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Abstract
This paper provides a methodology to assess the optimal multi-agent architecture for collaborative prognostics in modern
fleets of assets. The use of multi-agent systems has been shown to improve the ability to predict equipment failures by
enabling machines with communication and collaborative learning capabilities. Different architectures have been postulated
for industrial multi-agent systems in general. A rigorous analysis of the implications of their implementation for collaborative
prognostics is essential to guide industrial deployment. In this paper, we investigate the cost and reliability implications
of using different multi-agent systems architectures for collaborative failure prediction and maintenance optimization in
large fleets of industrial assets. Results show that purely distributed architectures are optimal for high-value assets, while
hierarchical architectures optimize communication costs for low-value assets. This enables asset managers to design and
implement multi-agent systems for predictive maintenance that significantly decrease the whole-life cost of their assets.

Keywords Multi-agent systems · Distributed systems · Prognostics · Asset management · Predictive maintenance · Cost
assessment

Introduction

The potential of using computational models to enable
real-time machine failure prediction (prognostics) has been
known since the 1980’s (Buchanan 1986). However, it wasn’t
until recent advances in sensing and communication tech-
nologies that real-time prognostics became possible. Among
these advances were cheaper, less power-consuming sensors
and improved telecommunications, that allowed for continu-
ous monitoring of machines and led to the emergence of the
Internet of Things. In the Internet of Things, a network of
connected devices gather and share information about their
surroundings (Atzori et al. 2010; McFarlane 2018). In the
industrial context, this is referred to as the Industrial Internet
of Things (IIoT) (Gilchrist 2016; Li et al. 2018), a paradigm
that togetherwith improvements in regression techniques and
computing power is set to revolutionize the field of prognos-
tics. In the IIoT, data gathered through sensors embedded in
the machines can be leveraged to perform real-time failure
detection and prediction formachines in amachine fleet, thus
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significantly reducing maintenance cost and machine down-
time (Li et al. 2018; Ning 2016).

The IIoT enables the use of multi-agent systems as a
framework for prognostics and other manufacturing prob-
lems (Brennan et al. 2002; Mařík and Lažanskỳ 2007;
Monostori et al. 2006). Multi-agent systems (MAS) are sys-
tems of independent software elements that can be used to aid
humans in the process of taking decisions (Ferber and Weiss
1999). They have been postulated as a suitable framework to
deal with the complexity of industrial asset fleets formed by
heterogeneous assets (Leitão and Karnouskos 2015). Multi-
agent systems have been especially successful in aiding
humans to take decisions in complex environments such as
traffic management, industrial production, etc. (Wooldridge
and Jennings 1995).

The history of multi-agent systems is intrinsically linked
to our understanding of the meaning of the word ‘agent’,
the definition of which has been a long-lasting topic of
debate (Nwana 1996). This paper conforms to the defini-
tion of agents typically used for industrial systems: agents
as autonomous, problem-solving, and goal-driven computa-
tional entities with social abilities (Leitão and Karnouskos
2015). Multi-agent systems remain one of the most prolific
frameworks to manage continuous monitoring systems, and
recently they have been postulated as a way of providing
assets with a certain degree of agency (Palau et al. 2019b).
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From this idea, collaborative prognostics has been proposed
as a framework in which agents share information with each
other in order to improve failure predictions, thus optimizing
predictive maintenance (Palau et al. 2019a).

A multi-agent system is defined by its architecture, that
determines the structure and topology of its agents. Multi-
agent system architectures have been broadly classified into
four types: Centralized, Hierarchical, Heterarchical, andDis-
tributed (or peer-to-peer) [see Sallez et al. (2010) and Leitão
and Karnouskos (2015)]. In collaborative prognostics, where
agents are often linked with individual assets, the optimal
architecture will be determined by its influence on the overall
cost and reliability of the system. Collaborative prognostics
in large fleets of assets comprehends several cost factors:
communication, computational, andmaintenance. Tradition-
ally, maintenance costs were considered cardinal. With the
advent of IIoT technologies, communication and computa-
tional costs have become relevant due to the large amount of
data processed and transmitted through the internet in con-
tinuously monitored fleets.

When applied to predictive maintenance, several of the
canonical architectures of multi-agent systems require dra-
matically increasing the amount of processing and com-
munication within the fleet, as real-time peer-to-peer com-
munication and prognostics are supported. State of the art
prognostics use a plethora of machine learning algorithms
(Khan and Yairi 2018; Lee et al. 2014), which are often com-
putation and data intensive (Konecnỳ et al. 2016). Therefore,
it becomes crucial to quantify how maintenance costs com-
pare to other costs in order to assess the suitability of different
MAS architectures.

In this paper, we compare several canonical multi-agent
architectures for collaborative prognostics on the basis of dif-
ferent cost balances between communication, maintenance
and computation. Concretely, we study the effect of varying
asset value and communication costs in the overall cost of
the architecture, and we show that different architectures are
optimal for different industrial scenarios.

Apart of the cost constraints explicitly dealt with in this
paper, the implementation of a multi-agent architecture may
be limited by other constraints such as human resources or
available capital. This is especially important in the case of
SME’s, or industries operating in a context of low finan-
cial liquidity. This paper does not deal with such managerial
details, but they must nonetheless be taken into account
beforehand by any Asset Manager wishing to implement the
proposed system in practice.

After an Abstract and an Introduction, a further literature
review is presented in “Pertaining Literature”. This is fol-
lowed by a description of Collaborative Prognostics, and of
the maintenance policy followed by the agents in our imple-
mentation. Following this, “Cost analysis” section describes
how different architectures are benchmarked through their

operational cost, and presents a normalized cost measure.
This is followed by a description of the agent typologies
used in the system’s architectures in a section called “Agent
typologies and their failure modes”. The multi-agent archi-
tectures are presented right after, in a homonymous section.
This is followed by a brief description of the implementa-
tion of the architectures in a multi-agent system simulation
software called Netlogo, and a description of the distributed
clustering algorithm used in the implementation of the Dis-
tributed architecture. Experiments are described in a section
with the same name, and the results obtained from these
experiments are described in “Results and discussion” sec-
tion. A methodology to select a multi-agent architecture is
described in “A methodology for architecture evaluation”
section. The paper ends with a conclusion, and description
of future work.

Pertaining literature

While the formal definition of the term agent varies across
the literature, there is at least a consensus over the way MAS
function (Weiss 1999;Wooldridge and Jennings 1995; Ferber
and Weiss 1999). In multi-agent systems, the overall sys-
tem goal is subdivided into agent-level goals depending on
the knowledge and reasoning skills of the agents within the
system. Agents perceive their local environment, and have
a partial view of the system by communicating with other
agents. It is through this communication that agents col-
laborate with one another, and make decision to reach the
overall system goal. The level of intelligence and relation-
ships among the agents is defined by the designer of the
system, or the final user (Brennan et al. 2002; Mařík and
Lažanskỳ 2007; Monostori et al. 2006).

Multi-agent system architectures are typically defined
in terms of decision-making, and thus vary from being
completely distributed (where all agents are at the same
decision-making level), to being purely centralized (similar
to traditional centralized control systems) (Andreadis et al.
2014). Additional agents like mediators, or brokers, may be
present in the system to govern a sub-group of agents, thus
generating architectures with an intermediate degree of dis-
tribution (Andreadis et al. 2014). In this paper, we focus on
four broad classes of MAS architectures: Distributed, Heter-
archical, Hierarchical, and Centralized. These four classes
correspond to the four classes of decision-making archi-
tectures identified in Sallez et al. (2010) and Leitão and
Karnouskos (2015).

The Hierarchical, Heterarchical, and Distributed MAS
architectures have their origin in traditional control sys-
tems, that by the end of the twentieth century evolved to
more distributed frameworks (Trentesaux 2009). A flexible
decision-making approachwas preferred over a rigid one pro-
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Table 1 Brief overview of research featuring the use of multi-agent systems in manufacturing industries

Reference Year Application Use of MAS

Duffie and Piper (1986) 1986 Job scheduling Represent entities of a shop floor using agents to
enable dynamic job scheduling

Djurdjanovic et al. (2003) 2003 Prognosis and diagnosis Agent analyzes the data for diagnosis and
prognosis

Wong et al. (2006) 2006 Job scheduling Agents negotiate and evaluate cost for optimal
job scheduling

Tang et al. (2006) 2006 Maintenance planning Optimize a maintenance model using a
reinforcement learning model implemented
over a MAS framework

Liu et al. (2007) 2007 Prognostics Prognostics of shipboard power systems

Xiang and Lee (2008) 2008 Task sequencing Part and machine agents optimize the task
sequencing operation

Fasanotti (2014, 2018) 2014 Maintenance planning Forecast maintenance needs of geographically
distributed assets

Hernández et al. (2014) 2014 Supply chain management Collaborative learning in supply chain
management

Wang et al. (2016) 2016 Smart factory A coordinator agent decides upon the optimal
solution after lower-level agents negotiate

Upasani et al. (2017) 2017 Maintenance planning Agents representing various departments of a
shop floor collaboratively plan a maintenance
schedule

Li and Parlikad (2017) 2017 Workload assignment Coordinator agent continuously monitors the
asset agents to assign optimal workload to
reduce the overall operations cost

Ghita et al. (2018) 2018 Maintenance planning Maintainer and Producer agents collaborate to
improve prognostics and production and
maintenance activities

viding optimal solutions under hard constraints, thus spurring
the rise of decentralized architectures (Leitão 2009; Trente-
saux 2009).

The earliest type of distributed framework was Hierarchi-
cal, where the information flowed from lower levels in the
architecture to higher-level agents until a suitable decision-
making level was reached. Decisions then flowed in the
opposite direction (Leitão 2009). However, the search for
a suitable decision maker, and the following computations
induced lag, compromising the real-time capabilities of the
system. This was solved by allowing decision makers at the
same level to coordinate. Such ‘heterarchical’ frameworks
are re-configurable, and have substantially improved short-
term optimization (Trentesaux 2009).

The use of MAS as a framework for decision-making and
control in manufacturing industries has been proposed by
several researchers (Vrba 2013; Shen et al. 2006). Table 1
shows various examples where the use MAS has shown to
optimise the operations.

In conclusion, the literature presents ample evidence for
the use of MAS as a decision-making framework for varied
applications in the manufacturing industry. one such applica-

tion, collaborative prognostics, is considered in this paper and
implemented for different well-known MAS architectures.

Collaborative prognostics

The concept of collaborative prognostics extends the concept
of collaborative agents into the field of prognostics and health
management. Collaborative agents share information with
each other in order to jointly achieve a given objective (Tan
1993; Nwana 1996). In collaborative prognostics, machines
(through their agents) behave like social entities, communi-
cating with one another and taking their own decisions. In its
core, collaborative prognostics involves formation of clus-
ters of similar machines, and collaboration among machines
within these clusters to improve failure prediction and predic-
tivemaintenance. This collaboration can either be in the form
of exchanging model parameters or condition data (Palau
et al. 2019b).

In contrast to conventional fleet-wide prognostics meth-
ods that rely on a single computer, collaborative prognostics
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is distributed, flexible and occurs in real-time. Moreover, it
has been shown that collaborative prognostics is theoretically
more cost-effective compared to self-learning [prognostics
using themachine’s owndata (Palau et al. 2019b)], andwhole
fleet learning under certain conditions (Palau et al. 2019a).

So far, the feasibility of collaborative prognostics has been
shown using a modified hierarchical architecture (Bakliwal
et al. 2018). This architecture was applied to a scenario in
which a simulated fleet of turbofan engines was managed
using agents. Each engine was assigned an agent, a “Digital
Twin”, which in turn were connected to one another via a
“Social Platform” agent. Prediction was done initially using
sliding-window classification (Bakliwal et al. 2018), later
expanded to recurrent neural networks (Palau et al. 2018).

In this paper, collaborative prognostics is implemented
using four different canonical multi-agent architectures. In
order to evaluate realistic industrial scenarios involving sev-
eral hundreds of machines communicating with each other,
it is important to reduce the complexity of the analysis. In
prognostics, a standard way to do this is through a Health
Indicator, a synthetic numerical indicator extracted from the
asset’s sensor values that upon reaching a pre-defined thresh-
old is assumed to signify asset failure [see, for example,Wang
et al. (2008) and Yan et al. (2004)].

Similar to Palau et al. (2019b) and Wang et al. (2008), we
choose an inverse exponential Health Indicator:

HIi(tli ) = ai
(
1 − e−bi (t f i−tli )

)
+ ε0,σ , (1)

in this equation, tli is the local time of the asset: the time
since the last repair or installation. (ai , bi , t f i ) are the param-
eters that define the behaviour of the Health Indicator. bi is a
curvature parameter (the smaller bi is, the sharper the dete-
rioration). ai determines the expected value of HIi at tli = 0.
t f i is the average (or expected) time of failure. ε0,σ is a ran-
dom termwith standard deviation σ and 0 mean, conforming
to a Gaussian distribution. In this paper, ai is normalised to 1,
and thus σ = 1 represents a level of noise that often reaches
100% of the value of the health indicator. This means that
in realistic situations σ < 0.5. Assets are assumed to have
failed when HIi ≤ 0.

In this paper, collaborative prognostics is implemented by
sharing Health Indicator data among similar agents in the
system. The accumulation of data, if belonging to an asset
with similar (ai , bi , t f i ), increases the accuracyof prediction.
On the opposite, if the assets are dissimilar, data sharing
decreases it.

Maintenance policy

The agents in the system responsible of prognostics will pro-
pose the following predictive maintenance policy to human
operators:

– Predictive maintenance assets should be preventively
repaired when their time since installation or last repair
surpasses the predicted time of failure multiplied by a
factor, η: tli > ηtef i , η < 1.

– Corrective maintenance assets should be correctively
repaired immediately upon failure.

In this policy, tef i is the estimated time of failure of the
asset i in the fleet. Ideally, η can be optimized in real time
by assuming that the agent’s estimated prognostics parame-
ters approximate the true ones, as the problem reduces to a
replacement policy problem [see Jardine and Tsang (2005)
and Palau et al. (2019b)]. In this paper, however, we decide
to set η into a fixed value of 0.7 in order to satisfy computa-
tional constraints and help comparison across experimental
cases (experiments showed that the value η was not relevant
for the comparison between architectures as long as η was
the same across experiments).

Cost analysis

An accurate estimation of the cost of a multi-agent system is
crucial to choose between different architectures for a given
implementation scenario. The cost,CT incurred by operating
the multi-agent architectures presented in this paper can be
divided in three main components: maintenance, communi-
cation, and processing (computational) costs,

CT = CM + CC + CP = NCΓ + NPγ + CC + CP, (2)

where CM is the maintenance cost of the assets, CC is the
communication cost, andCP is the processing cost. Themain-
tenance cost, CM is formed by the predictive maintenance
cost, γ , and the corrective maintenance cost Γ of one asset.
NC and NP are the number of times that corrective and pre-
dictive actions have been taken at any given time.

In normal conditions, the predictive maintenance cost is
a small fraction of the corrective maintenance cost, γ =
αΓ where α � 1. For this paper corrective maintenance is
assumed to correspond to the full replacement of the asset
that has failed, which means that its cost can be assumed
to be the proportional to the acquisition cost of the asset1

Γ ∝ CA. In this paper ‘high value’ assets correspond to
assets with a high value of Γ , and consequently ‘low value’
assets correspond to assets with a low value of Γ . Equation
(2) can be re-written:

CT = Γ (NC + αNP) + CC + CP. (3)

1 Other costs, such as downtime cost, human resources, etc, should be
also considered for the exact mathematical dependency.
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The precise monetary amount represented by each of these
components necessarily depends on the particularities of the
system studied. Notwithstanding, it is a safe assumption
that individualized communication and processing costs will
approximately be the same across different implementation
scenarios. Regardless ofwhether the data comes from a smart
phone or a gas turbine, the cost of processing a byte of that
data and sending it through the Internet is the same. It is then
useful to normalize these costs to the corrective maintenance
cost, Γ . Equation (2) then reads:

Ct = (NC + αNP) + NCoCc + NproCp, (4)

where Cc, Cp, and Ct are normalized to the corrective main-
tenance cost Γ . NCo is the number of fixed-size (a pre-set
byte amount) communications between any two agents in
the system. Npro is the number of times a fixed computa-
tional resource measure (for example, one flop) is used in the
system. In practical terms, thismeans that if in one system the
corrective maintenance cost is £10,000, and in another one it
is twice that, Cc will be reduced by half in the simulation (as
Cc is normalised toΓ ). Thus, in this paper, costs are pre-set in
three parameters, all normalized to Γ : the fixed-length com-
munication cost Cc, the fixed computational resource cost
Cp, and the predictive maintenance cost α.

To further compare across architectures and experimental
scenarios, it is important to normalize cost to the time that the
systemhas been operating and to the number of assets present
in each experiment. This is needed because experiments with
a larger number of assets, and with a longer operation history
will generate larger costs. For this purpose, we will use the
normalized cost K :

K = 1

TN

(
(NC + αNP) + NCoCc + NproCp

)
, (5)

where N is the number of assets in the system and T is the
total time of the simulation (the number of steps since ini-
tialization).

Agent typologies and their failure modes

The architectures reviewed in this paper are formed by four
elements: Virtual Assets, Digital Twins, Mediator Agents,
and a Social Platform. Some of these agents were already
described in several publications (Palau et al. 2019a; Bak-
liwal et al. 2018; Palau et al. 2018, 2019b), and their
description here is inspired in the original papers.

The agent’s failure modes have been restricted to affect
their deliberative and communicative capabilities. The exper-
iments are set up under the assumption that there will be no
data loss upon agent failure due to the widespread nature of
backup systems in industry.

Virtual asset

Virtual Assets are the lowest-level agents employed in col-
laborative prognostics. The Virtual Assets’ tasks are limited
to standardizing the data coming from their corresponding
physical assets, and sending that data to upper layers in
the architecture. It must be mentioned that because of the
rather simple tasks that they perform, Virtual Assets fail to
satisfy some widely-accepted definitions of agents [see for
example Nwana (1996)]. However, they are critical for the
functioning of the system and thus we include them in our
analysis.

Virtual Assets act as passive nodes of the architecture, and
have nodeliberative capabilities. Their data is divided in three
main components: a set of sensor-produced features, a set of
timed failures or warnings, and a unique identifier. Virtual
Assets are formed by two building blocks: a Standardizer,
dedicated to standardize the data coming from their assigned
assets, and a Communications Manager, that controls the
communications with the upper layers of the architecture.

Failure Virtual Asset’s failure corresponds to the severance
of communications between a deteriorating asset and the rest
of the architecture, and thus the halt of prognostics for this
particular asset.

Digital twin

Digital Twins are smart agentswith prognostics, communica-
tion, and data preprocessing capabilities.WhenDigital Twins
are employed, each physical asset in the industrial system is
assigned its individual Digital Twin.

Digital Twins are composed of three building blocks: an
Analytics Engine, a Data Repository, and a Communications
Manager. TheAnalytics engine computes prognostics and the
maintenance policy, the Data Repository manages the data
available to theTwin, and theCommunicationsManager con-
trols the communication between the Digital Twin and other
elements of the architecture. This includes the capability of
independently choosing other Twins to collaborate with.

Failure The failure of aDigital Twin implies (1) that its com-
munication with other agents is severed, (2) that the system
stops providing maintenance recommendations for the phys-
ical asset assigned to the faulty Digital Twin, and (3) that the
Digital Twin cannot perform any computation.

Mediator agents

Mediator Agents are intermediate agents able to perform
prognostics and determine themaintenance policy for groups
of assets. They are also able to receive data from the Virtual
Assets, and send data to upper layers of the architecture.
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Table 2 Brief description of the roles different agents play in each of the architectures

Agent Centralized Hierarchical Heterarchical Distributed

Social network platform Clustering Clustering Clustering NA

Predictive maintenance Mediator control

Mediator NA Predictive maintenance NA NA

Digital twin NA NA Predictive maintenance Distributed clustering

Peer to peer communications Peer to peer communications

Predictive maintenance

Virtual asset Standardize the incoming data and pass it on to the higher levels

Mediator Agents can communicate with each other through
the Social Platform.

Mediator agents are composed by the same building
blocks as Digital Twins. However, their Analytic engine and
Communications Manager do not give them the capacity of
choosing which agents to communicate with, as their com-
munications are managed by the Social Platform.

Failure The failure of a Mediator Agent implies (1) that
its communication with other agents is severed, (2) that the
system stops providing maintenance recommendations for
the physical assets assigned to the Mediator Agent and (3)
that the Mediator Agent stops using any computing power.

Social platform

The Social Platform is the agent serving as a central node
in the Centralized, Hierarchical and Heterarchical architec-
tures. The main task of the Social Platform is to run algo-
rithms leveraging information originating from the whole
fleet. These algorithms can be aimed at (1) forming clusters
of collaborating assets, (2) retrieving and plotting enterprise-
level information, or (3) calculating prognostics and making
maintenance decisions. Note that each of these tasks are
optional and depend on the architecture in which the Social
Platform is embedded (see Table 2).

The Social Platform uses data received from agents in
lower layers of the hierarchy in order to form clusters of col-
laborating assets. In the case of a Hierarchical architecture,
the Social Platform acts also as a communication channel
between the lower agents of the architecture.

The Platform is formed by three building blocks: a Data
Repository, containing clustering information, and the results
of the algorithms run in the platform, an Analytics Engine
where algorithms are computed, and a CommunicationMan-
ager, that controls communication with lower-level agents.

Failure The failure of the Social Platform implies the sever-
ance of all communications and all computations managed
by it. Additionally, in the Centralized architecture, failure

of the Social Platform implies the halt of all maintenance
recommendations.

Multi-agent system architectures

In this section, we describe the architectures analyzed in this
paper. These architectures have been chosen because of their
prominence in industrial systems. In here, we describe them
within the context of collaborative prognostics, more general
descriptions can be found in Brennan et al. (2002), Mařík
and Lažanskỳ (2007), Monostori et al. (2006), Andreadis
et al. (2014) and Leitão andKarnouskos (2015). Table 2 sum-
marizes the role that each of the components presented the
previous section play in each architecture.

Centralized

The Centralized architecture is the simplest case considered
in this paper. It consists of a Social Platform with full control
over the decision-making of the system, and a set of Virtual
Assets that limit themselves to sending data to the Social
Platform. The Social Platform computes the clusters of sim-
ilar assets, and then uses the data from the assets belonging
to these clusters to generate maintenance recommendations
(see Fig. 1).

A Centralized architecture can technically be argued to
not be a multi-agent architecture, as the only agent that really
takes decisions andoutputs predictions is theSocial Platform.
Nevertheless, we decide to test it against other architectures
because of its importance and widespread use in industrial
applications.

Hierarchical

A Hierarchical architecture is defined as an architecture in
which intermediate agents provide most of the decision-
making in the system, while lower-level agents are left to
perform simpler tasks. In our case, these intermediate agents
are Mediator Agents. Mediator agents are assigned groups
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Virtual
Asset

Virtual
Asset

Virtual
Asset

Virtual
Asset

Social Platform

Data 
repository

Communications
manager

Analytics
engine

Human
Agents

Asset Asset Asset Asset

Centralised Architecture

Fig. 1 Block diagram of the Centralized architecture. Black arrows
indicate communications between its elements. Human agents and
assets are not considered to be part of the software architecture, as they
are elements in the physical world. The thicker block, pertaining to the
Social Platform, indicates the element of the architecture performing
prognostics

of Virtual Assets for which they perform prognostics, and
schedule maintenance actions (see Fig. 2).

The Social platform is hierarchically superior to theMedi-
ator Agents and in fact assigns them to groups of similar
assets. The Social platform can also create or delete Medi-
ator Agents (since the number and membership of clusters
may vary over time), and has full control of the communica-
tions of the system.

Heterarchical

A Heterarchical architecture differs from the Hierarchical
case presented in last paragraph in that it allows for peer-to-
peer communication between the Digital Twins. Concretely,
in our implementation of this architecture, Digital Twins
perform prognostics, take maintenance decisions, and com-
municate with each other.

The Social Platform, at a higher level in the architecture,
decides which Digital Twins will communicate with each
other through its clustering algorithm, and serves as a com-
munication link with human operators (see Fig. 3).

V. A. V. A.

V. A. V. A.

V. A. V. A.

V. A. V. A.

V. A. V. A.

V. A. V. A.

Social Platform
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Analytics
engine

Human
Agents

Asset

Hierarchical Architecture

Mediator Agent

C D A

Mediator Agent

C D A

Mediator Agent

C D A

Asset Asset Asset Asset Asset

Fig. 2 Block diagram of the Hierarchical architecture. Black arrows
indicate communications between its elements. Human agents and
assets are not considered to be part of the software architecture, as they
are elements in the physical world. The thicker blocks, pertaining to
the Mediator Agents, indicate the element of the architecture perform-
ing prognostics for the assets in the industrial fleet. C, D, A are used
to indicate the Communications manager, the Data Repository and the
Analytics engine of the Mediator Agent

Social Platform

Data 
repository

Communications
manager

Analytics
engine

Human
Agents

Heterarchical Architecture

Digital Twin

C D A

Virtual Asset

Asset

Digital Twin

C D A

Virtual Asset

Asset

Digital Twin

C D A

Virtual Asset

Asset

Digital Twin

C D A

Virtual Asset

Asset

Fig. 3 Block diagram of the Heterarchical architecture. Black arrows
indicate communications between its elements. Human agents and
assets are not considered to be part of the software architecture, as
they are elements in the physical world. The thicker blocks, pertaining
to the Digital Twins, indicate the element of the architecture perform-
ing prognostics for the assets in the industrial fleet. C, D, A are used
to indicate the Communications manager, the Data Repository and the
Analytics engine of the Digital twin
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Human
Agents

Distributed Architecture

Digital Twin

C D A

Virtual Asset

Asset Asset Asset Asset

Digital Twin

C D A

Virtual Asset

Digital Twin

C D A

Virtual Asset

Digital Twin

C D A

Virtual Asset

Fig. 4 Blockdiagramof theDistributed architecture.Black arrows indi-
cate communications between its elements. Human agents and assets
are not considered to be part of the software architecture, as they are ele-
ments in the physical world. The thicker blocks, pertaining to theDigital
Twins, indicate the element of the architecture performing prognostics
for the assets in the industrial fleet. C, D, A are used to indicate the Com-
munications manager, the Data Repository and the Analytics engine of
the Digital twin

Distributed

A Distributed architecture is one in which all its agents are
in the same level of the hierarchy, and have the ability to take
independent decisions without the supervision of a higher-
level agent (see Fig. 4). In this architecture, communication
consists of peer-to-peer connections between Digital Twins
(i.e. the twins are all connected to one another without any
central agent or mediators present).

As in the architectures described previously, similar assets
are clustered together for collaborative prognostics, and the
Digital Twins within the same cluster collaborate with one
another. There is, however, an important difference: the clus-
tering algorithm implemented here has to be a distributed
clustering algorithm, unlike the previous architectures,where
the Social Platform performs this task. The distributed k-
mean clustering algorithm implemented here is similar to
the one presented in Qin et al. (2017), and is detailed in
“Distributed clustering algorithm” section.

Implementation in Netlogo

The architectures explained above were analysed in terms
of their cost components. For this analysis to be done, a set
of experiments were performed on Netlogo, with a Python
extension. Netlogo is a MAS simulator, which has been used
to simulate emergent behaviour of complex systems ranging
fromherd of sheep, to human behaviour during an emergency
(Tisue and Wilensky 2004). Netlogo allows its agents to run

Python scripts in the backend, through its official Python
extension.2

All the architecture types described above were simulated
using the same strategy: Netlogo simulated the behaviour
of the agents (i.e. initiating the fleet of assets, connecting
similar agents together, computing agent failures, etc), and
prognostics/clustering algorithms were implemented using
Python scripts.

The same approach used in Palau et al. (2019b) for prog-
nostics is followed in our simulations here. However, instead
of Matlab’s lsqnonlin used in Palau et al. (2019b), the
least squares fit from Python’s Scikit learn (Pedregosa et al.
2011) library was used to fit the ai , bi , and t f i values in the
Eq. (1). To ensure that the system scaled well with the num-
ber of assets, this fit was limited to the last 400 data-points
available to the agent.

Agents decided on which other agents to collaborate with
by checking whether their corresponding assets belonged to
the same asset cluster (information conveyed by the Social
Platform). The clusters of assets were formed using the
k-means clustering Algorithm (Hartigan and Wong 1979)
implemented on Python via the Scikit learn library. This
algorithm had as an input the parameters obtained from the
non-linear fit: ai , bi , and t f i . This excludes the case of the
Distributed architecture, in which the distributed clustering
algorithm described in the next section was used. Tomeasure
the computation cost, we measure the processor’s time using
python’s ‘Time’module while the program is run. Thus, Npro

is simply the total processing time used by the Python scripts
of each architecture.

Distributed clustering algorithm

The clustering algorithm implemented for the distributed
architecture differs from the centralized clustering algorithm
used for the rest of architectures. The algorithm used here
distributes the computation steps across the nodes, as there
is no central agent left to compute clustering.

The goal of this algorithm is to form ‘k’ clusters of assets.
‘k’ here equals the number of different types of assets in the
fleet. To initialise the clustering centroids, first, a random
agent in the fleet is chosen as the first centroid. This agent
records the distances of the remaining agents from their cor-
responding closest centroid. ‘closeness’ of the agent from
the centroid is calculated using the history of the past health
indices, and the maximum time before failure recorded. The
farthest agent is then assigned as a new centroid. The process
of generating new centroids continues until we have a total
‘k’ centroids, each representing its own cluster of assets. This
way, centroids are initiated as far away from each other as

2 https://github.com/NetLogo/Python-Extension.
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possible, which is also the rationale behind the distributed
k++ means algorithm (Qin et al. 2017).

Once all centroids have been assigned, each agent com-
putes the distance to the centroids identified above, and
assigns itself to the cluster corresponding to the closest cen-
troid. As the simulation time progresses, the availability of
Health Indicator data increases. Since in our simulations we
use a normally distributed noise term [see Eq. (1)], the aver-
age difference of the health indicator per time step for similar
assets approaches zero. The similarity of the assets there-
fore becomes more and more apparent with every passing
time step, and the clusters eventually converge. This is the
only step different from the distributed k-means clustering
presented in Qin et al. (2017), where the authors rely on
average-consensus to update the clusters. We instead update
the clusters based on increasing data availability with the
time steps. Algorithm 1 describes our distributed algorithm
in pseudo-code (run every time step).

Select one random agent from the fleet;
while number of centroids <k do

for the agent selected above do
Calculate the distances between the agents and the
centroids;
Record the distances of the agents from their closest
centroid;
Append the farthest agent to the list of centroids;

end
end

These centroids represent the clusters;
for every other agent in the system do

Calculate the distances from each centroid;
Assign self to the cluster represented by the closest centroid;

end

Algorithm 1: The distributed k-means cluster-
ing algorithm implemented in this paper

Experiments

Two sets of experiments were designed for this paper: one
in which agent failure was not considered, and another one
in which agents were made to fail at different layers of the
architecture.

In the first set of experiments, a large fleet of assets is
simulated to undergo deterioration such as determined by
Eq. (1), and prognostics is performed such as described in
“Implementation in netlogo”. A separated experiment is per-
formed for each type of architecture described in this paper,
and prognostics, clustering and maintenance recommenda-
tions are executed such as described in themulti-agent system
architectures section.

Table 3 Parameters used in the experiments

Var. Definition Value (s)

η Prev. maintenance factor 0.7

N Number of assets 500

k Number of clusters 4

σ Noise standard deviation [0–0.5]

The second set of experiments is essentially a replica of
the first set of experiments in which agents are allowed to
randomly fail at all layers of the architecture with a prob-
ability of 1/50 each time step. Agent failure is defined in
“Agent typologies and their failure modes” section, and typ-
ically implies a reduction on communication and processing
cost and an increase of asset failures due to the halt of prog-
nostic capabilities (and maintenance recommendations). In
our experiments, the duration of an agent failure is randomly
assigned between 1 and 50 time-steps.

In both cases, the experiments were set to be as extensive
as possible within our computational constraints. Simulating
several hundred assets with real-time prognostics and diag-
nostics capabilities is a computationally demanding task, and
thus we restricted the number of simulated assets to 500. The
experiments were run eight times and then averaged over to
compensate for any effect that the variation of initial param-
eters could have on the results. Table 3 includes a detailed
description of the parameters used whilst running the exper-
iments.

In our experiments, costs are accounted as a series of addi-
tive contributions, adding up to a total normalised cost [see
Eq. (5)]. Each of these contributions (NP, NC, NCo, Npro)
are recorded independently. This allows us to explore all the
parameter space of

(
α, Γ ,Cp,Cc

)
with a single experiment

per each architecture type, as the dynamics of the simulation
are independent of the cost parameters. Therefore, experi-
ments are run with

(
α, Γ ,Cp,Cc

) = (1, 1, 1, 1), and gener-
alised by multiplying (NP, NC, NCo, Npro) by

(
α, 1,Cp,Cc

)
across the parameter range of interest (normalised to Γ ).

The parameters determining each asset’s Health Indicator
in the population, (ai , bi , t f i ) are chosen such that four dis-
tinct classes of assets are present in the experiment. These
four classes of assets are chosen randomly within the follow-
ing pre-set limits (ai , bi , t f i ) = ((0, 1), (0, 0.1), (0, 100)).
Assets in the fleet are then randomly assigned to belong to
one of the four classes. The Health Indicator of these assets is
generated during the experiments using Eq. (1). Experiments
are run until T = 400 to make sure3 that even in the case
of very long failure times t f i , the asset fleet is able to record
multiple failures for each asset.

3 Four-hundred time-steps.
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Results and discussion

The number of times that each cost component contributes to
the total cost of the experiment, determined by the quadru-
plet (NP, NC, NCo, Npro) is shown in Tables 4 and 5 (in
Appendix). These tables translate into specific cost compo-
nents once these components are weighted by cost weights(
α, 1,Cp,Cc

)
. If there is no mention of the contrary, in the

results presented here we choose α = 1
100 , which means

that the predictive maintenance cost is one hundred times
cheaper than the corrective maintenance cost. Additionally,
Cp = 20Cc is chosen, as this ensures a significant contribu-
tion of the processing costs (note that Npro � NCo). Due to
the linearity of the cost equations, these assumptions have no
effect on the generalisation of the observed trends.

The following phenomena are clearly observed in Fig. 5:

1. If agent failures are considered, Distributed and Heterar-
chical architectures are optimal for high-value assets (or
low communication costs). Compare the dashed lines in
Fig. 5. In the Centralised and Hierarchical case, the fail-
ure of a Mediator Agent or the Social Platform leads to
a halt of predictive maintenance operations for hundreds
of assets in the system, which then causes a dramatic
increase of corrective maintenance actions (for exam-
ple, for σ = 0.1 the difference between corrective
maintenance actions in the Centralised and Heterar-
chical architectures nearly doubles (see Tables 4, 5 in
Appendix). In the Distributed and Heterarchical cases,
maintenance recommendations are produced by the Dig-
ital Twins, and no agent failure has the potential to
compromise maintenance for hundreds of assets.

2. Higher costs for low-value assets across the board: the
normalized cost per asset and time step4 in architectures
containing low-value assets is orders ofmagnitude higher
than for the case of high-value assets (the cost for all
architectures increaseswith 1

CA
inFig. 5). Thismeans that

real-timeMAS implementations for prognostics aremore
cost-effective the more expensive the replacement cost
of the assets is, assuming that prognostics complexity
remains constant.

3. When there are no agent failures, Centralized and
Hierarchical architectures are generally cheaper this is
expected, as these two architectures are also the ones fea-
turing less communication and computation costs. Only
for very noisy experiments, for very low communication
costs or very high asset values this becomes false, when
maintenance costs dominate over the rest of the costs of
the system.

4 Recall that this cost has been normalised to the correctivemaintenance
cost Γ , proportional to the asset value CA. Ta
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4. When there are no agent failures, cost differences
between architectures minimize as asset value increases:
note the convergence of solid lines for low values of
1
CA

in Fig. 5. This is due to the fact that in high-value
assets maintenance costs dominate over communication
and computing costs. If no agent failures are included in
the experiments, predictive maintenance in the different
architectures has a very similar level of accuracy, and the
overall cost is essentially the same.

5. A high communication cost limit exists: if communica-
tion costs are high enough (or asset value low enough),
agent failures (dashed lines) actually mean lower oper-
ational costs. The explanation for this is simple: agent
failure increases operational cost throughmore unwanted
corrective maintenance actions, but decreases it by halt-
ing computation and communication actions. If the
communication costs are high enough, agent failure then
leads to a less costly architecture.

Another interesting factor to study from the experimental
results is the dependence with the amount of noise present
in the Health Indicator, σ . Figure 5 shows that the differ-
ence between architectures in the case of no agent failures
reduces as the communication cost decreases (and costs are
dominated by the maintenance component). To check if cost
difference also decreases the more noisy the system is, we
measure the normalised index of dispersion across different
values of σ ,

Dnorm
σ = 1

maxσ (Dσ )

Var
(
K σ
cent, K

σ
hier, K

σ
dist, K

σ
hete

)

Mean
(
K σ
cent, K

σ
hier, K

σ
dist, K

σ
hete

) . (6)

The reason why we normalise Dσ to its maximum is to be
able to show the dependency with σ across different values
of Cc in the same figure (we already know from Fig. 5 that
the absolute value of dispersion decreases with Cc).

From Fig. 6, one observes that cost differences between
architectures decrease as noise increases: this is a direct effect
of an increase of un-predicted failures as the data becomes
more noisy, which makes maintenance costs dominate (see
Tables 4, 5). This tendency reverts only for unrealistically
high communication costs, or very low asset values (note that
a communication cost of 0.2 corresponds to 20% of the cost
of replacing the asset, and that these cost are for a fix number
of bytes sent through the network). This reversion is given
by the difference in clustering between the distributed archi-
tecture and the rest of architectures: the more noise there is
in the system, the more different cluster results are produced
(see Tables 6, 7). Normally, this does not affect the index
of dispersion because maintenance costs dominate at large
values of σ , but for high enough communication costs, this
effect is observed.
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Fig. 5 Normalised cost K for each of the studied architectures, for the
case of agent failure (dashed) and no agent failures (solid lines) with
respect to the normalised communication cost Cc. The horizontal axis
can be interpreted both as the increase of the communication cost given
a constant asset value, or as the decrease of asset value given a constant
communication cost (1/CA , high-value assets to the left of the chart).
The data here is plotted for σ = 0.1, α = 1/100, and Cp = 20Cc

Fig. 6 Normalised index of dispersion Dnorm
σ across the studied archi-

tectures, for the case of no agent failures with respect to the amount
of noise in the system σ . Lines are colored depending on the nor-
malised communication cost Cc. The blue line with markers represents
the high communication cost/low asset value limit. This can be inter-
preted both as the increase of the communication cost given a constant
asset value, or as the decrease of asset value given a constant commu-
nication cost (1/CA). The data here is plotted for σ = 0.1, α = 1/100,
and Cp = 20Cc (Color figure online)

Amethodology for architecture evaluation

The approach followed in this paper can be used as a foun-
dational methodology to assess the optimality of a given
multi-agent architecture in a real industrial application of col-
laborative prognostics. In this case, an asset manager should
take the following steps:

1. Determine the predictive maintenance γ , and corrective
maintenance Γ costs of the fleet’s assets.

2. Determine the approximate cost of processing and send-
ing through a given unit of data (for example a byte),
and encode it in the multi-agent simulation of the system
through Cc and Cp.

3. Estimate the accuracy of real-time prognostics, and
encode it in Eq. (1) through its stochastic term.

4. Determine the number of assets N present in the asset
fleet.

5. Choose amaintenance policy, and encode it in the agent’s
decision-making process.

6. Determine the probability of agent failure, and the maxi-
mum time of agent downtime, encode it in the simulation
as described in this paper.

7. Test the different architectures described here with the
real cost parameters of the assets, and compare the total
cost incurred by them.

8. Choose the best suitable architecture from the simulation
outputs.

Conclusion and future work

This paper is a study of the cost consequences of imple-
menting different multi-agent system architectures for col-
laborative prognostics, a new prognostics approach based on
collaboration between agents that represent different assets in
the fleet. In this paper, four architectures are analysed, featur-
ing different levels of distribution: Centralized, Hierarchical,
Heterarchical, and Distributed.

The main conclusion drawn from this study is that decen-
tralized architectures are not always cost-efficient for the
purpose of collaborative prognostics. If the assets in the sys-
tem have a low value, communication and computing costs
become relevant, and more centralized architectures become
the best option. However, when the value of the assets is high
enough, the implementation of distributed architectures can
be justified. In this case, the value of the assets is much larger
than communication and computing costs, and the benefits
of distributed architectures can be leveraged.

This difference between architectures becomes especially
relevant when agent failure is included in the experiments. In
this case, architectures where prognostics and maintenance
planning is highly dependent of few agents are especially
susceptible to agent failure. This, in practice, means that
when agent failures are considered, distributed architectures
become more competitive.

A secondary conclusion is that multi-agent based collab-
orative prognostics architectures are more cost efficient in
general the more expensive the assets of the system are. This
is a common-sense result: there is no point in enhancing
very low value assets with IoT technologies, as the cost of
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Table 6 Table showing
clustering purity results at
t = 400 for the case of no agent
failure

σ = 0.0 σ = 0.1 σ = 0.2 σ = 0.3 σ = 0.4 σ = 0.5

Centralised 1.0 0.996 0.972 0.954 0.961 0.922

Hierarchical 1.0 0.995 0.982 0.946 0.909 0.946

Distributed 1.0 0.949 0.842 0.749 0.719 0.734

Heterarchical 1.0 1.000 0.982 0.917 0.948 0.928

These values have been averaged over eight experiments

Table 7 Table showing
clustering purity results at
t = 400 for the case of agent
failure

σ = 0.0 σ = 0.1 σ = 0.2 σ = 0.3 σ = 0.4 σ = 0.5

Centralised 0.995 0.998 0.999 0.994 0.974 0.934

Hierarchical 0.784 0.801 0.689 0.666 0.748 0.782

Distributed 0.660 0.679 0.655 0.679 0.615 0.608

Heterarchical 0.763 0.769 0.775 0.734 0.740 0.758

These values have been averaged over eight experiments

these technologies outweigh by far the savings of a predictive
maintenance policy.

With regards to future work, there are some parametric
dependencies that have not been explicitly studied in this
paper. Perhaps the most important is the number of clus-
ters k (groups of different assets) in the fleet, which in our
experiments has been limited to four. In the Distributed and
Hierarchical architectures, communication costs will be pro-

portional to the square of the size of each cluster:Cc ∝ ( N
k

)2
(assuming that each cluster has a similar size). This means
that if k is kept constant but N is increased, the cost of
Distributed and Hierarchical architectures will increase at
a higher rate than the cost of their Centralised and Heter-
archical counterparts. Studying the optimality of different
architectures with respect to the heterogeneity of the fleet
(given by k), would thus give place to a potentially interest-
ing research study.

Another parametric dependency that has been omitted
(kept constant) in the experiments is the dependence of the
cost of the architectures with the probability of agent failure,
and its duration. In our experiments, the first parameter is kept
constant and the second is sampled from a pre-determined
probability distribution. We purposely chose both parame-
ters to be relatively high, to compensate for the fact that
we assumed that there were no costs associated to repairing
agent failure. Further research should focus on exploring this
dependency, and placing it within realistic industrial param-
eters.

Finally, in the experiments presented here, the main-
tenance threshold η is kept constant. Although this is a
reasonable assumption for the purpose of this paper, compar-
ing across architectures, studying the effect of optimizingη in
real-timewould yield a potentially interesting research study.
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Appendix

Pseudocode description of the agents

In this section, we include in pseudo-code the tasks per-
formed by each of the agents in the architecture. In the
experiments presented in this paper, these tasks were pro-
grammed and performed using the multi-agent simulation
software Netlogo, with a python extension. The code shown
is performed in parallel at each time step of the simulation
by each agent. In our simulations, the Virtual Assets and
the Digital Twins share a single agent when present at the
same time. The particularities of the transfer of data between
Digital Twins varies depending on the architecture used. For
example, in the distributed architecture,Digital Twins receive
data directly from other Digital Twins, and in Heterarchical
architectures, they do so from the Social Platform.

Extended experimental results

In this section,we include the tables including all quadruplets
(NP, NC, NCo, Npro) used to obtain the results presented in
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Virtual Asset

if HIi ≥ 0 then
Set HIi = HIi(tli );
Set tli = tli + 1;
if agent-fault is False then

Update agent connections;
Send H Ii to a higher-level agent;

end
end
if HIi < 0 then

Set fault True;
Set HIi = 0;
Set tli = 0;

end

Algorithm 2: Pseudocode of the Virtual Asset

Digital Twin

Receive HIi from the Virtual Asset;
Receive data from other Digital Twins;
Fit data using python’s least_squares algorithm;
if distributed is True then

execute algorithm 1;
end
if fault is False then

Set tef i from fit; if tli > ηtef i then
Preventively maintain;

end
end
if fault is True then

Correctively maintain;
end
Send data to other Digital Twins;
Calculate computation time;

Algorithm 3: Pseudocode of the Digital Twin

Mediator Agent

Receive HIi from the Virtual Assets;
Fit data using python’s least_squares algorithm;
for Assets connected to the agent do

if fault is False then
Set tef i from fit; if tli > ηtef i then

Preventively maintain;
end

end
if fault is True then

Correctively maintain;
end

end
Calculate computation time;

Algorithm4:Pseudocode of the Mediator Agent

“Results and discussion” section. We also include a table
showing the purity of the clustering algorithms for each archi-
tecture and standard deviation [see Manning et al. (2008) for
a description of purity].

Social Platform

Receive data from the Digital Twins or Mediator Agents
(depending on architecture);
if centralised is False then

compute k-means clustering;
send data to the pertinent clusters;

end
if centralised is True then

for Assets assigned to each cluster do
Fit data using python’s least_squares algorithm;
if fault is False then

Set tef i from fit; if tli > ηtef i then
Preventively maintain;

end
end
if fault is True then

Correctively maintain;
end

end
end
Compute purity and cost metrics;
Calculate computation time;

Algorithm5:Pseudocode of the Social Platform

References

Andreadis, G., Klazoglou, P., Niotaki, K., & Bouzakis, K. D. (2014).
Classification and review of multi-agents systems in the manufac-
turing section. Procedia Engineering, 69, 282–290.

Atzori, L., Iera, A., & Morabito, G. (2010). The Internet of Things: A
survey. Computer Networks, 54(15), 2787–2805.

Bakliwal, K., Dhada, M. H., Palau, A. S., Parlikad, A. K., & Lad, B.
K. (2018). A multi agent system architecture to implement collab-
orative learning for social industrial assets. IFAC-Papers OnLine,
51(11), 1237–1242.

Brennan, R. W., Fletcher, M., & Norrie, D. H. (2002). An agent-
based approach to reconfiguration of real-time distributed control
systems. IEEE Transactions on Robotics and Automation, 18(4),
444–451.

Buchanan, B. G. (1986). Expert systems: Working systems and the
research literature. Expert Systems, 3(1), 32–50.

Djurdjanovic, D., Lee, J., & Ni, J. (2003). Watchdog agent—An
infotronics-based prognostics approach for product performance
degradation assessment and prediction. Advanced Engineering
Informatics, 17(3–4), 109–125.

Duffie, N. A., & Piper, R. S. (1986). Nonhierarchical control of manu-
facturing systems. Journal of Manufacturing Systems, 5(2), 141.

Fasanotti, L. (2014). A distributed intelligent maintenance system
based on artificial immune approach and multi-agent systems. In
2014 12th IEEE international conference on industrial informatics
(INDIN) (pp. 783–786). IEEE.

Fasanotti, L. (2018). An artificial immune intelligent maintenance sys-
tem for distributed industrial environments. Proceedings of the
Institution of Mechanical Engineers, Part O: Journal of Risk and
Reliability, 232(4), 401–414.

Ferber, J., & Weiss, G. (1999). Multi-agent systems: An introduction
to distributed artificial intelligence (Vol. 1). Reading: Addison-
Wesley.

Ghita et al. (2018). Scheduling of production andmaintenance activities
using multi-agent systems. In 2018 IEEE 23rd international con-
ference on emerging technologies and factory automation (ETFA)
(pp. 508–515).

123



Journal of Intelligent Manufacturing (2019) 30:2999–3013 3013

Gilchrist, A. (2016). Industry 4.0: The industrial Internet of Things.
New York: Apress.

Hartigan, J. A., & Wong, M. A. (1979). Algorithm as 136: A k-means
clustering algorithm. Journal of the Royal Statistical Society Series
C (Applied Statistics), 28(1), 100–108.

Hernández, J. E., Lyons, A. C., Mula, J., Poler, R., & Ismail, H.
(2014). Supporting the collaborative decision-making process in
an automotive supply chain with a multi-agent system. Production
Planning & Control, 25(8), 662–678.

Jardine, A. K., & Tsang, A. H. (2005).Maintenance, replacement, and
reliability: Theory and applications. Boca Raton: CRC Press.

Khan, S.,&Yairi, T. (2018).A reviewon the application of deep learning
in system health management. Mechanical Systems and Signal
Processing, 107, 241–265.
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