrm{Ta}_{4} \mathrm{O}_{11}$ and " $\mathrm{Cu}_{2} \mathrm{Ta}_{4} \mathrm{O}_{11}$ "; $\mathrm{n}=2: \mathrm{RETa}_{7} \mathrm{O}_{19}$ where $\mathrm{RE}=\mathrm{La}-\mathrm{Eu}, \mathrm{Y}$ and Bi ; intergrowth of 1 and 2: $\mathrm{Cu}_{5} \mathrm{Ta}_{11} \mathrm{O}_{30}$. These phases are structurally-related to $\alpha-\mathrm{U}_{3} \mathrm{O}_{8}$ whose structure exhibits layers of UO_{7} pentagonal bipyramids sharing edges in the equatorial plane and apical oxygens [5]. These layers are repeated identically in the perpendicular direction. However, the $\mathrm{LaZrTa}_{3} \mathrm{O}_{11}$ structure has an alternating single layer of $(\mathrm{Ta}, \mathrm{Zr}) \mathrm{O}_{7}$ pentagonal bipyramids with layers containing ($\left.\mathrm{Ta}, \mathrm{Zr}\right) \mathrm{O}_{6}$ octahedra and LaO_{8} polyhedron; consecutive $(\mathrm{Ta}, \mathrm{Zr}) \mathrm{O}_{7}$ layers are rotated by 180° relative to each other. La occupies an octahedral 2 c site and a $3: 1$ disordered distribution of Ta and Zr occupy 6 g pentagonal bipyramidal and 2d octahedral sites. Figure 1 illustrates the layers of pentagonal bypiramids alternating with octahedra. $\mathrm{LaZrTa}_{3} \mathrm{O}_{11}$ is highly insulating with electrical conductivity as low as $3 \times 10^{-7} \mathrm{ohm}^{-1}$ cm^{-1} at $800^{\circ} \mathrm{C}[1]$.

Given the ferroelectric and antiferroelectric nature of some structurally-related materials [6-9], namely $\mathrm{Ag}_{2} \mathrm{Nb}_{4} \mathrm{O}_{11}, \mathrm{Na}_{2} \mathrm{Nb}_{4} \mathrm{O}_{11}$ and its solid solution $\left(\mathrm{Na}_{1-\mathrm{x}} \mathrm{Ag}_{\mathrm{x}}\right) \mathrm{Nb}_{4} \mathrm{O}_{11}$, it has been of interest to seek other members of this structural family and to evaluate their electrical properties. In this work, the synthesis of phases isostructural with $\mathrm{LaZrTa}_{3} \mathrm{O}_{11}$ with the general formula of $\mathrm{ABC}_{3} \mathrm{O}_{11} ; \mathrm{A}=\mathrm{La}^{3+}, \mathrm{Pr}^{3+}, \mathrm{Nd}^{3+}$, $\mathrm{Sm}^{3+}, \mathrm{Gd}^{3+}, \mathrm{B}=\mathrm{Zr}^{4+}, \mathrm{Hf}^{4+}$ and $\mathrm{C}=\mathrm{Ta}^{5+}, \mathrm{Nb}^{5+}$ is reported. Structure determination by Rietveld refinement of several of the new phases were determined using X-ray and neutron powder diffraction data. A preliminary measurement of their electrical properties was made using impedance spectroscopy.

Experimental

Starting materials were $\mathrm{Ta}_{2} \mathrm{O}_{5}, \mathrm{Nb}_{2} \mathrm{O}_{5}, \mathrm{ZrO}_{2}, \mathrm{HfO}_{2}, \mathrm{La}_{2} \mathrm{O}_{3}, \mathrm{Pr}_{6} \mathrm{O}_{11}, \mathrm{Nd}_{2} \mathrm{O}_{3}$ (99.9% pure, Stanford Materials) and $\mathrm{Sm}_{2} \mathrm{O}_{3}, \mathrm{Gd}_{2} \mathrm{O}_{3}$ (99.9% pure, Sigma Aldrich). They were dried at $800^{\circ}-1000^{\circ} \mathrm{C}$ and stored under vacuum. Mixtures totalling 3-5g were weighed, mixed with acetone using an agate mortar and pestle, dried, pressed into pellets and fired in Pt crucibles in the air in electric muffle furnaces. The mixtures were heated at different times and temperatures in the range $1000^{\circ}-1500^{\circ} \mathrm{C}$ for up to 3 days; intermittently. Pellets were removed from the furnace, crushed into a fine powder, repelleted and returned to the furnace. Reaction conditions were determined by trial and error, taking account of the refractory nature of the oxide reagents which meant that long period at high temperatures were required for the reaction to occur. Not any of the compositions, Table 1 are single phase products. The residual amounts of secondary phases remained, even after repeated firing. However, a relatively small amount of impurity is negligible for some compositions since they barely affect the results.

Phase analysis by X-ray powder diffraction (XRD) was carried out using a STOE Stadi P diffractometer, $\mathrm{CuK} \alpha_{1}$ radiation $(\lambda=1.54056 \AA)$. NIST 640 d Si was used as an external standard for line position calibration. Data were processed and compared against reference data in the ICDD's PDF-2 database using the WinX ${ }^{\text {Pow }}$ software package. Room temperature time-of-flight (ToF) neutron powder diffraction (ND) data were collected on the General Materials diffractometer, (GEM) at the ISIS facility, Rutherford Appleton Laboratory, RAL, Oxford for $\mathrm{LaHfNb}_{3} \mathrm{O}_{11}$ powder in a vanadium can. Data were collected in the backscattering detector bank $\left(50.07^{\circ}-74.71^{\circ}\right)$, bank 4 with resolution $\Delta \mathrm{Q} / \mathrm{Q} \sim 0.79 \times$ 10^{-2}. Rietveld refinement was performed using the EXPGUI interface for GSAS and both XRD and ND data.

For electrical measurements, cylindrical sintered pellets were coated with Pt paste electrodes on opposite faces and hardened by heating in the air at $800^{\circ} \mathrm{C}$ for 2 h . The samples, with electrodes attached, were placed in a ceramic compression jig inside a furnace controlled and measured to $\pm 1^{\circ} \mathrm{C}$. Impedance spectroscopy (IS) measurements were performed using Hewlett Packard 4192A and Solartron $1260 / 1286$ impedance analysers at frequencies $10 \mathrm{~Hz}-1 \mathrm{MHz}$ and $1 \mathrm{kHz}-1 \mathrm{MHz}$,
respectively. Impedance data were recorded between room temperature and $800^{\circ} \mathrm{C}$ in the air with 100 mV applied ac voltage. Data were corrected for overall pellet geometry and for the blank cell capacitance (jig correction) and analysed using the software program ZView.

Results and Discussion

Reaction Conditions and Products

Results of the attempted synthesis of new phases with different rare-earth $-\mathrm{Zr}, \mathrm{Hf}-\mathrm{Nb}, \mathrm{Ta}$ combinations are summarised in Table 1. Eight new phases, in addition to $\mathrm{LaZrTa}_{3} \mathrm{O}_{11}$, were prepared and for each, the synthesis conditions are detailed. Attempted synthesis of a further 12 new phases was unsuccessful; details of the reaction conditions and products, in which there was no evidence of formation of a phase with the $\mathrm{LaZrTa}_{3} \mathrm{O}_{11}$ structure, are given in Table 1(b).

The new phases were readily recognised by the similarity of their XRD patterns to that of $\mathrm{LaZrTa}_{3} \mathrm{O}_{11}$. Powder XRD patterns of these new phases are shown in Figures 2 and 3 for the Ta-based and Nb-based compositions, respectively. Indexed data for one analogue, $\mathrm{LaHfTa}_{3} \mathrm{O}_{11}$, are given in Table 2; data for all the analogue have been submitted for inclusion in the ICDD powder diffraction file. Unit cell data are summarised in Table 3.

The lattice parameters decreased on the substitution of La by smaller rare earth elements. Gd was the smallest rare earth that formed $\mathrm{LaZrTa}_{3} \mathrm{O}_{11}$ analogue. With three cationic components in each phase: rare earth, $\mathrm{Zr} / \mathrm{Hf}$ and $\mathrm{Nb} / \mathrm{Ta}$, there is a complex interplay between ion size, possible formation of $\mathrm{LaZrTa}_{3} \mathrm{O}_{11}$ analogue and its thermal stability. It was found that a standard set of synthesis conditions could not be used for all the new phases. In general, higher reaction temperatures ($\sim 1500^{\circ} \mathrm{C}$) were required to obtain Ta-based phases compared to the reaction temperatures needed for the Nb analogues $\left(1200^{\circ}-1300^{\circ} \mathrm{C}\right)$, consistent with the lower reactivity of $\mathrm{Ta}_{2} \mathrm{O}_{5}$ compared to $\mathrm{Nb}_{2} \mathrm{O}_{5}$. However, fewer Nb-based family members were prepared successfully, and those that did form had less thermal stability than the Ta analogues and decomposed at above $\sim 1400^{\circ} \mathrm{C}$.

For Ta-based phases, $\operatorname{LaHfTa}_{3} \mathrm{O}_{11}$ was the easiest to prepare and obtain as a phase with $\mathrm{LaZrTa}_{3} \mathrm{O}_{11}$ structure, whereas the smaller rare earths require increasingly longer reaction times and lower temperatures. $\mathrm{SmHfTa}_{3} \mathrm{O}_{11}$ and $\mathrm{GdHfTa}_{3} \mathrm{O}_{11}$ started to form at $1200^{\circ} \mathrm{C}$, as shown by the traces of $\mathrm{LaZrTa} 3_{3} \mathrm{O}_{11}$ patterns in the XRD data. The impurity phases remained similar until $1400^{\circ} \mathrm{C}$, although peak intensities decreased with time, Sm, Gd target phases were still not phase-pure and decomposed after increasing the temperature to $1500^{\circ} \mathrm{C}$

In the niobate systems, only three compositions produced $\mathrm{LaZrTa}_{3} \mathrm{O}_{11}$ analogues: $\mathrm{LaHfNb}_{3} \mathrm{O}_{11}$, $\mathrm{LaZrNb}_{3} \mathrm{O}_{11}$ and $\mathrm{NdHfNb}_{3} \mathrm{O}_{11}$, which are all formed at temperatures in the range $1150^{\circ}-1300^{\circ} \mathrm{C}$. These niobates have lower thermal stability than their corresponding tantalates. $\mathrm{LaHfNb}_{3} \mathrm{O}_{11}$ has an upper limit of stability at $1300^{\circ} \mathrm{C}$ before melting at $1350^{\circ} \mathrm{C}, \mathrm{NdHfNb}_{3} \mathrm{O}_{11}$ appears to have an upper limit of stability at $\sim 1200^{\circ} \mathrm{C}$ and $\mathrm{LaZrNb} \mathrm{O}_{3} \mathrm{O}_{11}$ appears to be on the edge of stability at $1150^{\circ} \mathrm{C}$. The presence of $\mathrm{LaZrTa}_{3} \mathrm{O}_{11}$ phase was detected after $\sim 36 \mathrm{~h}$ but decomposed to $\mathrm{LaNb}_{3} \mathrm{O}_{9}$ after another 12 h of reaction time.

Structure Refinements

Rietveld refinement using XRD data was carried out for three compositions: $\mathrm{LaHfTa}_{3} \mathrm{O}_{11}, \mathrm{PrHfTa}_{3} \mathrm{O}_{11}$ and $\mathrm{NdHfTa}_{3} \mathrm{O}_{11}$. For the fourth composition, $\mathrm{LaHfNb}_{3} \mathrm{O}_{11}$, combined refinement using XRD and ND data was conducted. For each refinement, the crystal structure of $\mathrm{LaZrTa}_{3} \mathrm{O}_{11}$ was used as the starting model with La on octahedral 2 c sites, Ta and Hf disordered in a fixed 1:3 ratio on octahedral 6 g and 2 d sites and oxygen on $4 \mathrm{f}, 6 \mathrm{~g}$ and 12 i sites. Total occupancies for all sites were fixed at unity; background and peak profile parameters were refined first using the Chebyschev function with ten terms for the background. This was followed by the single positional variable for the 6 g site and simultaneous refinement of the isotropic thermal parameters, $\mathrm{U}_{\text {iso }}$, of the cation sites until convergence, with negligible shifts in atomic variables.

The statistical measures and visual fits shown in Figures $4-7$ were relatively good. For $\mathrm{LaHfTa}_{3} \mathrm{O}_{11}$, $\chi^{2}=4.704, \mathrm{R}$ factors $<7 \%$ and thermal, or $\mathrm{U}_{\text {iso }}$, parameters were all refined to acceptable, positive
values. For $\mathrm{PrHfTa}_{3} \mathrm{O}_{11}$ and $\mathrm{NdHfTa}_{3} \mathrm{O}_{11}$, good fits were also obtained with acceptable statistical measures. $\mathrm{U}_{\text {iso }}$ values were positive for all atoms, indicating that the statistical occupancies of Ta, Hf over both sites is reasonable; with the χ^{2} value for $\mathrm{PrHfTa}_{3} \mathrm{O}_{11}$ at 7.475 compared to 5.996 for $\mathrm{NdHfTa}_{3} \mathrm{O}_{11}$. The final atomic coordinates and bond distances are presented in Tables 4 and 5. The unreacted HfO_{2} peak in $\mathrm{LaHfTa}_{3} \mathrm{O}_{11}$ and $\mathrm{PrHfTa}_{3} \mathrm{O}_{11}$ was so small that it could barely affect the refinements with the weight fraction 0.165% and 0.047%, respectively. As for $\mathrm{NdHfTa}_{3} \mathrm{O}_{11}$, impurities of $\mathrm{NdTa}_{3} \mathrm{O}_{9}$ and un-reacted HfO_{2} are taken into account with weight fraction 1.236% and 0.774%, respectively; with the lattice parameters obtained for $\mathrm{NdTa}_{3} \mathrm{O}_{9}: \mathrm{a}=3.9127(9) \AA, \mathrm{c}=7.865(3) \AA$.

For $\mathrm{LaHfNb}_{3} \mathrm{O}_{11}$, the ToF ND data were collected at room temperature. The background, diffractometer constant DIFA, and peak profiles were refined for the ToF histogram with fixed values of lattice parameters and unit cell volume, which were then refined together with atomic positions and $\mathrm{U}_{\text {iso }}$, with initial values of $0.005 \AA^{2}$. The whole process was repeated until convergence. Combined structure refinement gave a good visual fit and statistical measures (Figure 7, Table 4), although χ^{2} was inconsiderably high, 5.878.

These new phases are isostructural with $\mathrm{LaZrTa}_{3} \mathrm{O}_{11}$ which contains two layers of pentagonal bipyramids related by the 6_{3} symmetry axis sharing edges. Both octahedral layers, i.e. ($\mathrm{Ta} / \mathrm{Nb}$, $\mathrm{Hf} / \mathrm{Zr})(1) \mathrm{O}_{7}$ and $(\mathrm{Ta} / \mathrm{Nb}, \mathrm{Hf} / \mathrm{Zr})(2) \mathrm{O}_{6}$ contain a disordered 3:1 ratio of $\mathrm{Ta} / \mathrm{Nb}$ and $\mathrm{Hf} / \mathrm{Zr}$, where $(\mathrm{Ta} / \mathrm{Nb}$, $\mathrm{Hf} / \mathrm{Zr})(1) \mathrm{O}_{7}$ at $\mathrm{z}=0$ and $1 / 2$ corner-share four of their oxygens, $\mathrm{O}(1)$ and $\mathrm{O}(2)$ with each other and have two apical oxygens, $\mathrm{O}(3)$ along the z -axis. Meanwhile, $(\mathrm{Ta} / \mathrm{Nb}, \mathrm{Hf} / \mathrm{Zr})-\mathrm{O}_{6}$ and REO_{6} octahedra that are located at $\mathrm{z}=1 / 4$ and $3 / 4$ are formed by the apical oxygens; three in the layer below and above ($\mathrm{Ta} / \mathrm{Nb}$, $\mathrm{Hf} / \mathrm{Zr})(1)-\mathrm{O}_{7}$ octahedra.

Electrical Properties

Impedance measurements for several of the new phases over the range from room temperature to 800° C showed that are all excellent insulators. The permittivities of $\mathrm{ABC}_{3} \mathrm{O}_{11}$ are in the range $17 \leq \varepsilon^{\prime} \leq 50$ and are essentially frequency - independent over the range 10^{4} to $10^{7} \mathrm{~Hz}$, Figure 8. The highest
permittivity is shown by $\mathrm{LaHfNb}_{3} \mathrm{O}_{11}, \sim 50$, whilst the lowest is $\mathrm{SmHfTa}_{3} \mathrm{O}_{11}, \sim 17$. The capacitance data of the tantalates from room temperature to $400^{\circ} \mathrm{C}$ were independent of frequency and temperature. The conductivity of all the samples was too low to measure at room temperature with the available instrumentation, indicative of highly insulating materials with $\mathrm{R} \gg 10^{9} \Omega \mathrm{~cm}$. At higher temperatures, the conductivity data were obtained from IS measurements and are shown as Arrhenius plots in Figure 9. The highest conductivity was found for $\mathrm{LaHfNb}_{3} \mathrm{O}_{11}, \sim 10^{-5} \Omega^{-1} \mathrm{~cm}^{-1}$ at 1000 K . The activation energy, E_{a} for conduction obtained from the gradient of the Arrhenius plots was in the range 0.8 and 1.94 eV .

Figure 10 shows the bulk permittivity, ε_{∞}, of the tantalates phases at room temperature plotted against ionic radii of rare earth elements. The bulk permittivity decreased with decreasing ionic radius; replacing Ta^{5+} by Nb^{5+} in one case increased the permittivity significantly.

Conclusions

A new family of phases based on $\mathrm{LaZrTa}_{3} \mathrm{O}_{11}$ with the general formula of $\mathrm{ABC}_{3} \mathrm{O}_{11}: \mathrm{A}=\mathrm{La}, \mathrm{Pr}, \mathrm{Nd}$, $\mathrm{Sm} ; \mathrm{B}=\mathrm{Zr}, \mathrm{Hf}$ and $\mathrm{C}=\mathrm{Ta}, \mathrm{Nb}$, but not all combinations, has been prepared by solid state reaction. The successful elements combinations are LaHfTa, LaHfNb, LaZrNb, PrHfTa, NdHfTa, NdHfNb, NdZrNb, SmHfTa and GdHfTa. However, none were completely in phase pure as $\mathrm{ATa}_{3} \mathrm{O}_{9}$ and un-reacted raw materials were often present. Similar to $\mathrm{LaZrTa}_{3} \mathrm{O}_{11}$, all new phases were indexed on the hexagonal space group $\mathrm{P}_{3} 22$; unit cell parameters and cell volume decreased with decreasing size of A .

The temperatures necessary for the sample synthesis depend on the size of A and C. Most AHfTa combinations were prepared at $1500^{\circ} \mathrm{C}$ except for SmHfTa and GdHfTa which were prepared at 1400° C and decomposed at $1500^{\circ} \mathrm{C} . \mathrm{AHfNb}_{3} \mathrm{O}_{11}$ compounds were prepared at $1150^{\circ}-1300^{\circ} \mathrm{C}$, which was significantly lower than required to synthesise the tantalates. With smaller rare earth ions, it was generally found to be increasingly difficult to eliminate secondary phases. Gd appears to be the smallest rare earth that allows formation of $\mathrm{LaZrTa}_{3} \mathrm{O}_{11}$ analogue phases.

The crystal structures have been confirmed by Rietveld refinement using both XRD and NPD data in space group $\mathrm{P}_{3} 22$. All four structures that were refined contain a random distribution of $(\mathrm{Ta}, \mathrm{Nb})$ and Hf in the ration 3:1 over the two sites of edge-sharing octahedra.

All samples were insulating at room temperature and higher temperatures were required to obtain conductivity data. The activation energies are in the range $0.8-1.74 \mathrm{eV}$, consistent with the insulating nature of the materials. The capacitances of all the samples, in the form of sintered pellets, are frequency - independent at low temperatures, and gradually increased as the temperature increased. Of all the samples, $\mathrm{LaHfNb}_{3} \mathrm{O}_{11}$ exhibits the highest permittivity ~ 50. There was no evidence of any ferroic transitions, but it would be interesting to measure the low temperature electrical properties of $\mathrm{LaHfNb}_{3} \mathrm{O}_{11}$.

Acknowledgments

We thank EPSRC and The Ministry of Higher Education of Malaysia for financial support through the research grant of Fundamental Research Grant Scheme (FRGS) no. FRGS/1/2017/STG07/UPNM/02/2.

References

1. Zheng, C. and West, A.R.: Compound and solid solution formation, phase equilibria and electrical properties in the ceramic system $\mathrm{ZrO}_{2}-\mathrm{La}_{2} \mathrm{O}_{3}-\mathrm{Ta}_{2} \mathrm{O}_{5}$. J. Mater. Chem. 1, 163-167 (1991)
2. Grins, J., Nygren, M., Zheng, C. et al.: Structure of $\mathrm{LaZrTa}_{3} \mathrm{O}_{11}$, a $\mathrm{CaTa}_{4} \mathrm{O}_{11}$ isotype. Mat. Res. Bull. 27, 141-145 (1992)
3. Jahnberg, L.: Crystal structures of $\mathrm{Na}_{2} \mathrm{Nb}_{4} \mathrm{O}_{11}$ and $\mathrm{CaTa}_{4} \mathrm{O}_{11}$. J. Solid State Chemistry. 1, 454462 (1970)
4. Jahnberg, L.: A series of structures based on stacking of $\alpha-\mathrm{U}_{3} \mathrm{O}_{8}$-type layers of MO_{7} pentagonal bipyramids. Mat. Res. Bull. 16, 513-518 (1981)
5. Loopstra, B.O.: Neutron diffraction investigation of $\mathrm{U}_{3} \mathrm{O}_{8}$. Acta Cryst. 1964;17: 651-654.
6. Masó, N. and West, A.R.: A new family of ferroelectric materials: $\mathrm{Me}_{2} \mathrm{Nb}_{4} \mathrm{O}_{11}(\mathrm{Me}=\mathrm{Na}$ and Ag) J. Mater. Chem. 20, 2082-2084 (2010)
7. Masó, N., Woodward, D.I., Thomas, P.A. et al.: Structural characterisation of ferroelectric $\mathrm{Ag}_{2} \mathrm{Nb}_{4} \mathrm{O}_{11}$ and dielectric $\mathrm{Ag}_{2} \mathrm{Ta}_{4} \mathrm{O}_{11}$. J. Mater. Chem. 21, 2715-2722 (2011)
8. Masó, N., Woodward, D.I., Thomas, P.A., et al.: Polymorphism, structural characterisation and electrical properties of $\mathrm{Na}_{2} \mathrm{Nb}_{4} \mathrm{O}_{11}$. J. Mater Chem. 21, 12096-12102 (2011)
9. Masó, N. and West, AR.: Dielectric properties, polymorphism, structural characterisation and phase diagram of $\mathrm{Na}_{2} \mathrm{Nb}_{4} \mathrm{O}_{11}-\mathrm{Ag}_{2} \mathrm{Nb}_{4} \mathrm{O}_{11}$ solid solutions. J. Solid State Chem. 225, 438-449 (2015)

X-ray powder diffraction data for $\mathrm{LaHfTa}_{3} \mathrm{O}_{11}(\mathrm{LHT})$

2日(obs)	h k	$2 \theta(c a l c)$	Obs - calc	Int.	d (obs) Å	d (calc) \AA
14.240	002	14.229	0.0108	31.0	6.2149	6.2196
16.280	100	16.287	-0.0066	49.0	5.4402	5.4380
17.797	101	17.787	0.0106	6.6	4.9798	4.9827
21.709	102	21.691	0.0187	19.8	4.0904	4.0939
27.050	103	27.020	0.0296	4.0	3.2937	3.2973
28.728	004	28.683	0.0454	57.0	3.1050	3.1098
29.328	111	29.315	0.0131	89.6	3.0428	3.0442
31.910	112	31.904	0.0054	100.0	2.8023	2.8028
33.170	104	33.159	0.0119	12.2	2.6986	2.6996
35.868	113	35.847	0.0217	31.8	2.5016	2.5030
39.613	203	39.605	0.0076	2.1	2.2733	2.2737
40.819	114	40.808	0.0103	2.9	2.2089	2.2094
43.638	006	43.622	0.0157	4.8	2.0725	2.0732
44.029	210	44.021	0.0085	6.2	2.0550	2.0554
44.647	211	44.649	-0.0018	8.4	2.0280	2.0279
46.549	115	46.538	0.0113	27.5	1.9494	1.9499
46.879	106	46.861	0.0185	3.1	1.9365	1.9372
49.459	213	49.453	0.0055	4.2	1.8413	1.8415
50.299	300	50.295	0.0034	32.8	1.8126	1.8127
52.549	302	52.544	0.0051	4.9	1.7401	1.7403
52.880	116	52.878	0.0015	31.0	1.7300	1.7301
53.389	214	53.389	-0.0000	6.3	1.7147	1.7147
55.728	206	55.710	0.0181	6.5	1.6481	1.6436
58.174	215	58.173	0.0016	4.0	1.5845	1.5846
58.938	304	58.928	0.0104	35.6	1.5658	1.5651
59.299	221	59.285	0.0140	11.6	1.5571	1.5575
59.749	117	59.747	0.0016	13.4	1.5455	1.5455
60.799	222	60.806	-0.0076	14.1	1.5223	1.5221
61.400	310	61.425	-0.0245	5.1	1.5038	1.5032
61.964	311	61.924	0.0399	4.1	1.4954	1.4973
63.289	223	63.294	-0.0046	7.9	1.4632	1.4631
63.709	216	63.705	0.0043	3.1	1.4595	1.4596
65.869	313	65.840	0.0294	2.1	1.4168	1.4174
68.749	306	68.732	0.0174	2.7	1.3643	1.3646
69.168	314	69.170	-0.0013	5.0	1.3571	1.3571
69.928	217	69.922	0.0060	2.8	1.3442	1.3443
70.932	402	70.898	0.0332	6.0	1.3276	1.3281
73.344	315	73.347	-0.0023	2.2	1.2898	1.2897
75.020	119	75.025	-0.0054	4.9	1.2651	1.2650
75.979	226	75.975	0.0039	8.8	1.2515	1.2515
76.369	404	76.396	-0.0269	2.6	1.2450	1.2457
76.790	218	76.806	-0.0153	2.8	1.2403	1.2400
78.050	322	78.062	-0.0120	4.4	1.2234	1.2232
78.889	1010	78.876	0.0132	1.8	1.2124	1.2126

Crystal symmetry: hexagonal
Refined cell: $\mathrm{a}=6.28319(6) \mathrm{A}, \alpha=90.0^{\circ},(\mathrm{a}=\mathrm{b})$

$$
\begin{aligned}
& \mathrm{c}=12.4358(2) \AA, \gamma=120.0^{\circ}, \\
& \mathrm{V}=425.173(8) \AA^{3}
\end{aligned}
$$

X-ray powder diffraction data for $\operatorname{PrHfTa}_{3} \mathrm{O}_{11}(\mathrm{PHT})$

2θ (obs)	hkl	2θ (calc)	Obs - calc	Int.	d (obs) \AA	d (calc) \AA
14.276	002	14.265	0.0106	30.1	6.1992	6.2038
16.337	100	16.331	0.0067	50.4	5.4213	5.4235
17.835	101	17.834	0.0005	7.1	4.9694	4.9695
21.760	102	21.748	0.0114	20.8	4.0811	4.0832
27.090	103	27.092	-0.0018	4.6	3.2890	3.2887
28.775	004	28.757	0.0172	55.6	3.1001	3.1019
29.402	111	29.395	0.0075	86.3	3.0353	3.0361
31.997	112	31.991	0.0059	100.0	2.7949	2.7954
33.259	104	33.246	0.0124	13.3	2.6917	2.6926
35.953	113	35.994	0.0089	32.2	2.4959	2.4965
39.722	203	39.714	0.0088	2.5	2.2673	2.2678
40.927	114	40.919	0.0073	3.8	2.2033	2.2037
43.746	006	43.739	0.0072	5.4	2.0676	2.0679
44.152	210	44.144	0.0075	6.8	2.0496	2.0499
44.332	204	44.333	-0.0013	4.4	2.0417	2.0416
44.774	211	44.775	-0.0010	9.8	2.0225	2.0225
46.665	212	46.626	0.0383	28.3	1.9449	1.9464
46.997	106	46.988	0.0094	3.5	1.9319	1.9323
49.598	213	49.593	0.0053	4.7	1.8365	1.8367
50.438	300	50.439	-0.0005	35.1	1.8079	1.8078
52.697	302	52.694	0.0030	5.1	1.7356	1.7357
53.029	116	53.025	0.0034	33.8	1.7255	1.7256
53.541	214	53.541	0.0009	6.9	1.7102	1.7102
55.868	206	55.867	0.0011	7.2	1.6443	1.6444
58.341	215	58.340	0.0012	4.5	1.5804	1.5804
59.097	304	59.098	-0.0015	37.4	1.5620	1.5619
59.488	221	59.459	0.0288	13.3	1.5526	1.5533
59.921	117	59.917	0.0042	14.7	1.5424	1.5425
60.983	222	60.985	-0.0028	15.7	1.5181	1.5180
61.604	310	61.607	-0.0031	5.8	1.5043	1.5042
62.145	311	62.108	0.0376	5.1	1.4925	1.4933
63.482	223	63.481	0.0005	8.4	1.4642	1.4642
63.884	216	63.891	-0.0064	3.9	1.4560	1.4558
66.037	313	66.037	-0.0004	2.5	1.4136	1.4136
66.886	224	66.888	-0.0022	2.1	1.3977	1.3977
68.938	306	68.937	0.0012	3.2	1.3610	1.3611
69.368	314	69.379	-0.0113	6.0	1.3537	1.3535
70.122	217	70.131	-0.0085	3.8	1.3409	1.3408
71.140	402	71.116	0.0236	7.2	1.3242	1.3246
73.572	315	73.572	-0.0002	3.0	1.2863	1.2863
75.251	119	75.251	-0.0002	5.8	1.2618	1.2618
76.209	226	76.210	-0.0012	10.1	1.2483	1.2482
76.635	404	76.635	0.0002	3.6	1.2424	1.2424
$\begin{aligned} & \text { Crystal symmetry: hexagonal } \\ & \text { Refined cell: } a=6.281145(8) \AA, \alpha=90.0^{\circ},(a=b) \\ & \qquad c=12.4412(2) \AA, \gamma=120.0^{\circ}, \\ & V=425.08(3) \AA^{3} \end{aligned}$				3.4	1.2370	1.2300
				5.1	1.2200	1.2200

X-ray powder diffraction data for $\mathrm{NdHfTa}_{3} \mathrm{O}_{11}$ (NHT)

2θ (obs)	h k 1	$2 \theta(c a l c)$	Obs - calc	Int.	d (obs) A	d (calc) \AA
14.285	002	14.279	0.0063	29.2	6.1952	6.1979
16.344	100	16.346	-0.0019	48.1	5.4191	5.4185
17.852	101	17.851	0.0012	6.9	4.9645	4.9649
21.768	102	21.769	-0.0009	20.2	4.0795	4.0793
27.109	103	27.118	-0.0085	4.5	3.2866	3.2856
28.790	004	28.785	0.0047	53.7	3.0985	3.0990
29.418	111	29.423	-0.0049	84.9	3.0337	3.0332
32.019	112	32.022	-0.0032	100.0	2.7930	2.7828
33.281	104	33.279	0.0018	13.7	2.6899	2.6901
35.980	113	35.979	0.0005	31.6	2.4941	2.4941
39.770	203	39.753	0.0171	3.2	2.2647	2.2656
40.963	114	40.960	0.0033	3.9	2.2014	2.2016
43.784	006	43.783	0.0006	5.8	2.0660	2.0660
44.173	210	44.188	-0.0144	7.2	2.0486	2.0480
44.359	204	44.377	-0.0188	4.6	2.0405	2.0397
44.809	211	44.819	-0.0100	9.8	2.0210	2.0206
46.702	212	46.673	0.0294	28.5	1.9434	1.9446
47.030	106	47.035	-0.0058	3.9	1.9306	1.9304
49.638	213	49.643	-0.0050	4.6	1.8351	1.8350
50.477	300	50.490	-0.0130	34.1	1.8066	1.8062
52.743	302	52.748	-0.0045	5.3	1.7342	1.7340
53.079	116	53.080	-0.0007	33.5	1.7240	1.7240
53.585	214	53.595	-0.0099	7.4	1.7089	1.7086
55.914	206	55.924	-0.0104	7.7	1.6431	1.6428
58.395	215	58.400	-0.0053	48	1.5791	1.5789
59.150	304	59.160	-0.0099	37.6	1.5607	1.5605
59.548	221	59.520	0.0276	13.5	1.5512	1.5519
59.977	117	59.980	-0.0027	14.0	1.5411	1.5411
61.038	222	61.049	-0.0112	16.1	1.5169	1.5166
61.655	310	61.671	-0.0153	6.2	1.5031	1.5028
62.195	311	62.172	0.0230	5.4	1.4914	1.4919
63.542	223	63.548	-0.0055	8.8	1.4630	1.4629
63.954	216	63.958	-0.0043	4.0	1.4546	1.4545
66.090	313	66.107	-0.0171	2.8	1.4126	1.4123
69.006	306	69.011	-0.0057	3.7	1.3599	1.3598
69.434	314	69.454	-0.0193	6.3	1.3525	1.3522
70.202	217	70.207	-0.0050	3.9	1.3396	1.3395
71.211	402	71.193	0.0181	6.6	1.3231	1.3234
73.639	315	73.653	-0.0134	3.2	1.2853	1.2851
75.337	119	75.335	0.0015	6.4	1.2605	1.2606
76.287	226	76.295	-0.0075	10.0	1.2472	1.2471
76.728	404	76.720	0.0082	3.8	1.2411	1.2412
77.104	218	77.128	-0.0242	3.5	1.2360	1.2357
78.384	322	78.397	-0.0136	5.8	1.2190	1.2188
79.203	1010	79.207	-0.0042	2.8	1.2084	1.2084

Crystal symmetry: hexagonal
Refined cell: $\mathrm{a}=6.2578$ (1) \AA A $, \alpha=90.0^{\circ},(\mathrm{a}=\mathrm{b})$

$$
\begin{aligned}
& \mathrm{c}=12.3938(3) \AA, \gamma=120.0^{\circ}, \\
& \mathrm{V}=420.32(2) \AA^{3}
\end{aligned}
$$

X-ray powder diffraction data for $\mathrm{SmHfTa}_{3} \mathrm{O}_{11}$ (SHT)

2日(obs)	h kl	$2 \theta(c a l c)$	Obs - calc	Int.	d (obs) \AA	d (calc) \AA
14.305	002	14.325	-0.0200	28.6	6.1867	6.1782
16.380	100	16.398	-0.0182	47.9	5.4073	5.4014
17.894	101	17.908	-0.0142	6.9	4.9531	4.9492
21.841	102	21.839	0.0021	19.7	4.0660	4.0664
27.188	103	27.206	-0.0181	6.0	3.2773	3.2752
28.897	004	28.880	0.0175	52.9	3.0873	3.0891
29.530	111	29.518	0.0112	82.7	3.0225	3.0237
32.140	112	32.126	0.0138	100.0	2.7828	2.7839
33.406	104	33.388	0.0176	14.4	2.6801	2.6815
36.114	113	36.097	0.0163	32.5	2.4852	2.4862
36.280	202	36.273	0.0069	15.3	2.4741	2.4746
40.083	105	40.092	-0.0097	4.1	2.2477	2.2472
41.112	114	41.096	0.0164	4.7	2.1938	2.1946
43.952	006	43.930	0.0217	6.5	2.0584	2.0594
44.344	210	44.335	0.0085	8.1	2.0411	2.0415
44.541	204	44.526	0.0150	5.4	2.0326	2.0332
44.980	211	44.969	0.0108	11.1	2.0138	2.0142
46.878	212	46.829	0.0491	31.1	1.9365	1.9384
47.210	106	4.195	0.0151	4.7	1.9237	1.9243
49.815	213	49.811	0.0043	5.9	1.8290	1.8292
50.667	300	50.661	0.0061	37.7	1.8002	1.8005
52.938	302	52.928	0.0100	6.4	1.7282	1.7285
53.274	116	53.262	0.0121	34.2	17181	1.7185
53.784	214	53.779	0.0052	8.9	1.7030	1.7032
56.132	206	56.118	0.0138	9.1	1.6372	1.6376
58.614	215	58.604	0.0101	5.9	1.5737	1.5739
59.373	304	59.366	0.0071	40.0	1.5554	1.5555
59.780	221	59.728	0.0524	15.7	1.5457	1.5470
60.201	117	60.191	0.0098	15.7	1.5359	1.5362
61.271	222	61.263	0.0078	16.7	1.5117	1.5118
61.899	310	61.887	0.0120	7.6	1.4978	1.4981
62.429	311	62.391	0.0375	7.0	1.4864	1.4872
63.779	223	63.773	0.0063	10.5	1.4581	1.4582
64.182	216	64.186	-0.0041	5.5	1.4499	1.4498
66.336	313	66.344	-0.0074	4.1	1.4080	1.4078
69.269	306	69.262	0.0073	4.9	1.3553	1.3555
69.695	314	69.706	-0.0110	7.5	1.3481	1.3479
70.479	217	70.464	0.0154	5.3	1.3350	1.3353
71.489	402	71.453	0.0362	9.2	1.3186	1.3192
73.924	315	73.925	-0.0012	4.7	1.2811	1.2811
75.648	119	75.618	0.0297	7.5	1.2561	1.2565
76.595	226	76.581	0.0136	11.5	1.2429	1.2431
77.018	404	77.008	0.0096	5.7	1.2372	1.2373
77.427	218	77.419	0.0073	5.4	1.2316	1.2317
78.709	322	78.694	0.0150	7.4	1.2148	1.2150

Crystal symmetry: hexagonal
Refined cell: $\mathrm{a}=6.23885(8) \AA, \alpha=90.0^{\circ},(\mathrm{a}=\mathrm{b})$

$$
\begin{aligned}
& \mathrm{c}=12.3569(2) \AA, \gamma=120.0^{\circ}, \\
& \mathrm{V}=416.53(1) \AA^{3}
\end{aligned}
$$

X-ray powder diffraction data for $\mathrm{GdHfTa}_{3} \mathrm{O}_{11}(\mathrm{GHT})$

2θ (obs)	h k 1	$2 \theta($ calc)	Obs - calc	Int.	d (obs) \AA	d (calc) \AA
14.381	002	14.343	0.0376	27.8	6.1543	6.1703
16.452	100	16.417	0.0351	48.8	5.3836	5.3950
17.951	101	17.930	0.0209	7.3	4.9376	4.9433
21.891	102	21.866	0.0249	19.3	4.0569	4.0615
27.208	103	27.240	-0.0322	6.0	3.2750	3.2712
28.924	004	28.917	0.0074	55.3	3.0844	3.0852
29.568	111	29.554	0.0138	85.4	3.0187	3.0201
32.177	112	32.165	0.0113	100.0	2.7797	2.7806
33.437	104	33.431	0.0062	14.3	2.6777	2.6782
34.043	201	33.992	0.0512	5.1	2.6314	2.6353
36.153	113	36.143	0.0104	32.4	2.4825	2.4832
40.225	105	40.145	0.0805	4.8	2.2401	2.2444
41.155	114	41.149	0.0062	5.2	2.1916	2.1919
43.981	006	43.989	-0.0083	7.5	2.0571	2.0568
44.400	210	44.390	0.0102	8.8	2.0387	2.0391
45.031	211	45.025	0.0063	12.0	2.0116	2.0118
46.924	212	46.888	0.0363	33.0	1.9347	1.9361
49.873	213	49.874	-0.0016	6.8	1.8270	1.8270
50.732	300	50.724	0.0080	37.2	1.7981	1.7983
52.942	302	52.995	-0.0534	7.4	1.7281	1.7265
53.335	116	53.334	0.0015	33.8	1.7163	1.7163
53.849	214	53.849	0.0004	9.0	1.7011	1.7011
56.191	206	56.194	-0.0033	9.3	1.6357	1.6356
58.675	215	58.682	-0.0073	7.7	1.5722	1.5720
59.452	304	59.444	0.0079	39.5	1.5535	1.5537
59.851	221	59.805	0.0460	17.5	1.5441	1.5452
60.267	117	60.274	-0.0066	16.0	1.5344	1.5342
61.354	222	61.343	0.0107	17.4	1.5098	1.5101
61.976	310	61.968	0.0083	8.0	1.4961	1.4963
62.507	311	62.473	0.0349	7.8	1.4847	1.4854
63.860	223	63.858	0.0028	10.9	1.4565	1.4565
64.286	216	64.274	0.0119	6.4	1.4478	1.4481
66.451	313	66.432	0.0183	5.1	1.4058	1.4062
69.359	306	69.358	0.0010	5.8	1.3538	1.3538
69.781	314	69.801	-0.0193	7.9	1.3466	1.3463
70.570	217	70.563	0.0067	5.9	1.3335	1.3336
71.584	402	71.550	0.0343	9.0	1.3171	1.3176
74.034	315	74.029	0.0048	5.7	1.2795	1.2795
75.717	119	75.730	-0.0124	8.4	1.2551	1.2550
76.685	226	76.691	-0.0057	11.5	1.2417	1.2416
77.140	404	77.116	0.0234	6.2	1.2355	1.2358
78.826	322	78.804	0.0220	7.7	1.2132	1.2135
79.587	1010	79.631	-0.0444	4.8	1.2036	1.2030

Crystal symmetry: hexagonal
Refined cell: $\mathrm{a}=6.2293(1) \AA, \alpha=90.0^{\circ},(\mathrm{a}=\mathrm{b})$

$$
\begin{aligned}
& \mathrm{c}=12.3421(3) \AA, \gamma=120.0^{\circ}, \\
& \mathrm{V}=414.77(2) \AA^{3}
\end{aligned}
$$

Figure 1: (a) Stacking sequence of single layers of pentagonal bipyramids alternate with single layers of octahedral layers and (b) layer of pentagonal bipyramids at $\mathrm{z}=0$.

Figure 2: XRD profiles of $\mathrm{AHfTa}_{3} \mathrm{O}_{11}$ compositions, $\left(^{*}\right.$) indicates un-reacted $\mathrm{HfO}_{2},(\boldsymbol{\Delta})$ indicates un-reacted $\mathrm{Ta}_{2} \mathrm{O}_{5}$ and (o) indicates $\mathrm{ATa}_{3} \mathrm{O}_{9}$.

Figure 3: XRD profiles of $\mathrm{ABNb}_{3} \mathrm{O}_{11}$ compositions, LHN contains un-reacted $\mathrm{HfO}_{2}\left(^{*}\right)$, whereas LZN and NHN are mixed phases.

Figure 4: The observed (+), calculated (-) and difference (-) profiles from Rietveld refinement of $\mathrm{LaHfTa}_{3} \mathrm{O}_{11}$ with a disordered arrangement of Ta, Hf in the ratio 3:1. Ticks marks represent Bragg peak positions.

Figure 5: The observed (+), calculated (-) and difference (-) profiles from Rietveld refinement of $\mathrm{PrHfTa}_{3} \mathrm{O}_{11}$ with disordered arrangement of Ta, Hf in the ratio 3:1. Ticks marks represent Bragg peak positions.

Figure 6: The observed (+), calculated (-) and difference (-) profiles from Rietveld refinement of $\mathrm{NdHfTa}_{3} \mathrm{O}_{11}$ with disordered arrangement of Ta, Hf in the ratio 3:1. Ticks marks represent Bragg peak positions.

Figure 7: Observed (+), calculated (-) and difference (-) ND profiles at room temperature using constant wavelength ND data of $\mathrm{LaHfNb}_{3} \mathrm{O}_{11}$. Tick marks represent Bragg peak positions.

Figure 8: Permittivity, ε ', at room temperature for $\mathrm{ABC}_{3} \mathrm{O}_{11}$ phases.

Figure 9: Conductivity data for the new phases.

Figure 10: Bulk permittivity of the tantalates phases at room temperature vs. ionic radii of rare earth elements

No.	Compositions	T (${ }^{\text {O }} \mathbf{C}$)	Time (h)	Phases Present
1.	$\mathrm{LaZrTa}_{3} \mathrm{O}_{11}(\mathrm{LZT})$	1500	12	LZT, $\mathrm{LaTa}_{3} \mathrm{O}_{9}, \mathrm{ZrO}_{2}$
		1500	24	LZT, $\mathrm{LaTa}_{3} \mathrm{O}_{9}, \mathrm{ZrO}_{2}$
		1500	36	LZT, $\mathrm{LaTa}_{3} \mathrm{O}_{9}, \mathrm{ZrO}_{2}$
		1500	48	LZT, $\mathrm{LaTa}_{3} \mathrm{O}_{9}, \mathrm{ZrO}_{2}$
		1500	72	LZT, trace of $\mathrm{LaTa}_{3} \mathrm{O}_{9}$ and ZrO_{2}
2.	$\mathrm{LaHfTa}_{3} \mathrm{O}_{11}(\mathrm{LHT})$	1500	24	LHT, HfO_{2}
		1500	48	LHT, trace of HfO_{2}
3.	$\mathrm{LaHfNb}_{3} \mathrm{O}_{11}(\mathrm{LHN})$	1150	24	LHN, $\mathrm{Nb}_{2} \mathrm{O}_{5}, \mathrm{La}_{2} \mathrm{O}_{3}, \mathrm{HfO}_{2}$
		1250	36	LHN, $\mathrm{Nb}_{2} \mathrm{O}_{5}, \mathrm{La}_{2} \mathrm{O}_{3}, \mathrm{HfO}_{2}$
		1300	96	LHN, trace of HfO_{2}
		1350	108	Melt
4.	$\mathrm{LaZrNb}_{3} \mathrm{O}_{11}(\mathrm{LZN})$	1000	12	$\mathrm{La}_{2} \mathrm{Zr}_{2} \mathrm{O}_{7}, \mathrm{LZN}, \mathrm{Nb}_{2} \mathrm{O}_{5}, \mathrm{La}_{2} \mathrm{O}_{3}, \mathrm{ZrO}_{2}$
		1150	36	LZN, $\mathrm{LaNb}_{3} \mathrm{O}_{9}, \mathrm{La}_{2} \mathrm{O}_{3}, \mathrm{ZrO}_{2}$
		1150	48	$\mathrm{LaNb}_{3} \mathrm{O}_{9}, \mathrm{LZN}, \mathrm{La}_{2} \mathrm{O}_{3}, \mathrm{ZrO}_{2}$
		1200	60	$\mathrm{LaNb}_{3} \mathrm{O}_{9}, \mathrm{Nb}_{2} \mathrm{Zr}_{6} \mathrm{O}_{17}$
5.	$\mathrm{PrHfTa}_{3} \mathrm{O}_{11}(\mathrm{PHT})$	1350	54	PHT, $\mathrm{Ta}_{2} \mathrm{O}_{5}, \mathrm{HfO}_{2}$
		1500	78	PHT, $\mathrm{Ta}_{2} \mathrm{O}_{5}, \mathrm{HfO}_{2}$
		1500	102	PHT, $\mathrm{Ta}_{2} \mathrm{O}_{5}, \mathrm{HfO}_{2}$
		1500	126	PHT, HfO_{2}
		1500	150	PHT, trace of HfO_{2}
6.	$\mathrm{NdHfTa}_{3} \mathrm{O}_{11}(\mathrm{NHT})$	1000	12	$\mathrm{Ta}_{2} \mathrm{O}_{5}, \mathrm{NdTa}_{7} \mathrm{O}_{19}, \mathrm{HfO}_{2}$
		1500	24	NHT, $\mathrm{Ta}_{2} \mathrm{O}_{5}, \mathrm{HfO}_{2}$
		1500	48	NHT, $\mathrm{Ta}_{2} \mathrm{O}_{5}, \mathrm{HfO}_{2}$
		1500	60	NHT, trace of $\mathrm{Ta}_{2} \mathrm{O}_{5}$ and HfO_{2}
7.	$\mathrm{NdHfNb}_{3} \mathrm{O}_{11}(\mathrm{NHN})$	1000	24	$\mathrm{NdNbO}_{4}, \mathrm{Nb}_{2} \mathrm{O}_{5}, \mathrm{HfO}_{2}, \mathrm{Nd}_{2} \mathrm{O}_{3}$
		1100	36	$\mathrm{NdNbO}_{4}, \mathrm{Nb}_{2} \mathrm{O}_{5}, \mathrm{HfO}_{2}, \mathrm{Nd}_{2} \mathrm{O}_{3}$
		1150	72	NHN, $\mathrm{NdNb}_{3} \mathrm{O}_{9}, \mathrm{HfO}_{2}, \mathrm{Nd}_{2} \mathrm{O}_{3}$
		1200	96	$\mathrm{NdNb}_{3} \mathrm{O}_{9}, \mathrm{NHN}, \mathrm{HfO}_{2}, \mathrm{Nd}_{2} \mathrm{O}_{3}$
		1250	108	$\mathrm{NdNb}_{3} \mathrm{O}_{9}, \mathrm{HfO}_{2}, \mathrm{Nd}_{2} \mathrm{O}_{3}$
8.	$\mathrm{SmHfTa}_{3} \mathrm{O}_{11}(\mathrm{SHT})$	1200	12	SHT, $\mathrm{SmTa}_{3} \mathrm{O}_{9}, \mathrm{Ta}_{2} \mathrm{O}_{5}, \mathrm{HfO}_{2}, \mathrm{Sm}_{2} \mathrm{O}_{3}$
		1300	24	SHT, $\mathrm{SmTa}_{3} \mathrm{O}_{9}, \mathrm{Ta}_{2} \mathrm{O}_{5}, \mathrm{HfO}_{2}, \mathrm{Sm}_{2} \mathrm{O}_{3}$
		1350	72	SHT, $\mathrm{SmTa}_{3} \mathrm{O}_{9}, \mathrm{Ta}_{2} \mathrm{O}_{5}, \mathrm{HfO}_{2}$
		1375	84	SHT, $\mathrm{SmTa}_{3} \mathrm{O}_{9}, \mathrm{Ta}_{2} \mathrm{O}_{5}, \mathrm{HfO}_{2}$
		1400	96	SHT, $\mathrm{SmTa}_{3} \mathrm{O}_{9}, \mathrm{Ta}_{2} \mathrm{O}_{5}, \mathrm{HfO}_{2}$
		1500	108	$\mathrm{SmTa}_{3} \mathrm{O}_{9}, \mathrm{SHT}, \mathrm{HfO}_{2}$
9.	$\mathrm{GdHfTa}_{3} \mathrm{O}_{11}(\mathrm{GHT})$	1200	12	GHT, $\mathrm{GdTa}_{3} \mathrm{O}_{9}, \mathrm{Ta}_{2} \mathrm{O}_{5}, \mathrm{HfO}_{2}, \mathrm{Gd}_{2} \mathrm{O}_{3}$
		1300	24	GHT, $\mathrm{GdTa}_{3} \mathrm{O}_{9}, \mathrm{Ta}_{2} \mathrm{O}_{5}, \mathrm{HfO}_{2}, \mathrm{Gd}_{2} \mathrm{O}_{3}$
		1350	72	GHT, $\mathrm{GdTa}_{3} \mathrm{O}_{9}, \mathrm{Ta}_{2} \mathrm{O}_{5}, \mathrm{HfO}_{2}$
		1375	84	GHT, $\mathrm{GdTa}_{3} \mathrm{O}_{9}, \mathrm{Ta}_{2} \mathrm{O}_{5}, \mathrm{HfO}_{2}$
		1400	96	GHT, $\mathrm{GdTa}_{3} \mathrm{O}_{9}, \mathrm{Ta}_{2} \mathrm{O}_{5}, \mathrm{HfO}_{2}$
		1500	108	$\mathrm{GdTa}_{3} \mathrm{O}_{9}, \mathrm{LZT}, \mathrm{HfO}_{2}$

(a)

No.	Compositions	T (${ }^{\text {O }} \mathbf{C}$)	Time (h)	Phases Present
1.	$\mathrm{DyHfTa}_{3} \mathrm{O}_{11}$	1000	12	Unknown, $\mathrm{DyTaO}_{4}, \mathrm{Ta}_{2} \mathrm{O}_{5}, \mathrm{Dy}_{2} \mathrm{O}_{3}, \mathrm{HfO}_{2}$
		1300	120	Unknown, $\mathrm{DyTaO}_{4}, \mathrm{Ta}_{2} \mathrm{O}_{5}, \mathrm{Dy}_{2} \mathrm{O}_{3}, \mathrm{HfO}_{2}$
2.	$\mathrm{ErHfTa}_{3} \mathrm{O}_{11}$	1000	12	$\mathrm{Ta}_{2} \mathrm{O}_{5}, \mathrm{Er}_{2} \mathrm{O}_{3}, \mathrm{HfO}_{2}$
		1150	36	$\mathrm{ErTaO}_{4}, \mathrm{Ta}_{2} \mathrm{O}_{5}, \mathrm{Er}_{2} \mathrm{O}_{3}, \mathrm{HfO}_{2}$
		1200	60	$\mathrm{ErTaO}_{4}, \mathrm{Ta}_{2} \mathrm{O}_{5}, \mathrm{Er}_{2} \mathrm{O}_{3}, \mathrm{HfO}_{2}$
		1250	72	$\mathrm{ErTa}_{7} \mathrm{O}_{19}, \mathrm{ErTaO}_{4}, \mathrm{Ta}_{2} \mathrm{O}_{5}, \mathrm{HfO}_{2}$
3.	$\mathrm{PrHfNb}_{3} \mathrm{O}_{11}$	1000	15	$\mathrm{PrNbO}_{4}, \mathrm{Nb}_{2} \mathrm{O}_{5}, \mathrm{HfO}_{2}, \mathrm{Pr}_{6} \mathrm{O}_{11}$
		1100	40	$\mathrm{PrNb}_{5} \mathrm{O}_{14}, \mathrm{PrNb}_{3} \mathrm{O}_{9}, \mathrm{Nb}_{2} \mathrm{O}_{5}, \mathrm{HfO}_{2}$
		1150	60	$\mathrm{PrNb}_{5} \mathrm{O}_{14}, \mathrm{PrNb}_{3} \mathrm{O}_{9}, \mathrm{HfO}_{2}$
		1300	72	$\mathrm{PrNb}_{5} \mathrm{O}_{14}, \mathrm{PrNb}_{3} \mathrm{O}_{9}, \mathrm{HfO}_{2}$
4.	$\mathrm{PrZrTa} 3 \mathrm{O}_{11}$	1350	54	$\mathrm{Ta}_{4} \mathrm{Zr}_{11} \mathrm{O}_{32}, \mathrm{ZrO}_{2}, \mathrm{Ta}_{2} \mathrm{O}_{5}$
5.	$\mathrm{PrZrNb} 3 \mathrm{O}_{11}$	1000	15	$\mathrm{PrNbO}_{4}, \mathrm{Nb}_{2} \mathrm{O}_{5}, \mathrm{HfO}_{2}, \mathrm{Pr}_{6} \mathrm{O}_{11}$
		1100	41	$\mathrm{PrNb}_{5} \mathrm{O}_{14}, \mathrm{PrNb}_{3} \mathrm{O}_{9}, \mathrm{ZrO}_{2}$
		1300	53	$\mathrm{PrNb}_{5} \mathrm{O}_{14}, \mathrm{PrNb}_{3} \mathrm{O}_{9}, \mathrm{ZrO}_{2}$
6.	$\mathrm{NdZrTa} 3 \mathrm{O}_{11}$	1500	72	$\mathrm{NdTa}_{3} \mathrm{O}_{9}, \mathrm{Ta}_{4} \mathrm{Zr}_{11} \mathrm{O}_{32}, \mathrm{ZrO}_{2}$
7.	$\mathrm{NdZrNb} 3 \mathrm{O}_{11}$	1000	24	$\mathrm{NdNbO}_{4}, \mathrm{Nb}_{2} \mathrm{O}_{5}, \mathrm{ZrO}_{2}, \mathrm{Nd}_{2} \mathrm{O}_{3}$
		1050	36	$\mathrm{NdNbO}_{4}, \mathrm{Nb}_{2} \mathrm{O}_{5}, \mathrm{ZrO}_{2}, \mathrm{Nd}_{2} \mathrm{O}_{3}$
		1150	48	$\mathrm{NdNb}_{5} \mathrm{O}_{14}, \mathrm{Nb}_{2} \mathrm{O}_{5}, \mathrm{ZrO}_{2}, \mathrm{Nd}_{2} \mathrm{O}_{3}$
8.	$\mathrm{SmZrNb} 3 \mathrm{O}_{11}$	1000	24	$\mathrm{Nb}_{2} \mathrm{O}_{5}, \mathrm{ZrO}_{2}, \mathrm{Sm}_{2} \mathrm{O}_{3}$
		1050	36	$\mathrm{Nb}_{2} \mathrm{O}_{5}, \mathrm{ZrO}_{2}, \mathrm{Sm}_{2} \mathrm{O}_{3}$
		1150	48	$\mathrm{Nb}_{2} \mathrm{O}_{5}, \mathrm{ZrO}_{2}, \mathrm{Sm}_{2} \mathrm{O}_{3}$
9.	$\mathrm{SmHfNb}_{3} \mathrm{O}_{11}$	1000	24	$\mathrm{Nb}_{2} \mathrm{O}_{5}, \mathrm{HfO}_{2}, \mathrm{Sm}_{2} \mathrm{O}_{3}$
		1100	36	$\mathrm{SmNbO}_{4}, \mathrm{Nb}_{2} \mathrm{O}_{5}, \mathrm{HfO}_{2}$
		1200	60	$\mathrm{SmNbO}_{4}, \mathrm{Nb}_{2} \mathrm{O}_{5}, \mathrm{HfO}_{2}$
10.	$\mathrm{GdHfNb}_{3} \mathrm{O}_{11}$	1000	24	$\mathrm{GdNbO}_{4}, \mathrm{Nb}_{2} \mathrm{O}_{5}, \mathrm{HfO}_{2}, \mathrm{Gd}_{2} \mathrm{O}_{3}$
		1050	36	$\mathrm{GdNbO}_{4}, \mathrm{Nb}_{2} \mathrm{O}_{5}, \mathrm{HfO}_{2}, \mathrm{Gd}_{2} \mathrm{O}_{3}$
		1150	48	$\mathrm{GdNbO}_{4}, \mathrm{Nb}_{2} \mathrm{O}_{5}, \mathrm{HfO}_{2}, \mathrm{Gd}_{2} \mathrm{O}_{3}$
11.	$\mathrm{GdZrNb}_{3} \mathrm{O}_{11}$	1000	24	$\mathrm{GdNbO}_{4}, \mathrm{Nb}_{2} \mathrm{O}_{5}, \mathrm{ZrO}_{2}, \mathrm{Gd}_{2} \mathrm{O}_{3}$
		1050	36	$\mathrm{GdNbO}_{4}, \mathrm{Nb}_{2} \mathrm{O}_{5}, \mathrm{ZrO}_{2}, \mathrm{Gd}_{2} \mathrm{O}_{3}$
		1150	48	$\mathrm{GdNbO}_{4}, \mathrm{Nb}_{2} \mathrm{O}_{5}, \mathrm{ZrO}_{2}, \mathrm{Gd}_{2} \mathrm{O}_{3}$
12.	$\mathrm{YbZrTa}_{3} \mathrm{O}_{11}$	1500	72	$\mathrm{Ta}_{2} \mathrm{O}_{5}, \mathrm{Yb}_{2} \mathrm{O}_{3}, \mathrm{ZrO}_{2}$

(b)

Table 1: Results of heat treatment on different $\mathrm{ABC}_{3} \mathrm{O}_{11}$ combinations; (a) those which yielded an $\mathrm{LaZrTa} 3{ }_{3} \mathrm{O}_{11}$ analogue, (b) those for which an $\mathrm{LaZrTa}_{3} \mathrm{O}_{11}$ analogue was not obtained.

Table 2: X-ray powder diffraction data for $\mathrm{LaHfTa}_{3} \mathrm{O}_{11}$

2才(obs)	$\boldsymbol{h} \boldsymbol{k}$ l	$\boldsymbol{2 v}$ (calc)	Obs - calc	Int.	d (obs) Å	d (calc) Å
14.240	002	14.229	0.0108	31.0	6.2149	6.2196
16.280	100	16.287	-0.0066	49.0	5.4402	5.4380
17.797	101	17.787	0.0106	6.6	4.9798	4.9827
21.709	102	21.691	0.0187	19.8	4.0904	4.0939
27.050	103	27.020	0.0296	4.0	3.2937	3.2973
28.728	004	28.683	0.0454	57.0	3.1050	3.1098
29.328	111	29.315	0.0131	89.6	3.0428	3.0442
31.910	112	31.904	0.0054	100.0	2.8023	2.8028
33.170	104	33.159	0.0119	12.2	2.6986	2.6996
35.868	113	35.847	0.0217	31.8	2.5016	2.5030
39.613	203	39.605	0.0076	2.1	2.2733	2.2737
40.819	114	40.808	0.0103	2.9	2.2089	2.2094
43.638	006	43.622	0.0157	4.8	2.0725	2.0732
44.029	210	44.021	0.0085	6.2	2.0550	2.0554
44.647	211	44.649	-0.0018	8.4	2.0280	2.0279
46.549	115	46.538	0.0113	27.5	1.9494	1.9499
46.879	106	46.861	0.0185	3.1	1.9365	1.9372
49.459	213	49.453	0.0055	4.2	1.8413	1.8415
50.299	300	50.295	0.0034	32.8	1.8126	1.8127
52.549	302	52.544	0.0051	4.9	1.7401	1.7403
52.880	116	52.878	0.0015	31.0	1.7300	1.7301
53.389	214	53.389	-0.0000	6.3	1.7147	1.7147
55.728	206	55.710	0.0181	6.5	1.6481	1.6436
58.174	215	58.173	0.0016	4.0	1.5845	1.5846
58.938	304	58.928	0.0104	35.6	1.5658	1.5651
59.299	221	59.285	0.0140	11.6	1.5571	1.5575
59.749	117	59.747	0.0016	13.4	1.5455	1.5455
60.799	222	60.806	-0.0076	14.1	1.5223	1.5221
61.400	310	61.425	-0.0245	5.1	1.5038	1.5032
61.964	311	61.924	0.0399	4.1	1.4954	1.4973
63.289	223	63.294	-0.0046	7.9	1.4632	1.4631
63.709	216	63.705	0.0043	3.1	1.4595	1.4596
65.869	313	65.840	0.0294	2.1	1.4168	1.4174
68.749	306	68.732	0.0174	2.7	1.3643	1.3646
69.168	314	69.170	-0.0013	5.0	1.3571	1.3571
69.928	217	69.922	0.0060	2.8	1.3442	1.3443
70.932	402	70.898	0.0332	6.0	1.3276	1.3281
73.344	315	73.347	-0.0023	2.2	1.2898	1.2897
75.020	119	75.025	-0.0054	4.9	1.2651	1.2650
75.979	226	75.975	0.0039	8.8	1.2515	1.2515
76.369	404	76.396	-0.0269	2.6	1.2450	1.2457
76.790	218	76.806	-0.0153	2.8	1.2403	1.2400
78.050	322	78.062	-0.0120	4.4	1.2234	1.2232
78.889	1010	78.876	0.0132	1.8	1.2124	1.2126

Crystal symmetry: hexagonal
Refined cell: $\mathrm{a}=6.28319(6) \AA, \alpha=90.0^{\circ},(\mathrm{a}=\mathrm{b})$

$$
\begin{aligned}
& \mathrm{c}=12.4358(2) \AA, \gamma=120.0^{\circ}, \\
& \mathrm{V}=425.173(8) \AA^{3}
\end{aligned}
$$

No.	Phases	Observed unit cell parameters ($\AA \mathbf{A})$		Volume $\left(\AA^{\mathbf{3}}\right)$
		\mathbf{a}	\mathbf{c}	
1.	$\mathrm{LaZrTa}_{3} \mathrm{O}_{11}(\mathrm{LZT})$	$6.28724(4)$	$12.4525(1)$	$426.296(5)$
2.	$\mathrm{LaHfNb}_{3} \mathrm{O}_{11}(\mathrm{LHN})$	$6.2986(2)$	$12.4189(5)$	$426.68(3)$
3.	$\mathrm{LaHfTa}_{3} \mathrm{O}_{11}(\mathrm{LHT})$	$6.28319(6)$	$12.4358(2)$	$425.173(8)$
4.	$\operatorname{PrHfTa}_{3} \mathrm{O}_{11}(\mathrm{PHT})$	$6.281145(8)$	$12.4412(2)$	$425.08(3)$
5.	$\mathrm{NdHfTa}_{3} \mathrm{O}_{11}(\mathrm{NHT})$	$6.2578(1)$	$12.3938(3)$	$420.32(2)$
6.	SmHfTa$_{3} \mathrm{O}_{11}(\mathrm{SHT})$	$6.23885(8)$	$12.3569(2)$	$416.53(1)$
7.	$\mathrm{GdHfTa}_{3} \mathrm{O}_{11}(\mathrm{GHT})$	$6.2293(1)$	$12.3421(3)$	$414.77(2)$

Table 3: Lattice parameters and unit cell volumes for $\mathrm{ABC}_{3} \mathrm{O}_{11}$ phases

Sites	Properties	LaHfTa3 ${ }^{11}$	$\mathrm{PrHfTa}_{3} \mathrm{O}_{11}$	$\mathrm{NdHfTa}_{3} \mathrm{O}_{11}$	$\mathrm{LaHfNb}_{3} \mathrm{O}_{11}$
2c (RE Elements)	(x, y, z)	0.3333, 0.6667, 0.25	0.3333, 0.6667, 0.25	0.3333, 0.6667, 0.25	0.3333, 0.6667, 0.25
	Uiso	0.3(2)	0.7(2)	0.3(3)	0.50(4)
	Occupancy	1.0	1.0	1.0	1.0
$\begin{gathered} 6 \mathrm{~g} \\ (\mathrm{Ta}, \mathrm{Hf} / \mathrm{Nb}) 1 \end{gathered}$	($\mathrm{x}, \mathrm{y}, \mathrm{z}$)	0.6418(2), 0.0, 0.0	0.6414(2), 0.0, 0.0	0.6413(2), 0.0, 0.0	0.6430(1), 0.0, 0.0
	Uiso	0.50(3)	0.61(5)	0.50(5)	0.15(2)
	Occupancy	0.75 / 0.25	0.75 / 0.25	0.75 / 0.25	0.75 / 0.25
$\begin{gathered} \hline 2 \mathrm{~d} \\ (\mathrm{Ta}, \mathrm{Hf} / \mathrm{Nb}) 2 \end{gathered}$	(x, y, z)	0.3333, 0.6667, 0.75	0.3333, 0.6667, 0.75	0.3333 , $0.6667,0.75$	0.3333, 0.6667, 0.75
	Uiso	0.5(1)	0.2(2)	0.3(2)	0.1(4)
	Occupancy	0.75 / 0.25	0.75 / 0.25	0.75 / 0.25	0.75 / 0.25
$\begin{gathered} \hline 4 \mathrm{f} \\ (\mathrm{O} 1) \end{gathered}$	(x, y, z)	0.3333, 0.6667, 0.39(1)	0.3333, 0.6667, 0.0042(2)	0.3333, 0.6667, 0.043(2)	0.3333, 0.6667,0.388(1)
	Uiso	0.5(2)	0.8(3)	1.7(3)	0.38(3)
	Occupancy	1.0	1.0	1.0	1.0
$\begin{gathered} \hline 6 \mathrm{~g} \\ (\mathrm{O} 2) \end{gathered}$	(x, y, z)	0.244(2), 0.0, 0.0	0.241(2), 0.0, 0.0	0.244(2), 0.0, 0.0	0.2484(2), $0.0,0.0$
	Uiso	0.5(2)	0.8(3)	1.7(3)	0.88(3)
	Occupancy	1.0	1.0	1.0	1.0
$\begin{gathered} \hline 12 \mathrm{i} \\ (\mathrm{O} 3) \end{gathered}$	($\mathrm{x}, \mathrm{y}, \mathrm{z}$)	0.949(2), 0.377(2), 0.3415(6)	0.953(3), $0.382(3), 0.3430(8)$	0.953(3), $0.385(3), 0.3420$ (8)	0.944(1), 0.373(2), 0.34257(6)
	Uiso	0.5(2)	0.8(3)	1.7(3)	0.46(2)
	Occupancy	1.0	1.0	1.0	1.0
a (A)		6.28320(6)	6.281145(8)	6.2578(1)	6.2986(2)
c (Å)		12.4358(2)	12.4412(2)	12.3939(3)	12.4189(5)
Cell Volume, V (\AA^{3})		425.175(8)	425.08(1)	420.32(1)	426.68(3)
R_{wp} (\%)		7.02	7.60	6.42	5.73
$\mathrm{R}_{\mathrm{p}}(\%)$		5.30	5.74	4.389	4.46
χ^{2}		4.704	7.475	5.996	5.878

Table 4: Structural refinement data for $\mathrm{LaHfTa}_{3} \mathrm{O}_{11}, \mathrm{PrHfTa}_{3} \mathrm{O}_{11}, \mathrm{NdHfTa}_{3} \mathrm{O}_{11}$ and $\mathrm{LaHfNb}_{3} \mathrm{O}_{11}$

Bonding		No.	LaHfTa $_{3} \mathbf{O}_{\mathbf{1 1}}$	PrHfTa $_{3} \mathbf{O}_{\mathbf{1 1}}$	NdHfTa $_{3} \mathbf{O}_{\mathbf{1 1}}$	$\mathbf{L a H f N b}_{\mathbf{1}} \mathbf{O}_{\mathbf{1 1}}$
$(\mathrm{Ta}, \mathrm{Hf} / \mathrm{Nb}) 1$	O 1	$2 \times$	$2.080(4) \AA$	$2.087(5) \AA$	$2.082(5) \AA$	$2.0858(5) \AA$
	O 2	$2 \times$	$1.992(2) \AA$	$1.988(3) \AA$	$1.986(3) \AA$	$1.9963(7) \AA$
	O 3	$2 \times$	$2.009(7) \AA$	$1.992(9) \AA$	$1.998(9) \AA$	$1.9979(8) \AA$
	O 2	$1 \times$	$2.494(9) \AA$	$2.51(1) \AA$	$2.48(1) \AA$	$2.485(2) \AA$
$(\mathrm{Oa}, \mathrm{Hf} / \mathrm{Nb}) 2$	O 3	$6 \times$	$2.012(9) \AA$	$2.02(1) \AA$	$2.01(1) \AA$	$2.0014(7) \AA$
RE Elements	O 1	$6 \times$	$2.61(2) \AA$	$2.44(2) \AA$	$2.56(2) \AA$	$2.622(1) \AA$
	O 3	$2 \times$	$2.45(1) \AA$	$2.58(2) \AA$	$2.42(1) \AA$	$2.4921(8) \AA$

Table 5: Selected bond distances of $\mathrm{LaHfTa}_{3} \mathrm{O}_{11}, \mathrm{PrHfTa}_{3} \mathrm{O}_{11}, \mathrm{NdHfTa}_{3} \mathrm{O}_{11}$ and $\mathrm{LaHfNb}_{3} \mathrm{O}_{11}$

