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SUMMARY

Seismic body wave travel time tomography and surface wave dispersion tomography have

been used widely to characterise earthquakes and to study the subsurface structure of the

Earth. Since these types of problem are often significantly non-linear and have non-unique

solutions, Markov chain Monte Carlo (McMC) methods have been used to find probabilistic

solutions. Body and surface wave data are usually inverted separately to produce independent

velocity models. However, body wave tomography is generally sensitive to structure around

the sub-volume in which earthquakes occur and produces limited resolution in the shallower

Earth, whereas surface wave tomography is often sensitive to shallower structure. To better es-

timate subsurface properties, we therefore jointly invert for the seismic velocity structure and

earthquake locations using body and surface wave data simultaneously. We apply the new joint

inversion method to a mining site in the U.K. at which induced seismicity occurred and was

recorded on a small local network of stations, and where ambient noise recordings are avail-

able from the same stations. The ambient noise is processed to obtain inter-receiver surface

wave dispersion measurements which are inverted jointly with body wave arrival times from
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local earthquakes. The results show that by using both types of data, the earthquake source

parameters and the velocity structure can be better constrained than in independent inversions.

To further understand and interpret the results, we conduct synthetic tests to compare the re-

sults from body wave inversion and joint inversion. The results show that trade-offs between

source parameters and velocities appear to bias results if only body wave data are used, but this

issue is largely resolved by using the joint inversion method. Thus the use of ambient seismic

noise and our fully non-linear inversion provides a valuable, improved method to image the

subsurface velocity and seismicity.

Key words: Markov chain Monte Carlo, joint inversion, induced seismicity

1 INTRODUCTION

Seismic tomography is a method to estimate the spatial distribution of properties of the subsurface,

and is used in order to understand heterogeneity and processes in the Earth’s interior. In seismic

tomography one usually parameterizes subsurface properties in some way to form a subsurface

model, then solves the parameter estimation problem given observed data and a relationship be-

tween the data and the parametrized physical properties.

Seismic tomography problems are traditionally solved using linearised methods to estimate the

model parameter values which minimize the misfit between observed and synthetically predicted

data. These methods first approximate the non-linear physical relation by a linear relation that is

valid close to a reference model, and the model is updated to minimize the misfit predicted by that

linearisation. This process is iterated until the model update is sufficiently small (Aki & Lee 1976;

Dziewonski & Woodhouse 1987; Iyer & Hirahara 1993; Tarantola 2005). Since the problem is

often under-determined and ill-posed, regularization is added to the process to enforce particular

properties on the model (e.g., smoothness or minimal deviation from a reference model). However,

the form of regularization is arbitrary and the strength of regularization is chosen by trial and er-

ror by invoking ad hoc criteria. Valuable information can therefore be concealed by regularization

(Zhdanov 2002). Moreover, it is difficult if not impossible to estimate accurate uncertainties in so-
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lutions of non-linear problems when using linearised methods since the family of model parameter

values that fit the data is defined by the true non-linear physics, and not by the linearised relations.

Markov chain Monte Carlo (McMC) methods have been introduced to geophysics to resolve

some of these issues (Mosegaard & Tarantola 1995; Malinverno et al. 2000; Malinverno 2002;

Malinverno & Briggs 2004; Bodin & Sambridge 2009; Galetti et al. 2015, 2017; Zhang et al.

2018). These methods solve the problem in a Bayesian sense by generating a set (or chain) of

samples whose density approximates a posterior probability density function (pdf): this describes

the probability of the model given both the observed data and any available prior information.

The method has been extended to trans-dimensional inversions by using reversible jump McMC

(rj-McMC – Green 1995; Bodin & Sambridge 2009) such that the dimensionality of the param-

eter space (the number of parameters and indeed their meaning) can vary in the inversion. This

has the advantage that the parameterization can be adapted and simplified so as to best represent

information in the data and prior information without over-parameterizing the model, which sig-

nificantly improves performance in otherwise high dimensional problems (Malinverno & Briggs

2004; Bodin & Sambridge 2009; Bodin et al. 2012; Galetti et al. 2015; Zhang et al. 2018). The

rj-McMC method has been used to estimate 2D phase or group velocity maps of the crust (Bodin

& Sambridge 2009; Zulfakriza et al. 2014; Galetti et al. 2015; Zheng et al. 2017; Crowder et al.

2019b) and to estimate seismic velocity profiles with respect to depth in the Earth (Bodin et al.

2012; Shen et al. 2012, 2013; Young et al. 2013; Galetti et al. 2017; Zhang et al. 2019, 2020). The

method was recently extended to estimate 3D velocity models using body wave travel time data

(Piana Agostinetti et al. 2015; Hawkins & Sambridge 2015; Burdick & Lekić 2017) and surface

wave dispersion data (Zhang et al. 2018, 2019, 2020).

In the above studies, body waves and surface waves are used separately to construct velocity

models. Seismic body waves are generally sensitive to deeper structure where earthquake sources

occur, and produce limited resolution closer to the surface. This is because we usually have a

relatively sparse station array compared to the density of sources, which results in relatively sparse

body wave ray coverage in the shallower Earth. In comparison, fundamental mode surface waves
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are generally more sensitive to shallower rather than to deeper structure. Body and surface wave

data can therefore usefully be combined to better constrain the subsurface velocity structure.

Such joint inversions have already been used widely to study the crust and upper mantle struc-

ture (West et al. 2004; Reiter & Rodi 2008; Obrebski et al. 2011, 2012; Rawlinson & Fishwick

2012; Zhang et al. 2014; Syracuse et al. 2015; Fang et al. 2016; Liu & Zhao 2016; Roecker et al.

2017). However, these studies were performed using linearised inversion methods which renders

associated uncertainty estimates questionable at best. In this study we apply the rj-McMC algo-

rithm to fully non-linear joint inversion using both body wave arrival times and surface wave

dispersion data. We show that results are significantly improved over independent body or surface

wave inversions, both in terms of velocity structure and earthquake source location uncertainties.

In the next section we summarise the rj-McMC algorithm and describe how it is applied to the

joint inversion problem. In section 3 we apply the new McMC joint inversion method to data from

an ex-mining site located to the north of New Ollerton, U.K, and compare the results with those

from individual inversions in section 4. Finally we discuss the implication of this work in section

5 before concluding.

2 METHODOLOGY

2.1 Parametrization

As in Zhang et al. (2018, 2020), in order to perform trans-dimensional inversion in three spatial di-

mensions we use Voronoi cells to parameterize our seismic velocity models (Figure 1). A Voronoi

cell is defined by a generating point (called a site) and its volume which consists of all points that

are closer to that site than to any other. Each cell has associated seismic properties, e.g., P-wave

velocity and shear wave velocity. In this study, we use constant velocities within each cell. Our

velocity model can therefore be parameterized as (c,vp,vs), where c is the vector of positions of

Voronoi sites, and vp and vs are vectors of the associated P-wave velocity and shear wave velocity

in each cell. Each earthquake source (number i) is parameterized as si = (xi, yi, zi, ti), where

xi, yi, zi is the source location and ti is the origin time. Our model m therefore can be represented

as (c,vp,vs, s).
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Figure 1. Example 3D Voronoi tessellation of a velocity model. Colours represent seismic velocities which
are constant across each cell. Black dots (which appear grey in the 3D rendering) are the sites that generated
each cell.

2.2 Reversible jump Markov chain Monte Carlo (rj-McMC)

We use rj-McMC to perform 3D tomographic inversion following the approach of Zhang et al.

(2018). Rj-McMC is a generalized Metropolis-Hastings algorithm which generates a chain of

samples distributed according to a target probability density. The algorithm allows the number

of parameters to change along the chain (Green 1995), which makes the parameterization adapt-

able to the data and avoids the need to specify it exactly prior to the inversion (Bodin & Sambridge

2009). In seismic tomography we are interested in the posterior pdf of model m given the observed

data dobs,

p(m|dobs) =
p(dobs|m)p(m)

p(dobs)
(1)

where p(dobs|m) is the likelihood which describes the probability of data given a specified model

m; p(m) is the prior pdf which describes information that is independent of data and p(dobs) is

a normalization factor called the evidence. We use a Gaussian distribution for the likelihood, for
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which the data variance is estimated in a hierarchical way in the inversion (Malinverno & Briggs

2004; Bodin et al. 2012; Zhang et al. 2018, 2019, 2020). The prior p(m) is chosen to be a Uniform

distribution.

Within each chain a new model m
′

is drawn from a so-called proposal distribution q(m
′

|m)

that depends on the current model m, and is accepted or rejected with a probability α(m
′

|m) given

by (Green, 1995)

α(m
′

|m) = min[1,
p(m

′

)

p(m)
×

q(m|m
′

)

q(m′ |m)
×

p(dobs|m
′

)

p(dobs|m)
× |J|] (2)

where J is the Jacobian matrix of the transformation from m to m
′

and is used to account for the

volume change of parameter space during jumps between different dimensionalities, but where

in this case the Jacobian is an identity matrix (Bodin & Sambridge 2009). The new model m
′

is accepted or rejected by generating a random number γ from a Uniform distribution on (0, 1]

and comparing it with α. If γ < α, the new model m
′

is accepted; otherwise the new model is

discarded and the current model is repeated as a new sample in the chain. The acceptance ratio α

guarantees that the density of samples converges to the posterior pdf asymptotically as the number

of samples tends to infinity (Green 1995).

Monitoring the convergence of Markov chains is an important component of McMC methods.

In this study, we use the absolute misfits and the number of cells to monitor convergence as used

in several previous studies (Bodin & Sambridge 2009; Bodin et al. 2012; Dosso et al. 2014; Galetti

et al. 2015; Hawkins & Sambridge 2015; Zhang et al. 2018, 2019, 2020). For example, when the

misfit value and the number of cells become approximately stationary, we assume the chain has

reached some sort of dynamic equilibrium. Since consecutive samples are correlated (McMC is

a random walk process and only converges to the posterior distribution as the number of samples

tends to infinity), the estimated probability pdf from any finite set of samples is often biased (Chan

& Geyer 1994). Therefore, we retain every 50th sample along the chain once equilibrium has been

reached, and only those retained samples are used to calculate parameter statistics (mean, standard

deviation, etc.).
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2.3 Joint inversion of body waves and surface waves

In seismic body wave tomography, the earthquake source locations are generally unknown within

some volumetric region of uncertainty as are origin times. We therefore include these source pa-

rameters in our inversion. This produces a trade-off between source parameters and the seismic

velocity model. To reduce this effect, Piana Agostinetti et al. (2015) updated the source origin

times in an optimization for each velocity model. However that approach may cause errors in the

results since sources may converge to incorrect locations and times, and it does not allow correct

uncertainty analysis for source parameters. In this study we therefore also include origin times

as parameters to be varied in the Markov chain. We start the chains with initial source parameter

values obtained using a standard linearised optimization, whereafter they can vary freely within

the prior pdf (defined below).

To forward model body wave travel time data we use a 3D fast marching method (Rawlinson

& Sambridge 2004; Valero-Gomez et al. 2013). Due to source-receiver reciprocity, fast marching

can be conducted either from sources to receivers or vice versa. Therefore, in practice one chooses

the more efficient option based on the minimum number of sources and receivers, and we model

from receivers to sources. The grid spacing affects the accuracy of travel times modelled by the

fast marching method. In this study we use a spacing of 100 m which our tests showed is sufficient

to produce accurate travel times (Rawlinson & Sambridge 2004).

For surface wave dispersion data, we use the two step forward modelling method described in

Zhang et al. (2018) and applied in Zhang et al. (2019, 2020). First, for each geographical point

the local phase velocity at each frequency is computed using the 1D velocity profile beneath that

point using a modal approximation (Herrmann 2013) to create a 2D phase velocity map across

the surface. Then, since our dispersion measurements are made between two receivers, for each

receiver-to-receiver pair the phase travel time at a specific frequency can be calculated using a 2D

ray tracing method (Rawlinson & Sambridge 2004). Group velocity travel times can be calculated

by integrating over the ray path traced through phase velocity maps (Cerveny 2005; Reiter & Rodi

2008).

In joint inversion, the relative weights between different data types usually affect the results
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significantly (Bodin et al. 2012; Shen et al. 2012). In linearised methods, the weight is generally

determined by subjective choices which could cause errors in results. In this study we set the data

noise level of both data types to be free parameters so that the relative importance of different data

types is determined by their own noise level (Bodin et al. 2012; Shen et al. 2012). As in Galetti

et al. (2017) and Zhang et al. (2018), we hyper-parameterize the noise level using a linear relation

with respect to travel times σ = σ0 × traveltime + σ1, for each of body and surface wave travel

times independently, where σ0 and σ1 are free hyperparameters.

In our rj-McMC algorithm there are six types of perturbation: adding a Voronoi cell, removing

a cell, moving a cell, changing a cell’s seismic velocity, changing the source parameters, and

changing the data noise hyperparameters. This results in the following algorithm:

(i) Select an initial model m from the prior pdf (for seismic velocities) or from a linearised

inversion (for source locations and times)

(ii) Generate a new model m
′

by randomly choosing one of the six possible perturbation

types listed above, and then perturbing the current model according to the proposal dis-

tribution.

(iii) Calculate the acceptance ratio α in equation (2) and accept or reject model m
′

with

probability α. if m
′

is accepted, let m = m
′

.

(iv) Repeat from (ii).

For the fixed-dimensional step (moving a cell, changing velocities, changing source parameters

and changing the hyperparameters), we use a Gaussian distribution which is centred at the current

model as the proposal distribution. The width of the Gaussian is a parameter which needs to be

tuned for each inversion (Hawkins & Sambridge 2015; Zhang et al. 2018). For trans-dimensional

steps (adding or deleting a cell), the prior is used as the proposal distribution which usually gives a

higher acceptance ratio than using a Gaussian proposal distribution as noted in Dosso et al. (2014).
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3 APPLICATION TO THE NEW OLLERTON MINING SITE

We applied the method to a mining site located to the north of New Ollerton, Nottinghamshire, U.K

(Figure 2) which operated from 1925 to 2015. A network of seven stations was deployed at the site

and recorded 291 microseismic events in 2014. Figure 2 shows the location of the stations, event

locations from the initial linearised inversion, and a histogram of the depth distribution of event

locations. The events mainly occurred around 0.9 km depth with a few occurring significantly

shallower or deeper. We used a total of 1725 P-wave arrival times and 923 S-wave arrival times

obtained from the British Geological Survey (BGS) (Butcher et al. 2017).

We applied ambient noise interferometry (Campillo & Paul 2003; Curtis et al. 2006; Bensen

et al. 2007) to obtain surface wave dispersion data for each inter-receiver pair. The data are first

band-filtered between 0.8 s and 3.0 s to filter out earthquake signals which comprise higher fre-

quencies. Cross-correlations between each receiver pair are then calculated using 24-hour long

time segments, which are then stacked over the whole year to improve the signal-to-noise ratio

(SNR). The group velocity dispersion of each receiver pair is picked using the frequency-time

analysis (FTAN) method (Dziewonski et al. 1969; Levshin et al. 1972, 1992; Herrin & Goforth

1977; Russell et al. 1988; Ritzwoller & Levshin 1998; Levshin & Ritzwoller 2001; Nicolson et al.

2012; Yanovskaya et al. 2012). Figure 3 shows an example of the FTAN image used to pick group

velocities. We discarded station-pairs for which the SNR is smaller than 5, and those whose inter-

receiver distances are smaller than twice the wavelength at any frequency due to far-field surface

wave approximation that is implicit within ambient-noise surface wave tomography (Yao et al.

2006; Lin et al. 2009). The SNR is calculated using the spectrum of the signals of interest and the

spectrum of an interval of noise extracted from the end of the virtual source records. This results

in a total of 12 inter-receiver dispersion curves across the New Ollerton area (Figure 2). Since

Nicolson et al. (2012) and Galetti et al. (2017) both showed that uncertainties estimated directly

from the FTAN images tend to be poor, uncertainties in dispersion curves were estimated hier-

archically within the Markov chain. Note that since we use the same relationship between data

uncertainties and travel times for all dispersion curves, unusually poor measurements probably
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cannot be assigned high uncertainties and can bias the results. In practice this issue can be reduced

by removing potentially poor measurements.

We performed three different inversions: first using only body wave travel times, second using

only surface wave dispersion data, and a third, joint inversion using both types of data. In body

wave inversion and joint inversion we invert for both P and S wave velocity. In the surface wave

inversion we only invert for S-wave velocity; in that case P-wave velocity is linked to S-wave

velocity using a typical ratio 1.73, and density is computed from the P-wave velocity using a typ-

ical crustal relationship ρ = 2.35 + 0.036 × (vp − 3.0)2 where vp is in km·s-1 and ρ is given in

g·cm-3 (Kurita 1973). The latter relationship is also used to calculate density in the joint inversion.

Since surface waves are much more sensitive to shear velocity than P-wave velocity or density, the

approximation should be sufficient in our case. For each inversion the prior pdf of shear velocity

is set to be a Uniform distribution between 1.0 km/s and 4.0 km/s at all 3D locations. For body

wave inversion and joint inversion the prior pdf of P-wave velocity is set to be a Uniform distri-

bution between 1.6 km/s and 6.0 km/s. The prior pdf of the number of Voronoi cells is chosen to

be a Uniform distribution between 20 and 300. For each event location we use a Uniform distribu-

tion across a 2 km box centred at the initial location estimated by BGS using linearised methods

(Butcher et al. 2017) as the prior pdf, and for the origin time we used a Uniform distribution with

1 second width centred at the initial origin time. For body wave travel times the prior pdf of the

hyperparameters σ0 and σ1 are chosen to be Uniform distributions between 0 and 0.1. Similarly

for surface wave group travel times the prior of the two hyperparameters are set to be Uniform dis-

tributions between 0 and 0.2. Since seismic velocity generally varies more rapidly in the vertical

direction than horizontally, we scaled the vertical direction by a factor of 5 larger to ensure vertical

and horizontal directions are balanced as demonstrated by Zhang et al. (2018). For each chain an

initial velocity model is generated from the prior, whereas initial source locations and times are

set to values from the linearised inversion of Butcher et al. (2017).

For a fixed-dimensional step (moving a cell, changing velocities, changing source parameters

and hyperparameters) we use a Gaussian perturbation centred at the current value as the proposal

distribution. The width of the Gaussian distribution is chosen by trial and error to give an accep-
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Figure 2. Microseismic events (blue dots) recorded with seven seismic stations (orange triangles) at New
Ollerton mining site. The event locations are those found in the linearised inversion of Butcher et al. (2017).
Black lines between stations show approximate paths along which surface wave dispersion data are avail-
able. Green lines show faults that appear in the study area (Bishop et al. 1993). Purple boxes show the
location of coal seams located between 800 and 900 m depth. The red dashed-line box shows the extent of
the other maps herein. The red plus in the inset map denotes the location of the mining site in England. The
right panel shows a histogram of the event depths.

tance ratio between 20 and 50 percent. For a trans-dimensional step (adding or deleting a cell)

the proposal distribution is chosen to be the prior pdf (Dosso et al. 2014; Zhang et al. 2018). For

each inversion we used 16 chains; each of which contains 1,600,000 samples including a burn-in

of 800,000 to reach apparent equilibrium. To reduce correlations between successive samples we

only retain every 50th sample in the chain post burn-in. Those sample are used to calculate pa-

rameter means and standard deviations. Final maps of statistics (mean and standard deviation) of

solutions are presented without additional imposed smoothing.

4 RESULTS

4.1 Source parameters

Figure 4 shows the mean and standard deviation of each event location calculated using all col-

lected samples from body wave inversion (Figure 4a and b) and from joint inversion (Figure 4c

and d). Both results show that events occur deeper (majority > 1 km) than the initial locations
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Figure 3. An example of a frequency-time analysis (FTAN) envelope image which is used to pick group
velocities. The black dots show the group velocities picked in this case.

Figure 4. Source location results. (a) and (b) are map view and a latitudinal cross-section of source locations
obtained using body wave travel time data only. (c) and (d) are map view and a cross-section of source
locations obtained using both body wave travel time data and surface wave dispersion data. The orange
triangles show the location of stations. The color of each dot reflects the standard deviations of each source
location. Black lines show faults that appear in the study area obtained from Bishop et al. (1993). The purple
boxes show the location of coal seams located between 800 and 900 m depth.
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Figure 5. Histograms of the standard deviations of source origin time obtained using (a) body wave tomog-
raphy and (b) joint body and surface wave inversion.

from BGS (majority < 1 km). The results show two clusters: one in the southeast and the other in

the north. The southeastern cluster has slightly higher uncertainties than those in the north, which

is probably caused by the fact that the stations are distributed to one side of the southeastern clus-

ter. Compared to the standard deviation from body wave inversion (around 0.5 km), the location

results from joint inversion show lower uncertainties (around 0.4 km). This suggests that by in-

cluding even only 12 surface wave dispersion curves the event locations can be better constrained

since dispersion data provides additional information about the velocity model between stations.

Figure 5a and b show histograms of the standard deviations of source origin time obtained using

body wave tomography and joint inversion respectively. Most standard deviations from body wave

tomography are higher than 0.05 s, while those from joint inversion are centred around 0.05 s.

Therefore, by including surface wave dispersion data in the inversion, the source origin time can

also be better constrained since this helps to resolve the trade off between origin time and velocity

structure.

Verdon et al. (2017) showed that the seismicity is directly induced by the mining, as opposed

to being caused by activation of pre-existing tectonic features due to stress transfer. However, in

our results events of the southern cluster occur at the end of and beyond the coal seam, which
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Figure 6. Horizontal slices through the 3D shear velocity model at depth of 0.2 km (left), 0.5 km (middle)
and 1.0 km (right) obtained using body wave travel time data only. The upper panels (a) and the bottom
panels (b) show the mean velocity maps and standard deviation maps, respectively. At each slice events
within 0.2 km of the depth are plotted. Black lines show faults that appear in the study area.

suggests that those events might not be directly induced by the mining. Since in our results and the

results of Verdon et al. (2017) the events of the souther cluster occur at greater depths than the coal

seam and there is no correlation between the rate of excavation and the rate of seismicity (Verdon

et al. 2017), it is possible that the events of the southern cluster can be caused by activation of

pre-existing tectonic features, for example, the fault that crosses the cluster (Figure 2).

4.2 Velocity models

Figure 6 shows horizontal slices through the 3D mean and standard deviation maps of shear wave

velocity at depths of 0.2 km, 0.5 km and 1.0 km obtained using body wave travel time data only.

The standard deviation map at 0.2 km shows that only a small part of the model is well con-

strained, which is associated with lower velocities in the mean velocity map. Most of the other

maps show the same values as the standard deviation of the prior pdf, suggesting that body waves
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Figure 7. Horizontal slices through the 3D shear velocity model obtained using surface wave dispersion
data only. Key as in Figure 6.

offer very limited information about the near surface as expected. The mean velocity map at 0.5

km depth shows that the shear velocities in the southwest and northeast are lower than elsewhere.

The standard deviation map suggests that most of the structure within the boundary of the array

is reasonably well constrained by the data, other than in the southeast which has higher velocities

and higher uncertainties, probably caused by the limited data coverage in that area. At 1 km depth

the mean velocity map shows that the velocity in the west is lower than the east, the northern

earthquake cluster occurs at the boundary of velocity anomalies, and the southeastern earthquake

cluster is correlated with a clearly-defined high velocity anomaly. Between the two clusters there

are low velocity anomalies. The standard deviation map shows very low uncertainties (< 0.2 km/s)

in the southwest associated with the low velocity anomaly, which suggests that the low velocity

anomaly is well constrained, whereas slightly higher uncertainties (about 0.4 km/s) are observed

elsewhere. There are loops of higher uncertainty around the southeastern high velocity anomaly
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Figure 8. Horizontal slices through the 3D shear velocity model obtained from joint body and surface wave
inversion. Key as in Figure 6.

and around the low velocity anomaly between the two clusters. These loops occur where there are

strong velocity gradients or velocity contrasts whose locations are not well constrained. They rep-

Figure 9. Vertical Cross sections of the mean (top) and standard deviation (bottom) of shear wave velocity
at X=1 km obtained using surface wave tomography (a and b), body wave tomography (c and d) and joint
body and surface wave inversion (e and f). Black dots are events lying within 0.8 km of the cross-section.
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resent uncertainty due to the trade-off between the velocity and the location of velocity anomalies,

and hence describe uncertainty in the anomalies’ shapes (Galetti et al. 2015; Zhang et al. 2018).

Figure 7 shows horizontal slices through the mean and standard deviation obtained from sur-

face wave tomography at the same depths as above. Compared to the results from body wave

tomography, the mean shear velocity map at 0.2 km shows lower velocities (about 1.0 km/s) than

the results from body wave tomography (> 2.0 km/s), and the standard deviation is also much

lower (about 0.2 km/s) than that from body wave tomography (about 1.0 km/s). This is due to the

fact that surface waves are more sensitive to near surface structure than body waves. There is a

higher velocity anomaly in the northwest which is probably caused by poor data coverage (Figure

2). At 0.5 km depth the mean velocity map shows similar patterns of structure to those obtained

from body wave tomography: the velocity in the southwest and in the northeast is lower and the

velocity in the southeast is higher. The mean velocity map at 1 km depth shows very different

results compared to those from body wave tomography and its standard deviation is higher (about

0.6 km/s). This is probably caused by the fact that the frequency range of the surface waves used

in the inversion has very low sensitivity at this depth.

Figure 8 shows horizontal slices through the mean and standard deviation obtained using joint

inversion. Similarly to the results of surface wave tomography, the mean velocity map at 0.2 km

shows lower velocity values than those from body wave tomography with lower standard devia-

tions: near surface structure can be better constrained by including surface wave dispersion data in

the inversion. There is still a higher velocity anomaly between Y=0 km and Y=2 km which is asso-

ciated with high standard deviations: neither body waves nor surface waves have much resolution

in this area so the velocity tends towards the mean of the prior pdf (2.5 km/s). The mean velocity

maps at 0.5 km and 1.0 km are very similar to the results from body wave tomography: we have

more body wave data than surface wave data that are sensitive to these depths so the body wave

data dominate the results. Nevertheless, the velocity magnitudes are slightly different from the

results of body wave tomography which is due to the contribution of surface waves, and the stan-

dard deviation map shows lower uncertainties within the station array which suggests that surface

waves improve the resolution across that entire area. Similarly to the results of body wave tomog-
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raphy, the standard deviation map also shows a higher uncertainty loop around the southeastern

high velocity anomaly.

Note that all of the standard deviation models show lower uncertainties than those of the prior

pdf in the area outside of the station array where there is no obvious data. This is probably be-

cause the velocity in this area is correlated with the velocity within the station array through large

Voronoi cells, but also for some models surface and body wave ray paths may assume trajecto-

ries that travel outside of the array. This phenomenon has also been observed in several previous

studies (Galetti et al. 2015; Zhang et al. 2018; Zhang & Curtis 2020a).

In Figure 9 we show vertical cross sections through the mean and standard deviation maps from

the three inversions along the X=1 km profile which lies between the two earthquake clusters. The

mean velocity model from surface wave tomography (Figure 9a) shows that there is a low velocity

anomaly between the two clusters. The standard deviation model (Figure 9b) shows that the near

surface structure (< 0.8 km) is well constrained while the deeper part has very limited resolution.

Figure 9c and d show the mean and standard deviation cross sections from body wave tomogra-

phy. The velocity model also shows a low velocity anomaly between the two clusters, however the

low velocity anomaly extends to deeper levels and the velocity at either side of the low velocity

anomaly is much higher (> 3km/s) than that from surface wave tomography (∼ 2.0 km/s). The

standard deviation model shows a low uncertainty area associated with the middle low velocity

anomaly suggesting that the anomaly is well determined. There are also higher uncertainty loops

around the high velocity anomalies at the two sides of the low velocity anomaly. Figure 9e and f

show the results from joint inversion. The mean model is similar to that from surface wave tomog-

raphy at shallow levels, and to that from body wave tomography at depth. However the velocity

magnitude of the southern high velocity anomaly is lower than that from body wave tomography,

and the velocity of the northern low velocity anomaly around 1 km depth is much lower than that

from body wave tomography, both due to the contribution of surface waves. Similarly the standard

deviation model shows lower uncertainties in the near surface, and higher uncertainty loops around

high velocity anomalies.

Appendix A shows P-wave velocity models from both body-wave only inversion and joint
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inversion. The key finding of those results is that the addition of surface waves also helps to

constrain P-wave velocities even though surface waves are not directly very sensitive to P-wave

velocity. This is because P-wave velocities are correlated with shear velocities through the source

locations and the latter are better estimated with the addition of surface wave data.

For one chain the body-wave only inversion takes 396 hours when parallelized using 9 cores,

whereas the joint inversion takes 502 hours using the same number of cores. Therefore the joint

inversion requires only 27% more computational time than the body-wave only inversion, while

producing source locations and velocity models with notably lower uncertainties.

4.3 Synthetic tests

In the above results there is a high velocity anomaly at the location of the southern earthquake

cluster (Figure 6, 8, 9): in the results from joint inversion the magnitude of the velocity anomaly

is slightly lower, but is nevertheless clearly identifiable. Similar features have been observed pre-

viously and are generally interpreted as earthquake asperities that concentrate stress (Lees 1990;

Eberhart-Phillips & Michael 1998; Chiarabba & Amato 2003; Tajima et al. 2009; Li et al. 2013;

Zhang et al. 2013). However it is also possible that this correlation is caused by the trade off

between source parameters and velocity values.

To better understand the correlation of the high velocity anomaly and the earthquake cluster we

performed a simple synthetic test in which the ”true” model contains three horizontal layers and

event locations are taken to be their mean values from the joint inversion above (Figure 10). We

computed synthetic versions of the same body wave travel time data and surface wave dispersion

data as used in the above inversion, and added 1 percent noise to the data. We then conducted three

inversions: simultaneous inversion for source parameters and velocity model using only body wave

data, inversion for velocity only using body wave data with sources fixed at their true locations, and

joint inversion for sources and velocities using both types of data. The initial source parameters

(event locations and origin times) are the same as were used in the real data inversions above.

The prior pdfs are chosen to be the same as in the real data example except that the prior for

the number of cells is chosen to be a Uniform distribution between 5 and 100 since the model is
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Figure 10. Cross section through the synthetic model at X=1 km. Black dots show the event locations which
are taken from joint inversion of the real data in Figure 4d.

relatively simple. The proposal pdfs are also tuned in the same way as above. The burn-in and

total samples for each chain and the number of chains are also set to be the same as in the real data

inversions.

Figure 11 shows cross sections through the mean and standard deviation at X=1 km obtained

using only body waves by simultaneously inverting for source parameters and the velocity model.

Though the mean velocity model shows three layers which are to some extent similar to the true

model, the velocity value around the southern cluster (around 1.75 km/s) is lower than the true

value (2.0 km/s). This suggests that body wave tomography may produce biases in the results

around the location of event clusters, caused by the trade off between event locations and velocity

values (see Figure 12): shallower event depths are generally associated with a lower velocity value

to fit the data. The standard deviation model shows low uncertainties from the surface down to

around 1.5 km including in the low velocity areas around the southern cluster. This low velocity

anomaly is due to the fact that the initial source locations are shallower than the true locations,

so in order to fit the data the model decreases the velocity value at the location of event clusters

(see Figure 12); this trade off creates complex multimodality in the posterior pdf (see Figure 16a,

b and c below), and since random walk McMC algorithms are generally inefficient for multimodal
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Figure 11. Cross sections of the mean and standard deviation at X=1 km obtained by inverting for source
parameters and velocity model simultaneously using body wave data only. Black dots show the mean event
locations. The red pluses show point locations which are referred to in the text.

distributions the chains likely get stuck in modes that have lower velocities. By contrast, in Figure

13 we show the results obtained from an inversion with source parameters fixed at their true values.

The mean velocity model shows almost the same structure as the true model which again suggests

that the non-uniquenesses in the posterior velocity pdfs in the previous results are caused by non-

linear trade off between source parameters and velocity values. The standard deviation shows

very low uncertainties (< 0.2 km/s) across the whole section except in a small area in the left
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Figure 12. Average shear velocity at the location of the southern cluster versus average depth of events of
the southern cluster.

corner where there are no events. It also shows slightly higher uncertainties at the boundaries

between layers which reflect uncertainty in layer boundary locations similar to the uncertainty

loops observed above and in Zhang et al. (2018). To give an idea of fit to the data, the simultaneous

inversion of source parameters and velocity model produces an average residual of 0.81 s while

the fixed-source inversion produces a residual of 0.80 s. Thus the two inversions produce almost

the same average fit to the data even though they give different estimates of the velocity model;

therefore one cannot discriminate between the two models based on data fit.

Figure 14 shows cross sections of the mean and standard deviation obtained using joint in-

version of both data types for both velocities and source parameters. Though the mean velocity

model shows slightly different velocity values in the second and third layer compared to the pre-

vious two models, it is significantly closer to the true model than that obtained from body wave

tomography by simultaneously inverting for source parameters and the velocity model. The stan-

dard deviation model shows similar structures to those from the fixed-source inversion, including
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Figure 13. Cross sections of the mean and standard deviation at X=1 km obtained by inverting for velocities,
and fixing the source parameters at their true values. Black dots show the event locations. Red pluses show
point locations which are referred to in the text.

higher uncertainties at the boundary of layers. Figure 15 shows the true dispersion curve and the

average dispersion curve calculated using the mean velocity model. At longer periods (> 1.2 s) the

average group velocities fit the true values, whereas at shorter periods the average group velocities

are higher than true values which is probably caused by the bias produced by body wave data (see

Figure 11), or because the mean model is not a good representation of the subsurface structure

(Zhang & Curtis 2020a).
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Figure 14. Cross sections of the mean and standard deviation at X=1 km obtained by inverting for both
velocity and event locations using both body wave and surface wave data. Black dots show the mean event
locations. Red pluses show point locations which are referred to in the text.

To better understand the results, in Figure 16 we show marginal posterior pdfs obtained using

the three methods at three different points (1, -1, 0.84 km), (1, -1, 1.0 km) and (1, -1, 1.2 km)

which cross the southern earthquake cluster in the above cross sections. The marginal distribu-

tions obtained from body wave tomography show complex multimodal distributions (Figure 16a,

b and c) and are distributed away from the true value (2 km/s). By contrast, most of the marginal

distributions obtained from joint inversion show a unimodal distribution concentrated around the
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Figure 15. Group velocities used in the joint inversion (red dot) plotted with error bars and the average
dispersion curve calculated from the mean velocity model (blue line). Since the true model is a 1D model,
dispersion curves between different receiver pairs are almost the same except for random noise. Error bars
show the standard deviation of group velocities of different dispersion curves.

true value (Figure 16 e and f) other than a remaining multimodality in Figure 16d. The marginal

distributions obtained from fixed-source inversion focus to a unimodal distribution around the true

value (Figure 16g, h and i). Thus, the simultaneous inversion for source parameters and velocity

model using only body wave data can bias the results due to the trade off between source parame-

ters and velocity values. By including surface wave dispersion data in the inversion, this problem

can be resolved since surface wave data improve the velocity estimate.

Apart from joint inversion using both types of data, the results obtained using surface wave

tomography are frequently used as prior information for body wave tomography to produce a more

realistic velocity model. For example, velocity models from surface wave tomography were used

as a starting model for body wave tomography by Rawlinson & Fishwick (2012) and Nunn et al.

(2013). However in those studies since surface wave data are not used in the later inversion, trade-

offs between source parameters and velocity models could still bias the results and the resulting
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Figure 16. The marginal posterior pdfs of shear velocity at three points (pluses in Figure 11, 13 and 14).
(a), (b) and (c) show the marginal posterior pdfs at three points at depth 0.8 km, 1.0 km and 1.2 km obtained
by inverting source parameters and velocity model simultaneously using body wave data. (d), (e) and (f)
show the marginal posterior pdfs at three points obtained by joint inversion using both body wave data and
surface wave data. (g), (h) and (i) show the marginal posterior pdfs at three points obtained by fixing the
source parameters at their true values. The dashed black line denotes the true shear velocity value.
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model can be inconsistent with surface wave data. Thus it is better to invert for a unified model of

velocity and source locations jointly using both types of data.

In the real data results, the high velocity anomaly at the location of the southern cluster there-

fore may reflect the true structure of the subsurface, e.g., earthquake asperities following previous

interpretations (Lees 1990; Eberhart-Phillips & Michael 1998; Chiarabba & Amato 2003; Tajima

et al. 2009; Li et al. 2013; Zhang et al. 2013). However, since we still observe subtle multimodil-

ities in the joint inversion results, and the real Earth may have a more complex structure, there is

still the possibility that the details of the recovered model are obscured by the trade off between

source parameters and velocity models. The synthetic test suggests that the trade off mainly af-

fects the velocity structure at the location of the southern earthquake cluster, so our results at least

remain valid for most of the subsurface.

5 DISCUSSION

In this study we used Voronoi cells to parametrize the subsurface. While the Voronoi parame-

terization is effective if we wish to image discontinuities, it can introduce difficulties when we

attempt to recover a smooth model (Hawkins et al. 2019). For example, in our results there remain

some signs of Voronoi cell shapes which we choose to leave un-smoothed (in contrast to other

studies that use fewer McMC iterations and heavy smoothing - e.g. Young et al. 2013; Crowder

et al. 2019a). It has also been found that the Voronoi parametrization can cause multimodalities

in the posterior pdf, and produce uncertainty estimates that differ from those that one would nor-

mally associate with a pixelated image (Zhang & Curtis 2020a), both of which make interpretation

of uncertainties difficult. To produce a smoother model, other parametrizations, such as wavelets

(Hawkins & Sambridge 2015), Johnson-Mehl tessellation (Belhadj et al. 2018) and Delaunay and

Clough-Tocher parametrization (Hawkins et al. 2019) may be used.

In this study we did not take into account any anisotropy that may exist in the area. This may

cause errors in our results. However, as Verdon et al. (2017) showed that the anisotropy is not

particularly strong in the area, our results should remain valid as a first-approximation. In future it

is possible to include anisotropy in our method to produce more accurate results.
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The rj-McMC algorithm is generally not efficient for exploring complex multimodal distribu-

tions (Green & Hastie 2009). In our body-wave only tomography synthetic test, by simultaneously

inverting for source parameters and velocity models the chains may have got stuck at local modes

and failed to find the true solution. To reduce this issue one could use a better initial model (as

required by linearised inversion) if available to ensure that the chains explore around the globally

optimal solution. In the real data inversions we used initial source parameters obtained using a 1D

initial model, so to further improve the results one could adopt locations found using a good 3D

model instead. If no better model exists (as is often the case) then that is not an option, so methods

that are more effective for multimodal distributions might be used, for example grid search (Sen

& Stoffa 2013), non-Markovian importance sampling (Lomax & Curtis 2001; Lomax et al. 2009),

parallel tempering (Sambridge 2013) and variational inference methods (Zhang & Curtis 2020a,b).

6 CONCLUSION

We implemented a Monte Carlo method to perform joint inversion using both body wave arrival

time data and surface wave dispersion data, and applied it at a mining site located to the north

of New Ollerton, Nottinghamshire, U.K, at which induced seismicity occurs. The results show

that by including surface wave dispersion data the shallow structure can be better constrained

because surface waves are generally sensitive to the shallow structure, and this further improves

estimate of source parameters. We also observed a high velocity anomaly at the location of one

of the event clusters which may be related to earthquake asperities that concentrate stress. To

further understand this correlation, we performed inversions using synthetic data generated using

the same source and receiver distribution as in the real data experiment. The results show that due

to the trade off between source parameters and velocity values, the inversion using only body wave

data can produce biases; by including surface wave dispersion data in the inversion the problem

can be resolved. We conclude that it is better to include surface wave data in seismic travel time

tomographic inversions for velocity structure and earthquake source locations.
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APPENDIX A: P-WAVE VELOCITY MODELS

Figure A1 shows the horizontal slices of the mean and standard deviation of P-wave velocity using

body waves only. Similar to the results for shear velocity, at the depth of 0.2 km higher velocities

are associated with higher uncertainties since the near surface structure cannot be well constrained

by body waves, and at 0.5 km depth the mean P-wave velocity model exhibits very similar patterns

to those of shear velocity. Similarly to the results for shear velocity, the standard deviation map

shows higher uncertainties at the location of the southeastern higher velocity anomaly due to lim-

ited data coverage. At the depth of 1.0 km the mean velocity map also shows similar structures to
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Figure A1. Horizontal slices through the 3D P-wave velocity model obtained using body wave travel time
only. Key as in Figure 6.

those in the shear velocity results, and the standard deviation map shows higher uncertainty loops

around velocity anomalies.

For comparison, we show the results of P-wave velocity from joint inversion in Figure A2.

The P-wave velocity model at the depth of 0.2 km is better constrained by including surface wave

dispersion data: most of the model has lower velocities (< 3 km/s) compared to those from body

wave tomography (∼ 4 km/s) and lower uncertainties (< 0.5 km/s) than those from body wave

tomography (> 1.0 km/s). This is due to the fact that shear velocity is better estimated by including

surface waves, so the P-wave velocity can also be better constrained since P and S velocities are

correlated through the common earthquake source parameters, and surface waves are also partly

sensitive to P-wave velocity at near surface (Zhou et al. 2004; Fang et al. 2016). At greater depths

(0.5 km and 1.0 km) the mean velocity model is similar to that from body wave tomography since

surface waves have very little sensitivity to P-wave velocity structure there.
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Figure A2. Horizontal slices through the 3D P-wave velocity model obtained from joint body and surface
wave inversion. Key as in Figure 6.


