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Abstract

Chemical reaction networks (CRNs) are susceptible to mathematical modelling. The dynamic behavior of CRNs can be
investigated by solving the polynomial equations derived from its structure. However, simple CRN give rise to non-linear
polynomials that are difficult to resolve. Here we propose a procedure to locate the steady states of CRNs from a formula
derived through algebraic geometry methods. We have applied this procedure to define the steady states of a classic CRN
that exhibits instability, and to a model of programmed cell death.
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Introduction

Chemical reaction networks (CRNs) display interesting dynamic

properties. In order to understand the temporal evolution of chemical

species in reactions, CRN are often modeled through systems

involving ordinary differential equations. The ODE system derived

from a CRN endowed with mass action kinetics is a polynomial

system of several variables. The qualitative behavior of CRNs can be

outlined if we can find the stationary solutions to such ODEs.

However, most of the time these polynomials are non-linear, making

them hard to resolve. In an attempt to circumvent this problem, well

known theories have attempted to elucidate the qualititave dynamics

of CRNs using methods applied to CRN structure alone (i.e

Feinberg’s Chemical Reaction Network Theory and Clarke’s

Stoichiometric Network Analysis). Here, we present a theory

necessary to understand the dynamic properties of CRNs and

accordingly, throughout the text we will follow a classic biochemical

reaction network. In 1970, Edelstein proposed a reaction scheme that

has multiple steady states and a hysteresis loop [1]. The structure of

the model is displayed in Figure 1, whereb the network is composed of

three species (A,B and C) and six reactions. The chemical mechanism

represented is that of species A autocatalytic production and posterior

enzymatic degradation. During the explanation we will assume that

chemical reactions occur in a well stirred chemical reactor at constant

temperature.

Results

Definitions
A reaction network is composed of three sets [2]:

N Species: the chemical components of the network; S

N Complexes: the formal combinations of species that appear

before and after of reaction arrows; C

N Reactions: specify how complexes are joined by arrows. R

In the Edelstein model S = {A,B,C}, C = {A, 2A, A+B, C,B}

and R = {A?2A,2A?A,A+B?C, C?A+B, C?B,B?C}, the

number of species m, the number of complexes n and the number

of reactions r in the example being dealt with is m~3, n~5 and

r~6.

Each chemical entity is associated with a continous variable

representing its concentration (measured in moles per litre, M, or in

another appropriate unit). Only non-negative concentrations are

biologically realistic and we will use xi to identify the concentrations

of different species. In this way A = x1, B = x2 and C = x3.

Complexes are denoted y and they may be reactant complexes y

or product complexes y’. Reactions are represented as y?y’. A

complex vector contains the stoichiometric coefficient of species yi in

complex y. In open systems we refer to a special complex, known as

the zero complex 0, for which all entries are 0 and that has as many

entries as the number of species in the system under study. As an

example, the complex vector for complex 2A is

2

0

0

2
4
3
5.

The complex matrix Y is a m6n matrix that contains the

complex vectors as columns. A reaction vector is the vector

resulting from the subtraction of the reactant complex from the

product complex, y’{y. For the reaction A+B?C the reaction

vector is

{1

{1

1

2
4

3
5.

The stoichiometric matrix, N, is m6r in size and its columns

represent the reaction vectors of the chemical network. For the

Edelstein model we obtain

Y~

1 2 1 0 0

0 0 1 0 1

0 0 0 1 0

2
64

3
75N~

1 {1 {1 1 0 0

0 0 {1 1 1 {1

0 0 1 {1 {1 1

2
64

3
75ð1Þ
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In general, chemical networks have conserved relationships that

can be identified by calculating the left null space of N. If s is the

rank of N, there are m{s conserved relationships. Therefore, in

our working example s~2, there is a relationship of conservation

x2zx3~c. The conservation relationship gives rise to stoichio-

metric compatibility classes that have important consequences in

the study of CRN equilibrium solutions.

The kinetics for a reaction network {S,C,R} involve a function

that describes the rate at which the chemical species interact to

form products. The most common kinetics implemented so far are

mass action kinetics (MA). In MA, the rate of the reaction is

proportional to the product of the concentration of the reactant

species and a kinetic constant ki. The general form of MA is

Ky?y’(x)~ky?y’ P
s[S

xys
s ð2Þ

where x is the concentration vector. In these MA, the reaction

parameters are positive, and the are estimated using chemical

principles or they are deduced from experiments. It is noteworthy

that accurate values for such parameters are not often known for

complex chemical networks. The reaction rates form a vector

v[Rr, which in the Edelstein case is v~(k1x1,k2x1
2,k3x1x2,

k4x3,k5x3,k6x2)t

The matrix N can be viewed as the multiplication of two matrices

YIa where Y is the complex matrix and Ia is an n6r incidence matrix

[2]. Each column of Ia represents a reaction and has an entry 21 for

the reactant complex and 1 for the product complex. Likewise, the

reaction vector v is the product of IkY(x). Ik is a r6n matrix

containing the rows of the kinetic constants for each reaction, ki for

reactants. Y(x) is a monomial vector for the species participating in

each complex [3]. For the Edelstein example

Ia~

{1 1 0 0 0 0

1 {1 0 0 0 0

0 0 {1 1 0 0

0 0 1 {1 {1 1

0 0 0 0 1 {1

2
6666664

3
7777775

ð3Þ

Ik~

k1 0 0 0 0

0 k2 0 0 0

0 0 k3 0 0

0 0 0 k4 0

0 0 0 k5 0

0 0 0 0 k6

2
666666664

3
777777775

Y(x)~

x1

x2
1

x1x2

x3

x2

0
BBBBBB@

1
CCCCCCA

ð4Þ

The ODE system for a chemical network is of the form

_xx~Nv(k,x) ð5Þ

where N is the stoichiometric matrix and v is the reaction vector.

Using the decomposition previously explained, the ODE system is

also presented in the following form

_xx~YIaIkY(x) or _xx~YAY(x) ð6Þ

According to these considerations, the differential equations for the

Edelstein network are

_xx1~k1x1{k2x1
2{k3x1x2zk4x3

_xx2~{k3x1x2zk4x3zk5x3{k6x2

_xx3~k3x1x2{k4x3{k5x3zk6x2

ð7Þ

As a final definition is needed. The stoichiometric subspace for a

reaction network is the linear subspace defined by

T~span(y’{y[Rr : y?y’[R) ð8Þ

In our example, the stoichiometric subspace is generated by the

reaction vectors {C-B,A}. The significance of T is that the

concentration of each chemical is constrained to evolve in an defined

subspace, which is a parallel translation of T. Stoichiometric

compatibility classes are parallel translates of the stoichiometric

subspace.

Equilibrium solutions
In the previous section we explained a framework for CRNs.

Starting from the structure of chemical reactions, it is possible to

derive an ODE system for the dynamical study of CRN in a

unique and orderly way. Differential equations obtained from a

CRN are tied to the network structure. Thus, from this point on

if we know the reaction parameters (with appropriate units) and

initial conditions, we can commence a numerical analysis of the

systems to determine how the species’ concentrations change

over time. If parameters are difficult to obtain, it would be

desirable to gain some insight into the dynamic capacities of the

CRN using reaction structure alone. This approach has been

promoted and called ‘‘complex biology with no parameters’’ [4].

In order to understand a CRN we would like to solve the

vectorial equation Nv(k,x)~0 to determine the stationary states

where the system converges. Thus, we are faced with the need to

resolve several variables of a non-linear polynomial system. Two

general theories have adressed this issue : Feinberg’s Chemical

Reaction Network Theory (CRNT) and Clarke’s Stoichio-

metric Network Analysis (SNA) [2] [5]. SNA and CRNT are

methodologies to study the qualitative dynamic behavior of

chemical networks [6]. CRNT has received special attention

in recent years as it is a reliable method to rule out

hypotheses about the mechanism of a particular CRN

[7][8][9][10][11][12]. If other tools (i.e. SNA and CRNT) can

identify the possibility of a certain dynamic behavior, the

Figure 1. Edelstein chemical reaction network scheme.
X1~A,X2~B,X3~C.
doi:10.1371/journal.pone.0010823.g001
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method we explain in the following sections provides an

essential tool to determine where this behavior might occur.

Region of multistationarity
In many cases SNA and CRNT can decide whether or not a

specific CRN is capable of displaying multistationarity. However, it is

still necessary to locate the region where this property might appear,

and algebraic geometry methods are a natural choice to address that

need. To ilustrate how to use algebraic geometry to reveal the site of

multistationarity, we will continue dissecting the Edelstein network.

As already mentioned, this network displays multistationarity for

certain values of the reaction parameters. Figure 2 shows how

according to the different locations of the equilibrium curve and the

stoichiometric compatibility class intersections, there may be one, two

or even three steady states. In order to identify the exact points of

intersection we followed the procedure below:

1. Reduce N to its row reduced echelon form, RD;

2. Identify stoichiometric compatibility classes;

3. Based on the RD construct, new equations are derived by

multiplying RD by the vector of reaction rates v(k,x);

4. Add the equation representing stoichiometric compatibility

classes to the previous system (conservation relationships). We

will call this new equation system AD;

5. Calculate the Gröbner basis of AD using an elimination order

(i.e. lexicographic order);

6. Normally, this basis will produce a set of polynomials arranged

in echelon form.

The procedure for the Edelstein system yielded the following

result:

RD~

1 {1 0 0 {1 1

0 0 1 {1 {1 1

2
64

3
75 v(k,x)~

k1x1

k2x2
1

k3x1x2

k4x3

k5x3

k6x2

2
666666664

3
777777775

x2zx3~c

The new system AD is

k1x1{k2x2
1{k5x3zk6x2~0

k3x1x2{k4x3{k5x3zk6x2~0

x2zx3{c~0

ð9Þ

Now we can calculate the Gröbner basis for the new system. x1

represents the chemical product in the Edelstein network and thus,

it is of interest to represent equilibrium solutions of x1 in terms of

the different c values. The MAPLE command to obtain the basis is

gbasis([f,g,h],plex(x2,x3,x1,c)), where f,g,h are each of the elements

in the polynomial system AD. The complete basis is a huge

polynomial system and therefore, we have not reproduced it here.

Figure 2. Number of equilibrium solutions for the Edelstein system by changing the value of conservation relation. Parameter values
are k1~8:5,k2~k3~k4~k5~1,k6~0:2.
doi:10.1371/journal.pone.0010823.g002
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Using the parameters described previously [2], the first element of

the basis is 10x1c{2cz10x3
1{63x2

1{187x1. A diagram of the

solution for x1 in terms of c appears in Figure 3, based on the

formula obtained analytically 10x1c{2cz10x3
1{63x2

1{187x1.

It is evident that multistationarity is only possible for a small range

of c. Algebraic geometry methods allowed us to identify in which

interval of the stoichiometric compatibility class multiple steady

states exist. When correctly applied, the method developed in this

section is able to identify the region of multistationarity. We would

like to highlight that the procedure remains silent in terms of the

local stability of the computed steady states. In order to determine

the stability, it is neccesary to calculate the eigenvalues of the

Jacobian matrix evaluated at the specified steady state. Below we

have used the method described to analyse a mathematical model

of apoptosis.

Aplication of Gröbner basis for the study of apoptosis
Apoptosis is an essential process to maintain homeostasis in

organisms. Abnormalities in the control of apoptosis can promote

the development of autoimmune diseases, neurodegenerative

diseases or cancer. Thus, understanding the apoptosis machinery

is of considerable biological and medical interest. Apoptosis is a

suitable system for mathematical modeling. First, it is complex, by

which we mean that its collective properties cannot be explained

from the study of each component in isolation. Second, it displays

a qualitative property (bistability) useful to model validation.

Third, the central mechanism of apoptosis is well known and the

parameters for ODE simulation are available in the literature. In

this regard various attempts to model apoptosis have been

published [13][14][15].

Based on our current knowledge of how apoptosis is regulated,

we describe here a new model for receptor induced cell death. The

CRN represents Caspase 8 dependent activation of Caspase 3 and

inhibition of apoptosis mediated by BAR (Bifunctional Apoptosis

Regulator) [16][17]. Figure 4 represents a diagram of the

proposed model. The model has seven species and fourteen

reactions. The species are:

N x1 = Activated Caspase 8 (C8*)

N x2 = Caspase 3 (C3)

N x3 = The C8*C3 Complex

N x4 = Activated Caspase 3 (C3*)

N x5 = Inhibitor of apoptosis (BAR)

N x6 = The C8*BAR Complex

N x7 = The C8*C3BAR Complex

The reaction rates conform to the vector v~(k1x1x2,k2x3,k3x3,
k4x1x5,k5x1,k6x3x5,k7x7,k8x7,k9x2x6,k10x2,k11x5,k12x4,k13,k14):

The ODE system for this network is

_xx1~{k1x1x2zk2x3zk3x3{k4x1x5zk5x6

_xx2~{k1x1x2zk2x3{k9x2x6{k10x2zk13

_xx3~k1x1x2{k2x3{k3x3{k6x3x5zk7x7

_xx4~k3x3{k12x4

_xx5~{k4x1x5zk5x6{k6x3x5zk7x7{k11x5zk14

_xx6~k4x1x5{k5x6zk8x7{k9x2x6

_xx7~k6x3x5{k7x7{k8x7zk9x2x6

ð10Þ

There is a conserved relation for total C8* that is represented by

x1zx3zx6zx7~et. We would like to know if our model displays

bistability as required. In order to verify this issue, the parameters

Figure 3. Bifurcation diagram x1 vs c. Parameter values are the
same as in Figure 2.
doi:10.1371/journal.pone.0010823.g003

Figure 4. A new model for receptor induced apoptosis.
doi:10.1371/journal.pone.0010823.g004
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reported for some of the reactions in the apoptosis network were

used in a numerical analysis [18] using the procedure explained

above. The complete derivation can be followed with a MAPLE

file available upon request.

If we use the et conservation relation as a parameter of bifurcation,

it is possible in the model now proposed to admit three stady states in

a range of total C8*, two stable and one unstable. In Figure 5 the

bifurcation diagram for the apoptosis system obtained through the

analysis described above is shown. Slight changes in turnover rates

influence the dynamic behavior of CRNs and now, we wish to carry

out a similar procedure for the apoptosis model proposed. The

parameter k11 controls the degradation of BAR (x5), an inhibitor of

caspase activation. The bifurcation diagram in Figure 6 shows how

even for a region that is supposed to display multistationarity (et~2
according to Figure 5) mild variations in k11 allows the system to

commute between low and high levels of executioner caspase x4

(cleaved caspase 3). This is interesting because if a pharmacological

perturbation does not interfere with the total amount of the initiator

caspase (Total C8 = et), the system can be controled with drugs that

promote or inhibit x5 degradation. The clinical implication is if the

physician wants to promote apoptosis (i.e. in cancer cells), a

temporary increase shoudl be induced k11, whereas to inhibit

apoptosis he should just prescribe k11 a transient reduction.

Discussion

In this work we propose a new method to analyse CRNs based

on algebraic geometry and we have applied this method to two

well known biochemical examples. The method is useful to find

the locus of multistationarity in CRNs that display this property in

a fully analytical way. Very recently, various groups provided key

insights into the application of algebraic geometry to study CRNs

[19–20], yet we believe that the procedure developed here stands

out due to its simplicity and resolving power. However, the high

computational cost underlying the calculation of Gröbner basis is a

limitation when using algebraic geometry methods. This problem

can be overcome by dividing the CRN into subnetworks, resolving

each subnetwork and then applying the results to the overall CRN

[21]. We evaluated a model for the mechanisms of apoptosis and

instead of a simulation approach, we used an analysis based only

on the structure of the reaction network. This parameter-free

approximation has gained considerable attention in the field of

systems biology [21] [4]. In particular the relation between the

structure of the network and the qualitative properties inherent to

the system (like bistability) is of great importance due to the

difficulty in identifying reliable reaction parameters [22].

Chemical reactions are usually modeled by lumping together

reactions and ignoring the behavior of intermediary products. This

can lead to different dynamic properties if one compares the behavior

of complete mechanisms and their lumped counterpart. For example

using CRNT, it was recently shown that a simple model of enzyme

catalysis that exhibits multistationarity lost this property by neglecting

enzyme-substrate intermediates [23]. Representing chemical reac-

tions as accurately as possible is essential when developing

appropriate mathematical models of cellular processes.

In summary our results illustrate the power of algebraic

geometry methods to evaluate the dynamic capabilities of a

chemical reaction network.

Materials and Methods

The ODE system derived from a CRN endowed with mass

action kinetics is a polynomial system. Most of the time these

polynomials are non-linear, making it difficult to calculate the

steady states. During the last few years, there has been growing

interest in applying algebraic geometry methods to the study of

CRNs in equilibrium [24][25] and in particular, Karin Gater-

man’s work trying to link CRNT and SNA through toric ideals

deserves a special mention [3]. In order to exploit the capabilities

of algebraic geometry, we will briefly review the main concepts

required to deal with CRNs, while referring the interested reader

to an excellent treatise on this topic. [26]

We will first broadly define what is a ring. A ring is a set where

the addition, subtraction and multiplication operations can be

defined with the usual properties (commutative, distributive, etc).

If the non-null elements have an inverse, the ring is now a field. In

this context the set of real numbers R is a field while the integers Z

are a ring. A monomial in x1,:::,xn is a product of the form

Figure 5. Bifurcation diagram X4 vs et. The parameters used are k1~
62846:678,k2~0:70598597,k3~1223:6617,k4~12:903767,k5~603:65743,
k6~29514:848,k7~119:08971,k8~1225:0265,k9~r4048:1216,k10~1,
k11~1,k12~1,k13~150:08654,k14~8:6541:10{2 .
doi:10.1371/journal.pone.0010823.g005

Figure 6. Bifurcation diagram X4 vs k11. The remaining parameters
are the same as in Figure 5 and et~2.
doi:10.1371/journal.pone.0010823.g006
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xb1

1 xb2

2 :::x
bn
n , where b1,b2,:::,bn are non-negative integers. For

example, xa~x2
1x2x4

3 is a monomial and DaD~D(2,1,4)D
~2z1z4~7 is the grade of the monomial. A polynomial is a

combination of monomials that can be represented in the

following form g~
P

a caxa where ca are coefficients. Taking a

coefficient field k, k½x1,x2, . . . ,xn� denotes the ring of all

polynomials in x1,x2, . . . ,xn with coefficients in k. An ideal I is

a subset of k½x1,x2, . . . ,xn� if itsatisfies the following conditions

[26]:

N 0[I ;

N If f ,g[I then f zg[I ;

N If f [I and h[k½x1,x2, . . . ,xn� then hf [I .

This definition is used to understand the Hilbert Basis Theorem

that states that every ideal in k½x1,x2, . . . ,xn� is finitely generated.

A set of generators of an ideal is called a basis. That is, there exists

f1 . . . fm[I such that I~vf1, . . . ,fmw~fg1f1,z . . . gmfm; g1,
. . . ,gm[k½x1,x2, . . . ,xn�g. A variety is the set of solutions of a

polynomial system. We can consider the system

f1(x1, . . . ,xn)~ . . . ~fm(x1, . . . ,xn)~0 and the variety

V (f1, . . . ,fm)~fx[Rn ; f1(x)~ . . . ~fm(x)~0g. The ideal

I~vf1, . . . ,fmw contains infinite polynomials, but

V (I)~fx[Rn; f (x)~0 for all f [Ig~V (f1, . . . fm). For this reason,

to find the solutions of the system we are interested in, an adequate

basis of I~vf1, . . . ,fmw must be obtained. If we are willing to

solve the equation Nv(x,k)~0, we would like to get a basis that

permits us to eliminate some variables and to back-substitute to

obtain the value of the remainder variables. One type of generator

or basis that permits elimination theory for an ideal to be applied is

the Gröbner basis with lexicographic order. The definitions of the

Gröbner basis and lexicographic order are found below, but first it

is important to define what an order means. As stated before a

polynomial is a combination of monomials. An order is a

procedure to exactly rearrange the terms of a polynomial in an

ascending or descending manner. Several monomial orderings

have been described including lexicographic (lex), graded

lexicographic (grlex) and graded reverse lexicographic orders

(grevlex). A Gröbner basis for an ideal I is that in which the

polynomial remainder with respect to the basis determines the

membership of I . It is considered a basic result that a Gröbner

basis always exist for any ideal and any monomial order, but the

result may differ according to the monomial order of choice.

General mathematical software, such as MAPLE and Mathema-

tica, have implementations of algorithms to calculate the Gröbner

basis. The Gröbner basis obtained in this work were determined

using the Groebner package in MAPLE. The computational cost

of calculating a Gröbner basis is extensive and some problems are

almost never solved in a realistic timescale, even if theoretically it is

always possible to obtain a Gröbner basis for an ideal. The main

use of this type of calculations is to find the solutions of polynomial

systems. The idea behind applying algebraic geometry to CRNs is

that the ODE system derived from a CRN endowed with mass

action kinetics is a polynomial set conformed by monomials

representing the rates of production and elimination of chemical

species. If other tools (i.e. SNA and CRNT) enable the possibility

of a certain dynamic behavior to be identified, algebraic geometry

is an essential tool to find where this behavior can appear.
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