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fibrosis and bacteraemia 
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Summary 
 

Pseudomonas aeruginosa is an opportunistic pathogen that can invade and colonise the lungs of people               

with cystic fibrosis (CF), cause septic shock through bacteraemia infections, and lead to serious infection               

of burn injuries. It is one of the most critical multi-drug resistant bacteria, and is associated with high                  

morbidity and mortality. 

 

A total of 4,094 P. aeruginosa isolates were sampled from nine patients with CF over a six-month time                  

period. These isolates were collected from sputum samples during stable, acute, and recovery timepoints              

from periods of sudden and rapid lung function decline, called acute pulmonary exacerbations (APEs).              

These isolates were previously analysed for the presence and absence of ten virulence-related phenotypes.  

 

The P. aeruginosa isolates were whole-genome sequenced to investigate the inter- and intra-patient             

genotypic diversity, associations with phenotypic diversity, and adaptation within the CF lung. Each of              

the nine patients with CF were colonised with a distinct clone of P. aeruginosa. Six patients were infected                  

with well-characterised, highly-transmissible strains of either the Liverpool Epidemic Strain (LES) or the             

Manchester Epidemic Strain (MES). The remaining three patients were infected with novel sequence             

types (STs); ST3307 or ST3308. Putative transmission was identified between the two patients infected              

with ST3307. Two large deletions in genetic regions commonly associated with progression from acute to               

chronic infection were identified in ST3307. 

 

The acquisition of the LES by one of the patients was very recent, estimated to have occurred within the                   

two years prior to the study. This recent acquisition provides an insight into the immediate adaptation of                 

P. aeruginosa to the CF lung, with adaptation observed in genetic regions associated with progression               

from acute to chronic P. aeruginosa infection.  

 



The timepoints for each APE within the individual patients were not associated with variation in the                

diversity of the populations of isolates. This was confirmed by random distribution of phylogenetic              

clusters with respect to each APE timepoint for most patients, suggesting that APEs, and the treatment of                 

APEs, do not substantially affect the diversity of the P. aeruginosa population within the patient lung. 

 

Genome-wide association studies (GWAS) were carried out on the CF isolates, to investigate any              

associations with the ten previously-tested virulence-related phenotypes. Population structure could be           

effectively controlled for in this highly structured dataset, using linear mixed models. Multiple GWAS              

approaches were required to capture the different classes of genetic variation, resulting in the              

identification of biologically relevant associations for complex phenotypes, most notably a premature            

stop-codon in the global transcriptional regulator rhlR, as well as several novel, potentially significant              

associations. 

 

An additional 352 P. aeruginosa isolates from patients with bacteraemia were also whole-genome             

sequenced. These isolates were sourced from both a local collection and from a UK-wide surveillance               

collection, and broadly match the defined population structure of P. aeruginosa. Three STs were              

overrepresented in this dataset, which are associated with virulence and multi-drug resistance; ST175,             

ST253 and ST395. One of these overrepresented STs, ST175, was distributed across the UK, shows               

significant geographical clustering and temporal signal, and is predicted to have been introduced into the               

UK between the late 1980s and the early 1990s. Antimicrobial resistance profiles showed that current               

therapeutic options are still viable for most P. aeruginosa bacteraemia infections, and that colistin is still                

effective against the most multi-drug resistant isolates. 
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Chapter 1 
 

Chapter 1  

 

Introduction 

 
 

1.1 Cystic fibrosis 
 

1.1.1 Cystic fibrosis prevalence 

 

Cystic fibrosis (CF) is an autosomal recessive disease that affects roughly 70,000 people worldwide              

(Cutting, 2014). It is the most prevalent life-limiting recessive genetic disorder affecting the caucasian              

population, with an incidence rate of 1 in every 2,500 births in populations of European or American                 

descent (Cohen-Cymberknoh et al., 2011). CF is less common in other demographics, with studies              

estimating the prevalence of CF in populations of African descent as roughly 1 in 14,000 births (Padoa et                  

al., 1999), and in populations of Asian descent between 1 in 100,000 and 1 in 350,000 (Mirtajani et al.,                   

2017).  

 

CF affects roughly 10,000 people in the UK, with life expectancy of males around 48 years of age, and                   

for females around 43 years of age (Keogh et al., 2018). However, UK mortality rates are declining 2%                  

year-on-year, suggesting that those born with CF in 2019 will survive to their mid-60s (Keogh et al.,                 

2018). In the UK, all newborns have been screened for markers of cystic fibrosis through a heel-prick test                  

since 2007, and since 2002 in Scotland (McCormick et al., 2002; Lim et al., 2014). The levels of                  

immunoreactive trypsinogen are measured, and a DNA test is carried out to confirm the presence of CF                 

alleles if the levels of immunoreactive trypsinogen are raised (McCormick et al., 2002).  
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1.1.2 Cystic fibrosis is caused by mutations in the CFTR gene 

 

CF is caused by mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) gene found               

on chromosome 7, which was first identified as the cause of CF in 1989 (Riordan et al., 1989). The CFTR                    

protein is an essential protein for the maintenance of ion homeostasis, and its normal function is to                 

transport chloride across the epithelial cell membrane (Riordan, 2014). If the CFTR gene is ineffective,               

the chloride ions are not transported across the membrane (Verkman et al., 2003). This draws water away                 

from the extracellular space by osmosis, leading to the dehydration of the extracellular space (Figure 1.1).                

The CFTR protein is found on the membranes of epithelial cells in several organs within the body,                 

including the lungs, intestines and pancreas (Collawn & Matalon, 2014). Abnormal function of the CFTR               

abcde 

 

 

 

Figure 1.1 In the healthy lung, the CFTR protein transports chloride ions out of the epithelial cells and into the                    

extracellular space, maintaining ion homeostasis. When the CFTR protein does not work effectively, it leads to a                 

build up of chloride ions inside the epithelial cells and draws water out of the lung by osmosis. This dehydration is                     

the cause of the thick and sticky mucus which is characteristic of CF. Image used under Creative Commons v4.0                   

license from Saint-Criq & Gray, 2016. 

 
14



Chapter 1 
 

protein therefore draws water out of the mucus that lines these organs and into the epithelial cells, leading                  

to the mucous becoming abnormally thick and sticky (Quinton, 1999).  

 

In the gut, an increase in viscosity and a build up of mucus leads to the inability to properly absorb                    

nutrients, which leads to malnutrition and weight-loss (Culhane et al., 2013). The thick and sticky mucus                

covering the lining of the lungs causes several problems for patients with CF. Lung mucus is a mixture of                   

water and heavily glycosylated proteins, called mucins, which are secreted into the lung in order to trap                 

foreign particles, chemicals, and bacteria (Fahy & Dickey, 2010). In a healthy lung, this mucus is                

removed through the coordinated movement of ciliated cells, and by coughing, both of which are very                

effective forms of airway mucosal clearance (Stannard & O’Callaghan, 2006). In the CF lung, the               

dehydrated mucus cannot be removed through the action of the cilia due to its increased viscosity (Wilson                 

et al., 2019). This leads to a build-up of mucus. Difficulty breathing is a primary symptom experienced by                  

patients with CF, as the mucus build-up constricts the airway (Filkins & O’Toole, 2015). As well as                 

difficulty breathing, the inability to effectively clear the airway leads to an increased risk of infection                

from the bacteria trapped within the mucus (Filkins & O’Toole, 2015). 

 

Because patients with CF have impaired airway clearance via ciliary action, they have to take a more                 

active role in clearing their own airways. Most CF patients perform airway clearance techniques daily,               

through a variety of techniques that can be tailored to the patient’s physical ability (Sawicki et al., 2009).                  

These airway clearance techniques are designed to help loosen the thickened mucus, to enable easier               

clearance through coughing. These techniques include breathing exercises and physiotherapy, and can be             

combined with mucus thinners and airway-clearing apparatus to ensure that as much of the mucus can be                 

cleared as possible (Wilson et al., 2019). Currently, no airway clearance technique stands out as more                

beneficial than any of the others, and therefore patients with CF have the freedom to choose the most                  

convenient and practical clearance techniques that best suit them and their needs (Wilson et al., 2019). 

 

 

1.1.3 Classification of CFTR mutations 

 

Over 1,900 variants of the CFTR gene have been identified (Vallieres & Elborn, 2014). To date, these                 

variants have been assigned to seven different classes of CFTR mutation (De Boeck & Amarel, 2016),                

which vary from more-severe disease (Class I, II, III, and VII), to less-severe disease (Class IV, V, VI)                  

(Table 1.1). 
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Table 1.1 The classes of CFTR mutations. Table adapted with permission from Marson et al., 2016. 

 

Class I mutations are classified by the presence of premature stop codons and nonsense mutations within                

the CFTR gene, which leads to an absence of effective protein in the cell (Brodlie et al., 2015). Class VII                    

mutations also lead to a complete absence of the CFTR protein, instead through an absence of mRNA                 

transcription induced by mutations in promoter regions (Marson et al., 2016).  

 

The most common disease-causing variant is a three base-pair deletion, which corresponds to             

phenylalanine at position 508 (ΔF508) in both copies of the CFTR gene (Lukacs & Verkman, 2012). The                 

ΔF508 mutation is the most prevalent mutation in the European caucasian CF population, and is a Class II                  

mutation. Class II mutations are classified by the correct synthesis of a protein, but lack of expression at                  

the cell surface (Brodlie et al., 2015). In the case of ΔF508, the mutant CFTR protein cannot maintain a                   

stable 3D shape, leading to the intracellular degradation of the protein before it reaches the cell membrane                 

(Mauiri et al., 2017).  

 

Class III mutations lead to expression of a protein at the cellular membrane that is ineffective at                 

transporting ions. For example, the Class III G551D mutation prevents ATP from opening the channel               

and allowing effective chloride transport. G551D is the second-most prevalent mutation in the European              

caucasian CF population (Brodlie et al., 2015).  

 

Class IV to VI mutations lead to less severe CF disease (Marson et al., 2016). Class IV mutations lead to                    

functional, but partial channel conductance. These are caused by mutations that partially block the              

transmembrane pore, so that traffic through the CFTR protein is considerably reduced (Veit et al., 2016).                

Class V mutations lead to low levels of protein expression due to altered mRNA splicing, estimated at                 

around 4% of healthy CFTR expression, leading to a more mild form of the disease (Highsmith et al.,                  

1997). Finally, Class VI mutations lead to a high turnover of protein due to CFTR instability (Marson et                  
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al., 2016). This is typically caused by mutations towards the C-terminus, which lead to correct protein                

synthesis, expression, and function, but leads to degradation rates that are 5-6x greater than normal               

(Haardt et al., 1999). These Class IV-VI mutations are less severe, and lead to a milder form of CF                   

disease that may remain undiagnosed until adulthood (Schram, 2012). 

 

 

1.1.4 Treatment of CFTR mutations 

 

In 2011/12, a new class of drug molecules, known as “potentiators”, were approved by the FDA and                 

EMA, to target and improve defective CFTR function (Chaudary, 2018). The aim of the new drug class is                  

to treat the underlying cause of CF, rather than the symptoms (Fohner et al., 2017). Ivacaftor was the first                   

of these molecules approved to treat eleven different Class III CFTR mutations, including G551D              

(Ramsey et al., 2011; Fohner et al., 2017). Ivacaftor aims to open the defective channel and allow the free                   

movement of chloride ions, restoring effective ion transport (Chaudary, 2018) (Figure 1.2). The exact              

mechanism is unknown, but Ivacaftor is believed to stabilise the open state of the chloride channel and                 

decrease the corresponding rate of channel closure (Fohner et al., 2017). Ivacaftor clinical trials indicated               

an increase in lung function of 10.2%, compared to a decline of 0.2% of the placebo group, and a 55%                    

decrease in the frequency of hospitalisation across the study period (Ramsey et al., 2011). Follow up                

studies have also suggested that the rate of lung function decline is decreased by 50% (Sala & Jain, 2018). 

 

 

 

Figure 1.2 Ivacaftor stabilises the open state of the chloride channel, reversing the effects of the G551D mutation.                  

Image adapted with permission from Barry et al., 2018. 
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Drugs that treat Class II mutations, such as ΔF508, are more profitable, as Class II mutations are the most                   

prevalent mutations within the CF population. However, correcting the error in protein-synthesis requires             

an initial step to aid the folding process of the CFTR protein within the cell before the protein reaches the                    

cell surface membrane. Vertex Pharmaceuticals, the company behind Ivacaftor, developed another           

molecule, Lumacaftor, which can be used in conjunction with Ivacaftor to treat the ΔF508 mutation               

(Mayer, 2016). Lumacaftor is a member of the corrector drug class, which stabilises the interactions               

between two protein domains that are not formed when the ΔF508 mutation is present. This prevents the                 

degradation of the CFTR protein, allowing its expression at the cell membrane (Deeks, 2016). Ivacaftor               

then maintains the CFTR ion channel in the open state (Deeks, 2016). Two clinical trials showed modest                 

gains of 2.8-3.3% increase in lung function compared to the placebo group, and a 10% decrease in the                  

frequency of hospitalisations across the study period (Mayer, 2016). Follow up studies suggest a decrease               

in the rate of decline in lung function over time of 40% (Sala & Jain, 2018).  

 

Vertex Pharmaceuticals have recently developed a replacement drug for Lumacaftor, called Tezacaftor,            

which has been shown to improve lung function by 4.6-6.8%, and decrease the frequency of               

hospitalisation by 35%, which is over twice the improvement seen in clinical trials for Lumacaftor (Sala                

& Jain, 2018). 

 

Two triple combination therapies to treat ΔF508 patients have completed Phase 2 clinical trials. One of                

these triple combination therapies involves both Tezacaftor as a corrector and Ivacaftor as a potentiator,               

plus VX-445, a new compound that works as an additional corrector. This therapy indicated an               

improvement of lung function of 11.0-13.3% (Sala & Jain, 2018). As well as a greater increase in lung                  

function, this new triple combination therapy is associated with significantly reduced adverse effects             

compared to both Lumacaftor/Ivacaftor and Tezacaftor/Ivacaftor (Sala & Jain, 2018). A press release in              

March 2019 by Vertex Pharmaceuticals indicated the completion of Phase 3 clinical trials, showing an               

increase in lung function of 10.0-13.8% compared to a placebo group. Vertex Pharmaceuticals plans to               

register this combination therapy at the end of 2019 (Vertex Pharmaceuticals, 2019).  

 

In March 2019, Proteostasis Therapeutics released a press statement citing successful Phase 1 clinical              

trials of a new triple combination therapy (Proteostasis Therapeutics, 2019), which is made up of three                

novel compounds; PTI-801, PTI-808 and PTI-428. PTI-801 is the corrector molecule, PTI-808 is a              

potentiator molecule, and PTI-428 is from a novel class of therapeutics called amplifier molecules, which               

increase the amount of CFTR protein in cells and tissues (Molinski et al., 2017). The results of the 14-day                   
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Phase 1 clinical trial were extremely positive, indicating no plateau for lung function improvement              

(Proteostasis Therapeutics, 2019). The results of the Phase 2 clinical trials have not yet been made                

publically available. 

 

  

1.1.5 Acute pulmonary exacerbations 

 

CF is a chronic disease that progresses over time towards greater lung mucosal blockage, lung damage,                

and bacterial infection (Pittman & Ferkol, 2015). People with CF can undergo periods of sudden and                

rapid worsening symptoms, termed “acute pulmonary exacerbations” (APEs), which account for much of             

the morbidity and mortality associated with CF (Bhatt, 2013). These APEs are associated with increased               

lung inflammation and damage, and requires aggressive antibiotic treatment. After each APE, symptoms             

improve, but lung function never quite returns to original baseline values (Hoffman, 2013) (Figure 1.3).               

There is currently no consensus on what clinical markers should be used to define an exacerbation, but the                  

symptoms typically include a worsening cough, chest pain, shortness of breath, weight loss, and increased               

lung function decline (Cogen et al., 2017). 

 

A study of 241 patients in the USA observed that 88% of patients with CF experience at least one APE                    

every year (Rubin et al., 2017), and that they are one of the main causes of respiratory failure that                   

eventually leads to patient death (Martin et al., 2016). However, there is currently no recognised optimal                

treatment for APEs (Schechter et al., 2017). APEs are typically treated with antibiotics, usually by               

abcdefg 

 

 

Figure 1.3 Periods of APE are associated with a drop in lung function. Lung function never quite returns to baseline                    

values after an APE. Figure used under Creative Commons v4.0 license, from Espel et al., 2017. 
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intravenous single or combination therapy for between 7 and 10 days (Bhatt, 2013). This is a significant                 

burden to the patient as this typically requires a hospital stay of around 2 weeks (Cogen & Rosenfeld,                  

2017). A 2017 study of 2,700 CF patients undergoing APEs in the USA found a positive correlation                 

between inpatient hospital stay, and recovery to 90% of baseline lung function, whereas a negative               

correlation was observed with home treatment (Schechter et al., 2017). This suggests that aggressive              

hospital treatment with antibiotics is the best treatment course for a patient. 

 

The cause of APEs is not currently understood (Bhatt, 2013). It has been suggested that viruses may play                  

a part in triggering APEs, however, viruses are not commonly isolated from sputum samples collected               

during an APE (Whelan & Surette, 2015). APEs usually respond to the administration of antibiotics,               

suggesting that their cause may be related to the bacterial community within the CF lung. However, a                 

change in bacterial load was not found to be associated with the onset of an exacerbation (Stressmann et                  

al., 2011), and the diversity of bacteria within the CF lung remains relatively constant over the course of                  

an exacerbation (Hoffman, 2013; Cuthbertson et al., 2016). Antibiotic therapies have been found to be               

effective even in patients with bacteria-negative APE samples, suggesting that if the cause of an               

exacerbation is bacterial, the mechanisms are complex (Hoffman, 2013).  

 

 

1.1.6 Bacterial infections and cystic fibrosis 

 

In healthy lungs, the mucus lining provides the first line of the host innate defence against bacterial                 

infection (Bals & Hiemstra, 2004). The components of mucus, called mucins, provide a plentiful supply               

of carbon and nitrogen that can be broken down into free amino acids, sugars, and short-chain fatty acids                  

for bacterial growth (Flynn et al., 2016). The impaired clearance of lung mucus in CF is advantageous for                  

bacteria, which consequently colonise the lungs of patients with CF. Recent developments using             

culture-independent techniques to characterise the bacterial communities of the lung, such as deep             

sequencing, have shown that the microbial community within the CF lung is complex and polymicrobial               

(Filkins & O’Toole, 2015). Between 50 and 200 individual taxa have been identified in a single sputum                 

sample from patients with CF (Filkins & O’Toole, 2015), however this is less diverse than the airway                 

microbiome of healthy individuals (Hery-Arnaud et al., 2019). Fungi and viruses may also coexist with               

bacteria within the CF lung, and it has been speculated that these may cause more severe symptoms                 

during periods of APE (Etherington et al., 2014; Willger et al., 2014).  
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The reduction in microbial diversity and microbial burden caused by antibiotic treatment for bacterial              

lung infections is short-lived. Within 8-10 days after receiving antibiotic treatment, the bacterial load and               

composition return to pre-treatment levels (Smith et al., 2014). Microbial diversity within the CF lung               

decreases with progression of the disease, possibly as a consequence of more aggressive antibiotic              

therapy, or with the introduction of environmental and highly-virulent bacteria, such as P. aeruginosa, as               

these organisms adapt and out-compete other species within the lung (Zhao et al., 2012).  

 

Studies on the lung microbiota have typically focussed on major bacterial species that are thought to                

contribute the most to morbidity and mortality within the CF lung (Harrison, 2007). Over time, the                

prevalence of the major CF-associated bacteria within the CF lung changes (Figure 1.4). Many bacteria               

that colonise the lung early in the progression of CF are those that typically colonise the nose or upper                   

airway in healthy people, such as Haemophilus influenzae or Staphylococcus aureus . Over time, patients              

with CF are exposed to other bacteria from the environment, or through contact with other CF patients in                  

treatment centres or support groups (Lyczak et al., 2002). This causes the composition of bacteria within                

the lung to change. Probability of colonisation with P. aeruginosa increases as a patient ages, and is                 

associated with a worse prognosis, more frequent APEs, and general lung function decline (Crull et al.,                

2016; Harrison, 2007). 

 

 

Figure 1.4 The prevalence of the major CF-associated pathogens within the lung, plotted against the age of the                  

patient. MDR-PA = multidrug resistant P. aeruginosa, MRSA = methicillin resistance S. aureus Figure adapted with                

permission from Folkesson et al., 2012. 

 
21



Chapter 1 
 

Bacterial infection within the CF lung is the main driver of lung inflammation and damage (Downey et                 

al., 2008). Specifically, the severe and sustained immune response to lung infection is responsible for the                

majority of the destruction to the lung tissue (Downey et al., 2008). The initial bacterial infection causes                 

the migration of large numbers of neutrophils into the alveolar space, where the release of proteases,                

elastases and inflammatory cytokines contributes to the damage of the lung tissue (Laval et al., 2016).                

This immune response recruits monocytes and macrophages, which contribute further to lung            

inflammation through the release of further inflammatory cytokines, exacerbating the tissue damage            

(Bruscia & Bonfield, 2016). The lungs of patients with CF are constantly colonised with bacteria.               

Therefore the inflammatory response, and associated lung damage, is occurring throughout the patient’s             

life, contributing to lung function decline and the progression of CF disease (Lin & Kazmierczak, 2017). 

 

 

1.2 �3VHXGRPRQDV�DHUXJLQRVD�
 

Pseudomonas aeruginosa are Gram-negative, aerobic bacteria, belonging to the family          

Pseudomonadaceae. Members of the Pseudomonas genus demonstrate a great deal of metabolic diversity,             

and are able to thrive in a wide range of niches, including soil, marshland, coastal marine habitats, and                  

plant and animal tissues (Stover et al., 2000). P. aeruginosa bacteria are ubiquitous in the environment                

and are usually harmless, but they can act as opportunistic pathogens, causing a wide array of acute or                  

chronic infections in immunocompromised or other at-risk patient groups (Moradali et al., 2017). 

 

P. aeruginosa genomes are large and vary in size (5.5-7 Mbp) and gene content (Mathee et al., 2008).                  

Their large and varied genome reflects the ability of P. aeruginosa to colonise many environmental               

settings, encoding genes relevant for survival in many niches (Klockgether et al., 2011). Accessory genes               

have been historically acquired through mobile elements, such as plasmids, phage, and integrating             

conjugative elements, and aid in the adaptation of P. aeruginosa to their specific niche (Kidd et al., 2012).                  

The P. aeruginosa genome also shows genomic plasticity within each niche, with different isolates within               

the same niche able to acquire novel genetic content, or undergo deletion events, to differentiate               

themselves from other isolates (Klockgether et al., 2011). The P. aeruginosa genome contains 690              

regulatory genes (~12% of the genome), which is the third largest percentage of regulatory gene content                

of all bacterial species, behind Escherichia coli and Bacillus subtilis  (Galan-Vasquez et al., 2011).  
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1.2.1 3��DHUXJLQRVD and cystic fibrosis 

 

P. aeruginosa is a very important clinical bacteria, and is one of the most important pathogens to consider                  

in CF lung infection, as the inflammatory response to P. aeruginosa infection is the predominant cause of                 

morbidity and mortality in CF patients (Bhagirath et al., 2016). The prevalence of chronic P. aeruginosa                

in the CF population has been estimated between 50 and 80% (Crull et al., 2016), and is strongly                  

associated with more severe symptoms (Vongthilath et al., 2019). Once a patient has acquired a P.                

aeruginosa strain, that strain will adapt to the CF lung and typically remain until the end of that patient’s                   

life (Stover et al., 2000). 

 

How P. aeruginosa infection is acquired is still relatively unknown. There have been many documented               

cases of direct transmission between patients as a result of prolonged socialisation, such as at CF                

rehabilitation centres, holiday parks, or close friends and family (Schelstraete et al., 2008). However, this               

forms the minority of infection cases, with the majority of newly-acquired P. aeruginosa infection              

thought to have been picked up from the environment (Psoter et al., 2014; Schelstraete et al., 2008).  

 

Once P. aeruginosa gets into the CF lung, it is faced with a hostile and stressful environment that it must                    

overcome. Stressors include osmotic stress from the thick mucus, oxidative stress, host immune response,              

competition from other bacteria, and antibiotic treatment (Hector et al., 2014; Andersson & Hughes,              

2014; Winstanley et al., 2016).  

 

 

 

Figure 1.5 P. aeruginosa infection can occur from birth. Intermittent infections can be eradicated through               

aggressive antibiotic treatment, but eventually, the P. aeruginosa infection will transition from acute to chronic.               

Figure adapted with permission from Folkesson et al., 2012. 
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During childhood, P. aeruginosa can intermittently infect the patient’s lung (Folkesson et al., 2012).              

During this period of intermittent infection, treatment with antibiotics can effectively clear the infection              

and prevent the development of chronic infection (Hoiby et al., 2005). However, the patient often               

becomes reinfected at a later date, with the same P. aeruginosa strain in a quarter of cases (Munck et al.,                    

2001). Eventually, the intermittent colonisation of P. aeruginosa of the CF lung transitions into chronic               

infection (Figure 1.5), which is diagnosed by the continuous sampling of P. aeruginosa isolates from               

sputum, and the development of P. aeruginosa-specific immune response markers (Folkesson et al.,             

2012). 

 

 

1.2.2 Switch from acute to chronic 3��DHUXJLQRVD infection 

 

The reason why P. aeruginosa infection switches from intermittent to chronic is not well understood, but                

the mechanism by which this switch takes place has been extensively studied. A change in the gene                 

expression profile, controlled by global two-component sensor kinase transcriptional factors, leads to            

chronic infection (Balasubramanian et al., 2013), through the repression of the transcription factor RsmA.              

P. aeruginosa genomes encode roughly 127 of these two component systems, over twice that encoded               

within E. coli, which reflects the ability of P. aeruginosa to adapt to a variety of niches by changing gene                    

expression (Balasubramanian et al., 2013). During acute infection, the global regulator RetS negatively             

regulates the global regulator GacS, which upregulates RsmA through interactions with GacS, RsmY and              

RsmZ (Burrowes et al., 2006) (Figure 1.6). The chronic phenotype occurs when the global transcriptional               

regulator LadS senses calcium in the environment, and acts with the opposite effect to RetS (Broder et al.,                  

2016), activating GacS, which leads to a repression of the RsmA regulator, promoting the downregulation               

of virulence (Francis  et al., 2018; Robledo-Avila et al., 2018) (Figure 1.6).  

 

This switch frequently occurs with a knockout of the mucA regulatory gene, enabling the transcription of                

several genes via an algU-encoded sigma-factor (Martin et al., 1994). These genes further downregulate              

expression of genes related to motility and virulence factors, lead to overexpression of stress response               

pathways, and enhance persistence within the CF lungs (Folkesson et al., 2012). This knockout induces               

the overproduction of alginate, a secreted exopolysaccharide which forms a protective mucoid matrix             

around the colonies that provides additional protection from the host immune system and antibiotic              

treatments (Pritt et al., 2007).  
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Figure 1.6 The regulatory cascade that controls the switch from acute infection to chronic infection. During acute                 

infection, RetS represses GacS, which enables the upregulation of acute infection by RsmA. During chronic               

infection, LadS activates GacS, which leads to repression of RsmA, allowing the development of chronic infection.                

Figure adapted with permission from Moscoso et al., 2011. 

 

Once a P. aeruginosa infection has become chronic, eradication from the lungs becomes impossible, even               

when treated with an aggressive regimen of antibiotics (Hurley et al., 2012). Resistance arises not only                

through the protective mucoid layer, but also through intrinsic resistance to many antibiotics through a               

variety of mechanisms summarised in section 1.5 (Mesaros et al., 2007). Because of its intrinsic               

resistance and ability to develop and acquire novel resistance variants, it is recommended that              

combination therapies are used to manage P. aeruginosa infection (Kapoor & Murphy, 2018).  

 

 

1.3 Phenotypic changes associated with chronic �3��DHUXJLQRVD� CF infection 
 

1.3.1 Biofilm formation 

 

During the switch from acute infection to chronic infection, several important phenotypic changes occur.              

Initially, production of alginate causes the bacteria to develop the mucoid phenotype, forming a protective               

exopolysaccharide layer around the colony (Folkesson et al., 2012).  
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The alginate forms the basis of a bacterial biofilm, which in the case of CF, is composed mostly of                   

alginate, other polysaccharides, exoproteins, and extracellular DNA (Hoiby et al., 2010). The molecules             

abundant in the formation of biofilm include alginate for biofilm stability, pel and psl proteins that form a                  

scaffold for correct biofilm structure, cellulose that creates a strong biofilm, and rhamnolipids for host               

immune cell toxicity and biofilm dispersion (Mann & Wozniak, 2012; da Silva et al., 2019).  

 

The persistence of biofilm in the CF lung is one of the major causes of inflammation, immune response,                  

and lung damage, and hence is a major cause of CF morbidity and mortality (Hoiby et al., 2010). Lung                   

inflammation can be caused by the interaction of host immune cells with each component of the biofilm                 

without coming into direct contact with the bacteria themselves (Ciszek-Lenda et al., 2019). This causes               

the immune cells to release pro-inflammatory factors such as TNF-স and Interleukin-6 (Ciszek-Lenda et              

al., 2019). 

 

 

1.3.2 Secretion systems 

 

The Type III Secretion System (T3SS) is critical in acute infections, as it facilitates the delivery of toxins                  

into foreign cells, such as the host immune system or other bacteria (Hauser, 2009). CF patients produce                 

antibodies against T3SS effector proteins, suggesting that the T3SS is active during acute infection              

(Hauser, 2009). However, CF P. aeruginosa lose their ability to use the T3SS as chronic infection                

develops (Hauser, 2009). Downregulation of T3SS is facilitated through three different mechanisms.            

Firstly, the upregulation of alginate and biofilm production through mutations in mucA leads to a               

downregulation of genes responsible for T3SS (Wu et al., 2004). Secondly, the GacS repression of RsmA,                

which occurs during the transcriptomic switch from acute to chronic infection, is also known to repress                

T3SS (Hauser, 2009). The third mechanism is through mutations in the T3SS machinery itself, which               

inactivate the T3SS or reduce its effectiveness (Smith et al., 2006a). 

 

The effector toxins of the T3SS are ExoS, ExoU, ExoT and ExoY, however, not all P. aeruginosa strains                  

encode all four of these effector proteins (Feltman et al., 2001). Whilst the presence of the four effector                  

proteins are variable, different P. aeruginosa tend to either encode ExoU or ExoS (Hogardt &               

Heesemann, 2011). ExoU is a more virulent exotoxin, which initiates rapid host cell lysis that is very                 

effective against host cell immune cells. In contrast, the ExoS exotoxin encourages delayed cell death               

through apoptosis (Schulert et al., 2003). Maintaining production of T3SS is associated with more              
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aggressive disease and poor prognosis, and so downregulation of the T3SS during chronic infection is               

beneficial for maintaining a more symbiotic host-pathogen relationship (Galle et al., 2012). 

 

Other P. aeruginosa secretion systems are found to be downregulated during the switch from acute to                

chronic infection. For example, the T2SS are responsible for the secretion of several proteases, lipases,               

phosphatases, phospholipases, elastases, siderophores and toxins. Expression of the T2SS machinery is            

repressed due to RsmA repression during the switch from acute to chronic infection (Filloux, 2011).  

 

The T1SS machinery is responsible for the secretion of alkaline protease, which blocks phagocytosis of               

host neutrophils (Laarman et al., 2012). The T1SS is downregulated through mutations in the global               

regulatory gene lasR (Balasubramanian et al., 2013), which also regulates the production of other quorum               

sensing molecules that regulate the expression of various other virulence factors in turn (Pena et al.,                

2019). Knockout mutations in lasR are frequently found in isolates which have switched from acute to                

chronic infection (LaFayette et al., 2015), and can explain the downregulation of virulence factors during               

this switch (Hogardt & Heesemann, 2011).  

 

 

1.3.3 Swimming and twitching motility 

 

Another phenotypic change related to chronic P. aeruginosa infection is the loss of certain motility               

mechanisms. Expression of both the Type IV pili and the bacterial flagella, responsible for twitching               

motility and swimming motility respectively, are downregulated during the switch from acute to chronic              

infection (Hogardt & Heesemann, 2011).  

 

Twitching motility is characterised by the extension of long fibres called the Type IV pili, adhesion of the                  

pili to a surface, and retraction of the pili, which pulls the bacteria along the surface (Wall & Kaiser,                   

1999). Their function is to facilitate the initial attachment of the bacterium to a surface, followed by the                  

exploration of that surface. The Type IV pilus has been shown to be an important virulence factor in P.                   

aeruginosa CF infection, as during the acute stage of infection, the pilus is required for anchoring on to                  

the host immune cells, followed by retraction to bring the bacteria into contact with the host cell to allow                   

the delivery of toxins through the T3SS (Comolli et al., 1999). After attachment to a surface, the Type IV                   

pili is critical for the development of biofilms during the switch from acute to chronic infection, as the pili                   

is required for aggregation of P. aeruginosa isolates into colonies (Burrows, 2012; Gellatly et al., 2013).  
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Swimming motility is controlled by a single flagellum, which rotates in a corkscrew motion to allow                

movement through liquid environments (Taylor & Buckling, 2011; Gellatly et al., 2013). Whilst studies              

have reported that Type IV pili play a role in surface adhesion, other studies have shown that the                  

flagellum is also necessary for epithelial surface attachment (Tran et al., 2011). Flagella can be               

recognised by the host immune cells and initiate the inflammatory immune response, and hence the               

downregulation of these genes are an effective mechanism of protection (Compodonico et al., 2009).              

Therefore, flagella are not required for biofilm formation, and after initial attachment in the lungs, the                

flagella proteins are often downregulated (Sauer et al., 2002). However, once a biofilm has matured,               

flagella are upregulated again, and are responsible for dispersion of P. aeruginosa bacteria from the               

biofilm (Co et al., 2018). 

 

 

1.3.4 Siderophores 

 

Siderophores are excreted molecules that have affinity for iron, specifically Fe3+�. P. aeruginosa has two               

siderophore systems; the pyoverdine siderophore and the pyochelin siderophore (Figure 1.7), which can             

both sequester Fe3+ from the environment, and are both re-uptaken by siderophore-specific receptors in              

the bacterial membrane (Cornelis & Dingemans, 2013).  

 

 

Figure 1.7 Pyochelin and pyoverdine are two siderophores that are excreted by P. aeruginosa to scavenge iron from                  

the environment. 
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In iron-limited conditions, pyoverdine is produced by P. aeruginosa preferentially (Cornelis &            

Dingemans, 2013). Pyoverdine is a high-affinity siderophore (Visca et al., 2007) that is able to displace                

iron sequestered by other chelating molecules in the lung, such as transferrin (Cornelis & Dingemans,               

2013). Pyoverdine also acts as a signalling molecule between P. aeruginosa, and pyoverdine uptake              

initiates a cascade which ends with the production of two virulence factors; protease PrpL and the potent                 

exotoxin ToxA (Beare et al., 2002). The presence of pyoverdine is essential for acute infection, as                

pyoverdine knockout mutants are rendered completely avirulent (Cornelis & Dingemans, 2013).           

Pyoverdine has also been identified as important for the development of stable biofilms in acute lung                

infection (Kang & Kirienko, 2018).  

 

Once chronic infection has established in the CF lung, P. aeruginosa isolates adapt to the iron-rich lung,                 

to produce the low-affinity siderophore, pyochelin, to uptake haem and free iron, instead of relying on                

pyoverdine-sequestered iron (Marvig et al., 2014). 

 

 

1.3.5 Rhamnolipids 

 

Rhamnolipids are glycolipid biosurfactants produced by P. aeruginosa that have a variety of natural              

functions. Their amphipathic nature facilitates the uptake of hydrophobic substrates, such as short-chain             

alkanes, and their subsequent degradation for use as a carbon source (Abdel-Mawgoud et al., 2010).               

Rhamnolipids are considered to be potent virulence factors, especially in the CF lung. At high               

concentrations, rhamnolipids lyse immune cells, but at lower concentrations they stimulate the release of              

inflammatory response molecules Interleukin-6 and Interleukin-8 (Bedard et al., 1993). Therefore,           

rhamnolipids can both protect P. aeruginosa from the inflammatory response, and aggravate the             

inflammatory response, which consequently leads to increased damage to the CF lung (Abdel-Mawgoud             

et al., 2010).  

 

Rhamnolipids also act directly on epithelial cells by further inhibiting ciliary function, and further              

preventing mucosal clearance (Zuliano et al., 2006). They also display activity against other microbes in               

the lung by mimicking amphipathic lipid membrane molecules and causing cell permeabilisation            

(Sotirova et al., 2008). Secretion of rhamnolipids also facilitates movement across a surface in a motion                

called swarming, by acting as a surface lubricant (Verstraeten et al., 2008). This lubrication also increases                

the ability of non-motile cells to stick to the populated surface, which encourages P. aeruginosa to                
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aggregate together, and hence stimulates biofilm production (Pamp & Tolker-Nielsen, 2007).           

Rhamnolipid production is vital for the formation of normal biofilm, as well as motility-associated              

dispersal of the biofilm, which allows P. aeruginosa to colonise a new niche (Boles et al., 2005). 

 

 

1.3.6 Quorum sensing and virulence  

 

Quorum sensing (QS) molecules are intercellular communication molecules, which help regulate gene            

expression based on population density (Wang et al., 2014). P. aeruginosa secrete a variety of QS                

molecules, which bind to specific receptors and induce intracellular signalling cascades that end with              

altered gene expression. Roughly 10% of the P. aeruginosa genome is estimated to be regulated by                

quorum sensing molecules, impacting a range of virulence factors including biofilm formation,            

rhamnolipid production, toxin production, siderophore production, and motility (Williams & Camara,           

2009; Antunes et al., 2010; Hawver et al., 2016). 

 

There are four well-characterised QS mechanisms in P. aeruginosa; the las , rhl, iqs and pqs systems,                

which are all hierarchically interconnected (Lee & Zhang, 2015). At the top of the hierarchy (Figure 1.8)                 

is the LasR regulator, which forms a complex with the QS molecule OdDHL (Latifi et al., 1996). This                  

abcde 

 

 

 

Figure 1.8 The quorum sensing network in P. aeruginosa is hierarchical and interconnected. Blue boxes represent                

the regulatory protein that the QS signalling molecules, represented as green ovals, activate. 
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activates the expression of 300 different genes within the P. aeruginosa genome, including various              

virulence factors such as T1SS, T2SS, ToxA exotoxin, alginate, and bacterial motility (Gilbert et al.,               

2009). This complex also activates the lasI gene, which leads to the biosynthesis and secretion of the                 

OdDHL molecule, acting as a positive feedback loop (Wargo & Hogan, 2007).  

 

The LasR-OdDHL complex also activates the rhl QS system by activating transcription of rhlR. The rhl                

QS system is also activated by the QS molecule BHL (Boursier et al., 2018). This activation leads to the                   

expression of several virulence factors, which include the T2SS, siderophores, rhamnolipids, and the             

potent virulence factor hydrogen cyanide (Brint & Ohman, 1995). The activation of rhlR leads to the                

biosynthesis and secretion of the BHL QS molecule, which provides positive feedback to the P.               

aeruginosa community (de Kievit et al., 2002).  

 

The LasR-OdDHL complex also activates the PQS mechanism, by positively regulating pqsR (Lee &              

Zhang, 2015). PqsR forms a complex with the PQS QS molecule, which increases the expression of                

siderophores and hydrogen cyanide, and is involved in protection from environmental stressors, such as              

radical oxygen species and ultraviolet light (Lee & Zhang, 2015; Haussler & Becker, 2008). The               

activation of pqsR also provides a positive feedback loop, as the pqsABCD operon is activated to produce                 

the PQS QS molecule (Deziel et al., 2004). This negatively regulates the pqs system. The pqsR-PQS                

complex activates the rhl QS system, but the rhlR-BHL complex negatively regulated the pqs QS system.                

Therefore, the proportion of all QS molecules tightly controls the activation of each QS system, and hence                 

the relative ratio of expression of each of the virulence factors under their control (Cao et al., 2001). 

 

 

1.3.7 Proteases 

 

Around 3% of the P. aeruginosa genome encodes potent virulence factors called proteases (Galdino et al.,                

2017). Proteases are secreted enzymes with the ability to break down protein and peptide structures, and                

are considered essential for bacterial infection and pathogenicity (Culp & Wright, 2017).  

 

Caseinolytic proteases are conserved proteins in most bacterial species, and are characterised by their              

ability to degrade casein; a phosphoprotein that forms 80% of cow’s milk (Brown & Foster, 1970).                

Caseinase enzymes have many functions, including intracellular protein degradation, transcriptional          
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regulation, stress response, and virulence (Gersch et al., 2012). Several secreted proteases have             

caseinolytic activity in P. aeruginosa, including protease IV, LasB protease, and the Apr alkaline              

phosphatase (Caballero et al., 2001).  

 

The P. aeruginosa genome also encodes gelatinolytic proteases, which are able to digest gelatin, a               

hydrolysed form of collagen. The LasA protease, LasB protease, protease IV, and Apr alkaline              

phosphatase have been characterised as gelatinolytic enzymes (Tange et al., 2009; Caballero et al., 2001).               

These proteins have been shown to degrade both host immune proteins and host surface proteins, and play                 

an important role in facilitating bacterial surface adhesion (Smith et al., 2006b). 

 

 

1.3.8 Type VI secretion systems 

 

The Type VI Secretion System (T6SS) is responsible for delivering effector proteins directly into other               

competing bacterial cells to aid P. aeruginosa survival within the current niche (Broms et al., 2012).                

Within the P. aeruginosa PAO1 genome, there are three evolutionarily distinct T6SS, suggesting that              

their acquisition occurred historically by horizontal gene transfer (Filloux et al., 2008). P. aeruginosa              

express immunity proteins to these three toxins, to prevent any toxic effects on itself or through accidental                 

delivery from sister cells (Sana et al., 2016).  

 

The first T6SS, H1-T6SS, delivers up to seven different effectors to a target cell; effector proteins Tse1 to                  

Tse7. Tse1 and Tse3 target distinct chemical bonds during peptidoglycan degradation of the target cell,               

which lead to cell death through the dissolution of the cell envelope (Benz et al., 2012; Lu et al., 2014).                    

The effector protein Tse2 is a reversible ADP-ribosylating enzyme, which posttranslationally modifies            

target proteins in the cell cytoplasm, inhibiting bacterial growth (Robb et al., 2016). This is not lethal to                  

the target bacteria, but confers a major fitness advantage to P. aeruginosa, allowing it to outgrow the                 

competition (Chen et al., 2015). The mechanism of action of both Tse4 and Tse5 is unknown, but they                  

have been shown to have a bacteriostatic effect on populations of E. coli (Whitney et al., 2014). Tse6 has                   

bacteriostatic effects by degrading essential compounds NAD+ and NADP +�, preventing metabolic and            

catabolic processes within the target cell (Whitney et al., 2015). The Tse6 crystal structure was elucidated                

in 2015, which showed similarity with the diphtheria toxin (Whitney et al., 2015). Tse7 was identified in                 

2018, and has been shown to have bacteriostatic activity through degradation of DNA (Pissaridou et al.,                

2018). 
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The H2-T6SS and H3-T6SS systems deliver phospholipase enzymes PldA and PldB respectively (Sana et              

al., 2016). These allow P. aeruginosa to compete with other bacteria by degrading the target cell’s                

membrane through enzymatic cleavage of phosphatidylethanolamine (Sana et al., 2016). P. aeruginosa            

also use these T6SS to deliver these effectors into epithelial cells, disrupting cell membranes and allowing                

internalisation of the bacteria (Sana et al., 2016). 

 

T6SS are required for biofilm formation (Mougous et al., 2006) and are under tight QS control. When the                  

population density gets too high, the las and pqs QS systems negatively regulate the T6SS, to prevent                 

delivering the effector proteins to sister cells (Balasubramanian et al., 2013). 

 

Other effector proteins may be encoded for in the P. aeruginosa genome that may have additional                

functions beyond antimicrobial activity, and may also act on human immune cells and epithelial cells               

directly during CF infection (Sana et al., 2016). The T6SS is active during chronic infection, as it is                  

negatively regulated by the global regulator RsmA during acute infection (Mougous et al., 2006).              

Mutations in the T6SS have been shown to attenuate, and even abolish, chronic CF infection in rat                 

models, making them attractive targets for antimicrobial development (Chen et al., 2015).  

 

 

1.3.9 Hypermutation 

 

In the CF lung, P. aeruginosa have been observed to have an increased rate of spontaneous mutation, a                  

phenotype called hypermutation (Oliver & Mena, 2010). Hypermutator isolates have an increased            

mutation rate that is caused by inactivation of the DNA repair mechanisms in the bacterium (Taddei et al.,                  

1997). In E. coli, mutation rates 1,000 and 10,000x higher than wild-type have been observed in                

hypermutator strains (Oliver & Mena, 2010; Ramiro et al., 2019), and in P. aeruginosa, hypermutation               

has been linked to the ability to rapidly adapt to hostile and new environments, such as the CF lung                   

(Oliver & Mena, 2010). Hypermutability decreases the time required to gain AMR mutations, mutations              

to aid survivability in the lung, and also the loss of function mutations that facilitate the switch from acute                   

to chronic infection (Oliver & Mena, 2010). 
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1.4 �3��DHUXJLQRVD� and bacteraemia 
 

Outside of CF lung infection, P. aeruginosa can also cause serious bloodstream infections, associated              

with a mortality rate of between than 20-40% (Micek et al., 2005; Van Delden et al., 2007). P.                  

aeruginosa is the third most common cause of Gram-negative bloodstream infections, behind E. coli and               

Klebsiella spp., and the second highest cause of mortality (Van Delden et al., 2007; Wisplinghoff et al.,                 

2004). Poor prognosis is explained by the rapid progression of the P. aeruginosa bacteraemia disease,               

causing 50% of the fatalities in the first few days of infection (Van Delden et al., 2007).  

 

Several risk factors are associated with increased mortality in P. aeruginosa bacteraemia, with poor              

prognosis recorded for surgery-associated, pneumonia-associated, and sepsis-associated bloodstream        

infection (Vidal et al., 1997). AMR bloodstream infection is also associated with poor prognosis due to                

the ineffectiveness of initial treatment, which often cannot be rectified due to the rapid progression of the                 

disease (Zhang et al., 2016a). 

 

 

1.4.1 Virulence of bacteraemia-associated 3��DHUXJLQRVD 

 

Albumin is the most abundant protein in human blood serum (Levitt & Levitt, 2016). Albumin can                

sequester quorum sensing molecules, and therefore QS-related virulence factors have been shown to be              

downregulated in the presence of albumin (Hickey et al., 2018). Albumin is present at very low                

concentrations in the lung, urinary tract, and burn wounds, and hence during acute infection in these                

environments, QS-related virulence factors are expressed at high levels (Smith et al., 2017). The              

highly-virulent P. aeruginosa at these sites allows for quick dissemination into the bloodstream, causing              

sepsis and septic shock (Bahemia et al., 2015).  

 

Transfer of P. aeruginosa from the initial site of injury or infection into the blood is facilitated by P.                   

aeruginosa virulence factors that are encoded in the genome. The T3SS effector proteins, ExoS and               

ExoY, break down the integrity of the epithelial layer (Golovkine et al., 2018), and the LasB elastase                 

breaks down cadherin, which is responsible for joining epithelial cells together (Hickey et al., 2018).               

Combined, these lead to regions of host cell death. Additionally, these virulence determinants stimulate              
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immune system inflammation, which helps the migration of P. aeruginosa from the site of acute infection                

into the bloodstream through the break down of protective barriers (Hickey et al., 2018). 

 

A 2018 study by Hickey et al. aimed to characterise any differences in virulence between bloodstream                

isolates and isolates from the site of the original acute infection (Hickey et al., 2018). The study found                  

two upregulated proteins in the transcriptome of the bloodstream isolates; LecA and RpoN. LecA is an                

adhesion factor that binds P. aeruginosa to other cells; knockout mutants of which have been shown to                 

reduce virulence (Chemani et al., 2009). RpoN regulates several virulence features, including            

flagella-dependent motility, T6SS, and siderophore production (Hickey et al., 2018). Through the            

upregulation of these RpoN-controlled virulence factors, there is an indirect upregulation of other             

virulence factors, including the ToxA toxin and Apr alkaline phosphatase, which cause damage to the               

surrounding tissue and induce inflammatory response from the immune system, causing further damage to              

the host system (Hickey et al., 2018). 

 

 

1.5 Antibiotic-resistant �3��DHUXJLQRVD�
 

Antibiotic resistant P. aeruginosa bloodstream infections are a major problem worldwide (Bassetti et al.,              

2018). A 2016 surveillance study of P. aeruginosa bloodstream infections identified a 33.9% prevalence              

of resistance to one or more of the antibiotics tested (Bassetti et al., 2018). 

 

  

1.5.1 Active efflux causes intrinsic resistance to many antibiotics 

 

P. aeruginosa has low levels of intrinsic resistance to most antibiotics (Breidenstein et al., 2011). This                

intrinsic resistance is conferred primarily through active efflux of antimicrobial compounds. To date, 25              

different efflux complexes have been identified in the P. aeruginosa PAO1 and PA14 genomes, which               

can recognise over 50 antimicrobial compounds (Li & Plesiat, 2016).  

 

Of the 35 P. aeruginosa efflux systems, eleven are broad-substrate, RND-like multidrug efflux (Mex)              

pumps, of which, only the MexAB-OprM efflux system is constitutively expressed (Evans & Poole,              

2006). The MexAB-OprM system exports compounds from multiple antibiotic classes, including the            
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β-lactams, quinolones, chloramphenicol, macrolides, and tetracyclines (Li & Plesiat, 2016), and hence            

contributes greatly to the low-levels of resistance observed in P. aeruginosa. A knockout of any of the                 

four MexAB-OprM regulator genes (mexR, nalC, nalD, and cpxR) can increase the MIC profile of P.                

aeruginosa by up to 16-times due to the overexpression of the efflux pump (Tian et al., 2016).  

 

The MexCD-OprJ efflux system can also export a range of antibiotic compounds, including members of               

the macrolide, chloramphenicol, novobiocin, tetracycline, trimethoprim, and 4th-generation β-lactam         

classes of antibiotics (Poole, 2001). In wild-type P. aeruginosa, the MexCD-OprJ system is not typically               

expressed. However, a knockout of the repressor protein, nfxB leads to the overexpression of the               

MexCD-OprJ system, leading to an overall increase in resistance (Purssell & Poole, 2013). It has also                

been shown that a knockout of nfxB leads to decreased expression of the MexXY-OprM efflux system,                

leading to hypersusceptibility to aminoglycoside antibiotics (Morita et al., 2012). Overexpression of the             

MexXY-OprM efflux system is the main cause of aminoglycoside resistance in P. aeruginosa isolates,              

particularly in CF patients (Armstrong & Miller, 2010). Efflux of aminoglycosides in bacterial species is               

relatively rare, with intrinsic resistance to aminoglycosides via efflux typically identified only in             

Burkholderia pseudomallei and Acinetobacter baumannii (Morita et al., 2012).  

 

Downregulation of MexXY-OprM also occurs in nfxC knockout mutants (Morita et al., 2012). The nfxC               

gene typically represses the MexEF-OprN efflux system, which, when overexpressed, leads to increased             

resistance to fluoroquinolones (Llanes et al., 2011). The efflux systems MexPQ-OpmE, MexVW-OprM            

and MexGHI-OpmD also export fluoroquinolones (Mima et al., 2005; Fabrega et al., 2009; Li, 2003),               

amongst other substrates, such as macrolides, heavy metals, tetracycline, chloramphenicol, acriflavine and            

ethidium bromide (Martinez et al., 2009). Macrolides are also the main efflux substrate of the               

MexJK-OprM complex, which can also export triclosan (Chuanchen et al., 2002). The final Mex-style              

efflux pump is MexMN-OprM, which exports chloramphenicol, heavy metals and some β-lactam            

compounds (Mima et al., 2005). 

 

Several non-Mex efflux pumps are also encoded within the P. aeruginosa genome. The MuxABC-OpmB              

efflux pump can export monobactams, macrolides, and tetracyclines (Li et al., 2014). Downregulation of              

the MuxABC-OpmB efflux system leads to a decrease in virulence, typically through downregulation of              

twitching motility through an unknown mechanism (Yang et al., 2011a). Additional multi-domain efflux             

systems include TriABC-OpmH, the substrate for which is triclosan, and CzcCBA, which is linked to               

heavy metal resistance (Li et al., 2014).  
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P. aeruginosa can also encode single-protein efflux systems, such as PmpM and EmrE. PmpM is a                

multi-drug efflux pump, which has substrate recognition for benzalkonium chloride, fluoroquinolones,           

ethidium bromide, acriflavine, and tetraphenylphosphonium chloride (He et al., 2004). EmrE confers            

resistance to ethidium bromide, acriflavine, and EmrE-knockout leads to a decrease in MIC values for the                

aminoglycosides (Li et al., 2003).  

 

 

1.5.2 Resistance to β-lactams 

 

The P. aeruginosa genome ubiquitously encodes several enzymes that confer resistance to the β-lactam              

class of antibiotics. These include a Class C wide-spectrum β-lactamase, ampC, which confers low-levels              

of resistance to aminopenicillins and first- and second-generation cephalosporins (Berrazeg et al., 2015).             

High levels of resistance occur when AmpC is overexpressed, and many mutations have been identified               

which can extend the specificity of AmpC to the penicillins, monobactams, and third- and              

fourth-generation cephalosporins by altering the enzyme active site (Berrazeg et al., 2015). The P.              

aeruginosa genome also encodes poxB, which is a Class D oxacillinase, however, full activity of PoxB                

has only been observed in isolates where AmpC activity is absent (Poole et al., 2004). 

 

P. aeruginosa is able to acquire further resistance to the β-lactams through the acquisition of other                

β-lactamase enzymes on plasmids or transposons (Zhao & Hu, 2010). Examples of the acquisition of               

almost all classes of extended-spectrum β-lactamase (ESBL) enzymes have been recorded in P.             

aeruginosa from around the world, including TEM, SHV, CTX-M, PER, VEB, GES, BEL and OXA               

ESBLs (Poole, 2011). ESBL enzymes have the ability to hydrolyse compounds from several different              

classes of β-lactams (Bush et al., 2008). Presence of these ESBLs restricts treatment options, and is of                 

global concern due to the ease of transfer of ESBL enzymes through horizontal gene transfer, and the low                  

fitness cost these confer (Ranjan et al., 2018). 

 

The carbapenem class of antibiotics are considered to be last-resort antibiotics for treating P. aeruginosa               

infections (Codjoe & Donkor, 2018). Resistance can be caused by the acquisition of metallo-β-lactamase              

enzymes of the VIM and IMP class, which are globally dispersed in P. aeruginosa populations (Walsh et                 

al., 2005). The metallo-β-lactamase enzymes often work in partnership with inactivation of OprD             

membrane porins, which are the main route of carbapenem entry into the P. aeruginosa cell (Trias &                 

Nikaido, 1990). Inactivation of oprD by itself is not enough to cause resistance, but can lead to                 
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carbapenem resistance when coupled with overexpression of efflux pumps, alteration of the AmpC             

enzyme, or acquisition of metallo-β-lactamase enzymes (Poole, 2011).  

 

The recent increase in worldwide Gram-negative carbapenem-resistant infections has been attributed to            

bacterial acquisition of the broad-spectrum metallo-β-lactamase NDM-1 (Khan et al., 2017). There are             

documented examples of P. aeruginosa acquisition of NDM-1 through the horizontal gene transfer of              

integrons and plasmids (Kazmierczak et al., 2016). The distribution of P. aeruginosa encoding for              

NDM-1, whilst still relatively low, is now global, resulting in one of the most concerning emerging                

threats of MDR P. aeruginosa (Kazmierczak et al., 2016). 

 

 

1.5.3 Resistance to fluoroquinolones 

 

Fluoroquinolone antibiotics are commonly used in the treatment of acute P. aeruginosa infection, and              

widespread use has led to the steady increase in fluoroquinolone resistant bacteria (Poole, 2011; Aldred et                

al., 2014). Common resistance determinants include changes in the amino acid residues of the              

quinolone-resistance-determining-region (QRDR) of both subunits of DNA gyrase (gyrA and gyrB) and            

topoisomerase (parC and parE) proteins (Poole, 2011). As well as modification of the antibiotic target               

site, common resistance determinants include overexpression of four different efflux systems;           

MexAB-OprM, MexCD-OprJ, MexEF-OprN, and MexXY-OprM (Zhanel et al., 2004). 

 

 

1.5.4 Resistance to aminoglycosides 

 

The aminoglycoside class of antibiotics are also commonly involved in the treatment of P. aeruginosa               

infection. The acquisition of aminoglycoside modifying enzymes (AMEs) on plasmids or integrons is the              

major cause of aminoglycoside resistance in P. aeruginosa (Strateva & Yordanov, 2009). There are three               

classes of AMEs that can catalyse the conversion of terminal alcohol and amine groups into phosphate                

groups (APH-type AMEs), acetyl groups (AAC-type AMEs), or adenosine monophosphate (ANT-type           

abcde 
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Figure 1.9 Kanamycin B is an aminoglycoside antibiotic than can be rendered inactive by all three classes of AMEs. 

 

AMEs), which renders the antibiotic inactive (Figure 1.9) (Ramirez & Tolmasky, 2010). The presence of               

AMEs are rare in isolates collected from CF patients (Poole, 2011). Resistance to aminoglycosides can               

also occur through efflux, through the overexpression of the MexXY-OprM efflux system, which             

typically occurs through the inactivation of its repressor molecule (Singh et al., 2017). 

 

It is rare for P. aeruginosa to acquire resistance to the aminoglycoside class of antibiotics (Poole, 2011).                 

The aminoglycoside tobramycin, in combination with either ciprofloxacin or ceftazidime, has also shown             

synergistic effects in preventing resistance from occurring (Ratjen et al., 2009; Kapoor & Murphy, 2018),               

suggesting that aminoglycosides should be in regular use to treat P. aeruginosa infection.  

 

 

1.5.5 Resistance to other classes of antibiotics 

 

Colistin resistance in P. aeruginosa through mutations in phoQ, pmrB and parRS have been documented               

and verified (Ly et al., 2011; Lee et al., 2016). Due to the increased prevalence of carbapenem-resistant P.                  
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aeruginosa, colistin is becoming a more viable option to treat P. aeruginosa infections, despite the               

harmful negative side-effects (Lim et al., 2015).  

 

The tetracycline class of antibiotics are rarely used in the treatment of P. aeruginosa due to its ability to                   

export tetracyclines from the cell by normal levels of MexAB-OprM efflux system expression (Morita et               

al., 2014). Similarly, glycopeptide antibiotics such as vancomycin are not used to treat Gram-negative              

bacterial infections, since the molecules are too large to enter through porins in the outer membrane                

(Yarlagadda et al., 2015). 

 

 

1.5.6 Plasmid-mediated resistance 

 

Plasmids are a convenient way of replicating and sharing advantageous genetic material between bacteria              

that are not necessarily related (Bennett, 2008). In P. aeruginosa, the sharing and uptake of plasmids is a                  

common method of spreading new genetic material amongst its population. Plasmid-mediated antibiotic            

resistance is especially a problem in healthcare settings, but the spread of P. aeruginosa plasmids in                

healthcare is not well understood, as very few plasmids from isolates in healthcare settings have been                

sequenced and analysed (Strateva & Yordanov, 2009; Bi et al., 2016). 

 

In a study of pan-resistant P. aeruginosa by Cazares et al., resistance genes for eight different classes of                  

antibiotics were identified, alongside a second copy of the MexCD-OprJ efflux pumps, on a 420 kbp                

megaplasmid (Cazares et al., 2019). The study identified the presence of these highly-resistant             

megaplasmids in nearly 20% of P. aeruginosa isolates in one hospital in Thailand, suggesting an               

important role of megaplasmids in spreading resistance, and suggesting that screening for these plasmids,              

and megaplasmids, should become routine (Cazares et al., 2019). This type of surveillance would require               

the application of long-read DNA sequencing technology, which is currently more expensive and less              

high-throughput than short read sequencing technology, and hence is not used routinely in a clinical               

setting (Mantere et al., 2019). The true impact of plasmids and megaplasmids responsible for the spread                

of MDR P. aeruginosa elsewhere around the globe is currently unknown. 
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1.6 �3��DHUXJLQRVD� population structure 
 

The population structure of P. aeruginosa is well-defined (Figure 1.10). Historically, P. aeruginosa             

populations have been considered as split into two distinct clades, which were characterised by their               

ability to produce either the ExoS toxin, or the ExoU toxin (Pirnay et al., 2009). These clades were named                   

after two “gold-standard” lab reference strains; PAO1 and PA14. PAO1-like isolates produce the             

less-virulent ExoS toxin, and PA14-like isolates produce the more-virulent ExoU toxin (Ozer et al.,              

2019). The divergence between the two large groups was investigated in a 2019 study by Ozer et al. The                   

authors identified lower recombination rates between, rather than within, the two groups, fixed             

polymorphic variant sites that indicate positive selection, specific gene clusters within the accessory             

genome, and a difference in the predominance of O-antigen receptors on the cell membrane (Ozer et al.,                 

2019). The authors of the study concluded that the two groups diverged early in the evolution of P.                  

aeruginosa, indicative of adaptation to different environmental niches, which has lead to a reduced ability               

for genetic exchange between the PAO1-like and PA14-like isolates (Ozer et al., 2019). 

 

In 2010, a taxonomic outlier was sequenced; PA7 (Roy et al., 2010). The group of PA7-like isolates is                  

distinct from the rest of the P. aeruginosa population, and have only 93-94% average nucleotide identity                

compared to the rest of the P. aeruginosa population (Freschi et al., 2019). The PA7-like isolates contain                 

abcde 

 

 

Figure 1.10 The population structure of P. aeruginosa resolves into well-defined groups. Group 1 isolates are                

PAO1-like, Group 2 isolates are PA14-like, and Group 3 isolates are PA7-like. Group 4 and Group 5 isolates were                   

newly identified in a 2019 study (Freschi et al., 2019). Image adapted with permission from Freschi et al., 2019. 
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many AMR genes that are not found in any other P. aeruginosa subspecies, and they also lack key                  

virulence factors (Freschi et al., 2019). These include the absence of the T3SS and all related effector                 

toxins, the absence of the potent toxA toxin, and the absence of some siderophore systems (Roy et al.,                  

2010).  

 

Two further subgroups of P. aeruginosa have been identified that reside in between the PAO1/PA14-like               

isolates and the PA7-like isolates in the P. aeruginosa population structure. How these groups have               

diverged is not clear, and their prevalence is low within the NCBI database (Geer et al., 2010; Freschi et                   

al., 2019). 

 

As well as the population structure, the pangenome of 1,311 P. aeruginosa isolates was calculated               

(Freschi et al., 2019). The authors identified a total of 54,272 genes, of which 27,187 genes were unique                  

to a single isolate. Of the remaining genes, only 665 (1%) were designated as “core” genes, which are                  

genes that were present in every isolate from all subgroups. This is only twice the 336 genes that are                   

deemed essential for any bacterial growth (Turner et al., 2015). This is further evidence of the ability of                  

P. aeruginosa to adapt to a range of different environments by changing their genetic content to suit their                  

niche (Freschi et al., 2019).  

 

 

1.7 Associating phenotype with genotype through genome-wide association        

studies 
 

One of the main goals of genome sequencing is to be able to find a particular locus within the genome to                     

explain a particular phenotype of an organism (Visscher et al., 2012). In 2001 the sequence of the first                  

human genome was determined (International Human Genome Sequencing Consortium, 2001). Since           

then, hundreds of thousands of human genomes have been sequenced, identifying variation in the              

genomes which cause genetic disease (Lappalainen et al., 2019). Genome-wide association studies            

(GWAS) are an experimental design to associate genetic variants from across the whole genome with               

disease states in populations of people (Visscer et al., 2012).  

 

GWAS studies are unbiased, and do not make any biological assumptions of the variant with respect to                 

the disease (Visscher et al., 2012), but they can provide biologically-relevant results. In 2007, the               
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Wellcome Trust Case Control Consortium (WTCCC) published the first well-designed GWAS, which            

reported 24 independent associations with seven major diseases; bipolar disorder, coronary artery disease,             

Chrohn’s disease, rheumatoid arthritis, type 1 diabetes, and type 2 diabetes (Figure 1.11) (Wellcome Trust               

Case Control Consortium, 2007). Since this first study, over 10,000 different loci have since been               

associated with hundreds of different disease states (Visscher et al., 2017). 

 

 

 

 

Figure 1.11 Manhattan plots from the first well-designed GWAS published in 2007, where 24 independent               

associations were made for 7 different diseases. Image used with permission from Wellcome Trust Case Control                

Consortium, 2007. 
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1.7.1 Challenges associated with bacterial GWAS 

 

Applying GWAS to bacterial populations can be used to identify genomic variation associated with              

heritable traits of interest, such as antimicrobial resistance (Lees & Bentley, 2016). This can help increase                

understanding of antimicrobial resistance, virulence, and adaptive mutations which contribute to the            

success of a bacterial strain. The first well-powered bacterial GWAS was published in 2014 by               

Chewapreecha et al. The study identified variants within the Streptococcus pneumoniae population that             

were associated with β-lactam non-susceptibility (Chewapreecha et al., 2014). Both known and novel             

mutations in the penicillin binding proteins, which conferred different levels of resistance to different              

classes of β-lactams, were identified. Since then, GWAS have been applied to bacterial studies to identify                

variation of pneumococcal carriage duration (Lees et al., 2017), pneumococcal invasive potential (Lees et              

al., 2019), and drug-resistance determinants in Mycobacterium tuberculosis (Coll et al., 2018), amongst             

others. 

 

 

 

Figure 1.12 The population structure of bacteria confounds GWAS. Since bacteria reproduce clonally, the GWAS               

will be unable to distinguish the causal variant of the phenotype (purple dots), with all mutations that differentiate                  

that bacterial clade from all others (red arrow). This could be hundreds or thousands of variants. Figure adapted                  

under Creative Commons v4.0 license from Collins & Didelot, 2018. 
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However, there are various challenges associated with bacterial GWAS that are not present for human               

GWAS design. The first of these is the presence of population structure arising due to the clonal nature of                   

bacterial reproduction (Collins & Didelot, 2018). When a set of de novo mutations are acquired, one of                 

which gives rise to a phenotype, all daughter cells will inherit all mutations as well as the phenotype.                  

Therefore, an association study will find all mutations that differentiate the population of bacteria with the                

phenotype from the population of bacteria without the phenotype as significant (Figure 1.12). These              

associations are known as “lineage effects”, and could consist of hundreds or thousands of mutations               

which would have to be investigated experimentally (Earle et al., 2016). To overcome the problems               

associated with population structure, GWAS should be designed to associate genetic variants with a              

phenotype that is distributed throughout the phylogeny to mitigate the effect of the genetic background               

that gives rise to population structure. 

 

A second challenge associated with bacterial GWAS is the presence of the bacterial pan-genome. Most               

human variation occurs as a result of small variants that can be detected by mapping to a single reference,                   

whereas variation due to a difference in the presence or absence of novel genes is only about 1%                  

(Sherman et al., 2019). However, bacteria have large pan-genomes, which can range from a few genes to                 

tens-of-thousands, which will not be accounted for when mapping all genomes of a population to a single                 

reference (McInerney et al., 2017). Therefore, associating the presence and absence of accessory genes              

with a phenotype should also be considered in a well-designed GWAS. However, this does not account                

for variation within the variable genes of the pan-genome, which may cause the phenotype. 

 

Finally, bacterial GWAS need to consider variation from across the whole genome, facilitating the              

requirement for whole-genome sequencing (Power et al., 2016). Currently this is expensive, and             

combined with difficulty in obtaining clinically-relevant bacteria with detailed phenotyping, means study            

sample sizes are currently limited (Power et al., 2016). This is compounded by the vast amount of                 

variation across bacterial species, increasing the multiple testing burden, necessitating large sample            

collections to achieve reasonable power (Power et al., 2016). 

 

 

1.7.2 Bacterial GWAS methodologies 

 

Since the establishment of bacterial GWAS, several techniques have been developed to conveniently             

package GWAS pipelines and make them more accessible to the scientific community. The first of these                
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packages, called BugWAS, was developed in early 2016 by Earle et al., which aimed to conveniently                

package a pipeline to identify lineage effects, as well as specific loci such as SNPs and the                 

presence/absence of genes (Earle et al., 2016). The authors applied this technique to determinants of               

antimicrobial drug resistance for 17 antimicrobial compounds for four different bacteria (Earle et al.,              

2016). This pipeline is an adaptation of existing GWAS methodology, called GEMMA, which employs              

both linear regression and linear mixed models for human GWAS (Zhou & Stephens, 2012). 

 

In 2016, a novel GWAS pipeline was developed by Lees et al., called SEER. Rather than associating                 

specific SNPs with a phenotype, SEER requires the computation of kmers, which are short DNA               

sequences between 9 and 100 bp (Lees et al., 2016). Kmers can account for different genomic variation                 

within a DNA string, such as gene truncations, structural variations, and short repeats, as well as                

individual SNPs, which is a major benefit over simply considering SNP variation (Lees et al., 2016). This                 

technique was first applied to identify known resistance mutations in S. pneumoniae and novel kmers               

associated with S. pyogenes invasive potential (Lees et al., 2016). The programme employs both linear               

and logistic regression to associate genotype with phenotype, requiring a relatedness matrix as a covariate               

to account for population structure (Lees et al., 2016). The package was updated in 2018 to include a                  

greater array of methods to test for association, including adding linear mixed models as a technique to                 

control for population structure (Lees et al., 2018). 

 

One limitation of bacterial GWAS is the bacterial pangenome. Due to frequent recombination, infection              

by bacteriophage, the presence of mobile genetic elements, and acquisition of plasmids, different bacteria              

from the same population may have different genetic compositions (McInerney et al., 2017). In 2016, a                

pangenome GWAS pipeline was developed, called Scoary (Brynilsdrud et al., 2016). This pipeline             

requires a gene presence-absence matrix, and runs a self-contained GWAS pipeline, with phylogenetic             

population structure controls in place. However, this method is dependent on a well-calculated and robust               

tree to be effective (Brynilsdrud et al., 2016), which may not always be possible, and does not consider                  

variation within the genes of the pangenome. The authors validated the effectiveness of Scoray by               

identifying known and novel linezolid resistance genes in S. epidermidis  (Brynilsdrud et al., 2016). 

 

In early 2018, a phylogenetic GWAS method (treeWAS) was developed by Collins & Didelot. This               

method identifies relevant association by mapping the evolution and acquisition of SNPs onto a              

phylogenetic tree, alongside the phenotype of interest, whilst accounting for both population structure and              

recombination (Collins & Didelot, 2018). This method was applied to a dataset of Neisseria meningitidis               
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genomes to identify known penicillin resistance variants, and to uncover novel resistant determinants             

(Collins & Didelot, 2018). A drawback of this method, as with the Scoary pipeline, is the requirement for                  

a robust phylogenetic tree to correctly identify relevant associations. 

 

DBGWAS was developed as a novel method to associate reference-free genomic variants with a              

phenotype (Jaillard et al. in 2018). This method builds upon kmer methodology, by taking all genomic                

variation across all genomes, and compressing this information into computationally-efficient compact De            

Bruijn graphs, called unitigs (Jaillard et al., 2018). De Bruijn graphs are used in the de novo assembly of                   

genomes and SNP calling, and connect overlapping kmers, efficiently summarising all variation over a set               

of genomes (Jaillard et al., 2018). Variation in the genome is then associated with the phenotype of                 

interest using the GEMMA software developed for human GWAS (Jaillard et al., 2018). This technique               

was first used to identify known and novel antibiotic resistance determinants in S. aureus , M.               

tuberculosis , and P. aeruginosa (Jaillard et al., 2018). To date, this study represents the only example of                 

GWAS that has been applied to a P. aeruginosa population. 

 

 

1.8 Aims and objectives 
 

This dissertation forms part of a wider study that has been undertaken at the Laboratory for Molecular                 

Biology, Addenbrookes Hospital, Cambridge. The wider study saw 15 patients with CF asked to              

undertake home-based measurement of several key physiological metrics, including lung function,           

physical health, and mental health over the course of six months, as well as to provide daily sputum                  

samples. These metrics were examined for markers that may be used as predictors of APEs.  

 

Sputum samples from nine patients who experienced a total of 18 APEs between them were selected, and                 

96 P. aeruginosa isolates were collected from each sputum sample on the day that the patient first                 

experienced the symptoms of an APE (acute timepoint), seven days before the APE (stable timepoint),               

and seven days after antibiotic treatment had finished (recovery timepoint). Roughly 4,400 P. aeruginosa              

isolates were sampled, and each isolate was screened for the 10 virulence-related phenotypes listed in               

Table 1.2. Similar studies have previously assessed only a much more limited number of phenotypes, and                

therefore the ten phenotypes selected for this study address this limitation. Phenotypes of three complex               

abcd 
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Table 1.2 A list of all of the virulence-related phenotypes that the P. aeruginosa isolates in this study were                   

phenotypically screened for. 

 

quorum-sensing systems were selected (BHL, OdDHL and PQS), which have been shown using in vitro               

studies to regulate virulence factor expression in P. aeruginosa (Lee & Zhang, 2015). Three well-studied               

virulence-associated phenotypes (gelatinase, caseinase and siderophore) were also selected, because their           

expression is regulated by specific, known quorum-sensing sub-systems, and significant diversity has            

been reported in both epidemic and non-epidemic P. aeruginosa isolates from patients with CF (Voynow               

et al., 2008; Tyrrel & Callaghan, 2016). The rhamnolipid production phenotype was also selected,              

because rhamnolipids are involved in the establishment of persistent chronic P. aeruginosa infection in              

CF patients (Zulianello et al., 2006). The biofilm phenotype is an indicator of the switch from acute to                  

chronic infection in CF patients, and encourages persistence of P. aeruginosa in the CF lung, as well as                  

increasing resistance to antibiotics (Hoiby et al., 2010). Finally, swimming and twitching motility             

phenotypes were selected, because although P. aeruginosa isolates from CF infections often display             

non-motile phenotypes, this is poorly understood (Schick & Kassen, 2018). 

 

To date, research surrounding the genomic variation and evolution of P. aeruginosa infection within the               

CF lung has focussed on single samples from long-term and longitudinal studies. This study presents a                

unique opportunity to fully examine the variation of P. aeruginosa within the CF lungs within a cohort of                  

patients, and determine any genetic changes which may underpin phenotypic diversity. We hypothesise             

that there will be greater variation of the P. aeruginosa population within the lungs of patients with CF                  
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than has been previously described, and that common genetic changes within these populations will              

underpin phenotypic diversity.  

 

The 4,400 phenotyped isolates were whole-genome sequenced for this dissertation, and the aims and              

objectives of this study are as follows: 

 

● To quantify the inter-patient and intra-patient diversity of P. aeruginosa bacterial infection of the              

CF lung from the whole-genome sequences of ~4,400 isolates collected from nine patients over              

six months. 

● To investigate the evolution of P. aeruginosa population when facing the selective pressures of              

the CF lung. 

● To determine the genetic basis for any phenotypic diversity by using genome-wide association             

studies. 

 

In addition to the 4,400 CF P. aeruginosa isolates, this dissertation will investigate an additional dataset                

of P. aeruginosa isolates from bloodstream infection. Prior to this dissertation, 352 bloodstream isolates              

were whole-genome sequenced from two separate sources. The source of 79 of these isolates was the                

British Society for Antimicrobial Chemotherapy (BSAC) bacteraemia antimicrobial resistance         

surveillance project, a national surveillance project that aims to understand how antimicrobial resistance             

is changing in a healthcare setting. The remaining 253 isolates were collected from Cambridge hospitals,               

to understand the current state of P. aeruginosa bacteraemia infections on the local scale. The               

antimicrobial resistance profiles of all of these isolates have also been determined. We hypothesise that               

the local population structure of P. aeruginosa bacteraemia is not representative of the UK-wide              

population structure, and local bacteraemia is driven by specialised healthcare associated strain due to              

factors and practices that are specific to local areas. 

 

The additional aims of this dissertation are as follows: 

 

● To understand the population structure and genetic diversity of P. aeruginosa bacteraemia on             

both a local and national level. 

● To determine the genetic cause of antimicrobial resistance in these isolates. 
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1.8.1 Importance and novelty of this study 

 

Bacterial infections of the blood, and lungs of people with cystic fibrosis, are a leading cause of morbidity                  

and mortality, and are therefore a key research topic in healthcare. The development of comparative               

genomics techniques enables powerful analyses that can help to uncover how and why bacteria behave the                

way they do in healthcare settings,  which can ultimately inform clinical decisions. 

 

The novelty of this research is as follows: 

 

● P. aeruginosa bacteraemia infections are a big problem across the UK. By placing the Cambridge               

isolates into the wider context of the UK, we can identify whether the local P. aeruginosa                

bacteraemia population is representative of the wider UK P. aeruginosa population, or whether             

any differences within the Cambridge isolates may be linked to differences in practice. 

● In order to overcome issues such as low sampling depth, study population size and limited               

diversity of isolates and phenotypes that have defined most previous short-term studies of clonal              

populations of P. aeruginosa within the CF lung, 4,400 isolates from 9 patients were sampled in                

this study. This study is therefore the largest comparative genomics study of clonal populations of               

P. aeruginisoa within the CF lung to date. This will enable a better estimation of the true diversity                  

of the P. aeruginosa populations within the CF lung, enabling more powerful analyses of the               

genetic changes that may underpin phenotypic diversity and evolution, and how this variation             

may relate to pulmonary exacerbations in CF patients. 

● GWAS are an emerging and powerful tool in the field of comparative genomics. By using so                

many genomes and phenotypes, this study is the largest P. aeruginosa GWAS to date. This will                

enable the most powerful analysis, and test the limit of current GWAS technologies. 
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2.1 Introduction 
 

Pseudomonas aeruginosa is a Gram-negative bacterium found to be widespread in natural environments,             

but rarely found as part of the normal, healthy human microbiome (Yang et al., 2011b). Due to the                  

genomic and metabolic plasticity of P. aeruginosa, it is a serious opportunistic pathogen, known for               

causing diseases of the urinary tract, burn sites, and cystic fibrosis lung (Yang et al., 2011b). Bloodstream                 

infections (bacteraemia) caused by P. aeruginosa are amongst the most serious caused by Gram-negative              

bacteria (McCarthy & Paterson, 2017). Poor prognosis is explained by the rapid progression of the               

disease, causing fatalities in up to 50% of cases in the first few days of infection, and further mortality                   

rates of 20-40% within a month of infection (McCarthy & Paterson, 2017; Van Delden et al., 2007). 

 

The British Society for Antimicrobial Chemotherapy (BSAC) bacteraemia resistance surveillance          

programmes were set-up in the late 1990s in response to the rising antimicrobial resistance rates seen in                 

bacteria across the UK (Reynolds et al., 2008). The first surveillance programme started in 1999 and                

focussed on community-acquired, lower respiratory tract infections (Reynolds et al., 2008). The second             

programme started in 2001, and covered a wide range of bacteraemia-causing pathogens, including P.              

aeruginosa (Reynolds et al., 2008). Surveillance of P. aeruginosa is particularly important due to its               

intrinsic resistance to a number of antibiotics, and the ability to acquire resistance genes through a variety                 

of mechanisms (Oliver et al., 2015). Multi-drug resistant P. aeruginosa infections are typically associated              

with worse outcomes for patients (Hirsch & Tam, 2011). Treatment of P. aeruginosa bloodstream              

infection is required immediately, and if MDR P. aeruginosa are present, initial antibiotic treatment may               

be ineffective (Zhang et al., 2016b). Due to the rapid progression of P. aeruginosa bacteraemia infection                

and the length of time required to culture and determine resistance profiles, correct treatment of MDR                

infections are essential (Zhang et al., 2016b). 

 

The ability of P. aeruginosa to acquire novel genetic material, is one of the reasons that it is highly                   

successful at adapting to a range of environments (Battle et al., 2009). It is estimated that only about 90%                   

of the P. aeruginosa genome is conserved, with the remaining 10% attributed to different genomic islands                

that are present in some strains and not others (Battle et al., 2009). Genomic islands of P. aeruginosa are                   

known to carry antimicrobial resistance genes, and have been attributed to the spread of antimicrobial               

resistant P. aeruginosa around the globe (Chowdhury et al., 2017). However, these MDR-conferring             

genomic islands are strongly associated with only a few P. aeruginosa sequence types (STs), which are                
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labelled as international and high-risk clones (Oliver et al., 2015). These international and high-risk STs               

are so-called as they cause the majority of multidrug resistant (MDR), extensively drug resistant (XDR),               

and pan-resistant P. aeruginosa infections around the globe (Oliver et al., 2015). Traditionally, these were               

considered to be P. aeruginosa ST111, ST175, ST235, ST253, and ST395 (Oliver et al., 2015;               

Chowdhury et al., 2017; Petitjean et al., 2017), though a greater number of STs are being classified as                  

high-risk as surveillance efforts are increased globally. 

 

International and high-risk clones are associated particularly with acquisition of metallo-β-lactamase           

(MBLs) and extended-spectrum β-lactamases (ESBLs) on genomic islands, particularly MBLs and           

ESBLs that are able to break down the favoured drug-of-last-resort, the carbapenems (Wright et al.,               

2015). The carbapenems are the most effective class of antibiotics able to combat Gram-negative              

infections, including P. aeruginosa infections (Meletis et al., 2012), and resistance to the carbapenem              

antibiotics is of severe global concern (Perez & Bonomo, 2018). Due to the increase of resistance to the                  

carbapenems, a resurgence in the use of colistin to treat MDR infection is occurring, and observed levels                 

of resistance are currently low (Lee et al., 2016). Colistin use was abandoned several decades ago, due to                  

serious nephrotoxicity and neurotoxicity, but recent studies have shown successful treatment of MDR P.              

aeruginosa infections with colistin, particularly when used in combination with other antibiotics (Falagas             

et al., 2005; Javed et al., 2018). 

 

In this chapter, the whole-genome sequences of 79 MDR P. aeruginosa bacteraemia isolates, collected as               

part of the BSAC surveillance programme, were analysed to obtain an understanding of the current MDR                

P. aeruginosa population within the UK and Ireland. Additionally, 273 isolates from a second systematic               

survey of P. aeruginosa bacteraemia infection in the Cambridge area were also whole-genome sequenced.              

From this data, trends in local population structure and mechanisms of antibiotic resistance were              

investigated. The two datasets were compared to fully understand the wider context of P. aeruginosa               

bacteraemia within the UK & Ireland. 

 

 

2.1.1 Aims 

 

Bloodstream infections caused by bacteria such as P. aeruginosa are a leading cause of morbidity and                

mortality. How and why bacteria behave the way they do in healthcare settings is not well understood,                 
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however, comparative genomics enables powerful analyses that can improve our understanding of            

bacterial infection on a population level, and ultimately inform clinical decisions.  

 

In this chapter, we aim to understand the current state of P. aeruginosa bacteraemia infections on a local                  

scale, by investigating a collection of P. aeruginosa bacteremia isolates collected from Cambridge             

hospitals. The phenotypic antimicrobial resistance profiles of all of these isolates have previously been              

determined. We aimed to compare the population structure and genetic diversity of P. aeruginosa              

bacteraemia on the local level and a national level, in order to determine whether the local population                 

structure of P. aeruginosa bacteraemia is representative of the UK-wide population structure, or whether              

local bacteraemia is driven by specialised healthcare-associated strains. Additionally, we aim to use             

genetic data to determine the genetic cause of antimicrobial resistance in these isolates. 
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2.2 Methods 
 

2.2.1 Isolate selection and DNA sequencing 

 

Between 2006 - 2013, and between 2017 - 2018, single P. aeruginosa samples were taken from confirmed                 

bacteraemia patients’ bloodstreams from Addenbrookes, Hinchingbrook, and Papworth Everard         

Hospitals, Cambridgeshire (Rachel Bousfield, Peacock Lab, University of Cambridge). 

 

Between 2001 - 2011, P. aeruginosa isolates that were sampled from patients with bacteraemia and had                

multi-drug resistance (MDR) were collected by 25 different laboratories distributed across the UK and              

Ireland (Table 2.1) as part of the BSAC bacteraemia resistance programme (www.bsacsurv.org)            

(Reynolds et al., 2008). 

 

A local collection of isolates was selected including 224 isolates from the Cambridge samples between               

2006 and 2013. A further 60 isolates were also selected from the Cambridge samples between 2017 and                 

2018. In order to put these samples into a nationwide context, 81 isolates were selected from the MDR                  

BSAC bacteraemia resistance programme, from the UK and Ireland (Rachel Bousfield, Peacock Lab,             

University of Cambridge). 

 

DNA was extracted using a QIAxtractor (QIAgen), according to the manufacturer’s instructions. Library             

preparation was performed according to the Illumina protocol, and sequencing was performed on Illumina              

HiSeq 2000 and 2500 platforms. De novo genome assembly was carried out using Velvet (version 1.2,                

Zerbino & Birney, 2008) with a k-mer length of 31, and VelvetOptimiser (version 2.2.5) with a k-mer                 

length of 31. Scaffolds were annotated using PROKKA (version 1.5, Seemann, 2014), using default              

settings and specifying the Pseudomonas genus. 

 

Fourteen isolates were excluded from the study (eleven isolates from the local collection and three               

isolates from the BSAC collection) due to low quality sequence data (average read depth <5) or incorrect                 

species identification, resulting in a final sample size of 352 isolates. Sequence data for all isolates have                 

been submitted to ENA with the accession numbers included in Appendix 1. 
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Table 2.1 In total, 25 laboratories from the UK and Ireland submitted samples to this study. 

 

All samples were mapped to the P. aeruginosa PAO1 reference genome (accession number: PRJNA331)              

using bwa mem (version 0.7.17, Li & Durbin, 2009), discounting identical fastq reads and outputting all                

alignments. Samtools mpileup (version 1.6, Li et al., 2009) was used to determine which nucleotide base                

occured at each position, using a quality score of 50, discarding anomalous reads and disabling               

read-pair-overlap detection. Bcftools call (version 1.5, Li et al., 2009) was used to call SNPs against the                 

reference genome, assuming a mutation rate of 0.001. Multiple sequence alignments were generated by              

combining all individual consensus sequences. For analysis of variant sites, SNPs were extracted from the               

multiple sequence alignments using snp-sites (version 2.4.1) (Page et al., 2016) using default settings. 

 

 

2.2.2 MLST assignment 

 

The MLST of all isolates were assigned using ARIBA (version 2.12.1) (Hunt et al., 2017) and PubMLST                 

(Jolley & Maiden, 2010), which contains 3,336 P. aeruginosa ST assignments, as of 8th August 2019.  

 

 

2.2.3 Phylogeny and pangenome 

 

A maximum-likelihood phylogenetic tree of all 352 isolates included within this analysis was generated              

with FastTree (version 2.1.10) (Price et al., 2010) using the Jukes-Cantor + CAT model using the SNP                 

multiple sequence alignment generated in section 2.2.1. Circular genome visualisations with metadata            

were visualised using iTOL (Letunik & Bork, 2019).  

 

The pangenome was calculated with annotation files using Roary (version 1.7.1) (Page et al., 2015), for                

every isolate within the study, using a minimum percentage identity of 95% and a gene was identified as                  

“core” if it was present in 99% of samples or more. Pangenome visualisation was carried out using                 
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Phandango (Hadfield et al., 2017). A maximum-likelihood phylogenetic tree of all 352 isolates was also               

produced using the SNPs of the core genome, as above, and compared to the previous phylogeny using                 

Dendroscope (version 3) (Huson & Scornavacca, 2012). 

 

 

2.2.4 Investigating overrepresented clades 

 

The highest quality assembled genome from each of the overrepresented clades (defined as clades              

containing a ST with over 20 isolates) were used as an internal reference genome, and all other isolates                  

belonging to that clade were mapped to that internal reference, as in section 2.2.1. The               

maximum-likelihood phylogenies of each overrepresented clade were generated from the SNP multiple            

sequence alignments obtained from mapping to the internal reference, using RAxML (version 8.2.8) using              

the GTR model with gamma correction for among site rate variation with AVX vector instructions, and                

replicated for 100 bootstraps (Stamatakis et al., 2014). 

 

Genomic islands were identified from the genomic assemblies using the AlienHunter (version 1.7)             

software (Vernikos & Parkhill, 2006) using default parameters. Putative genes within each genomic island              

were then extracted from the annotation files for each isolate and investigated manually. 

 

To identify evidence of phage within the isolate genomes, all assembly files were compared with the                

PHASTER database (Arndt et al., 2016) using the API. The record for each isolate was downloaded, and                 

complete phage annotations were extracted.  

 

Virulence factor genes were identified by mapping the isolate sequencing files, as in section 2.2.1, to the                 

P. aeruginosa-specific virulence genes available in the Virulence Factor DataBase (Liu et al., 2019). This               

consisted of 239 P. aeruginosa genes, as of April 2019.  

 

Dating analysis was carried out using the R package BactDating (version 1.0.1), which calculates time to                

most-recent common ancestor using MCMC-based Bayesian dating of the nodes of the phylogeny             

(Didelot et al., 2018). The phylogeny calculated for each overrepresented ST in section 2.2.3 was dated                

using this method, by calculating 10,000,000 MCMC chains so that all ESS values were over 100, for                 

three separate evolutionary models; strict gamma, relaxed gamma, and mixed gamma. The consensus date              
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was defined as the range covered by every repeat of all models, and the range was defined as the oldest                    

date to the newest date reported for every repeat of all models. 

 

 

2.2.5 AMR profiling 

 

Phenotypic antimicrobial susceptibility testing was performed using the Vitek2 instrument with the Vitek             

N210 card (for isolates collected between 2006-2013), and the Vitek N352 card (for isolates collected               

between 2017-2018) (Rachel Bousfield, Peacock Lab, University of Cambridge).  

 

The genetic AMR profiles of each isolate were calculated using ARIBA (version 2.12.1), with reference               

genes and reference SNPs downloaded from the Comprehensive Antimicrobial Resistance Database           

(version 3.0.1) (Jia et al., 2017). The presence/absence of each AMR gene or gene variant was then                 

displayed against each patient phylogeny, as in section 2.2.3. 
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2.3 Results 
 

2.3.1 Isolate selection and DNA sequencing 

 

In order to investigate the evolution of P. aeruginosa bacteraemia over local and national scales, a                

sampling strategy was devised to target one local area, which included 273 isolates from the Cambridge                

collection, and 79 isolates from the BSAC collection of isolates from the UK and Ireland (Table 2.2).                 

Phenotypic AMR assays had previously been carried out, in order to understand which therapies might be                

suitable for these infections. 

 

The national BSAC collection consisted of isolates submitted to a Bacteraemia Resistance Surveillance             

Programme (www.bsacsurv.org) between 2001 and 2011, by 25 hospitals across the UK and Ireland.              

Only isolates that were determined to be Multi-Drug Resistant (MDR) were included in the study. The                

adventure adsc 

 

Table 2.2 Year of isolation and collection from which the isolates in this study were obtained. 
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local collection isolates were sourced from Cambridge University Hospital NHS Foundation trust,            

Cambridge, UK. The first isolate from every patient that tested positive for P. aeruginosa-associated              

bacteraemia, regardless of MDR status from 2006 - 2013 and 2017 - 2018 was included in the study.  

 

Isolates from both collections were sequenced using Illumina HiSeq 2000 and 2500 platforms. The              

average length of each assembled genome was 6,712,355 bp (range 6,140,300 - 7,960,112 bp), with an                

average number of contigs of 63 (range 18 - 1886 contigs). The mean N50 value was 420,958 bp (range:                   

10,925 - 1,730,489 bp). The mean largest contig was 928,087 bp (range 79,234 - 2,203,947 bp). All                 

isolates were also mapped to the reference P. aeruginosa strain, PAO1. The mean mapping coverage was                

96.3% (range 37.8 - 99.2%), with a mean depth of 69.5 (range 36.4 - 100.2). A mean of 34,245 SNPs per                     

sequence were called against the PAO1 reference (range 6,583 - 71,216 SNPs per sequence). 

 

 

2.3.2 MLST prevalence 

 

Initially, genomes were classified based on MLST, in order to investigate how population structure differs               

between local and national isolates. MLST assignment is a method used to distinguish different subtypes               

of the same bacterial species, by comparing the different allelic profiles of seven housekeeping genes. For                

P. aeruginosa, these housekeeping genes are acsA, aroE, guaA, mutL , nuoD, ppsA and trpE (Jolley &                

Maiden, 2010). Each combination of alleles results in a numbered ST which is unique to that allelic                 

profile (Jolley & Maiden, 2010). The MLST of all isolates from both collections were determined (Figure                

2.1). MLST profiles that occurred once within the dataset were recorded as part of the “singletons” group. 

 

In total, 134 unique MLST profiles were identified from the 352 isolates of the study. Of these, 92 MLST                   

profiles occurred only once in the dataset. Five of the MLST profiles were present in ten or more of the                    

isolates in this study. These were ST395 (n = 32), ST253 (n = 30), ST175 (n = 22), ST244 (n = 12), and                       

ST207 (n = 10).  

 

The three most prevalent STs in the dataset, ST395, ST253, and ST175, are international and high-risk                

clones, which are frequently associated with multi-drug resistance and epidemics around the world             

(Petitjean et al., 2017). Hospital-acquired ST395 infections are particularly prevalent in France and the              

UK, and can be transmitted to at-risk patients through contaminated water supplies (Quick et al., 2014).                

abcde 
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Figure 2.1 Frequency of MLST profiles for the 352 P. aeruginosa isolates. In total, 134 unique MLST profiles were                   

observed, and ST profiles that were only observed once were recorded as part of the “singletons” group. 

 

ST175 is an important European strain that has been known to cause frequent MDR hospital-acquired               

infections in Spain and France. ST175 has acquired AMR through mutational events, rather than through               

the acquisition of AMR genes, which is unusual for international and high-risk clones (Cabot et al.,                

2016). ST253 is the ST to which the P. aeruginosa reference strain PA14 has been assigned (Treepong et                  

al., 2018). ST253 has been associated with very virulent CF infections, global animal infections, and is                

frequently sampled from the environment sources (Ruiz-Roldan et al., 2018). Four other international and              

high-risk clones, ST244, ST111, ST235, and ST357, are also present in this study (Treepong et al., 2018).                 

ST244 is a globally spread sequence type that is often associated with extensive drug resistance (Fan et                 

al., 2016; Barrio-Tofino et al., 2017). ST111 is well dispersed across Europe, and is a prevalent epidemic                 

strain in the UK. The low frequency of ST111 (n = 2) in this dataset is fortunate, as ST111 is associated                     

with the presence of metallo-β-lactamase enzymes that lead to resistance to the antibiotics-of-last-resort,             

61



Chapter 2 

the carbapenems (Golle et al., 2017). The ST357 strain has also become a major European source of                 

carbapenem-resistant infections, and has now spread all over the world (Papagiannitsis et al., 2017;              

Kainuma et al., 2018). The ST235 strain emerged in Europe in the early 1980s, and is associated with the                   

introduction of fluoroquinolones (Treepong et al., 2018). It has since developed resistance to many other               

common antibiotics and has spread around the globe. The ST207 strain, which is present as the fifth most                  

frequently-occurring ST (n = 10) in this dataset, is a globally dispersed strain, but is not typically MDR                  

(Gomila et al., 2013). 

 

The frequency of isolates belonging to the five most prevalent STs is plotted against time in Figure 2.2.                  

The ST175 isolates form the majority of the collection between 2002 and 2005. Subsequently, the rate of                 

isolation of ST175s declines until 2011, after which no further ST175 isolates were collected. The               

majority of ST175 isolates were observed as part of the BSAC collection, with only one ST175 isolate                 

observed as part of the local collection. 

 

 

 

Figure 2.2 The five most prevalent STs, as percentage of isolates from each year when at least one of the STs were                      

present. 

 
62



Chapter 2 

Between 2006 and 2018, the epidemic strains ST253 and ST395 become the dominant clones in the CUH                 

collection. These are the only STs that were consistently collected through every year across the CUH                

collection period, which suggests that reservoirs of these STs contribute to patient infection within the               

hospital, or that they are particularly associated with community-acquired infections within the            

Cambridge area.  

 

After 2005, no single high-risk clone is present as more than 20% of the collection per year. Combined,                  

the top five most prevalent STs form 15 to 40% of the collection per year, suggesting diverse sources of                   

infection that are not dominated by high-risk clones. 

 

 

2.3.3 Population phylogeny 

 

The SNPs called against the P. aeruginosa PAO1 reference genome were used to investigate the               

population structure of isolates within the study (Figure 2.3), in order to provide a visual representation of                 

the population structure of the local isolates within the context of the national isolates. The population of                 

the isolates split at a basal node into two distinct clades; PAO1-like and PA14-like. This broad population                 

structure is typical of P. aeruginosa, which resolves into a non-clonal epidemic structure, in which               

successful clones sometimes emerge (Pirnay et al., 2009). This dataset supports this observation, and              

indicates that the infections investigated in this study were not caused by a single strain. 

 

The structure of the phylogenetic tree clearly identifies three major clonal expansions in this study. The                

ST175 clade consists primarily of isolates from the BSAC collection, with only one isolate from the local                 

collection. High prevalence of ST175 in the UK-wide MDR surveillance collection indicates that ST175              

is circulating as a high-risk MDR epidemic clone in many UK hospitals. The ST253 and ST395 clones                 

were found to be a source of major infection within the CUH collection, with only one isolate of both STs                    

identified as part of the BSAC collection. In contrast to ST175, this indicates that the ST253 and ST395                  

isolates are not associated with UK-wide MDR infection, but with local infection, suggesting a reservoir               

within the local environment. Other than the ST175 isolates, there is one additional BSAC-specific clade,               

which consists of eight isolates belonging the ST357 strain. One previous study has identified ST357 as a                 

major European source of carbapenem-resistant infections between 2011-2017 (Papagiannitsis et al.,           

2017). In this dataset, ST357 appears sporadically across the UK and Ireland only between 2001-2009,               

abcde 
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Figure 2.3 A Maximum-likelihood tree of 352 isolates in this dataset. The overrepresented STs are highlighted in                 

yellow for ST395, green for ST175, blue for ST253, and grey for ST357. The outer ring indicates the source of the                     

isolates, with red isolates from the local collection, blue from the BSAC collection, and white for the P. aeruginosa                   

PAO1 reference genome. 

 

and isn’t present in the local collection. However, they are associated with carbapenem resistance, with               

75% of ST357 isolates phenotypically non-susceptible to either Imipenem or Meropenem (Section 2.3.5).             

Other than the ST175 and ST357 strains, the isolates from the BSAC collection are spread sporadically                

throughout the population, indicating that the UK state of P. aeruginosa bacteraemia infections are              

diverse, and not limited to one UK epidemic strain. 

 

Pairwise SNP distances were plotted for the isolates in the PAO1-like and PA14-like clades (Figure 2.4a).                

The majority of PAO1-like isolates (93%) are separated by 15,000 to 25,000 SNPs, whilst the majority of 
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Figure 2.4 a) Histogram of pairwise SNP matrix separating the PA14-like isolates (red) and the PAO1-like isolates                 

(green). b) Isolates sharing fewer than 400 pairwise SNPs were defined as belonging to the same clade, which shows                   

that PA14-like isolates that form part of the same clade (red) are more closely-related to each other than the                   

PAO1-like isolates that form part of the same clade (green). 

 

PA14-like isolates (84%) are separated by 20,000 and 30,000 SNPs. Closely-related isolates were defined              

as belonging to the same clade if they were related by 400 SNPs or less (Figure 2.4b). The closely-related                   

PA14-like isolates have a mean pairwise SNP distance of 72 SNPs, and the closely-related PAO1-like               

isolates have a mean of 108 SNPs. A greater proportion of the PA14-like isolates belong to closely-related                 

clades of two or more isolates (86% compared to 66% for the closely-related PAO1-like isolates). This                

suggests that there have been a greater number of more-recent outbreaks and clonal expansions of the                

PA14-like isolates than of the PAO1-like isolates.  

 

 

 

Figure 2.5 a) Pairwise SNPs of each of the BSAC collection and each of the CUH collection isolates. b) Isolates                    

sharing fewer than 400 pairwise SNPs were defined as belonging to the same clade. This shows the BSAC isolates                   

are more closely-related to each other than the CUH isolates. 
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The same pairwise analysis was repeated to compare the CUH and BSAC datasets (Figure 2.5). This                

shows clearly the split into PAO1 (15,000 to 30,000 SNPs) and PA14-like (30,000 to 50,000 SNPs)                

clades (Figure 2.5a). In general, the BSAC isolates form more-related clades (mean = 79 SNPs) than the                 

CUH isolates (mean = 90 SNPs) (Figure 2.5b). 

 

The pangenome of the dataset demonstrated an open pangenome containing 32,818 genes, which did not               

reach a plateau (Figure 2.6). A total of 4,453 core genes were present in 99% or more of the isolates                    

(13.4%), and 2,505 genes were found to be present in all 352 isolates in the dataset (7.6%). Of the 28,365                    

genes in the accessory genome, 11,667 genes were found in only one isolate. The large number of                 

accessory genes indicate high diversity and flexibility of the P. aeruginosa genome. The 2,505 genes               

present in every isolate is almost identical to the Mosquera-Rendon et al., 2016 study of the P. aeruginosa                  

pangenome, in which 2,503 of the genes were present in all 181 isolate. However, an updated 2018 P.                  

aeruginosa pangenome study of 1,311 isolates identified only 665 genes shared across all isolates in the                

population (Freschi et al., 2019). The study by Freschi et al. included a group of PA7-like strains of P.                   

aeruginosa, which were not identified in either the Mosquera-Rendon et al. study, or found as part of this                  

study. P. aeruginosa PA7 is a taxonomic outlier of P. aeruginosa, which diverged early in the evolution                 

of P. aeruginosa and has been shown to cause acute infection in rare cases, but lacks many virulence                  

genes present in PAO1-like and PA14-like strains (Roy et al., 2010). 

 

 

Figure 2.6 The number of unique genes in the dataset plotted against number of genomes. This indicates an open                   

pangenome with no signs of reaching a plateau. 
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Figure 2.7 A dendroscope comparison of the cladograms made by mapping the 352 isolates to PAO1 (left) and the                   

core genome (right), which shows good congruence. 

 

A core genome phylogeny was estimated from the 4,453 genes that made up the core genome. The                 

core-genome phylogeny was compared with the phylogeny generated from SNPs called against PAO1,             

which showed a good correlation between the two techniques (Figure 2.7). The presence or absence of                

genes in the accessory genome was compared against the core genome phylogeny. There was found to be                 

significant congruence between the phylogenies of the core genome and the accessory genome (Mantel              

test, p < 0.001), suggesting that there has been limited exchange of accessory genes between STs. 

 

Distinct patterns of gene presence in the accessory genome were observed for the high-risk and               

international STs in the dataset, ST175, ST253, and ST395. These patterns of gene presence were               

attributed to the presence of phage and genomic islands within each ST that are not present in the rest of                    

the dataset (see section 2.3.4.2 and section 2.3.4.3). 

 

 

2.3.4 Investigating overrepresented clades 

 

In order to describe the three clades that were over-represented, and therefore dominant, in the Cambridge                

and national collections, the MLST of the over-represented strains was determined. The three             

overrepresented strains were international and high-risk STs ST395, ST253 and ST175. These            
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globally-disseminated strains are considered epidemic, and have been associated with multi-drug           

resistance (MDR) and extensive drug resistance (XDR) in healthcare settings (Treepong et al., 2018), and               

are often resistant to the carbapenem antibiotics of last resort (Buerhle et al., 2016). 

 

 

2.3.4.1 Sequencing statistics 

 

The assembly lengths of the overrepresented STs were compared with the assembly lengths of the rest of                 

the isolates in the study (Figure 2.8). For all three overrepresented STs, the average genome length was                 

significantly higher than the average genome length of the other isolates in the dataset, and greater than                 

the average genome length of the dataset as a whole (Mann-Whitney test for independence, p < 0.05).  

 

The core genomes of the overrepresented STs were also calculated (Table 2.3) and the number of core                 

genes were not found to be correlated with increased assembly length. The ST395 isolates, which have                

the longest genomes, have 5,542 core genes. The ST253 isolates, which have the shortest genomes, have                

5,395 core genes. The ST175 isolates have the most core genes, with 5,913 core genes. This suggests that                  

abcde 

 

Figure 2.8 Assembly lengths of the genomes for all STs in the dataset, all STs minus the overrepresented clades,                   

and the overrepresented clades ST175, ST253 and ST395. 
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Table 2.3 Core genomes of the overrepresented isolates. 

 

the ST253 collection is more diverse than the ST395 and ST175 collections, whilst the ST175 isolates are                 

closely related. 

 

The average GC content for the dataset was 65.8%, which is similar to published P. aeruginosa GC                 

content of 65-67% (Klockgether et al., 2011). The range within this dataset is 6.0%, with a minimum of                  

62.3% to a maximum of 68.3%. The mean GC content for ST175, ST253, and ST395 differ from that of                   

the overall dataset by -0.7%, -0.9% and -0.2% respectively (Figure 2.9). This difference was significant (p                

< 0.05) between the ST175 isolates and the whole dataset, and between the ST253 isolates and the whole                  

dataset. The ST395 GC content was found to be not significantly different from the whole dataset. Lower                 

GC content can be an indicator of a large number of genomic islands (Feil et al., 2005) or the presence of                     

phage within the genomes (Kwan et al., 2006). 

 

 

 

Figure 2.9 Mean GC content of the genomes for all STs in the dataset, all STs minus the overrepresented clades,                    

and the overrepresented clades ST175, ST253 and ST395. 
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2.3.4.2 Genomic islands 

 

The higher assembly lengths and the lower GC content of the three overrepresented STs were               

significantly correlated (p < 0.05) with an increased prevalence of genomic islands within the isolates               

(Figure 2.10). The average number of genomic islands was 61, 60 and 64 for ST175, ST253 and ST395,                  

respectively. This was higher than the average number of genomic islands present in all other STs, which                 

was 45. International and high-risk clones typically contain a higher number of genomic islands, which               

can encode for a large number of virulence and resistance genes (Jani et al., 2016). 

 

A total of 1,495 genes within genomic islands were identified within the three overrepresented STs. Of                

these, 950 genes were unique to one of the three STs. The ST395 isolates had the highest prevalence of                   

genomic islands on average but had the least diversity amongst genomic islands, with 267 unique genes                

and 392 hypothetical proteins of unknown function, across all isolates. Petitjean et al. also found that                

ST395 harboured more genomic islands than other international and high-risk clones (Petitjean et al.,              

2017). The genomic islands within the isolates of the Petitjean et al. study were linked to copper                 

resistance, which was confirmed phenotypically. The authors suggested that the presence of these             
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Figure 2.10 Number of genomic islands identified in the genomes of all STs in the dataset, all STs minus the                    

overrepresented clades, and  the overrepresented clades ST175, ST253 and ST395. 

 
70



Chapter 2 

genomic islands accounted for the frequent hospital-related ST395 outbreaks in their study, where             

copper-lined water networks have been compromised and favoured the spread of ST395 in hospital              

settings. Copper resistance genes were not identified in any of the ST395 genomic islands within this                

study. 

 

The ST253 isolates harboured the fewest number of genomic islands on average, but the greatest diversity                

within the genomic islands, with 804 unique genes and 458 hypothetical proteins across all isolates. The                

ST175 isolates harboured 424 unique genes and 468 hypothetical proteins across all isolates. This greater               

diversity of genomic islands in the ST253 isolates may reflect a greater sampling diversity of unrelated                

sources of infection for these STs. 

 

The majority of genomic island gene content found within all three of the STs falls into two distinct gene                   

functions; metabolism, and survival. As a whole, genomic islands were found to be related to iron uptake,                 

phage defence, Type VI secretion, and motility. A high number of alcohol dehydrogenase enzymes, and a                

high number of genes with predicted virulence functions were also present in the genomic islands of all                 

isolates of the three STs. 

 

Of the genomic islands that are unique to ST253, which has the most variation in genomic island gene                  

content from the three STs, several imported resistance genes from other species were found to be                

present. These included chloramphenicol-resistance variants, catI and catM, which are          

transposon-encoded resistance genes typically found in E. coli and Acinetobacter baumannii (van Hoek et              

al., 2011). Additionally, a homologue of the nylB’ beta-lactamase enzyme, and a copy of the rcn efflux                 

system that provides resistance to Nickel commonly found in E. coli and A. baumannii, were also                

identified in these isolates (Bleriot et al., 2011). Other genes related to the transport, efflux, and resistance                 

of other heavy metals including mercury, cobalt, zinc and cadmium were also present in the ST253                

isolates. 

 

Some of the genomic islands unique to ST175 were similarly found to confer resistance to heavy metals.                 

Most notably present are the copA, copB, copC, copK, copR, and copZ genes, which confer resistance to                 

copper. Additional genes related to copper storage and copper tolerance were also identified, which were               

absent in the other STs. There was no evidence of horizontal gene transfer from distantly-related species,                

and only one unique genomic island originating from the closely-related Pseudomonas putida (Lee et al.,               

2001), in which three resistance genes to cadmium were obtained. 
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Only five genes were found to be unique to the ST395 genomic islands, which include an aldehyde                 

dehydrogenase, a glucose dehydrogenase, two genes identical to Rhizobium meliloti secretion enzymes            

that are homologous to the P. aeruginosa Type I secretion system genes (Russo et al., 2006), and a gene                   

which is predicted to be a regulator of stress response. The genomic islands unique to ST395 did not                  

encode resistance to antimicrobial compounds or heavy metals. 

 

 

2.3.4.3 Phage identification 

 

The higher assembly lengths and the lower GC content of the three overrepresented STs are an indicator                 

of phage within the genomes (de Brito et al., 2016). The greatest diversity of phage was found in the                   

ST253 isolates, in which 13 different phage were present in at least one isolate (Figure 2.11). Seven                 

different phage were found in the ST395 isolates, and five different phage in the ST175 isolates. 

 

YMC11/02/R656 is a previously described, but as yet uncharacterised, P. aeruginosa bacteriophage that             

was present in 100% of the ST253 isolates. All other phage appeared sporadically throughout the ST253                

phylogeny, with the exception of the P. aeruginosa bacteriophage JBD88a, which is associated with one               
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Figure 2.11 The presence of each phage is displayed next to the ST253 phylogeny. Purple indicates phage presence,                  

white indicates phage absence.  

 
72



Chapter 2 

 

Figure 2.12 The presence of each phage is displayed next to the ST395 phylogeny. Purple indicates phage presence,                  

white indicates phage absence.  

 

subclade of ST253. The JBD88a phage has anti-CRISPR capabilities in P. aeruginosa, to ensure the               

phage survival within a bacterium (Bondy-Denomy et al., 2016).  

 

Interestingly, two phage typically identified outside of the Pseudomonas genus were present within the              

ST253 isolates; Enterobacteria lambda phage mEp235 was present in two isolates, and Stenotrophomonas             

siphovirus phage S1 was present in one isolate. Stenotrophomonas is a bacterium that frequently              

co-occurs with P. aeruginosa; it forms multi-species biofilms with P. aeruginosa, in which             

Stenotrophomonas substantially influences the architecture of the P. aeruginosa (Ryan et al., 2008),             

suggesting a plausible source of acquisition for this phage.  

 

No phage were found in every ST395 isolate (Figure 2.12). The phage with the highest prevalence was                 

the Pseudomonas phage PMG1, which was found in 88% of ST395 isolates. The phi-CTX phage encodes                

a pore-forming toxin, which enhances virulence in a number of infection models, was present in 69% of                 

isolates (Kung et al., 2010). The Pf1 phage is present in 56% of the ST395 isolates, the presence of which                    

has been shown to result in a less virulent P. aeruginosa more able to evade the immune response,                  

promoting chronic infection (Secor et al., 2016).  
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Figure 2.13 The presence of each phage is displayed next to the ST175 phylogeny. Purple indicates phage presence,                  

white indicates phage absence.  

 

A much less diverse range of phage was present in the ST175 genomes, with only five different phage                  

present within the isolates (Figure 2.13). Three of these phage, PMG1, YMC11/02/R656, and phi-CTX,              

are present in the majority of ST175 isolates (86%, 91% and 73%, respectively) and have been previously                 

described in the ST253 and ST395 isolates. There are two occurrences of P. aeruginosa phage D3, which                 

is genetically similar to the PMG1 phage and only occurs in isolates that do not contain the PMG1 phage.                   

There is one occurence of the Pseudomonas phage phi-2, which has been shown to co-evolve with the                 

virulent mucoid phenotypic state of Pseudomonas  (Scanlan & Buckling, 2012).  

 

 

2.3.4.4 Virulence factors 

 

A total of 239 P. aeruginosa virulence genes from the Virulence Factor Database (Liu et al., 2019) were                  

screened against the isolates in this dataset. These genes encode for virulence phenotypes such as motility,                

secretion systems, and toxin production. The mean number of virulence genes found within the genomes               

of the overall dataset was 219 (range: 203 - 235) (Figure 2.14).  
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Figure 2.14 The number of virulence genes identified in the overrepresented STs, compared to the number of                 

virulence genes in all other STs, and the whole dataset.  

 

Of the three overrepresented STs, the ST253 isolates had the lowest number of virulence genes on                

average, which was significantly lower than the overall dataset (Wilcoxon ranked sum, p = 0.002). The                

ST395s had a slightly higher number of virulence genes compared to the overall dataset (Wilcoxon               

ranked sum, p = 0.001), and the ST175 isolates did not have a significantly different number of virulence                  

genes compared to the overall dataset (Wilcoxon ranked sum, p > 0.05).  

 

Within the ST175 isolates, 213 (89%) of the identified virulence genes were present in every isolate.                

These include the Type I, Type II and Type III secretion systems, responsible for cell invasion and                 

survival in the host (Filloux, 2011). The Type VI secretion system, which delivers protein effectors               

directly into neighbouring pathogens and host cells (Chen et al., 2015), is only completely present in 3 of                  

the isolates (13.6%), and partially present in a further 13 isolates (59.1%). All ST175 isolates encode                

ExoS, but not ExoU, which is typical of PAO1-like isolates (Pazos et al., 2017). The gene for lasB                  

protease, which is secreted via the Type II secretion systems (Saint-Criq et al., 2017), is present in 21 of                   

the 22 isolates (95%). The remaining las genes, part of the quorum sensing pathway, are also present in                  

95% of the isolates, with the isolate missing lasB also missing lasI. Within the ST175 dataset, only 14 of                   

the identified virulence genes (6%) were completely absent. Of the overrepresented STs, ST175 is the               
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only ST where the rhamnolipid production system, required for biofilm production and for invasion              

through the airway, is absent (Davey et al., 2003). This leads to a P. aeruginosa bacterium with reduced                  

virulence compared to wild-type (Wittgens et al., 2017). All of the ST175 isolates contain all of the genes                  

responsible for the twitching motility, but were missing 7 out the 44 genes screened for               

flagella-dependent swimming motility.  

 

Of the ST253 isolates, 201 (84%) of the identified virulence genes were present in every isolate. As with                  

the ST175 isolates, Type I, II and III secretion systems are present in 100% of the ST253 isolates, and the                    

Type VI secretion system is partially present in some isolates. Unlike ST175, the ST253 isolates are                

located within the PA14-like clade of the P. aeruginosa phylogeny, which typically encode ExoU, but not                

ExoS (Pazos et al., 2017). Fittingly, 28 of the ST253 isolates encode the ExoU toxin. However, one                 

isolate encodes both ExoS and ExoU, and one isolate did not encode either ExoU or ExoS. In contrast to                   

the ST175 isolates, 100% of the ST253 isolates encode for the quorum sensing regulators lasI, lasR, rhlI                 

and rhlR. The ST253 isolates encode for more of the flagella-dependent motion genes, with only 4 out of                  

the 44 genes absent from the isolates. However, the twitching motility machinery was only partially               

present in the ST253 isolates; of the 24 genes of the Type IV pili system, eleven of the genes were absent.                     

Non-motile bacteria have previously been shown to have attenuated virulence (Li et al., 2015a). All genes                

required for alginate and rhamnolipid production were present, although three of the isolates are missing               

the alginate transcriptional regulator algP. Only nine of the identified virulence genes (4%) were              

completely absent from all ST253 isolates. 

 

For the ST395 isolates, 214 (90%) of the identified virulence genes were present in every isolate. The                 

most striking observation within the ST395 dataset was a 15kbp deletion in the flagella-dependent motion               

region, which covers the virulence genes flgK, flgL , fgtA, fliC, flaG, fliD, fliS and fleP, responsible for                 

flagella-dependent motion. This deletion was also present in the study of P. aeruginosa ST395 by               

Petitjean et al., but the isolates in that study also had an additional 131 kbp deletion of secreted proteases                   

and associated secretion machinery, as well as biofilm dispersion regulatory genes (Petitjean et al., 2017),               

all of which are present in the isolates in this collection. Absence of flagella proteins has been linked to                   

early biofilm defects (Leid et al., 2009), but also a decrease in mortality in acute infections (Campodonico                 

et al., 2009). 

 

The pattern of other gene presence/absence for ST395 is similar to the ST253 isolates. The Type I, II and                   

III secretion systems are present in 100% of the isolates. Six isolates also contain complete Type VI                 
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secretion systems, and 14 of the isolates contain partial Type VI secretion system genes. There are also                 

three Type IV pili genes required for twitching motility that are absent, however, the alginate and                

rhamnolipid pathways are completely present. The ST395 isolates reside within the PAO1-like clade of              

the P. aeruginosa population structure, and therefore only the ExoS toxin is present in 100% of the                 

isolates.  

 

 

2.3.4.5 Pairwise SNP distances and transmission 

 

The pairwise SNP distances between the isolates belonging to each of the overrepresented STs were               

calculated to investigate the relatedness of the isolates within each ST (Table 2.4, Figure 2.15). Three of                 

the ST253 were significantly different to the rest of the isolates (>5,000 SNPs) and were therefore                

removed from this analysis. 

 

Within the ST395 isolates, there are 14 pairs of isolates that are separated by 5 SNPs or less. Four of the                     

pairs of isolates are separated by 0 SNPs. Of these, three of the pairs are isolates sampled within 3 months                    

of each other in two separate areas of the hospital, and form part of a closely-related clade (Clade A,                   

Figure 2.16). However, without more detailed epidemiological data it will be difficult to identify whether               

this was the result of direct transmission, or a persistent reservoir of isolates within the hospital                

environment. The fourth pair of isolates that are separated by 0 SNPs (Clade C, Figure 2.16) were                 

sampled two years prior to the Clade A isolates, and are unlikely to have come from the same source                   

(pairwise difference of 80 SNPs), indicating a second introduction of ST395. Of the remaining ten pairs                

of isolates separated by five or fewer SNPs, six belong Clade A. These isolates were sampled from the                  

same location within the hospital, and within 6 months of the rest of Clade A, potentially indicating they                  

originated from the same, source. The remaining Clade A isolates were separated from other Clade A                

isolates by 3 SNPs, but were sampled 2 years later. It is likely that these could also have come from the                     
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Table 2.4 Pairwise SNP distances between the isolates within the three overrepresented STs. 
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Figure 2.15 Pairwise SNP distance distribution between the isolates within the three overrepresented STs. 

  

 

 

 

Figure 2.16 Maximum-likelihood tree of ST395 isolates. Isolates which differ by 5 SNPs or less are indicated in the                   

coloured boxes: yellow is Clade A, blue is Clade B, green is Clade C. 
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same source (Marvig et al., 2013). The remaining four pairs of ST395 isolates that were separated by 5                  

SNPs or less form their own clade (Clade B, Figure 2.16). These isolates were sampled from different                 

sites within the hospital, over a span of two years, and differ from each other by 1-5 SNPs. Assuming                   

normal rates of P. aeruginosa evolution of 1.5 SNPs per genome per year, these isolates could therefore                 

also have come from the same source. However, they differ from Clade A and Clade B isolates by 79                   

SNPs and 142 SNPs respectively, indicating different reservoirs for all three clades. 

 

Only two pairs of ST253 isolates were separated by 5 SNPs or less. One pair differed by 0 SNPs, which                    

were isolated from different wards 1.5 years apart from each other. The second pair were separated by 4                  

SNPs, and were isolated over 6 years apart from each other. This suggests that there is a ST253 reservoir                   

that may be persisting in the environment. However, it’s difficult to identify any potential transmission               

without more detailed epidemiological data.  

 

Seven pairs of ST175 isolates differed by 5 SNPs or less. The minimum distance between any pair of                  

isolates was 2 SNPs, between two isolates that were collected from Bristol Royal Infirmary in 2008. This                 
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Figure 2.17 Maximum-likelihood phylogeny of the BSAC ST175 isolates from the BSAC collection, labelled by               

location. The yellow box highlights a local Bristol outbreak that is present in the dataset between 2004 and 2010. 
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suggests that these two isolates form part of the same clone in Bristol. A third isolate from Bristol Royal                   

Infirmary in 2010 is related to these two isolates by 3 and 5 SNPs, suggesting that this sub-clade has                   

persisted in the area between 2008 and 2010. Two further ST175 isolates from Bristol were isolated in                 

2004 and 2005, and differ by 3 SNPs. These two isolates share a recent ancestor with the two isolates                   

from Bristol in 2008 and 2010, suggesting the presence of this sub-clade has persisted in Bristol since at                  

least 2004 (Figure 2.17). 

 

 

2.3.4.6 Temporal Analysis 

 

Root-to-tip regression analysis of the ST253 isolates indicated presence of temporal signal (R2 = 0.22, p =                 

0.0056), suggesting a time to MRCA of these isolates as 1985. This corresponds to the time when                 

ceftazidime, imipenem (the first carbapenem), and aztreonam were introduced into the clinic. Bayesian             

dating indicated a consensus time to MRCA of 1830-1962 (median: 1572, range: 205-1970) of three               

evolutionary models (Figure 2.18), which is significantly earlier than the root-to-tip regression estimates.             

However, because the error margins are so broad, the Bayesian estimate of ST253 emergence is unlikely                
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Figure 2.18 Three evolutionary models were used to estimate the time to most recent common ancestor of the                  

ST253 isolates. The dashed line indicates the mean estimated year of emergence, whilst the grey box indicates the                  

range of years that confidence intervals from all repeats of all models are contained within. 
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Figure 2.19 Three evolutionary models were used to estimate the time to most recent common ancestor of the                  

ST175 BSAC isolates. The dashed line indicates the mean estimated year of emergence, whilst the grey box                 

indicates the range of years that confidence intervals from all repeats of all models are contained within. 

 

to be correct. It is unlikely that ST253 has been circulating in the UK since the 1830s, and if this was the                      

case, then it would be expected that the ST253 isolates would be more represented in the UK-wide BSAC                  

collection. In order to narrow the confidence intervals and increase the temporal signal to identify the true                 

date of ST253 emergence, more isolates from a range of dates would need to be included. 

 

Root-to-tip regression analysis of the ST175 clade indicated low temporal signal (R2 = 0.02, p = 0.013),                 

and a time to most recent common ancestor of 1921. Bayesian dating indicated a consensus time to                 

MRCA of 1928-1975 (median: 1937, range: 1864 - 1986) of three evolutionary models. However, the               

temporal signal was improved significantly when the outlier ST175 isolate from the Cambridge collection              

was removed (R2 = 0.35, p = 0.0026), leaving only the ST175 isolates from the BSAC collection. The                  

root-to-tip analysis indicated a MRCA of 1995, and Bayesian dating estimated a consensus time to               

MRCA of 1985-1996 (median: 1987, range: 1959-1998) (Figure 2.19). This suggests that the ST175              

isolate that formed part of the CUH collection is related to an ancestor of the BSAC ST175 strains,                  

whereas the BSAC isolates form part of a very recent expansion within the UK. Between the years 1985                  

and 1996, several clinical antibiotics still in use today were introduced. These include ampicillin,              

ciprofloxacin, piperacillin/tazobactam, and meropenem, which suggests new antibiotic treatments were a           

driving force for the emergence of ST175. 
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No temporal signal was present within the ST395 isolates when the collection was mapped to a local                 

reference. No temporal signal was present when the ST395 isolates were mapped to the PAO1 reference                

strain, or when the core genome was calculated. Therefore, there is no statistical relationship between the                

genetic diversity and temporal diversity within this ST395 dataset (Rambaut et al., 2016). 

 

 

2.3.4.7 European context of ST253 and ST175 

 

ST253 is a major cause of P. aeruginosa infections (Treepong et al., 2018) and several studies have                 

identified ST253 isolates within their collections (Hilliam et al., 2017, Kos et al., 2014, and Barrio-Tofino                

et al., 2017). Hilliam et al. identified and sequenced 20 ST253 isolates from bronchiectasis lungs from                

nine centers across the UK; one ST253 isolate from France was sequenced by Kos et al; and one ST253                   
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Figure 2.20 Outgroup-rooted, recombination-removed, maximum-likelihood tree of the ST253 isolates, including           

25 ST253 isolates from additional studies/sources (blue = Hilliam et al., red = Barrio-Tofino et al., green =                  

PubMLST, orange = Kos et al.) 
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isolate from Spain was sequenced by Barrio-Tofino et al. Three additional ST253 isolates of unknown               

isolation date from Cardiff were also available from the PubMLST database (Jolley & Maiden, 2010).               

These 25 additional ST253 sequences were mapped to the ST253 local reference and combined with the                

ST253 isolates identified in this study to produce a combined phylogeny (Figure 2.20).  

 

The structure of the phylogeny indicated that the isolates from the local collection are not part of a single                   

local outbreak, as they are interspersed within the isolates from the external studies. This suggests               

multiple introductions of ST253 infections at the local hospital sites. The two European isolates are also                

interspersed within the ST253 isolates, which suggests that the ST253 isolates from the local collection               

are part of a wider, international circulation, and not a UK-specific ST253 clone. Bayesian dating               

suggests that the emergence date of this group of isolates is 1845-1981 (range: 1715-1985). Similarly to                

the CUH-only ST253 Bayesian dating analysis, these confidence intervals are very large, and it is unlikely                

that the ST253 isolates have been present in Europe since the 1800s, since they are not represented in                  

other surveillance collections. The confidence intervals could be reduced by using a greater variety of               

isolates from a range of sources and isolation dates.  

 

Hilliam et al. also identified one patient with bronchiectasis that was infected with an ST175 strain, and                 

sequenced eleven isolates from the lungs of that patient (Hilliam et al., 2017). Cabot et al. also sequenced                  

eleven ST175 isolates from a study of XDR P. aeruginosa ST175 in Spain and France (Cabot et al.,                  

2016). Two additional ST175 isolates from the USA and one isolate from Italy were also available from                 

the PubMLST database. These 25 additional ST175 sequences were mapped to a local reference and               

combined with the ST175 isolates identified in this study to produce a combined phylogeny (Figure 2.21).  

 

The results suggest that the isolates collected from the BSAC hospitals in this study are part of a                  

contained expansion, and are closely related to the isolates from Spain, France and Italy. This suggests                

that a prominent European clone has been introduced to the UK in the recent past, and spread throughout                  

the hospitals in the UK. The isolates identified by Hilliam et al., which were also isolates in a UK study,                    

are not part of this outbreak, and form a clade more similar to the ST175 isolate identified as part of the                     

local collection. There is as much diversity within the isolates from the Hilliam et al. patient as in the rest                    

of the European dataset combined. This large within-patient diversity was noted by the authors of the                

study. The Hilliam et al. isolates were collected from patients with non-CF lung infection, whilst the                
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Figure 2.21 Outgroup-rooted maximum-likelihood tree of the ST175 isolates from this study (black), including 25               

ST175 isolates from additional studies/sources (blue = Hilliam et al., red = Cabot et al., green = PubMLST). 

 

rest of the European dataset were collected from bloodstream infections, which suggests that P.              

aeruginosa behaves differently within different human niches. Large within-patient diversity has been            

noted in other non-bacteraemia studies, mostly due to long-term persistence of P. aeruginosa within the               

patients of those studies (Sherrard et al., 2017; Williams et al., 2015; Schick & Kassen, 2018). 

 

 

Figure 2.22 Root-to-tip regression of the ST175 isolates, including 25 ST253 isolates from additional              

studies/sources, suggests that the time to MRCA of this dataset is the early 1970s. 
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There is geographical clustering of the ST175 isolates, particularly of the isolates from Bristol and               

Dublin, suggesting some local expansion within geographical areas of the UK (refer back to Figure 2.17).                

Root-to-tip regression (Figure 2.22) and Bayesian dating suggested that the MRCA of these isolates is               

1922-1974 (range: 1915-1978). This is 16-68 years prior to the MRCA of BSAC isolates, and suggests                

that the ST175 clone has been circulating in Europe for slightly longer than the ST253 isolates. This also                  

coincides with the introduction of amoxicillin and fosfomycin as antibiotics, suggesting a driving force              

for the emergence of ST175. 

 

 

2.3.5 AMR surveillance 

 

Phenotypic information on antimicrobial resistance was collected for both the local collection isolates and              

the BSAC collection isolates. Resistance to a range of antibiotics and antibiotic classes were              

phenotypically tested for, in order to better understand the implications of P. aeruginosa resistance in a                

clinical bacteraemia setting, and provide information to clinicians about which antibiotics might be most              

effective to treat patients presenting with P. aeruginosa bacteraemia. 

 

 

2.3.5.1 Local collection phenotypic AMR profiles 

 

For the local isolates, phenotypic data for susceptibility, intermediate resistance, or resistance to 14              

different antibiotics was collected (Figure 2.23). In some individual cases, not all antibiotic resistances              

were tested for. For isolates collected between 2017-2018, colistin and piperacillin resistance data were              

not collected, and for isolates between 2006-2013, cefepime and levofloxacin resistance phenotypes were             

not collected.  

 

In total, 156 (57.1%) of the local isolates were phenotypically resistant to at least one antibiotic, 33                 

isolates (12.1%) were resistant to 5 or more antibiotics, and 17 isolates (6.2%) were resistant to over half                  

of the antibiotics tested for. One ST217 isolate from 2018 was defined as pan-resistant, meaning that the                 

isolate was resistant to all of the antibiotics (colistin and piperacillin was not tested for). 

abcdefg 
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Figure 2.23 Phenotypic antimicrobial resistance for the 273 isolates from the local collection, minus any missing                

data. 

 

No isolates were recorded as resistant to colistin (although the 2017-2018 isolates were not tested for),                

suggesting that colistin is a viable choice as a drug of last resort to treat P. aeruginosa bacteraemia                  

infections (Javed et al., 2018). The local isolates also displayed very little resistance to the               

aminoglycoside antibiotics amikacin and tobramycin, with only 6 isolates resistant to either one.             

Amikacin or tobramycin, as part of a combination therapy, are currently favoured treatment options for               

CF patients, as P. aeruginosa tends to be susceptible to amikacin or tobramycin, even if resistance to                 

other aminoglycosides are present (Olivares et al., 2017). The antibiotic with the highest resistance was               

for the combination therapy ticarcillin-clavulanate, and the antibiotic with the highest prevalence of             

non-susceptible isolates (including intermediate resistant isolates) was aztreonam, a member of the            

β-lactam class of antibiotics. 

 

Figure 2.24 shows the level of antibiotic resistance per year for the local dataset. The number of isolates                  

with resistance to ticarcillin-clavulanate is consistently higher than any of the other antibiotics throughout              

the study period, ranging from a minimum of 31% of isolates in 2008, and a maximum of 68% of isolates                    

in 2017. Ticarcillin is a β-lactam antibiotic, and as a member of the penicillin class of antibiotic, can be                   

asdc 
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Figure 2.24 Percentage of the 273 local collection isolates with phenotypic resistance to each antibiotic over time. 

 

easily hydrolysed by β-lactamase enzymes. Therefore, to combat the action of the β-lactamase enzymes,              

ticarcillin is paired clinically with clavulanate, a β-lactamase inhibitor. However, clavulanate can induce             

the expression of the AmpC β-lactamase enzyme in P. aeruginosa, which has activity against ticarcillin               

and is not inhibited by clavulanate (Lister et al., 1999). High-levels of resistance to ticarcillin-clavulanate               

are therefore observed naturally in P. aeruginosa populations (Lister et al., 1999). 

 

The number of isolates with resistance to the other antibiotics generally followed a similar trend; the                

number of resistant isolates decrease from 2007, and then rise to a maximum value between 2010-2012.                

After 2012, resistance to half of the antibiotics increased (Amikacin, Ciprofloxacin,           

Piperacillin-Tazobactam, Tobramycin), and the other half decreased (Aztreonam, Ceftazidime,         

Gentamycin, Imipenem, Meropenem, Piperacillin). 

 

The peak in AMR resistance between 2010-2012 is associated with the highest prevalence of ST395 and                

ST253 isolates, which are international and high-risk clones that are often associated with MDR (Petitjean               

et al., 2017). Isolates from the ST560, ST309 and ST319 STs, which are all associated with MDR (Kos et                   

al., 2016; Morales-Espinosa et al., 2017; Ruiz-Roldan et al., 2018), were also obtained between              
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2010-2012. These MDR-STs reappear in 2017 and 2018, but are not present between 2013-2017.              

Combined, presence of high-risk MDR-associated STs are the cause of the rise, and subsequent fall, of                

phenotypic resistance observed in the dataset over time. 

 

 

2.3.5.2 BSAC phenotypic AMR profiles 

 

For the BSAC isolates, phenotypic data for susceptibility, intermediate resistance, or resistance to 11              

different antibiotics was collected, which did not include cefepime, levofloxacin, or           

piperacillin-tazobactam (Figure 2.25). A much higher proportion of antibiotic resistance was observed            

amongst the BSAC isolates than the local isolates, as the BSAC isolates were selected based on their                 

MDR status.  

 

In total, 66 (84%) of the BSAC isolates were phenotypically resistant to five or more antibiotics, and 52                  

isolates (66%) were resistant to over half of the antibiotics tested for. No isolates were pan-resistant, but                 

ten of the isolates (13%) were resistant to ten of the antibiotics. All of the ten isolates were susceptible to                    

colistin, suggesting that therapeutic options still remain for the most MDR P. aeruginosa infections. 

 

 

Figure 2.25 Phenotypic antimicrobial resistance for the BSAC collection. 
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Similarly to the local collection, the antibiotic with the highest prevalence of resistance (92%) was for the                 

ticarcillin-clavunate antibiotic combination. The antibiotic with the highest prevalence of non-susceptible           

isolates (including intermediate resistant isolates) was also aztreonam (96%). Only one isolate was             

resistant to colistin, the antibiotic-of-last-resort, whereas the second-lowest prevalence of resistance was            

for the aminoglycoside antibiotic amikacin (18%). 

 

Figure 2.26 shows the level of antibiotic resistance per year for the BSAC isolate collection. Antibiotic                

resistance was more variable for the BSAC study than for the local study. The proportion of                

ticarcillin-clavulanate resistant isolates was consistently high throughout the whole study period, ranging            

from 89 - 100%. Consistently high levels of piperacillin, which is also a β-lactam antibiotic, was also                 

observed. The only colistin resistant isolate was sampled in 2004, and no other colistin-resistant isolates               

were identified from any other year.  

 

A drop in the number of ciprofloxacin-resistant isolates was observed over the study period. The               

proportion of ciprofloxacin resistant isolates between 2001 - 2010 was consistently high, with an average               

abcd 

 

Figure 2.26 Percentage of the isolates 79 BSAC collection isolates with phenotypic resistance to each antibiotic. 
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of 79% of isolates displaying resistance. However in 2011, this fell to just 17% of isolates. A similar trend                   

was observed for gentamicin-resistant isolates. Between 2001 and 2010, gentamicin resistance was            

observed in an average of 54% of isolates, which fell to just 17% of isolates in 2011. 

 

Two of the most variable AMR over the timeframe of the study were for meropenem and imipenem,                 

which are both members of the carbapenem class of antibiotics. Carbapenem-resistant P. aeruginosa is              

currently of critical priority for the World Health Organisation as they cause severe, and often deadly,                

infections, and are becoming increasingly resistant to the best antibiotics available (World Health             

Organisation, 2017). At the beginning of this study period, in 2001, meropenem resistance was prevalent,               

and found in 75% of isolates. The prevalence of meropenem-resistant isolates decreased every year until               

it reached its lowest level in 2008, where just 10% of isolates were resistant. However, meropenem                

resistance then began to rise, and by 2011, 67% of isolates were meropenem resistant. Imipenem               

resistance followed a similar trend, with 88% of isolates displaying resistance in 2001, dropping to 33%                

of isolates in 2007, and then increasing to 100% of isolates in 2010. This then fell to 67% of isolates in                     

2011. High-levels of resistance to the last-resort carbapenem class of antibiotics is concerning, as they are                

the most effective antibiotics to treat P. aeruginosa infections, suggesting that new therapeutic options              

need to be considered (Wi et al., 2017).  

 

 

2.3.5.3 Phylogenetic correlation with phenotypic AMR 

 

The phenotypic AMR profiles of the isolates from both the local and BSAC collections are displayed next                 

to the phylogeny in Figure 2.27.  

 

The ST395 clade was associated with high AMR prevalence. The ST395 clade is made up of 31 isolates                  

from the local collection and one isolate from the BSAC collection. Ten of the isolates displayed                

resistance to seven or more antibiotics. A closer inspection of the AMR distribution within the ST395                

phylogeny showed that the MDR isolates are associated with the closely-related clades identified in              

section 2.3.4.5 (Figure 2.28). The distribution suggests that there was simultaneous acquisition of multiple              

AMR, followed by expansion of these lineages, as the rest of the ST395 isolates show susceptibility to the                  

majority of antibiotics. Closer inspection of resistance determinants within the genomes of the ST395              

abcd 
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Figure 2.27 Maximum-likelihood phylogeny with phenotypic AMR data displayed around the outside. The cones              

indicate the high-risk and international clones, and other clones associated with high phenotypic AMR; yellow =                

ST395, green = ST175, blue = ST253, light grey = ST357, dark grey = ST235. The inner ring indicates the isolate                     

collection; red = local collection, blue = BSAC collection. The outer rings indicate AMR profiles; green =                 

susceptible, red = resistant, brown = intermediate resistant, white - missing data. The order of antibiotic resistance                 

groups from inside to outside is amikacin, aztreonam, cefepime, ceftazidime, ciprofloxacin, gentamicin, imipenem,             

levofloxacin, meropenem, piperacillin, piperacillin-tazobactam, ticarcillin-clavunate, tobramycin. 
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Figure 2.28 The ST395 tree with the AMR phenotypes displayed next to it. The MDR phenotype is associated with                   

the clades identified in section 2.3.4.5. The outer bands indicate AMR profiles; green = susceptible, red = resistant,                  

brown = intermediate resistant, white - missing data. The order of antibiotic resistance groups from inside to outside                  

is amikacin, aztreonam, cefepime, ceftazidime, ciprofloxacin, gentamicin, imipenem, levofloxacin, meropenem,          

piperacillin, piperacillin-tazobactam, ticarcillin-clavunate, tobramycin. 

 

isolates shows that only Clade A harbours a resistance-causing mutation that is not found within the rest                 

the ST395 isolates. This mutation was within the Quinolone Resistance Determining Region (QRDR) of              

gyrA, which is linked to fluoroquinolone resistance, but does not explain resistance to the other               

antibiotics. Therefore, the resistance associated with these MDR clades is probably due to an increase in                

the expression of multidrug efflux systems that can cause resistance to almost every class of antibiotics                

(Poole, 2011). However, transcriptomic studies would be necessary to confirm this. 

 

The international and high-risk ST175 clade, which is made up of one isolate from the local collection                 

and 21 isolates from the BSAC collection, was also associated with high AMR prevalence; 14 isolates                

(66%) isolates were resistant to seven antibiotics or more. The ST175 isolate that was from the local                 

collection was only resistant to one antibiotic, ticarcillin-clavulanate. All BSAC ST175 isolates were             

resistant to ciprofloxacin, and over 85% of isolates were phenotypically resistant to ceftazidime,             

gentamicin, piperacillin, ticarcillin-clavulanate, and tobramycin. No resistance was also observed for           
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colistin, and roughly half of isolates were susceptible to either imipenem or meropenem. Whilst resistance               

was observed for the aminoglycosides gentamicin and tobramycin, no resistance was identified to the              

aminoglycoside amikacin, suggesting a viable therapeutic option to treat this high-risk MDR clade. 

 

High levels of AMR were not associated with the third overrepresented clade, ST253, which is made up                 

of 29 isolates from the local collection and one isolate from the BSAC collection. Only three ST253                 

isolates were non-susceptible to four or more antibiotics.  

 

Two additional clades, made up of eight ST357 isolates from the BSAC collection, and seven ST235                

isolates (five from the BSAC collection and two from the local collection) were associated with high                

AMR prevalence. Six ST357 isolates (75%) and two ST235 isolates (29%) were resistant to 7 or more                 

antibiotics.  

 

 

2.3.5.4 Genetic mechanisms of AMR 

 

All 352 isolates in this study contained the genes for the aminoglycoside modifying enzyme APH(3’)-IIb,               

which confers resistance to kanamycin, neomycin and paromycin (Zeng & Jin, 2003). All isolates              

phenotypically resistant to either amikacin or gentamicin contained the MexXY-OprM efflux system,            

which is efficient at conferring low level resistance to aminoglycosides (Sobel et al., 2003). High level                

resistance to aminoglycosides can be conferred by the knock-out of the mexZ repressor, which leads to                

overexpression of the MexXY-OprM efflux system. Known mutations in mexZ were identified in 18              

isolates (of which 14 were frameshift mutations or indels), as well as 29 isolates with novel                

non-synonymous mutations in mexZ. Five phenotypically resistant isolates also encoded relevant           

aminoglycoside modifying enzymes that are specific to the aminoglycosides amikacin or gentamicin.            

AAC(3’)-Id, AAC(6’)-31, and APH(3’)-VI, were each present in one isolate, and ANT(2”)-Ib was present              

in two of the isolates (Ramirez & Tolmasky, 2010). 

 

Fluoroquinolone resistance can be caused by mutations in the Quinolone Resistance Determining Region             

(QRDR) of either gyrA, parC, gyrB or parE (Maeda et al., 2010). Of the fluoroquinolone resistant isolates                 

in both collections, 85% harboured the well-characterised T83I mutation in gyrA, which causes a known               

decrease in fluoroquinolone susceptibility (Cabot et al., 2016). Alongside this, D87N/Y mutations            

(Telling et al., 2018) were present in 12% of the isolates, including four isolates that did not contain the                   
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T83I mutation. The common S87L/W mutation (Cabot et al., 2016) in parC co-occurred with the T83I                

mutation in gyrA in half of the isolates. Fluoroquinolone resistance could not be explained by gyrA and                 

parC mutations in 12% of cases. Five of these isolates contained M437I and A473V mutations in parE,                 

which causes known resistance to ciprofloxacin (Bruchmann et al., 2012), one isolates had a frameshift               

mutation in gyrA, and one isolate contained an I57V mutation in parE. Other genes that have been                 

associated with fluoroquinolone resistance, qnr , qep and oxq, were not present within any of the isolates                

in this study (Redgrave et al., 2014). Only two isolates that were phenotypically resistant to               

fluoroquinolones did not harbour known resistance mechanisms.  

 

One isolate in this dataset was resistant to colistin. Colistin resistance can be conferred through lipid A                 

modifications, which are caused through mutations in phoQ gene, and the colistin resistant isolate              

contained the known polymyxin resistance marker V260G in the phoQ gene (Jochumsen et al., 2016). 

 

A high prevalence of carbapenem-resistant isolates was present in this dataset (n = 96 for Imipenem, n =                  

57 for meropenem). The carbapenems are currently an antibiotic-of-last resort for P. aeruginosa             

bacteraemia and CF infections (Fowler & Hanson, 2014). Deficiencies in the OprD porin has been linked                

to a basal level of carbapenem resistance in previous studies (Li et al., 2012), as it decreases the                  

outer-membrane permeability. Within the 352 isolates in this dataset, only 169 (47.9%) isolates contain              

complete copies of the oprD gene. In total, 46 different frame-shift or truncation mutations were               

identified, and the gene was completely absent in one isolate. However a second resistance mechanism is                

typically necessary to confer clinical levels of resistance to carbapenems (Li et al., 2012). For example,                

two isolates (one ST235, and one ST2613) encoded the VIM-1 and VIM-2 class of              

carbapenem-hydrolyzing enzymes. Additionally, when efflux pump over-expression occurs alongside low          

outer membrane permeability, resistance to carbapenems can develop (Meletis et al., 2012). 

 

Efflux systems within P. aeruginosa are an incredibly important mechanism that can confer resistance to               

several classes of antibiotics (Rampioni et al., 2017). For example overexpression of the MexAB-OprM              

efflux pump can lead to resistance to β-lactams and β-lactamase inhibitors, monobactams,            

fluoroquinolones, and aminoglycosides (Masuda et al., 2000). The expression of the MexAB-OprM            

efflux system is regulated by mexR, nalC and nalD, and mutations in these regulatory genes can lead to                  

overexpression of the efflux system, resulting in antibiotic resistance (Suresh et al., 2018). Within this               

dataset, there were 76 unique mutations within mexR (n = 32 unique mutations, including 7 frameshifts                

and INDELs), nalC (n = 23 unique mutations, including 3 frameshifts and INDELS) and nalD (n = 21                  
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unique mutations, including 5 frameshifts and INDELs). Additionally, the nalD gene was completely             

absent in five isolates. These mutations could result in overexpression of the MexAB-OprM efflux              

system, and aid non-susceptibility to the β-lactam antibiotics aztreonam, ceftazidime, piperacillin and            

ticarcillin. 

 

Many resistance-related genes to antibiotics that weren’t phenotypically tested for were present in the              

genomes. For example, 95% of the isolates in this study contained a copy of the fosA gene, which is                   

linked to fosfomycin resistance caused by the conjugation of glutathione to the antibiotic (Klontz et al.,                

2017). The fosA gene is present amongst almost 99% of all published P. aeruginosa genomes, suggesting                

that this gene is chromosomally encoded and that resistance is widespread (Ito et al., 2017). 

 

The blaOXA-50 gene, which is a chromosomally-encoded beta-lactamase (Kos et al., 2014), was present              

within 98% of the isolates in this study. This gene confers slight non-susceptibility to ampicillin,               

ticarcillin, moxalactam and meropenem, and increases MIC values to common β-lactams. AmpC, which             

is present in 100% of isolates in this dataset, also increases MIC values to common β-lactam antibiotics.                 

The six isolates that did not contain blaOXA-50 also did not contain any other blaOXA type genes. blaOXA-1                  

was present in 3 isolates, blaOXA-15 in one isolate, and blaOXA-6 in three isolates. 

 

Other resistance conferring genes include the chloramphenicol acetyltransferase variant catB7 (Murugan           

et al., 2014), which was found to be present in 90% of the isolates, the bcr-1 gene conferring                  

bicyclomicin resistance (Fonseca et al., 2015), which was present in 100% of the isolates, and the sul1                 

gene that confers resistance to sulfonamides (Poirel et al., 2001), which was present in 9% of the isolates. 

 

Efflux systems were also highly prevalent within the genomes. MexVW-OprM, TriABC-OpmH, and            

MexJK-OprM, were present in 99% of isolates, and MexCD-OprJ, MuxABC-OpmB, and           

MexGHI-OpmD were found in 98% of isolates. PmpM and EmrE, which are small molecule transporters,               

are also present in 100% of isolates (Li & Plesiat, 2016). 

 

In some cases, no genetic association with phenotypic susceptibility could be determined. Attempting to              

relate resistance genes to phenotypic susceptibility data for P. aeruginosa is difficult, due to the               

non-specific nature and expression-dependence of efflux systems, as well as uncharacterised mutations in             

known genes (Freschi et al., 2018). Porin loss, upregulation of non-specific efflux pumps, and              

permeability changes may also be responsible for the unaccounted phenotypic resistance. 
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2.4 Discussion 
 

In this Chapter, 352 P. aeruginosa isolates collected from two different bacteraemia surveillance             

programmes were investigated to gain an understanding of the population structure and AMR             

mechanisms of P. aeruginosa in bacteraemia. This collection consisted of 79 isolates from the BSAC               

surveillance dataset of MDR bacteraemia infection. The remaining 273 isolates were from a local              

collection as part of the surveillance of P. aeruginosa bacteraemia infections in Cambridge hospitals, but               

were not selected for MDR status. This is the first comprehensive study of P. aeruginosa bacteraemia                

isolates from Cambridge, and by putting these into the context of the wider UK bacteraemia P.                

aeruginosa population, we have been able to determine which high-risk and epidemic clones are most               

prevalent within these hospitals, and the resistance genes that they carry. Knowledge of both local and                

national population structures of P. aeruginosa bacteremia, as well as antimicrobial resistance profiles             

and genetic determinants, could be useful to inform clinical treatment. This comprehensive study has only               

been possible due to recent advancements in computational biology and genomics, which have led to               

substantial decreases in the cost and availability of DNA sequencing the whole genomes of such a large                 

number of isolates. 

 

The population structure of the 353 isolates represent the well-characterised non-clonal P. aeruginosa             

population structure, with sporadic emergence of highly-successful epidemic clones (Treepong et al.,            

2018). This indicates that a P. aeruginosa isolate does not have to be specialised in order to cause                  

bacteraemia infection, and reinforces the widely-held view that P. aeruginosa is well-adapted to being an               

opportunistic pathogen due to its genetic and metabolically diversity, able to inhabit a wide range of                

niches (La Rosa et al., 2018). However, including non-bacteraemia P. aeruginosa isolates in the study               

would confirm this hypothesis. The MDR isolates from the BSAC surveillance collection were also              

widely distributed across the P. aeruginosa population, suggesting that the ability to acquire AMR              

determinants is retained by most, if not all, of the P. aeruginosa isolates. 

 

Within this dataset, there is evidence of successful epidemic STs. Two of these STs were associated with                 

local infection in Cambridge hospitals; ST395 and ST253. These are both well-known, international             

high-risk clones which are frequently associated with multi-drug resistance (Treepong et al., 2018). MDR              

was not associated with the ST253s collected as part of the local surveillance, but MDR was associated                 

with two clades within the ST395 population. This showed simultaneous acquisition of multiple AMR              
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variants. However, it is most likely that this is due to a single mutation event which leads to the                   

overexpression of non-specific multi-drug efflux pumps, though transcriptomic studies would be required            

to confirm that (Kiser et al., 2010). The BSAC surveillance collection was associated with the high-risk                

and international clone ST175. The ST175s were associated with high-levels of MDR, though             

susceptibility to amikacin and colistin was identified in all isolates. Roughly half of ST175 isolates were                

resistant to the carbapenems, but the isolates were not associated with the presence of MBLs or ESBLs.                 

Two other heavily-MDR clades were associated with the BSAC; the ST357 and ST235, both also               

well-known, high-risk, international clades known to exhibit carbapenem resistance through the           

acquisition of several carbapenemase enzymes (Pragasam et al., 2018). 

 

The genomic islands of the three overrepresented high-risk and international STs were characterised. The              

high-risk and international STs had a higher-than-average number of genomic islands compared to the              

rest of the STs within the dataset. Most of the genes within the genomic islands were related to iron                   

uptake, phage defence, Type VI secretion and motility. Many of the hypothetical proteins within the               

genomic islands were predicted to be alcohol dehydrogenase enzymes or related to virulence. This              

acquisition of genes via horizontal gene transfer contributes to the success of these high-risk and               

international clones (Silveira et al., 2016). 

 

Strong temporal signal was present for the high-risk and international clade ST175. These isolates were               

put in context of an international dataset, and indicated that ST175 arrived in the UK sometime between                 

the mid-1980s and mid-1990s. Temporal signal was also present for the ST253 clade, but the isolates                

were dispersed amongst a European dataset of ST253, suggesting that the isolates as part of this study do                  

not capture enough diversity to identify when the ST253s may have first been introduced to the UK. 

 

As well as whole-genome sequencing, the AMR profiles of all 353 isolates were determined. Within the                

local collection, 42% of isolates were susceptible to every antibiotic tested. Very little resistance (< 3%)                

was identified for the aminoglycoside antibiotics tobramycin, gentamicin and amikacin, and no resistance             

was identified to the drug-of-last resort, colistin. Resistance rates were highest (~50%) for the              

ticarcillin-clavunate combination therapy, whilst resistance to the carbapenem drugs of last resort was at              

13%. Widespread MDR was observed for isolates collected as part of the BSAC surveillance programme,               

which is consistent with the criteria for inclusion into the study. Only one isolate showed resistance to                 

colistin, indicating that it is a viable therapeutic option to treat MDR infections currently, as resistance has                 

yet to develop. Resistance to the aminoglycoside amikacin was also present in less than 9% of isolates ,                 
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which suggests that resistance determinants to this antibiotic are more difficult for the P. aeruginosa               

population to obtain, an observation that has been previously described (Olivares et al., 2017). Levels of                

resistance to amikacin was lower than resistance to the carbapenems in the BSAC collection (~53%),               

suggesting that these antibiotics should no longer be considered as last-resort against MDR infections, as               

resistance rates are comparable to those of other first-line antimicrobial compounds, such as aztreonam              

(53%), gentamicin (55%), and tobramycin (51%). 

 

Apart from instances of MDR concentrated within the ST175, ST235, and ST357 BSAC clades, MDR               

resistance is distributed across the whole P. aeruginosa population, suggesting that acquisition of variants              

conferring resistance to multiple antimicrobial compounds is not limited to a subset of strains. 
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3.1 Introduction  
 

Cystic fibrosis (CF) is caused by mutations in the cystic fibrosis transmembrane conductance regulator              

(CFTR) protein (Mall & Hartl, 2014). The CFTR protein is responsible for transporting chloride ions               

across the epithelial cell layer and into the extracellular space, however, when the CFTR protein is                

defective, an ion imbalance across the membranes results (Puchelle et al., 2002). This ion imbalance               

draws water out of the extracellular space by osmosis, dehydrating the mucus in the lung and gut, causing                  

the thick and sticky mucus that is characteristic of CF (Puchelle et al., 2002). This thick and sticky mucus                   

supports bacterial colonisation and growth within the CF lung, since mucus clearance is impaired (Hill et                

al., 2018), and the mucus provides a good source of carbon and nitrogen to aid bacterial growth (Palmer                  

et al., 2007). From infancy, the CF lung is often colonised by commensal bacteria from the upper                 

respiratory system, such as Staphylococcus aureus and Haemophilus influenzae, but replacement with            

Pseudomonas aeruginosa occurs in 80% of patients by early adulthood (Lyczak et al., 2002). 

 

Transmission of acquired P. aeruginosa strains from one patient to another has been well documented               

(Williams et al., 2018). The ability of a strain to rapidly colonise and adapt to the CF lung, whilst                   

retaining the ability to transmit from patient-to-patient, is a hallmark of a few specialised strains of P.                 

aeruginosa (Williams et al., 2018). These transmissible strains, called epidemic strains, have been             

isolated in studies from the UK, Denmark, Belgium, Canada, Australia, and the USA (Williams et al.,                

2018). These epidemic strains are associated with high virulence and worse patient outcomes (Al-Aloul et               

al., 2004), and are considered to be very well adapted to the CF lung and highly transmissible (Salunkhe                  

et al., 2005). 

 

After the introduction of P. aeruginosa into the CF lung, the bacteria can undergo a transcriptional switch                 

from acute infection, which can be cleared by aggressive antibiotic therapy, to chronic infection, in which                

they remain in the patient’s lung for the rest of their life (Hogardt & Heesemann, 2013). The switch from                   

acute infection to chronic infection, and consequential selection of adaptive mutations to the CF lung, can                

be accelerated with an increased mutation rate; a phenotype called hypermutation (Rees et al., 2019). This                

hypermutation phenotype emerges due to defects in the DNA mismatch repair systems, and can lead to                

better adaptation to the CF lung and increased antimicrobial resistance. Hypermutator strains are             

traditionally identified through phenotypic assays (Mather & Harris, 2013). However genomic signatures            

can be identified as a consequence of this increased mutation rate, which can also be used to identify                  
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hypermutators (Mather & Harris, 2013). For example, a bias towards transition mutations over             

transversion mutations are observed in isolates that hypermutate (Dettman et al., 2016). Transitions             

comprise 98.8% of all mutations generated by hypermutator strains, a rate that is over 900x higher than                 

wild-type (Dettman et al., 2016). The increased mutation rate caused by hypermutation can be identified               

phylogenetically, as higher mutation rates result in longer branch lengths on a phylogeny, compared to               

wild-type strains (Marvig et al., 2013).  

 

Whole-genome sequencing of hypermutator strains has previously identified non-synonymous mutations          

in several genes that may be linked with the hypermutator phenotype, with the highest mutation rates                

associated with mutations in the mutLMSTY mismatch repair genes (Lopez-Causape et al., 2017).             

Exploring and correctly characterising these genomic signatures could replace the need for carrying out              

phenotypic assays to identify hypermutator lineages in a population of isolates. 

 

Antibiotics are used to control and prevent negative outcomes associated with chronic P. aeruginosa lung               

infection, and as a consequence, resistance to antibiotics arises frequently (Macia et al., 2005).              

Hypermutation of P. aeruginosa isolates is associated with an increase in resistance to antimicrobial              

compounds used to treat CF lung infections (Oliver et al., 2000). This is because resistance to many                 

antibiotics often develop through accumulation of point mutations within the P. aeruginosa genome             

(Oliver, 2015). Resistance to the fluoroquinolones through point mutations in gyrA, gyrB, parC, and parE               

(Lopez-Causape et al., 2017), reduce susceptibility to the carbapenems through inactivation of oprD             

(Henrichfreise et al., 2007), and mutations in repressor genes for multi-drug efflux pumps, have been               

identified in hypermutator strains (Rees et al., 2019). 

 

P. aeruginosa within the lungs of CF patients are the main cause of lung function decline (Bhagirath et                  

al., 2016). This is caused primarily by epithelial surface damage caused by P. aeruginosa virulence               

factors and the associated host immune response (Gellatly et al., 2013). Acute pulmonary exacerbations              

(APEs) are periods of sudden and rapid worsening symptoms that patients with CF often undergo (Bhatt,                

2013). The symptoms of an APE include a worsening cough, chest pain, shortness of breath, weight loss,                 

and lung function decline, and are characterised by increased lung inflammation and damage, from which               

lung function never fully recovers (Cogen et al., 2017). Currently, APEs are treated with antibiotics,               

usually by intravenous therapy for between 7 and 10 days, and are effective at clearing the symptoms,                 

suggesting a bacterial infection could be the cause of APEs (Bhatt, 2013).  
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Two previous studies have shown that variation in the P. aeruginosa population in the CF lung remains                 

stable over the course of an APE (Fothergill et al., 2010; Mowat et al., 2011). However, these studies                  

focussed only on variation in PCR products (Fothergill et al., 2010) and haplotype composition (Mowat et                

al., 2011). In this study, 4,094 P. aeruginosa isolates were whole-genome sequenced from nine patients               

who experienced 18 APEs between them. The isolates were collected over the course of three               

APE-related timepoints: 96 isolates from each acute timepoint per patient (collected on the day of an                

APE); 96 isolates from each stable timepoint per patient (collected seven days before the APE); and 96                 

isolates from each recovery timepoint per patient (collected seven days after antibiotic treatment had              

finished). This provides a unique insight into how the P. aeruginosa population changes over the course                

of an APE in these patients. This whole-genome sequence approach also enables the development of a                

better understanding of genetic diversity and adaptation of P. aeruginosa to the CF lung, and a better                 

understanding of the population structure that affects each individual patient. 

 

3.1.1 Aims 

 

APEs account for much of the morbidity and mortality associated with CF. The events that trigger these                 

APEs are not currently understood, although they are typically treated using antibiotics, which             

significantly alters the P. aeruginosa population within the CF lung. In this study, we aim to examine the                  

variation of 4,400 P. aeruginosa isolates collected from the lungs of a cohort of 9 patients with CF, and                   

determine any genetic changes which may underpin phenotypic diversity and evolution, and how this              

variation may relate to APEs in CF patients. 
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3.2 Methods 
 

3.2.1 Sample selection 

 

3.2.1.1 Patient recruitment 
 

To investigate the genotypic composition of P. aeruginosa clones within the CF airway that may be                

correlated with acute pulmonary exacerbation, a clinical trial (TeleCF) was carried out, where P.              

aeruginosa isolates were sampled from a pre-defined population of adult patients with CF through periods               

of acute pulmonary exacerbation (Emem Ukor, Floto Lab, University of Cambridge). Nine participants             

(Table 3.1) collected expectorated sputum samples following their usual chest clearance routine over a              

period of six months. Patients were 17 years of age or above, had a confirmed diagnosis of CF, were                   

willing to provide daily home monitoring data, had a history of at least two acute pulmonary                

exacerbations within 12 months of study enrolment, and had evidence of chronic airway infection with P.                

aeruginosa. Patients were excluded from the study if they had evidence of airway co-infection with               

non-tuberculous mycobacteria, were unable to provide written informed consent, or were unable to             

provide regular sputum samples (Emem Ukor, Floto Lab, University of Cambridge). 

 

 

 

Table 3.1 The clinical metadata available for each patient in the TeleCF study. FEV1 (force expired volume)                 

measurements are the scores recorded at the start of the study period. 
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3.2.1.2 Sample growth 
 

Clinical data was used to identify periods of acute pulmonary exacerbation in the nine patients during the                 

6-month TeleCF clinical trial (Emem Ukor, Floto Lab, University of Cambridge). Acute pulmonary             

exacerbation was defined as a clinical decision to initiate antibiotic treatment by a CF physician, due to                 

changes in a patient’s respiratory status.  

 

To identify any genetic changes in the P. aeruginosa population within the CF lung that may be                 

associated with a cause of APE, sputum samples from before, during and after each APE that occurred                 

during the study period were selected. Where possible, for each period of acute pulmonary exacerbation,               

three frozen sputum samples were selected; 1) a non-exacerbation sample that was collected 7 - 14 days                 

before an APE; 2) an exacerbation sample that was collected on day 0 of an APE (+/- 5 days); 3) a                     

recovery sample that was collected 7 - 14 days after an APE. In total, 14 non-exacerbation, 19                 

exacerbation and 14 recovery samples were selected, from a total of 18 APE events, totalling 47 sputum                 

samples. 

 

Each of the 47 sputum samples was grown on Pseudomonas selective agar containing cetrimide and               

sodium nalidixate and incubated at 37OC for 48 - 72 hours, then streaked on Pseudomonas selective agar                 

to form single colonies. In order to try to capture the diversity of the P. aeruginosa population within the                   

CF lung at each time point, where possible, 95 single colonies were selected from each of the 47 streaked                   

sputum plates in order to proportionally represent all morphotypes that were present. In total, 4,408               

Pseudomonas strains were selected from the initial 47 sputum samples. Single colonies of each of the                

4,408 Pseudomonas strains were incubated for a further 6 hours at 37OC in 1 mL cetrimide broth to                  

increase cell density. To confirm that each isolate was P. aeruginosa, each of the 4,408 strains were                 

re-streaked on Pseudomonas selective agar containing cetrimide and sodium nalidixate and incubated at             

37OC for 48 - 72 hours. A single colony was selected from each plate and incubated for a further 6 hours                     

at 37OC in 1 mL cetrimide broth, and stored at -80OC in 25% glycerol solution. 

 

 

3.2.2 DNA sequencing and quality checks 

 

DNA was extracted from the 4,408 CF P. aeruginosa isolates using a QIAxtractor (QIAgen) instrument               

according to the manufacturer’s instructions. Library preparation was performed according to the Illumina             
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protocol, and sequencing was performed on the Illumina HiSeq 2500 and X10 platforms. A total of 4,168                 

(95%) P. aeruginosa isolates passed sequencing QC and were initially included in the study.  

 

All 4,168 sequences were mapped to the P. aeruginosa PAO1 reference genome (accession number:              

PRJNA331) using bwa mem (version 0.7.17, Li & Durbin, 2009), discounting identical fastq reads and               

outputting all alignments. Samtools mpileup (version 1.6, Li et al., 2009) was used to determine which                

nucleotide base occured at each position, using a quality score of 50, discarding anomalous reads and                

disabling read-pair-overlap detection. Bcftools call (version 1.5, Li et al., 2009) was used to call SNPs                

against the reference genome, assuming a mutation rate of 0.001. Short indels were called using GATK                

IndelRealigner (version 3.4.46, McKenna et al., 2010), using default settings. Multiple sequence            

alignments were generated by combining all individual consensus sequences. 

 

A base was called as heterozygous if the consensus base call was supported by less than 90% of all                   

mapped fastq reads. The number of heterozygous base calls for every isolate were plotted as a                

distribution, and outliers outside of the 95% confidence interval were identified and masked from the               

consensus sequence. In total, 17 outliers were excluded in this analysis due to high numbers of                

heterozygous base calls, which is an indicator of contamination.  

 

Mapping coverage and divergence from the P. aeruginosa PAO1 reference genome were calculated using              

samtools depth (version 1.6), with default parameters. There were 57 sequences that mapped to PAO1               

with 100% coverage and 0 SNP divergence. These isolates were all sequenced from the same growth                

plate, and hence were determined to be the result of a contamination of P. aeruginosa PAO1 lab reference                  

strain. These isolates were removed from the analysis. 

 

In total, 4,094 P. aeruginosa DNA sequences were carried forward for further analysis. De novo genome                

assembly was carried out using Velvet (version 1.2, Zerbino & Birney, 2008) with a k-mer length of 31,                  

and VelvetOptimiser (version 2.2.5) with a k-mer length of 31. Scaffolds were annotated using PROKKA               

(version 1.5, Seemann, 2014), using default settings and specifying the Pseudomonas genus. 

 

 

 

 

 

 
105



Chapter 3 

3.2.2.1 Mapping to internal references and specific genes 

 

For all analyses where mapping to internal references was required, the highest quality assembled isolate               

from each patient was selected, based on N50 and total number of contigs. After identifying K7, K9, K11,                  

and K15 isolates as the Liverpool Epidemic Strain (LES), these isolates were re-mapped to the P.                

aeruginosa LESB58 reference genome (accession number: PRJEA31101) for further analysis. Details of            

these internal references are provided in Table 3.2.  

 

 

Table 3.2 Assembly statistics for internal reference sequences. 

 

Contig breaks were removed and mapping was carried out as in section 3.2.2. Any SNPs within 150 bp of                   

the contig breaks were excluded from all further analysis to avoid structural errors. 

 

 

3.2.2.2 Sequence manipulation 

 

For analysis of variant sites within the genomes, SNPs were extracted from the multiple sequence               

alignments generated in section 3.2.2 using snp-sites (version 2.4.1, Page et al., 2016) with default               

parameters. 

 

 

3.2.3 Phylogeny 

 

The maximum-likelihood phylogenetic tree of all 4,094 isolates was generated with FastTree (version             

2.1.10, Price et al., 2010), using the Jukes-Cantor + CAT model using the SNP multiple sequence                

alignment generated from mapping all isolates to P. aeruginosa PAO1 in section 3.2.2. Phylogenies for               

each individual patient, or groups of patients, were generated from the SNP multiple sequence alignment               

produced by mapping to an internal reference as in section 3.2.2.1, using RAxML (version 8.2.8,               

Stamatakis et al., 2014) with AVX vector instructions, and replicated for 100 bootstraps. 
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Circular genome visualisations with metadata were visualised using iTOL (Letunik & Bork, 2019). All              

other metadata were displayed next to phylogeny using phandango (Hadfield et al., 2017). 

 

 

3.2.4 Genomic clustering 

 

PCA was carried out using smartpca, as part of the EIGENSOFT (version 5.0, Patterson et al., 2006)                 

software package. The SNP alignments from section 3.2.2 were manually curated into the             

smartpca-accepted “snp” and “geno” file format from the vcf file. The isolate name and patient ID were                 

combined to make the “ind” file format. The first 30 PCs were calculated, and all graphs were created                  

using ggplot2 (version 3.1.0, Wickham, 2016) R package. 

 

The MLST of all isolates were assigned using ARIBA (version 2.12.1, Hunt et al., 2017) and PubMLST,                 

which contained 3,308 sequence type assignments (as of June 2019). Any initially unassigned alleles were               

submitted to the PubMLST database for novel ST assignment. 

 

The SNP alignment file generated from mapping to the P. aeruginosa PAO1 reference genome in section                

3.2.2, and the corresponding phylogenetic trees generated in section 3.2.3, were analysed for phylogenetic              

clustering by FastBaps, using the R packages Fastbaps (version 1.0.0, Tonkin-Hill et al., 2019), and all                

required dependencies. 

 

 

3.2.5 Recombination analysis 

 

Gubbins (version 1.4.6, Croucher et al., 2015) was used to analyse recombination within the isolates,               

using the multiple sequence alignment files generated for each patient in section 3.2.2. Clustering of               

non-synonymous SNPs in a small window could be indicative of recombination. Therefore, to identify              

even the smallest trace of recombination, the default parameters were altered to find a density of 3 SNPs                  

within a sliding window of 1,000 bp. Any reported results that were within 75 bp of contig breaks in the                    

reference were excluded. Any genes within the recombination window were compared to the P.              

aeruginosa PAO1 reference genome using BLAST (version 2.7.1, Camacho et al., 2009) to identify              

possible recombination donors. 
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3.2.6 Pangenome analysis 

 

The pangenome was calculated from the annotation files generated in section 3.2.2 using Roary (version               

1.7.1, Page et al., 2015) for every isolate within each patient and patient group, using a minimum                 

percentage identity of 95% and a gene was identified as “core” if it was present in 99% of samples or                    

more. The gene presence and gene absence data was displayed against the phylogeny as in section 3.2.3,                 

and assignment of function of blocks was based on the majority function of the non-hypothetical protein                

genes from the PROKKA annotation files. All correlations and linear regression statistical tests were              

calculated in the R environment 3.5.0. In order to identify donors of putative acquired genetic regions,                

each region was extracted from assemblies where the genes are present, and compared to nucleotide               

sequence databases using BLAST. 

 

 

3.2.7 Temporal analysis 

 

The dating analysis was carried out using the R package BactDating (version 1.0.1, Didelot et al., 2018),                 

which calculates time to most-recent common ancestor using MCMC-based Bayesian dating of the nodes              

of the phylogeny. The phylogeny calculated for each patient in section 3.2.2.1 were used as the input,                 

with the date of sampling of each isolate expressed in days since January 1st 2013. The analysis was                  

calculated over 100,000,000 MCMC chains so that all ESS values were over 100, and three separate                

evolutionary models were used; strict gamma, relaxed gamma, and mixed gamma to estimate a consensus               

time to MRCA. 

 

 

3.2.8 Transmission analysis 

 

To investigate transmission, the pairwise SNP distances from the multiple sequence alignments generated             

in section 3.2.2 were calculated for every pair of isolates within each patient group. All phylogenies were                 

generated and displayed as in section 3.2.3. All correlation and linear regression analyses were calculated               

in the general R environment 3.5.0. 
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3.2.9 Phylogenetic clustering 

 

Individual patient phylogenies were calculated and displayed as in section 3.2.3. The exacerbation states              

(non-exacerbation, exacerbation or recovery) were assigned to each isolate from the anonymised patient             

data, and displayed against the phylogeny as in section 3.2.3. To test for phylogenetic signal and                

clustering of isolates on the tree, Pagel’s lambda and Fritz and Purvis’ D values were calculated as part of                   

the Phytools (version 0.6.60; Revell, 2011) and Caper (version 1.0.1) R packages, respectively. 

 

 

3.2.10 P. aeruginosa population context 

 

To investigate where the isolates sit relative to PAO1, one representative isolate was selected from within                

each patient’s phylogeny, and mapped to PAO1 alongside the 352 isolates from Chapter 2. The phylogeny                

was then calculated and displayed as in section 3.2.3. 

The ExoS and ExoU status of each isolate was confirmed by mapping the fastq files of every isolate to the                    

ExoS and ExoU genes, as in section 3.2.2.1. 

 

 

3.2.11 Genetic AMR profiling 

 

The genetic AMR profiles of each isolate were calculated using ARIBA (version 2.12.1), with reference               

genes and reference SNPs downloaded from the Comprehensive Antimicrobial Resistance Database           

(version 3.0.1, Jia et al., 2017). The presence/absence of each reference gene or SNP was then displayed                 

against each patient phylogeny, as in section 3.2.3. 
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3.3 Results 
 

3.3.1 DNA sequencing and quality checks 

 

In order to investigate whether genetic variation of P. aeruginosa isolates is associated with APEs, DNA                

was sequenced and analysed from 4,400 P. aeruginosa isolates from the lungs of nine patients with CF                 

before, during and after an APE. Of the 4,400 P. aeruginosa isolates from nine patients with CF that                  

initially underwent the DNA extraction procedure, 4,168 isolates had sufficient DNA for sequencing             

using Illumina HiSeq 2500 and X10 machines. In order to identify and remove contamination, the isolates                

were mapped to the reference P. aeruginosa strain PAO1, the number of heterozygous base calls for each                 

isolate were calculated and 17 isolates that lay outside of the 95% confidence intervals were removed. A                 

further 57 sequences were removed from the study as contamination of the P. aeruginosa PAO1 lab                

reference strain. In total, 4,094 sequences were carried forward for further analysis. 

 

The raw sequence data for each of the 4,094 P. aeruginosa isolates was assembled, with an average                 

average genome length of 6,342,381 bp, ranging from 6,154,712 - 6,519,436 bp. The average number of                

contigs was 34, ranging from 12 - 1,902 contings, and the mean N50 value was 602,740 bp, ranging from                   

6,147 - 3,598,558 bp. The mean largest contig was 1,088,412 bp, ranging from 28,943 - 3,598,558 bp. All                  

isolates were also mapped to the reference P. aeruginosa strain, PAO1. The mean mapping coverage was                

93.7% (ranging from 84.1% - 95.9%), with a mean depth of 44x (ranging from 15x - 77x). A mean of                    

23,864 SNPs per sequence were called against the PAO1 reference (ranging from 19,441 - 24,867 SNPs). 

 

3.3.1.1 Isolate metadata 

 

A breakdown of the exacerbation-associated data from each of the nine patients, and the corresponding               

number of sequenced P. aeruginosa isolates, are outlined in Table 3.3. A complete exacerbation is               

defined as when isolates from all three defined exacerbation timepoints were sequenced; stable timepoint              

- seven days before an exacerbation; acute timepoint - the day the patient first received antibiotics;                

recovery timepoint - seven days after antibiotic treatment finished. In total, ten complete exacerbations              

adbcfcbdasdf adcbddb 
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Table 3.3 P. aeruginosa isolates were collected for sequencing from nine patients with CF, aged 19 - 52, during                   

different exacerbation timepoints. Complete exacerbations are defined as the presence of isolates from the acute,               

recovery and stable timepoints. Incomplete exacerbations are defined as the presence of isolates from only two out                 

of the three exacerbation timepoints. 

 

were recorded from six patients. Only two patients, K1 and K3, provided isolates during more than one                 

complete exacerbation. Eight incomplete exacerbations were also recorded, defined as when isolates from             

only two out of the three exacerbation state timepoints were sequenced. For three patients (K6, K11, and                 

K15), isolates were only provided from incomplete exacerbations. 

 

3.3.2 Genome clustering 

 

Principal Component (PC) analysis was performed on the genotype of each isolate to visualise the highest                

level of genetic variation within the 4,094 P. aeruginosa isolates. The first two principal components               

separate the isolates into four distinct clusters (Figure 3.1); isolates from patients K1 and K14; K3 and                 

K6; K7, K9, K11 and K15; and K4 only. Every isolate from each patient was contained within each                  

cluster.  

 
111



Chapter 3 

 

Figure 3.1 The first two Principal Components of patient genotype are split into four distinct clusters, which contain                  

all isolates of the patients contained within the cluster. 

 

The same clustering patterns are retained when plotting PC2 against PC3 (Figure 3.2a). However, when               

PC3 is plotted against PC4 (Figure 3.2b), the isolates from patients K1 and K14 diverge into two separate                  

clusters. In total, 93.4% of the genetic variance can be explained by the first three PCs; 33.8%, 30.6% and                   

29.0% respectively, after which point there is an elbow (Figure 3.3). This elbow indicates deep               

divergence and separation of each cluster within the dataset. The following PCs account for a very small                 

amount of variance, with PC 4, 5 and 6 only accounting for 3.7% of the total variance, which suggests                   

that the isolates within each cluster are very closely related to each other. 

  

 

 

Figure 3.2 Principal Component analysis of isolate genotype for a) PC2 vs PC3 and b) PC3 vs PC4. 
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Figure 3.3 Percent of variance that can be explained by each principal component, for the first 30 PCs of every                    

isolate genotype. 

 

The multi-locus sequence type (MLST) profiles of all 4,094 isolates are summarised in Table 3.4. MLST                

is a method of distinguishing different subtypes of the same bacterial species by comparing the different                

allelic profiles of seven housekeeping genes. In P. aeruginosa, these housekeeping genes are acsA, aroE,               

guaA, mutL , nuoD, ppsA and trpE. Each combination of alleles results in a numbered sequence type                

which is unique to that allelic profile (Jolley & Maiden, 2010). The MLST profiles show that during the                  

study duration, each patient was infected with only one P. aeruginosa ST. However, some patients are                

infected with the same ST as other patients. The distribution of the STs match those of the clusters                  

identified for the first two PCs in Figure 3.1.  

 

 

 

Table 3.4 MLST allelic profiles of the isolates from each patient collected during the study. * indicates a novel ST                    

identified in this study. 
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The MLST allelic profiles show that patients K1 and K14 were both infected with ST217, more                

commonly known as Manchester Epidemic Strain (MES) (Syrmis et al., 2014). The MES was first               

identified in Manchester, and was found to have spread from patient-to-patient within the original clinic,               

and eventually across the UK (Fothergill et al., 2012). This high transmissibility was linked to enhanced                

virulence and high antibiotic resistance.  

 

Patients K7, K9, K11, and K15 were infected with ST146, also known as the Liverpool Epidemic Strain                 

(LES) (Syrmis et al., 2014). The LES isolates are amongst the most virulent and transmissible strains of                 

P. aeruginosa that infect the CF lung. LES isolates harbour almost all known P. aeruginosa virulence                

genes, and as a consequence are associated with more aggressive infection, which leads to a greater and                 

more rapid loss of lung function in infected patients (Jani et al., 2016).  

 

Patients K3 and K6 were both infected with the same ST, a previously undescribed ST in the PubMLST                  

database (Jolley & Maiden, 2010). Patient K4 was also found to be infected with a previously undescribed                 

ST, but separate to the patient K3 and K6 ST. A representative sample was submitted to the PubMLST                  

database to assign a ST to these isolates. Two novel STs were assigned; ST3307 for the patient K3 and                   

K6 isolates, and ST3308 for the patient K4 isolates. 

 

Variant sites of all 4,094 isolates mapped against the P. aeruginosa PAO1 reference strain were used to                 

estimate a maximum-likelihood tree, to investigate the population structure of the dataset. The same              

clustering patterns that match the PC and MLST analyses were observed in the overall phylogenetic               

structure. Phylogenetic clustering was confirmed using FastBAPs (Figure 3.4). 

 

The PC clusters, FastBAPs clusters, and MLST analysis all show that each patient was only infected with                 

one strain of P. aeruginosa during the study period, and that some patients were infected with the same                  

strain as other patients. This is typical of P. aeruginosa lung colonisation, where patients with CF are                 

found to be infected with only one clone of P. aeruginosa at any point in time (Workentine et al., 2011).                    

The presence of two different strains has been observed in patients during the early years of their P.                  

aeruginosa colonisation, but one strain eventually is able to outcompete the other (Fluge et al., 2001).                

Once an infection has established and become chronic, that patient ends up harbouring that infection for                

the majority of their lifetime (Cramer et al., 2010). 

 

 

 
114



Chapter 3 

 

Figure 3.4 A maximum-likelihood tree of the P. aeruginosa isolates, with the clustering for each analysis displayed                 

around the outside. Outer ring: patient ID; middle ring: BAPs Cluster; inner ring: MLST.  

 

 

3.3.3 Individual patient phylogenies 

 

To understand the extent of the diversity had been captured by the sampling of isolates from each                 

individual patient, the maximum-likelihood phylogenies were calculated for each group of isolates from             

each individual patient (Figure 3.5). As all of the patients are colonised with only one P. aeruginosa ST, it                   

follows that each infection is likely to have developed from a single introduction of that ST into the                  

patient lung, and therefore all isolates within one patient should be clonally related to one another. The                 

maximum-likelihood phylogenies for the isolates from patients K6, K7, K9 and K15, are all relatively               

unstructured, which indicates the presence of a single, diverse infection. 

 

However, the patient K14 phylogeny indicates two separate populations of isolates, made up primarily of               

one population with a short root-to-tip distance, and a second, smaller population with a long root-to-tip                

distance. These long branches may indicate hypermutation within some of the isolates. Hypermutation is              

characterised by an increased rate of DNA mutation within the lineages, primarily due to the knockout of                 

DNA mismatch-repair proteins. This has been linked to an increase in antibiotic resistance and adaptation               

to the CF lung (Mena et al., 2008), and has been found to be present in roughly half of CF patients                     

(Feliziani et al., 2014). 
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Figure 3.5 Outgroup-rooted maximum-likelihood phylogenies for the isolates from each individual patient. The             

x-axis indicate the number of SNPs. 

 

The patient K1 phylogeny also indicates two separate populations within the lungs. The smaller              

population closer to the root may indicate non-hypermutation. The second population of isolates do not               

have long branches but are branched off a long branch, which could indicate that this second population                 

of isolates are descended from a hypermutator lineage that has since reverted. 

 

The patient K3 isolates are characterised by longer branches in the isolates towards the root of the                 

phylogeny, and a more structured expansion further away from the root. This could indicate selection               

pressures within the patient's lungs, showing lineage replacement and expansion of newer clones. 

 

The tips of the patient K4 phylogeny are all separated by long branches, with no evidence of a recent                   

clonal expansion. This could be indicative of all of the isolates currently hypermutating. It is also possible                 

that the infection within the lungs is simply diverse, without there being an expansion of any particular                 

lineage.  
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Both the K4 and K11 phylogenies contain two divergent lineages within the phylogeny that are not                

indicative of hypermutation, but could instead indicate two separate evolutionary paths brought on by              

different selection pressures within different niches of the CF lung. Divergent, co-existing lineages have              

been identified in a study by Williams et al. in 2015, in eight CF patients infected with the LES (Williams                    

et al., 2015). 

 

 

3.3.4 Intrapatient diversity 

 

The diversity of P. aeruginosa isolates from within each patient’s lungs may be correlated with the time                 

of sample collection, e.g. before, during or after an APE. Therefore, the intrapatient diversity was               

compared with the stage of APE. The intrapatient diversity for all isolates mapped to a patient-specific                

internal reference is listed in Table 3.5. A number of isolates from every patient were identical, which                 

corresponds with a minimum pairwise SNP distance of 0. However, the mean and maximum pairwise               

SNP distances varied within each patient. The greatest diversity was observed in the isolates from patient                

K1, with a mean pairwise SNP distance of 84, and a maximum of 361. High-diversity was identified in                  

K3, K4 and K14, with a maximum pairwise SNP distance of over 150 within each of those patients. High                   

levels of within-host genotypic diversity is typical of P. aeruginosa chronic lung infections. In one               

previous study, a maximum of 130 SNPs separated 40 isolates collected over the course of a year                 

(Williams et al., 2015), and a second study found a maximum of 121 SNPs separating 22 isolates                 

collected from one sputum sample (Darch et al., 2015). The high levels of diversity that were identified in                  

this chapter suggests that for patients observed with lower within-host diversity, the infection may be               

more recent.  

 

  

Table 3.5 Pairwise SNP distances for all isolates within each patient. 
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The number of isolates sampled from each patient was plotted against the mean and maximum pairwise                

SNP distances (Figure 3.6), which gave a general correlation (r = 0.62 and r = 0.45 respectively), but was                   

statistically insignificant when tested under linear regression (p = 0.073 and p = 0.224 respectively). This                

suggests that the intrapatient diversity was not greater within patient groups where a higher number of                

isolates had been sequenced, which means that sampling diversity is independent of genetic diversity. 

 

There was no statistically significant correlation (linear regression, p = 0.548) between the mean pairwise               

SNP distance and patient age, and the number of samples from a patient were also not correlated with                  

patient age (linear regression, p = 0.690) (Figure 3.7). 

 

 

Figure 3.6 The correlation between the number of isolates from each patient and the mean and maximum pairwise                  

distances within those isolates are not statistically significant. 

 

 

Figure 3.7 Patient age was not significantly correlated with mean pairwise SNP distance, and number of samples. 
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To investigate whether the pairwise SNP diversity varied across different exacerbations, the pairwise SNP              

distributions were plotted for each exacerbation for each patient (Figure 3.8). The range of pairwise SNPs                

was found to not vary between different exacerbations from the same patient. This suggests that the                

population structure and diversity within a single patient does not change from one exacerbation to               

another.  

 

 

 

Figure 3.8 The pairwise SNP distances for each exacerbation that each patient experienced. 

 

 

Figure 3.9 The pairwise SNPs for each exacerbation timepoint that each patient experienced are plotted. 
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However statistically significant variation in diversity was observed in isolates collected from each of the               

different exacerbation timepoints from patients K1, K3, and K14 (p < 0.05) (Figure 3.9). This significance                

is caused by a difference in the number of isolates collected from each of the acute, stable, and recovery                   

time points within those exacerbations (refer to Table 3.3 which outlines the number of complete and                

incomplete exacerbations). This observed significance disappears when the distributions of isolates are            

normalised by the number of each exacerbation timepoints experienced. This indicates that P. aeruginosa              

diversity within the lung of CF patients does not vary with different exacerbation timepoints, or between                

different exacerbations experienced by the same patient. This suggests that the P. aeruginosa diversity is               

not altered by the physiological changes and medical treatment associated with an exacerbation, or with               

any treatment received during the time between exacerbations. 

 

This finding is supported by a 2010 study by Fothergill et al. who identified very little genetic variation in                   

PCR assays in 60 isolates from sputum samples taken before an exacerbation, during treatment of an                

exacerbation, and after recovery from an exacerbation (Fothergill et al., 2010). A follow up study in 2011                 

by Mowat et al. of 1,720 P. aeruginosa isolates from 43 samples associated with the three stages of                  

exacerbation also identified very little change of haplotype composition within the CF lung over the               

course of exacerbation (Mowat et al., 2011). The lack of variation in SNP diversity identified by WGS                 

undertaken in this study, also shows that the population of P. aeruginosa isolates within the CF lung                 

remain stable over the course of an exacerbation. 

 

 

3.3.4.1 Early adaptation to the CF lung 

 

The patient K15 isolates are separated by very few SNPs, with a high proportion of isolates sharing no                  

SNPs, suggesting that the strain has not had time to diversify within the host. This, combined with clinical                  

data indicating that the patient developed chronic infection during their treatment regime at Papworth              

hospital (data not shown), indicates a recent infection. Therefore, these isolates could provide an insight               

into the early development of the P. aeruginosa infection within the lung of patient K15.  

 

The 189 K15 isolates contain just 79 variant sites when compared with the P. aeruginosa LESB58                

reference genome, only one of which is a fixed variant present in all isolates. This suggests that patient                  

K15 is infected with the P. aeruginosa LESB58 strain, and the 78 non-fixed variant sites have occured                 

within the lungs of the patient. Of these 78 non-fixed variant sites, 52 of the mutations occurred in                  
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hypothetical proteins, 8 occurred in intergenic regions, and 18 occurred in gene regions of known               

function. All of the mutations that appeared in more than one isolate appeared along a shared branch                 

between the isolates, and none of the variant sites appeared twice or more independently. This is evidence                 

that recombination between this group of isolates has not yet occurred. 

 

Mutations in two of the hypothetical proteins introduced early stop codons. In the hypothetical protein               

PALES_24321, the stop mutation R5* has been introduced. This protein is predicted to be a part of the                  

T2SS machinery, responsible for secreting virulence factors. Alongside this, a non-synonymous mutation            

was also introduced in the phoA gene, which is responsible for biosynthesis of an alkaline phosphatase                

that is secreted by the T2SS (Liu et al., 2016). Loss of key virulence factors are an indicator of the                    

development of chronic infection (Winstanley et al., 2016), and so this loss of T2SS may be a signal of                   

early chronic development in the lung of patient K15. Additionally, there is also a non-synonymous               

mutation in the pcrD gene, which is a part of the T3SS responsible for secreting protease enzymes (Galle                  

et al., 2012). Loss of the T3SS is a common phenotype observed in the switch from acute to chronic                   

infection (Jain et al., 2004). The second hypothetical protein with an early stop codon is PALES_24761,                

in which the mutation Q117* has been introduced. This hypothetical protein has an unknown function,               

but is predicted to be an ATPase, with membrane secretion function. These mutations are all indicative of                 

early loss of virulence, and hence adaption to the CF lung. 

 

Four different non-synonymous mutations occurred in one gene, tpbB. The tpbB gene is also known as                

yfiN, an activator protein which produces c-di-GMP and initiates the pathways required for biofilm              

production. The four non-synonymous mutations within tpbB could knockdown or knockout the protein,             

which could reduce the ability of the K15 isolates to produce biofilm. Transition from              

non-biofilm-producing to biofilm-producing phenotypes are typical of development of chronic infection,           

and therefore these mutations in tpbB may be selected against over time, as biofilms help protect the                 

bacteria from antibiotics as well as host defense (Winstanley et al., 2016). One of the non-synonymous                

mutations in tpbB appears in three related isolates, and the other three non-synonymous mutations only               

appear in one isolate. 

 

Two genes that contain non-synonymous mutations are responsible for fatty acid catabolism; faoB and              

lpxK. Previous studies have shown that P. aeruginosa fatty acid metabolism genes are upregulated during               

acute infection, and downregulated during chronic infection. However the P. aeruginosa genome encodes             

 
121



Chapter 3 

seven similar dehydrogenase enzymes, suggesting that there is redundancy within the genome (Crousilles             

et al., 2015). 

 

Non-synonymous mutations in other genes responsible for a variety of cell mechanisms were also              

observed; pchA, which is involved in converting chorismate to isochorismate (Meneely et al., 2013); thiD,               

which is involved in thiamine biosynthesis (Poulsen et al., 2019); phnC, which is involved in phenazine                

biosynthesis (Zaborin et al., 2012); ambE, which is involved in the biosynthesis of the potent antibiotic                

L-2-Amino-4-methoxy-trans -3-butenoic acid (Murcia et al., 2015); recR, which is a recombination           

regulation protein (Che et al., 2018); and atpD, which is an ATP synthase (Jorth et al., 2017).                 

Transcriptional knockout studies of these genes would help uncover the relevance of these mutations to               

the adaptation of P. aeruginosa to the CF lung. 

 

 

3.3.5 Recombination 

 

Genetic diversity can be attributed to linear evolution through the accumulation of SNPs, or horizontal               

gene transfer such as recombination. Therefore, to determine the major cause of diversity within the 4,094                

P. aeruginosa isolates, evidence of recombination was explored. 

 

Very little structure was identified when the frequency of SNPs were compared against the location               

within the genome. In most populations, low frequency, random mutations are the most common variation               

present in the population. This suggests that all isolates from the same patient have an almost-identical                

genetic background, with mutations occurring across the genome randomly. The majority of the mutations              

are spread diffusely across the entire genome, suggesting that there are no high-frequency mutational              

hotspots. It is also unlikely that any variation has been introduced to these populations by recombination                

from external sources during the study period, as the intrapatient pairwise SNP distances were relatively               

small (section 3.3.4). There is debate in the literature about the role of recombination in the evolution of                  

P. aeruginosa within the lungs (Winstanley et al., 2016), but any recombination introduced prior to the                

last common ancestor would be undetectable using this analysis. 

 

To investigate any potential signs of recombination or mutational hotspots within the isolates from each               

patient, dense regions of SNPs, which were defined as more than 3 SNPs within a 100-10,000 bp sliding                  

abcd 
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Table 3.6 Putative recombination windows in patients K4, K1 and K3.  

 

window, were identified (Table 3.6). In three of the nine patients’ isolates, dense regions of SNPs were                 

identified. In the remaining six patients’ isolates, no evidence of recombination or mutational hotspots              

were identified. 

 

Six SNPs were identified within a 976 bp window within two isolates from patient K4. This window                 

covers the genes PA3965 and PA3966, which both encode hypothetical proteins and are not within a                

known P. aeruginosa recombination hotspot. There are no records in the NCBI database which have a                

100% match with these recombined alleles, however, there are nine isolates from the bacteraemia dataset               

(Chapter 2), which do match 100% with these alleles. These are distributed across sequence types from                

across the whole population, suggesting that this is a frequently mutating or frequently recombining              

region. 

 

Eight SNPs within a 2,275 bp window were identified in eleven isolates from patient K1. These mutations                 

are in the phuR and phuS genes, which are responsible for haem uptake in P. aeruginosa. BLAST analysis                  

of both the NCBI collection and the BSAC collection indicate that this is a unique combination of alleles.                  

The eleven isolates that contain these alleles are all clustered in a region of the phylogeny that is                  

suspected to be descended from a hypermutator. Therefore, it’s possible that this combination of alleles in                

this 2,275 bp window have arisen due to hypermutation of that region. Knockout of the phuRS operon is                  

not fatal to P. aeruginosa, as compensation can occur by increasing pyocyanin siderophore production to               

 
123



Chapter 3 

scavenge for extracellular free iron in place of iron used by haem uptake (Kaur et al., 2008). This suggests                   

very few detrimental effects due to mutating this region. 

 

Three isolates from patient K1 also contain five SNPs within a 271 bp window that are contained within                  

the chemotaxic transducer gene pctA. This very small region of potential recombination occured in three               

isolates related to the acute-APE timepoint of the third exacerbation experienced by the patient. This 271                

bp DNA region also appears in the bacteraemia collection a total of 17 times. Eight of these isolates                  

belong to the international and high-risk ST175 clade, appearing in all of the isolates associated with the                 

Bristol hospital. The rest of the nine isolates that contain these SNPs appear across the P. aeruginosa                 

population. The chemotaxic transducer pctA is responsible for the detection of extracellular amino acids,              

which starts a cascade that leads to the motility of the bacterium towards that source (Reyes-Darias et al.,                  

2015). However, as P. aeruginosa develops into chronic infection, motility is often lost, suggesting that               

this may be an accumulation of mutations in a gene which is functionally redundant in these isolates                 

(Lozano et al., 2018). 

 

Five SNP-dense regions were identified within the patient K3 isolates. Two of these recombination              

regions only appear on one terminal branch of the K3 phylogeny. These recombination regions affect               

PA2439, and also appear in 14 bacteraemia isolates. Additionally, the regions affect PA4140, and also               

appear in seven bacteraemia isolates. These alleles of both genes are not found in the NCBI database.                 

They encode hypothetical proteins with no known function associated with them. 

 

A region of recombination is associated with ten isolates on one branch of the K3 phylogeny. This is                  

associated with the conserved hypothetical protein PA0095, which does not have a predicted function.              

Isolates that contain SNPs in this region appear at least once in every exacerbation the patient underwent,                 

meaning that this region of DNA was present both at the start and end of this study. These recombined                   

alleles appear with 100% identity in 185 complete P. aeruginosa genomes in the NCBI database,               

including the P. aeruginosa PAO1 reference genome, and with 100% identity in 80% of the bacteraemia                

isolates, suggesting that the rest of the K3 isolates have the variable PA0095 gene. The alleles present in                  

the rest of the K3 isolates have 100% identity with the P. aeruginosa LESB58 reference genome, a highly                  

virulent LES strain. This suggests that the ST3307 isolates in K3 may have obtained DNA from a LES                  

strain. 
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The region of recombination within the PA2526 gene is associated with a clade of five isolates in the                  

centre of the patient K3 phylogeny. PA2526 is also a conserved hypothetical protein with no predicted                

function. BLAST analysis of these alleles confirms their presence within the P. aeruginosa LESB58              

reference strain. The alleles belonging to the rest of the K3 isolates have 100% identity with the P.                  

aeruginosa DK2 reference genome. This is a highly virulent and highly transmissible strain of P.               

aeruginosa which has infected patients in many CF centres in Denmark (Rau et al., 2012). The DK2                 

strain of P. aeruginosa is closely related to the LESB58 strain, but has an additional 195 genes found                  

across 3 genomic islands (Rau et al., 2012).  

 

The region of recombination within the PA0257 gene is associated with a clade of three isolates situated                 

towards the root of the patient K3 phylogeny. This is also a hypothetical protein, and is predicted to have                   

integrase functionality. The gene sequence containing the 5 SNPs identified in the recombination area, is               

present with 100% identity in three NCBI whole-genome sequences. All three sequences were submitted              

to the NCBI database in 2019, and are all currently unpublished. However, the metadata associated with                

the submissions suggest these isolates were collected in North America, Africa, and Europe. These alleles               

are also found in 13 spatially and temporally diverse isolates from the bacteraemia dataset. 

 

Presence of hypothetical recombination regions from donors spread across the P. aeruginosa population,             

suggests that the chronic strains have been exposed to DNA from other P. aeruginosa since infection. The                 

subsequent lack of coinfection within the patient lungs suggests that there has been absolute exclusion of                

the donor P. aeruginosa within the lungs, and supports the current theory that only one strain of P.                  

aeruginosa establishes chronic infection. 

 

 

3.3.6 Gene presence-absence within the pangenome 

 

The SNP distribution in section 3.3.5 only accounts for diversity amongst the genetic material shared               

between each isolate and the corresponding reference sequence. Additional diversity can be identified by              

analysing the pangenome from within the genomic assemblies, which identifies variation between the             

gene content of each individual isolate. Very few studies have defined a pangenome within a CF patient,                 

and those that have, have defined the pangenome as the change in gene presence-absence over time                

(Bianconi et al., 2019).  
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The study by Bianconi et al in 2019 identified a core genome of 5,608 genes from 40 isolates collected                   

over a period of 8 years from one patient with CF (Bianconi et al., 2019). The Bianconi study identified                   

several blocks of variable gene content in the isolates over the 8 years. In this chapter, 10,861 genes were                   

identified within the collection of 4,094 isolates. Of these, 4,734 genes (43.6%) were identified as core                

genes, which are present in 99% or more of the isolates across all patients. The remaining 6,127 genes                  

were identified as accessory genes. The pangenome for the isolates from each individual patient was then                

calculated (Table 3.7). This resulted in a large core genome, and a small accessory genome, which is                 

consistent with a relatively clonal population within each individual population. The core genome             

composition ranged from 5,391 core genes (75.0%) in the isolates from patient K3, to 5,885 core genes                 

(95.9%) in the isolates from patient K15. 

 

 

Table 3.7 The components of each pangenome, calculated for each individual patient’s isolates.  

 

 

Figure 3.10 The correlation of each component of the pangenome with sample size for a) core genome, b) accessory                   

genome, c) pan genome. 
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Figure 3.11 The number of core genes was negatively correlated with the mean pairwise SNP distance. 

 

Figure 3.10 shows the correlation between each component of the pangenome with sample size. There               

was no statistically significant correlation between the number of core genes and the number of isolates                

(linear regression, p = 0.0734). There was a strong positive correlation between the number of accessory                

genes and the total number of isolates (linear regression, p = 0.0104), and between the number of total                  

genes and the number of isolates (linear regression, p = 0.0178). There was no correlation between the                 

number of accessory genes and the mean pairwise SNP distance (linear regression, p > 0.05). However                

there was a significant negative correlation between the number of core genes and the number of pairwise                 

SNPs (linear regression, p = 0.043) (Figure 3.11), suggesting that diversification occurs via both point               

mutation and the acquisition or loss of genes.  

 

 

3.3.6.1 Accessory genome 

 

Accessory genes were defined as genes present in ≤ 99% of isolates. The median number of novel genes                  

per isolate is reported in Table 3.8. On average, 1 - 2.5 novel genes are introduced per isolate per patient.                    

These novel genes could be evidence of variation introduced by genomic islands, phage, or plasmids, or                

could be due to noise as a result of assembly error. 

 

If all of the isolates from each patient infection were clonal, then all genetic variation within the                 

population should be as a result of SNPs. When defining the pangenome, every gene sequence that is                 

interrupted by a contig break is defined as a novel gene. Therefore, in order to investigate whether the                  

presence of accessory genes is due to contig breaks, the number of contigs were plotted against the                 

number of novel genes for each patient (Figure 3.12). Significant correlations (linear regression, p < 0.05)                
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were recorded for eight out of the nine patients, which suggests that much of the variation in the accessory                   

genome is down to assembly error. This is the case for the outlier isolates in patients K3, K4, K6 and                    

K11, which, due to the large number of contigs, have recorded a large number of accessory genes.  

 

For the isolates from patient K14, no significant correlation was identified. There also was no significance                

recorded between the number of contigs and the total number of accessory genes per patient. 

 

 

Table 3.8 Novel genes per isolate for each patient group. 

 

 

Figure 3.12 The number of contigs plotted against the number of novel genes in the isolates from each CF patient.                    

The red line is the line of best fit, where the association was significant. 
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Figure 3.13 Six major blocks of gene presence-absence are present in the pangenome of the isolates in patient K3,                   

which can distinguish between sub-populations. Blue = gene presence, white = gene absence. 

 

A single isolate from the patient K14 lung had a much larger number of novel genes that the other                   

isolates, even though the genome sequence was made up of an average number of contigs. These 88 novel                  

genes are related to a genomic island carrying efflux systems related to the Type IV efflux system in P.                   

aeruginosa. BLAST analysis of this genomic island indicated eight isolates in the sequencing databases              

that have over 90% query cover and over 99% identity with this region. These are all unpublished P.                  

aeruginosa genomes, which are globally spread. The earliest isolate was a bacteraemia isolate from the               

USA in 2001, and the other isolates included two sputum samples from the USA in 2006, three isolates                  

with no metadata, and two isolates collected from ocean samples in 2003 from Japan. The genomic island                 

also shares 73% query cover and 97% identity with a bacteraemia isolate found in Germany in 1985. This                  

suggests that this genomic island is globally spread and has persisted in P. aeruginosa for a long time.                  

BLAST analysis also identified several non-Pseudomonad matches with 67% query cover and 97%             

identity, from Delftia tsuruhatensis , Pandoraea apista, and Burkholderia multivorans .  

 

Plotting the gene presence and absence data for each isolate from patient K3 against the phylogeny                

identified six regions of contiguous gene presence or absence (Figure 3.13). These blocks could be               
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attributed to a particular lineage within the patient, suggesting that, whilst most of the accessory genome                

can be attributed to assembly error, there exists definite variation in the gene content of the isolates. Three                  

of the blocks of genes that were absent from the genome could be ascribed a function (type II secretion,                   

type VI secretion, and cell metabolism), and one block contained phage-related proteins that share 100%               

identity with the currently-unpublished P. aeruginosa L10 genome. The other two blocks encoded an              

assortment of hypothetical proteins.  

 

The Type VI secretion block of genes, and the phage proteins, appear to have been acquired, as the genes                   

are absent towards the root of the phylogeny. The area related to cell metabolism appears to have been                  

lost from the isolates, as they are present towards the root of the phylogeny, and absent as the phylogeny                   

develops. 

 

The cell metabolism block represents a loss of 48 kbp, spanning PA1957 - PA2002 in the P. aeruginosa                  

PAO1 reference genome. In this region is the well-characterised and highly-conserved PQQ pathway,             

which produce redox cofactors that allow the non-glycolytic production of ATP in bacteria, most notably               

from alcohol dehydrogenase enzymes (Barr et al., 2016; Puehringer et al., 2008). This region also               

encodes the exaABC operon, which is responsible for the oxidation of ethanol (Crocker et al., 2019), and                 

the corresponding regulatory network (Mern et al., 2010). As well, this region encodes the dhcABR               

operon and atoBE operon, a knockout of which prevents growth of P. aeruginosa on the carbon source                 

L -carnitine, and leads to reduced growth when P. aeruginosa uses L-phenylalanine as a source of               

acetyl-CoA (Palmer et al., 2010). Within the CF lung, L -carnitine and choline, and their subsequent               

alcohol catabolites, leads to the induction of certain virulence factors (Wargo, 2013). A knockdown of the                

ability to produce virulence factors is an indicator of a switch to chronic infection. 

 

The region labelled as Type II secretion involves a localised 41 kbp deletion, spanning PA0685 - PA0710.                 

The start of this region involves a deletion of the majority of the hxc Type II secretion system, along with                    

the secreted substrate. The hxc system was the second T2SS identified in P. aeruginosa, and has been                 

found to secrete the lapA and lapB alkaline phosphatase enzymes under phosphate-limiting growth             

conditions (Cadoret et al., 2014). This operon is located next to a region containing several secreted                

virulence factors, such as the pdt, phb, and exb exoenzymes (Quesada et al., 2016). Finally, the other                 

deleted genes include toxR, a regulator of secreted virulence exoenzymes (Wozniak et al., 1987), migA,               

involved in the biosynthesis of outer-core oligosaccharides (Poon et al., 2008), and the cat              
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chloramphenicol resistance gene (Beaman et al., 1998). As previously, the loss of virulence factors is               

typical of the P. aeruginosa switching from acute to chronic infection. 

 

The region labelled Type VI Secretion System indicates an acquisition of a 43 kbp region, which                

corresponds to PA2341 - PA2376 in the P. aeruginosa reference genome. This area includes 13 genes of                 

one of the T6SS in P. aeruginosa (Sana et al., 2013). Also in this region are the mtl genes, which are                     

responsible for mannitol utilisation (Bruker et al., 1998), and the msu genes responsible for the utilisation                

of organosulfonates (Tata et al., 2016). In order to identify a donor strain of this region of DNA, BLAST                   

was used to compare the acquired DNA sequences with the nucleotide sequence database. The nucleotide               

sequence was found to have a 100% query cover and a 99.77% identity with the P. aeruginosa LESB58                  

reference genome. This, along with the LESB58-like blocks identified in the recombination analysis,             

suggests that the ST3307 isolates have come into contact with the LES strain within the lung of patient                  

K3, before outcompeting the strain to become the dominant, chronic clone. Replacement of established              

chronic infection by LES isolates have been documented in the literature due to their high virulence and                 

transmissibility (McCallum et al., 2001; Fothergill et al., 2012). It is therefore possible that patient K3 has                 

been chronically infected by the ST3307 strain, subsequently come into contact with the LES strain, but                

the LES strain has failed to replace ST3307 as the dominant strain within the lungs. It is during this                   

process that genetic material could have been passed between the two isolates, the signatures of which                

have been observed in this analysis. 

 

Two blocks of gene presence-absence were also associated with a lineage in the isolates from patient K9                 

(Figure 3.14). The smallest block of 15 kbp covered genes PA3453 - PA3462 in the P. aeruginosa PAO1                  

reference genome. These encode hypothetical proteins with no known function. The other block is              

comprised of 21 kbp, and covers genes PA0287 - PA0303 in the P. aeruginosa PAO1 reference genome.                 

These regions include the gpuARP operon, which converts 3-guanidinopropionate into acetyl-CoA to be             

used in the TCA cycle (Nakada & Itoh, 2005). The aguABR operon is also in this deleted regions, which                   

is responsible for converting agmatine into putrescine (Nakada & Itoh, 2003). Also in this region is also                 

part of the spu operon (spuA, B, C, D, E, and I), which, when deleted, prevents uptake and utilisation of                    

the polyamine spermidine (Lu et al., 2002). This has been shown to decrease virulence and decrease the                 

utilisation of T3SS under lab conditions, which is typical of a switch from acute to chronic infection                 

(Wang et al., 2016).  
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Figure 3.14 Two major blocks of gene presence-absence which are related to specific lineages in the K9 patient are                   

highlighted. Blue = gene presence, white = gene absence. 

 

No further patterns of gene presence-absence occurred with any particular lineage in the remaining              

patients. In each case, the apparent accessory genome was randomly dispersed throughout the phylogeny,              

suggesting that the presence of the observed accessory genome is due to noise from errors in genome                 

assembly or from random loss of single genes.  

 

 

3.3.7 Context of CF isolates within the P. aeruginosa population 

 

PA14-like isolates are typically characterised by the presence of the ExoU virulence protein, and              

PAO1-like isolates are characterised by the presence of the ExoS virulence protein. ExoU-positive             

isolates are often selected against in the airways of CF patients because the ExoU virulence protein is                 

more toxic than ExoS, and has been linked to more acute organ damage, leading to an increase in                  

morbidity (Feltman et al., 2001). The ExoS and ExoU status of all of the isolates in this chapter were                   

determined, to confirm where the isolates from this study fit within the global P. aeruginosa population                

structure. Both ExoS and ExoU proteins were absent in one isolate from patient K6, however, all other                 

isolates were ExoS positive and ExoU negative suggesting that all of the isolates are PAO1-like, and that                 

no PA14-like isolates were found within these patients.  
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The bacteraemia P. aeruginosa isolates from Chapter 2 were found to be a good representation of the                 

population structure of P. aeruginosa (Chapter 2, section 2.3.3). Therefore, a maximum-likelihood tree             

was calculated using one representative isolate from each patient and the 352 isolates of the bacteraemia                

collection in Chapter 2 (Figure 3.15). This confirmed that the isolates from the patients in this chapter sit                  

within the PAO1-like clade. These PAO1-like isolates are well dispersed within the PAO1-like clade,              

suggesting that they do not form part of a local epidemic clade. 

 

The isolates from the two patients harbouring the MES strain, patients K1 and K14, appear to be                 

interspersed within the five MES isolates that were identified within the bacteraemia dataset (Chapter 2,               

section 2.3.2). In order to investigate this further, a local tree was calculated from the five bacteraemia                 

isolates and ten diverse isolates from each of the patients infected with MES (Figure 3.16). The resulting                 

phylogeny indicates that the separate patient infections are distinct from each other. The K14 MES               

isolates are related to the bacteraemia isolates by a minimum of 2,271 SNPs, and to the K1 isolates by a                    

minimum of 2,680 SNPs. This suggests that the two MES clones infecting patients K1 and K14 have been  

 

 

Figure 3.15 A maximum-likelihood tree showing how each representative isolate from each patient with CF patient                

sits within the PAO1 population structure of P. aeruginosa. Blue = ST217 MES isolates (patients K1 and K14), red                   

= ST146 LES isolates (patients K7, K9, K11 and K15), yellow = ST3307 isolates from patients K3 and K6, green =                     

ST3308 isolates from patient K4. 
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Figure 3.16 A MES phylogeny was calculated from the five MES bacteraemia isolates, and ten MES isolates from                  

each of patients K1 and K14. The colour indicates the source: Orange = CF patient K14, Purple = bacteraemia study,                    

Green = CF patient K1. 

 

evolving separately over a long time. The K1 isolates were related to the BSAC isolates by a minimum of                   

408 SNPs, suggesting that there has been no recent transmission between patients with bacteraemia in the                

Chapter 2 dataset and patient K1, and that all infections were distinct and separate. 

 

Comparing accessory genomes of the three different groups of isolates indicate the presence of 201 genes                

in the K14 isolates that are not present in the BSAC or K1 isolates. These genes are related to mobile                    

DNA sequences; phage, Type II Secretion Systems, integrons, and transposons, suggesting that the             

majority of the variation separating patient K14 from the BSAC and patient K1 isolates has been                

externally acquired. The patient K1 and BSAC isolates were found to harbour a bacteriophage which is                

not present in the K14 isolates. There was no obvious variation in the accessory genomes of the BSAC                  

and K1 isolates, suggesting that the variation between these isolates has been solely caused by the                

accumulation of SNPs over time. 
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3.3.8 Patient-to-patient transmission 

 

There are three patient groups that share similar closely-related isolates, as identified in section 3.3.2. The                

first group consists of patients K1 and K14, who are both infected with the MES strain, ST217. In order to                    

investigate whether one of the patients could have transmitted the strain to the other, all K1 and K14                  

isolates were mapped to a local reference, and pairwise SNP distances between every isolate from K1 and                 

every isolate from K14 were calculated. The mean pairwise SNP distance was 2,737 SNPs, with a                

minimum distance of 2,680 SNPs. This suggests that although both patients were infected with the same                

ST, the two patients harbour individual, independent infections. The outgroup-rooted          

maximum-likelihood phylogeny of the patient K1 and K14 isolates confirm that these patients are              

infected with separate and distinct populations of isolates from separate infection sources (Figure 3.17). 

 

The second group of closely-related isolates were collected from patients K3 and K6, both of whom are                 

infected with the same novel ST, ST3307. Calculated pairwise SNP distances indicated a mean of 65                

SNPs, with a minimum of 24 SNPs. This suggests that the isolates infecting both patients may share a                  

relatively recent common ancestor, which could represent a local circulating strain. The outgroup-rooted             

maximum-likelihood phylogeny of the K3 and K6 isolates mapped to a local reference, indicate that the                

K6 isolates form a nested clade within the isolates from patient K3 (Figure 3.18). This is a strong                  

indicator of cross-infection between the two patients (Prosperi et al., 2011). 

 

 

Figure 3.17 An outgroup-rooted maximum-likelihood phylogeny of the K1 (yellow) and K14 (blue) isolates, which               

indicates two distinct and diverged populations. 
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Figure 3.18 Outgroup-rooted phylogeny of patient K3 (blue) and patient K6 (orange) isolates, which indicates that                

the K6 isolates are nested within the isolates from patient K3. This could be an indication of transmission. 

 

The final group of closely-related isolates are the LES (ST146) isolates, which were collected from               

patient K7, K9, K11 and K15 sputum samples. The isolates were mapped to the gold-standard reference                

strain P. aeruginosa LESB58, a LES isolate first identified in 1988, and sequenced in 2005 (Salunkhe et                 

al., 2005). The pairwise SNP distances between the isolates from these four patients were calculated and                

are reported in Table 3.9. Patient K7 and K15 share the fewest pairwise SNPs, with a minimum of 4                   

SNPs, a maximum of 19 SNPs, and a mean of 9 SNPs separating the two groups of isolates. This small                    

number of SNPs may indicate a recent shared common ancestor and potential transmission or common               

infection source. 

 

 

Table 3.9 Pairwise SNP distances between each pair of patients infected with LES. 
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Figure 3.19 Maximum-likelihood tree of patients K7 (blue) and K15 (orange), which shows that each patient’s                

isolates are monophyletic. 

 

An outgroup-rooted maximum-likelihood tree of the K7 and K15 isolates was calculated, to investigate              

any potential crossover and transmission of isolates between the patients (Figure 3.19). The tree structure               

is monophyletic for both K7 and K15, with no crossover of isolates. The clinical data (not shown) indicate                  

that both of these patients developed chronic P. aeruginosa infection whilst undergoing treatment at              

Papworth Hospital. Without further epidemiological evidence, it cannot be determined how the patients             

both obtained this strain; whether one patient transmitted to another directly, they both picked up an                

infection from a different patient at Papworth Hospital, or whether they picked up the same circulating                

clone from the environment.  

 

The intrapatient diversity within both the 373 K7 isolates and the 189 K15 isolates, is also small (refer                  

back to Table 3.5). Within the K7 population, the mean pairwise distance is 5 SNPs, with a maximum                  

pairwise distance of 19 SNPs. Twelve of the isolates are identical, and differ by 0 SNPs overall. Within                  

the K15 population, 28% of the isolates are identical, and differ by 0 SNPs. The mean pairwise distance                  

of the K15 isolates is 1.3 SNPs, with a maximum pairwise distance of 8 SNPs. The high proportion of                   
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identical isolates in the patient K15 group suggests that this strain has not had time to diversify within the                   

lungs of the host, which is evidence of a recent infection. This supports the clinical observation that                 

patient K15 had developed this chronic infection recently. 

 

The remaining isolates from the LES patients show no indication of recent transmission, with the               

minimum pairwise SNP distance ranging from 35 SNPs between the isolates from patients K11 and K15,                

to 49 SNPs between the isolates from patients K9 and K15. 

 

 

3.3.8.1 Estimating date of infection 

 

Each patient phylogeny was tested for temporal signal to investigate whether it is possible to date back to                  

the time of infection of the individual patients. Temporal signal was only present for the K1, K3 and K9                   

isolates. This indicates that the genetic diversity seen within the other patient isolates does not correlate                

with the phylogeny structure and the date of sampling. Temporal signal could be improved with a                

sampling period greater than 6 months, to capture more temporal diversity. To investigate any potential               

transmission, temporal signal was also tested for within the K1 and K14 MES group of isolates, the K7                  

and K15 LES isolates, and for the K3 and K6 isolates. Temporal signal was present in all of these groups                    

of isolates. Each outgroup-rooted phylogeny was dated three independent times and reported in Figure              

3.20.  

 

The MRCA of both the K1 and K14 MES isolates was predicted to be 8.4 to 10.0 years ago. Since the                     

minimum SNP distance between the two groups of isolates is 2,680 SNPs, this time to MRCA would                 

require a mutation rate that is 53x greater than the average P. aeruginosa mutation rate of 2.5                 

SNPs/genome/year (Marvig et al., 2013). Mutation rates of 40-60x higher than the average have been               

previously identified in patients infected with hypermutator strains (Feliziani et al., 2014).  

 

Pairwise SNP distances showed that patients K7 and K15 have both acquired a transmissible strain               

recently. Dating of the K7 and K15 patient groups estimated a time to MRCA of 0.54 to 1.12 years prior                    

to the study collection period. This recent acquisition is confirmed by the clinical data (not shown), which                 

abcde 
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Figure 3.20 The time to MRCA was estimated for the isolates from each of the patient groups which had temporal                    

signal. The consensus confidence intervals shared by all tests, run in triplicate, are highlighted with a grey box, and                   

the mean time to infection is indicated by a blue dotted line.  

 

indicates the patients became chronic at Papworth hospital. However, further epidemiological data would             

be required to identify whether one patient transmitted directly to the other, or whether both patients                

picked up a circulating clone separately. 

 

The K6 isolates are nested within the isolates from patient K3, which could also indicate transmission                

between the two patients (refer back to Figure 3.18). There was a minimum of 24 SNPs between isolates                  

from the two patients, which would assume a time to MRCA of 5-10 years at constant and average                  

mutation rates. The Bayesian dating of the K6 phylogeny, outgroup-rooted by the nearest clade of K3                

isolates (Figure 3.21), suggested a time to MRCA of 0.71 - 1.74 years prior to the start of the study. Since                     

the transmission event could have occurred any time between the MRCA of the K3 and K6 isolates, and                  

the MRCA of the K6 isolates only, the lower confidence interval was adjusted to encompass the dating of                  

the MRCA of the K6 isolates only. Therefore, the suggested time to transmission is 0.33 - 1.74 years prior                   

to the start of the study. 

 

Patient K9 contains the greatest number of isolates out of the four patients infected with the LES strain,                  

but the lowest diversity. The Bayesian time to MRCA is predicted to be 6.4 to 9.7 years, suggesting that                   

these isolates capture the majority of the diversity within the patient K9 lung, and there has been no                  

increase in mutation rate compared to the standard average rate. 
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Figure 3.21 The K6 phylogeny (orange) outgroup-rooted with the nearest K3 isolates (blue). Temporal signal was                

present (R2 = 0.26, p = 0.0001). 

 

Bayesian dating of the patient K3 isolates predicted a time to MRCA of 4.8 to 6.4 years prior to the start                     

of the study, which suggests that there is an elevated mutation rate for these isolates, of between 2x and                   

8x. 

 

An elevated mutation rate is also a plausible explanation for the diversity observed within the isolates                

from patient K1. Using Bayesian dating, the time to MRCA of the K1 isolates was 3.4 to 4.0 years before                    

the study period. This requires a mutation rate of roughly 4x the standard for P. aeruginosa. The MRCA                  

for the K1 and K14 isolates combined was estimated to be 8.4 - 10.0 years ago, which is prior to the time                      

patient K1 is estimated to have obtained the infection. This therefore suggests that patient K1 did not                 

directly transmit the infection to patient K14 and vice versa. 

 

The high mutation rates identified in the isolates from patients K1, K3, and from the patient group K1 and                   

K14, is a further indicator of the hypermutation phenotype having occurred during the evolution of the                

isolates within the patient lung (see section 3.3.4). Therefore, it’s entirely possible that the entire diversity                

of infection within the lung has been captured after hypermutation has been taken into account. It is                 

unlikely that the isolates from patient K9 contain hypermutators, since the time to MRCA is consistent                

with a normal mutation rate. For the K7 and K15 isolates, additional clinical evidence suggests that these                 

patients recently became chronic whilst at Papworth hospital, and therefore the dating of a MRCA of 0.54                 

to 1.12 years ago is likely to be accurate. This timeframe is similar to the time to MRCA of the K6                     
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isolates, which were potentially transmitted from K3 between 0.33 and 1.74 years prior to the sampling                

period. 

 

The age of each patient at the time to MRCA would be 26-27 for patient K1, 26-27 for patient K3, 26-30                     

for patient K9, and 23 for patient K6. If both of the K7 and K15 patients developed chronic infection                   

roughly one year before the study period, then they would have been 51 and 18, respectively. A                 

retrospective cohort analysis of 27,000 CF patients in the USA between 2002 and 2012, indicated a                

median age of chronic infection development of 20.0 years of age, with an interquartile range of 13.0-29.0                 

(Crull et al., 2018). The majority of infections within this study can be dated to a similar age. 

 

However, it is possible that this study has not captured the entire diversity from the original infection. If                  

there is strong selective pressure in the lungs, which drives replacement of lineages within the lungs, the                 

diversity sampled will have arisen long after the point of original infection, and therefore the time to                 

MRCA observed in this dataset may be later than the original point of infection. The CF lung is a                   

complex environment, with many selection pressures. These include lung inflammation with the            

corresponding immune response, administration of antibiotics to combat infection, and competition from            

other microbes found within the lungs (Caballero et al., 2015). However, several studies have identified               

that the lineages within the CF lung are resilient and resistant to these pressures, and are stable over time                   

(Fodor et al., 2012; Tunney et al., 2011; Mowat et al., 2011), and therefore the time to MRCAs estimated                   

in this study may capture the original point of infection. 

 

 

3.3.9 Phylogenetic clustering with exacerbation state 

 

Clustering of exacerbation state timepoints was observed when displayed next to the maximum-likelihood             

tree from section 2.2 (Figure 3.22). It is therefore possible that, in some cases, some lineages may be                  

being replaced between exacerbation and exacerbation timepoints. Therefore, statistical analysis was           

carried out to investigate the extent of lineage replacement. 

 

The maximum-likelihood tree of the isolates from patient K1 shows a non-random clustering of              

exacerbation ID and exacerbation time point (Figure 3.23). Similar patterns are seen within the isolates               

from all other patients, however missing data from some exacerbation timepoints for some patients (see               

section 3.3.1) results in a more skewed clustering pattern. 
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Figure 3.22 A maximum-likelihood tree with exacerbation state timepoints displayed alongside.  

 

 

 

 

 

Figure 3.23 A maximum-likelihood tree of isolates from patient K1 with exacerbation state timepoints displayed               

alongside. 
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Table 3.10 λ values and D-statistic values for each exacerbation time point. Grey boxes indicate that the value                  

cannot be calculated.  

 

An estimate of the phylogenetic signal was calculated to determine whether the exacerbation state              

clustering patterns are distributed randomly. Two methods were used to calculate the phylogenetic signal;              

Pagel’s λ (Pagel, 1999), and the Purvis and Fritz D-statistic (Purvis and Fritz, 2010) (Table 3.10). 

 

The Pagel’s λ value measures the extent to which correlations in traits reflect their shared evolutionary                

history. A Pagel’s λ value of 0 indicates that the trait is randomly distributed throughout the tree, whereas                  

values close to 1 indicate that the trait has evolved with phylogenetic signal. The majority of the                 

exacerbation state timepoints had Pagel’s λ values close to 1, which suggests phylogenetic signal. 

 

The Purvis and Fritz D-statistic builds upon Pagel’s λ, and measures the evolution of phylogenetic signal                

specifically for binary traits. A D-value of 1 indicates that the trait has evolved randomly, whereas a                 

D-value of 0 indicates that the trait has evolved randomly, but with phylogenetic Brownian Motion. A                

D-value of > 1 indicates that the trait is overdispersed throughout the phylogeny, whereas a D-value of <                  

0 indicates that the trait is clustered in the phylogeny. Although the D-values are slightly higher than                 

would be expected for the corresponding Pagel’s λ value, the phylogenetic signals calculated from both               

Pagel’s λ and the Fritz and Purvis D-statistic are correlated (correlation: -0.637, R2: 0.389) (Figure 3.24). 
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Figure 3.24 The λ values plotted against the D-statistic values for each exacerbation time point. The red line is the                    

theoretical correlation line between the λ value and D-statistic, and the blue line is the observed regression line. 

 

Strong signals of phylogenetic clustering (D < 0) for the third exacerbation are present in the isolates from                  

patient K1, and for the first exacerbation in patient K4. This suggests that the lineage architecture of the                  

P. aeruginosa population may be affected in the time between exacerbations. To investigate this further,               

the K1 phylogeny was clustered using FastBaps (Figure 3.25a), and the frequency of isolates in each                

cluster were plotted and highlighted by APE timepoint (Figure 3.25b). In total, 11 FastBAPs clusters were                

identified, and vary in size from nine isolates in cluster 7, to 310 isolates in cluster 4. FastBAPs cluster 2                    

is highly associated with the third exacerbation that patient K1 experienced. Over 70% of the isolates in                 

cluster 2 are associated with that exacerbation. Cluster 4 is the largest cluster, and is associated roughly                 

equally with the first and second exacerbation. Cluster 5 is associated with the first exacerbation only,                

however, the Purvis and Fritz D-statistic showed that this was not significant, as the isolates are spread                 

across the first five clusters. 

 

This analysis was repeated with the patient K4 isolates, as the Purvis and Fritz-D values indicated                

clustering within the phylogeny (Figure 3.26). The isolates are separated into fewer clusters than patient               

K1, but the range of isolates is similar, with nine isolates associated with cluster 2, and 280 isolates                  

associated with cluster 4. The first exacerbation that the patient experienced was associated most with               

BAPs cluster 5, where nearly 60% of the isolates are associated with the first exacerbation. During the                 

progression from the first exacerbation to the second exacerbation, the BAPS cluster 5 reduces in               

prevalence, to be replaced by BAPs cluster 4 and 6 as the main clusters for the second exacerbation state.                   

However, the D-value for the second exacerbation indicates a stronger degree of random phylogenetic              

adventure 

 
144



Chapter 3 

 

Figure 3.25 a) The K1 phylogeny clustered by FastBAPs, with cluster 1 to cluster 11 from left to right. b) The                     

frequency of isolates plotted against each FastBAPs cluster, and coloured by the exacerbation number.  
 

 

 

Figure 3.26 a) The K4 phylogeny clustered by FastBAPs, with cluster 1 to cluster 8 from left to right. b) The                     

frequency of isolates plotted against each FastBAPs cluster, and coloured by the exacerbation number. 
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clustering. The isolates that form the third exacerbation generally follow the lineage architecture of the               

second exacerbation, with a drop in prevalence of BAPs cluster 6. 

 

These two examples suggest that lineage architecture can be affected between different APEs. No              

clustering was identified for the patient K1 and K4 individual timepoints within the clustered              

exacerbation, suggesting that the population of isolates from stable, acute, and recovery time points are               

unaffected. The majority of timepoints for isolates from patients K3, K6, K7 and K9 suggest a weaker                 

degree of clustering, which is evidence of random distribution throughout the phylogeny. All timepoints              

from patients K14 and K15 had high signals of random distributions throughout the tree, which suggests                

there is no evidence of lineages appearing or disappearing. This means that the process of undergoing an                 

APE, and subsequent treatment, do not generally affect the architecture of P. aeruginosa lineages within               

the CF lung. There was also no phylogenetic clustering of the acute, recovery, or stable timepoints across                 

all of the APEs. 

 

 

3.3.10 AMR prediction 

 

CF lung infections are often resistant to antibiotics. Therefore, in order to inform antimicrobial therapies               

that might be most effective against CF lung infection, the variation and diversity of AMR genotypes                

within the 4,094 P. aeruginosa isolates was investigated. Although there is no phenotypic AMR data for                

the isolates in this study, predictions of AMR can be made from the DNA sequence by investigating                 

known resistance genes and gene variants.  

 

3.3.10.1 Mex efflux systems 

 

A strong lineage distinction was observed for the presence of several AMR genes (Figure 3.27). The                

majority of predicted genes and gene variants that may confer AMR in this dataset belong to the                 

RND-family of efflux pumps, called multidrug efflux pumps (Mex pumps). The Mex systems account for               

28 of the 50 (56.0%) predicted AMR genes and gene variants present in the 4,094 isolates. These efflux                  

pumps can make treating P. aeruginosa infections more difficult, especially when they are overexpressed,              

as they confer resistance to several classes of antibiotics. Overexpression of efflux systems is relatively               

common in P. aeruginosa, as very little fitness costs are associated with overexpression (Pacheco et al.,                

2017). In total, nine Mex efflux systems were predicted within the 4,094 isolates (Table 3.11).  
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Figure 3.27 Predicted genes and gene variants associated with AMR displayed next to a maximum-likelihood SNP                

phylogeny of every isolate in this study. Blue = present; red = absent. 

 

 

 

Table 3.11 Mex-class multidrug efflux pumps are predicted within the genome sequences of the 4,094 CF isolates,                 

which confer resistance to a number of antibiotic classes. 
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The only efflux pump that is constitutively expressed within P. aeruginosa is MexAB-OprM (Verchere              

et al., 2015). This is a non-specific efflux pump that is capable of expelling most classes of antibiotics                  

from the cell. MexB is one of the components of the MexAB-OprM system, and is responsible for                 

substrate recognition. Absence of mexB should result in antibiotic susceptibility, as the membrane             

complex cannot properly form (Lomovskaya et al., 1999). However, mexB is absent from nearly all               

isolates in patients K1, K3 and K6, suggesting that this efflux pump may be ineffective in these patients.                  

All regulators of the MexAB-OprM efflux, mexR, armR, nalC, nalD and cpxR are present in all patient                 

groups, suggesting that the efflux pump is not overexpressed in the patients where mexB is present,                

suggesting increased resistance due to overexpression of this efflux pump is not prevalent in this dataset                

(Rojo-Molinero et al., 2019).  

 

The MexY and OprM proteins, which form part of the MexXY-OprM efflux system responsible for               

resistance to the aminoglycoside antibiotics (Morita et al., 2012), were encoded within all 4,094 genomes.               

However the MexX membrane-binding protein was completely absent in all cases, suggesting that this              

efflux pump may also be ineffective. The MexZ regulator protein of the MexXY-OprM efflux system is                

absent in all patients except patient K4, suggesting that it would be overexpressed in the other patients if                  

the full MexXY-OprM efflux system was present. 

 

In the LES isolates (patients K7, K9, K11 and K15), the MexF substrate recognition protein of the                 

MexEF-OprN complex is absent in most isolates. However, all of the isolates that do not contain mexF do                  

encode emrE, which can replace MexEF-OprN function and restore aminoglycoside resistance (Li, 2003).             

The repressor of the MexEF-OprN efflux pump, mexS, is present in all of these isolates, and the                 

MexEF-OprN activator, mexT, is absent in 99% of isolates (Sobel et al., 2005). These gene knockouts                

have been shown to induce susceptibility to substrate antibiotics (Fargier et al., 2012). 

 

The efflux systems MexCD-OprJ, MexGHI-OpmD, MexJK-OprM, MexMN-OprM, MexPQ-OpmE, and         

MexVW-OprM were predicted to be present in all 4,094 isolates, potentially providing resistance to a               

number of classes of antibiotics. However, AMR phenotyping and transcriptomic studies would be             

required to determine resistance and link that to efflux activity. 
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3.3.10.2 Non-Mex efflux systems 

 

 

Table 3.12 Non-Mex multidrug efflux pumps are predicted within the genome sequences of the 4,094 CF isolates,                 

along with the antibiotic classes these efflux pumps confer resistance to. 

 

P. aeruginosa isolates can also encode other non-Mex efflux pumps. In total, three non-Mex efflux pumps                

are predicted within the 4,094 isolates within this dataset (Table 3.12). Both the MuxABC-OpmB efflux               

system and the TriABC-OpmH efflux system are present in the majority of isolates. The MuxABC-OpmB               

system is an efflux pump that is involved in general pathogenesis of P. aeruginosa, however, studies have                 

indicated that this efflux system also confers resistance to monobactams, macrolides and tetracycline             

classes of antibiotics (Yang et al., 2011a). The TriABC-OpmH efflux system confers resistance to              

triclosan. Additionally, the single-protein exporter protein, PmpM, which confers resistance to the            

fluoroquinolones is also encoded in all patients.  

 

The absence of the oprD porin confers a basal level of resistance to the carbapenem antibiotics (Li et al.,                   

2012). This gene is absent in all patients, except for 2% of isolates in patient K1, and 95% of isolates in                     

patient K14. However, clinical-levels of carbapenem resistance require a further mechanism of resistance             

on top of oprD mutations, which aren’t seen on the genetic level in this dataset (Shariati et al., 2018). 

 

 

3.3.10.3 Additional mechanisms of resistance  

 

Nearly 92% of the isolates from patient K1 and 88% from patient K14 carry the plasmid-encoded crpP                 

gene, which is a ciprofloxacin modifying enzyme (Chavez-Jacobo et al., 2018). Within the patient K1 and  
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Figure 3.28 The mobile genetic element in which crpP is encoded. Green = integrating conjugative element                

proteins, Purple = DNA binding/helicase proteins, Blue = Hypothetical Proteins, Orange = Type IV secretion               

machinery, Red = crpP resistance gene. 

 

K14 dataset, there is only a 28% prevalence of plasmids assembled from the raw sequencing data, all of                  

which carry the crpP gene. The crpP gene has been known to integrate into the chromosome, which may                  

explain the difference between the plasmid prevalence and the prevalence of this gene in these isolates                

(van Belkum et al., 2015; Galetti et al., 2019). In the isolates where the gene is not plasmid encoded, the                    

crpP gene is located in a 22 kbp integrative conjugative element (Figure 3.28). These integrative               

conjugative elements are typically transferred to neighbouring bacteria by conjugation, and encode            

helicase, and Type IV secretion machinery to facilitate transfer (Johnson & Grossman, 2014). 

 

Ten additional resistance genes and gene variants were predicted within isolates in this study, and are                

summarised in Table 3.13. All 4,094 isolates are predicted to contain AMR genes which encode;               

fosfomycin resistance through FosA; aminoglycoside resistance through the aminoglycoside modifying          

enzyme aph(3’)-IIb; oxacillin resistance through the blaOXA-50 oxacillinase; cephalosporin resistance          

through the Pseudomonas -derived cephalosporinase PDC; bicyclomycin resistance through Bcr-1; and          

polymyxin resistance through ArnA and BasR.  

 

Additionally, 97.5% of all isolates encode the chloramphenicol acetyltransferase catB7, which confers            

resistance to chloramphenicol. Finally, every isolate from patient K1 include mutations in gyrA and parE               

genes, which confer additional resistance to the fluoroquinolones. 
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Table 3.13 Resistance-conferring genes and gene variants are predicted within the genome sequences of the cystic                

fibrosis isolates, along with the antibiotic classes these genes and gene variants confer resistance to. 

 

 

 

Figure 3.29 The number of AMR genes or gene variants predicted within the genome for each class of antibiotics. 
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The AMR genes predicted in this dataset confer resistance to a total of 15 different antibiotic classes.                 

Many isolates carry several different genes that may confer resistance to the same antibiotic class (Figure                

3.29), for example all isolates within this dataset carry over 20 different genes or gene variants that may                  

confer resistance to macrolide antibiotics.  

 

The variation in resistance-causing gene content within the isolates, especially for patient K4, suggests              

that some lineages will have a competitive advantage should the antibiotic treatment change for the               

patient. When there is no variation in predicted resistance, such as for patients K14, K3 and K6, there is                   

no strain that will have a competitive advantage if the antibiotic treatments change. 
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3.4 Discussion  

 

In this study, 4,094 P. aeruginosa isolates from nine patients with CF were whole-genome sequenced to                

try and develop a greater understanding of within-host diversity and changes in the diversity of isolates                

across APEs. Initially, the genomes of all 4,094 isolates were clustered and characterised. This showed               

that each patient was infected with their own, single, distinct strain of P. aeruginosa, but that different                 

patients were infected with the same ST. This is in agreement with the current understanding of P.                 

aeruginosa lung infection; when a patient picks up a chronic P. aeruginosa strain, they remain infected                

with that strain, and only that strain, for the majority of their life (Fothergill et al., 2012). 

 

MLST typing of the isolates from each patient identified four patients who were infected with the                

Liverpool Epidemic Strain, which is a highly-virulent and highly-transmittable strain found in clinical CF              

settings across the UK (Salunkhe et al., 2005). Two patients were infected with the Manchester Epidemic                

Strain, which is another highly-virulent and highly-transmissible UK-wide strain (Ashish et al., 2012). No              

other specially-adapted epidemic strains that have been previously identified from the midlands,            

Denmark, Australia, USA, or Canada were isolated during this study (Duong et al., 2015). Three other                

patients were infected with previously-undescribed, novel STs. Two of the patients harboured isolates             

belonging to ST3307, and the other patient harboured isolates belonging to ST3308.  

 

Strains of P. aeruginosa across both of the PAO1-like and PA14-like P. aeruginosa populations are able                

to infect patients with CF and adapt to the CF lung (Jeukens et al., 2019). Typically, more PAO1-like than                   

PA14-like infections are found within patients with CF, as the more-toxic ExoU-positive PA14-like             

isolates are associated with a higher and more-rapid morbidity (Shi & Kan, 2015). The different STs                

identified in this study are deeply diverged from each other, but are only spread throughout the P.                 

aeruginosa PAO1-like population. None of the strains formed part of the PA14-like population, or other               

P. aeruginosa subspecies. 

 

In addition to the between-host population structure, the within-host population structure for each patient              

was investigated. Evidence of divergent, co-existing lineages of P. aeruginosa were identified in patients              

K1, K4, and K11, which were characterised by the presence of two distinct populations of isolates that                 

diverged at a basal node. This suggests that separate populations of isolates were sampled, most likely                
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from isolates inhabiting separate niches within the lung. Divergent and co-existing lineages from within a               

single patient lung have been previously recorded, but sparsely studied (Williams et al., 2015). 

 

Bayesian dating was also used to estimate the date of potential transmission events between patients.               

Transmission was suspected between patients K7 and K15, as the population of isolates are only diverged                

by a mean of 9 pairwise SNPs. Bayesian dating suggests that the time to the MRCA between patient K7                   

and K15 was 0.54 to 1.12 years prior to the study. However, the outgroup-rooted phylogeny was split at a                   

basal node into a distinct clade for each patient. This would suggest that the two infections were picked up                   

at a similar time. However, in order to investigate if this was due to transmission from patient to another,                   

or if both patients picked up a circulating clone, further epidemiological data and historical isolates would                

be required. 

 

It is likely that transmission of P. aeruginosa occurred between patients K3 and K6 however. The                

combined phylogeny of patient K3 and K6, indicated that the isolates from patient K6 were nested within                 

the isolates collected from patient K3. The two populations of isolates were separated by a minimum of                 

24 SNPs, which is a strong indicator of recent transmission. Bayesian dating of the MRCA node between                 

the two patients indicated a time to MRCA of 0.71 to 1.74 years prior to the study. This is roughly around                     

the same time that both patient K7 and K15 patients were estimated to have acquired their strains.                 

Transmission is unlikely to have occurred between patient K7 and K15. 

 

Patient K3 provided the most isolates spanning the highest number of APEs. The phylogeny of the patient                 

K3 isolates therefore provides an insight into P. aeruginosa evolution over the course of infection. The                

long branch lengths towards the root of the phylogeny indicate more sparse sampling of those related                

isolates, whereas the isolates further away from the root were sampled more frequently, and so a more                 

clonal population structure can be observed. Gene presence-absence data displayed alongside this            

phylogeny indicates large areas of both gene acquisition and gene loss that are associated with the switch                 

from acute to chronic infection. Therefore, the sparsely-sampled isolates at the root of the tree may be the                  

remnants of a population of isolates involved in acute infection, and the frequently-sampled isolates              

further away from the root of the tree are the more-dominant chronic infection that has subsequently                

developed. 

 

The acquired T6SS gene block in patient K3 shares over 99% identity with the corresponding region of                 

the Pseudomonas aeruginosa LESB58 reference genome. Recombination analysis identified regions of           
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recombination that may have also originated within the LESB58 genome. Therefore, it is possible that               

genetic material has been exchanged between the two populations in the lungs of patient K3. No evidence                 

of the LES strain was present in the sputum sample collected from patient K3, suggesting that ST3307                 

may have outcompeted the LESB ST within the patient K3 lung, to become the dominant clone. 

 

There was very little diversity observed within the isolates from patient K15, with nearly 30% of isolates                 

identical to each other, and a maximum pairwise SNP distance of just eight SNPs. This indicates a newly                  

acquired P. aeruginosa infection, which provides a unique insight into the initial adaptation and evolution               

of P. aeruginosa isolates within the CF lung. Many of the non-synonymous mutations were identified in                

genes related to virulence, the knockdown or knockout of which are indicators of the switch from acute to                  

chronic infection. This offers a rare opportunity to follow the development of a newly-acquired chronic               

infection, and follow-up isolates could provide an indication of how early P. aeruginosa chronic              

infections evolve within the lungs. 

 

This study also aimed to identify changes in the population of isolates that occurred during three APE                 

timepoints: acute, recovery and stable. The diversity of the isolates was mostly unchanging over the               

course of the different timepoints, and was also found to be unchanging across different APEs               

experienced by the same patient. This supports two other studies that investigated P. aeruginosa variation               

over the course of an APE, which concluded that populations remain stable (Fothergill et al., 2010;                

Mowat et al., 2011). In this study, the magnitude of the diversity within each population of isolates was                  

patient-dependent, and suggests that the progression of each infection is unique. 

 

For the patient K1 and K4 isolates, there was evidence of non-random phylogenetic clustering of isolates                

belonging to a particular APE that each patient underwent. For the patient K4 isolates, BAPS cluster 5                 

was strongly associated with isolates belonging to the first exacerbation the patient experienced, and for               

patient K1, BAPS cluster 2 was strongly associated with the third exacerbation the patient experienced.               

This suggests that the lineage architecture within the lungs of these patients during the time in between                 

exacerbations is affected. However, for all patients, no clustering was observed for isolates belonging to a                

specific timepoint within each APE, suggesting that the P. aeruginosa population structure is not affected               

by APE-related treatment. 

 

AMR was predicted for all 4,094 isolates in the study based on genetic content. The results showed that                  

the predicted AMR profile of the isolates within each patient did not vary significantly. No genetic cause                 
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for overexpression of efflux pumps was identified, which is a common cause of AMR in patients with CF                  

(Poonsuk et al., 2014). In fact, there was evidence that components of the MexAB-OprM, MexEF-OprN,               

and MexXY-OprM efflux pumps were missing in some of the isolates in the study, suggesting               

susceptibility to some antibiotics. Very little variation in the presence/absence of AMR genes was              

identified, except for crpP, which varied in the patient K1 and K14 isolates. This was explained by the                  

presence of the crpP gene on a plasmid in some of these isolates, and in the remaining 62% of isolates,                    

the plasmid was integrated within the isolate genome. 

 

This study represents the largest study of comparative genomics in P. aeruginosa clonal isolates from the                

lungs of patients with CF, investigating 4,094 unique genotypes that were captured from 9 patients with                

CF. This study has many potential applications, including clinical and evolutionary. By analysing the              

diversity within individuals with CF, we have shown that the P. aeruginosa population is more varied and                 

more complex than previously identified, and that evolution of the initial P. aeruginosa infection can be                

rapid and diverse within the enclosed environment of the CF lung. This may help to inform clinical                 

decisions, such as using broad spectrum antibiotics and combination therapies to combat such diverse              

infections. 

 

This study has provided a unique insight into the evolution of P. aeruginosa infection within the CF lung.                  

It has found that the genetic diversity and adaptation of P. aeruginosa to the CF lung is relatively stable                   

over the course of APEs, and has probed the population structure and evolution within each individual                

patient infection. 
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4.1 Introduction   

 

P. aeruginosa isolates collected from the lungs of a single patient with cystic fibrosis exhibit significant                

phenotypic heterogeneity (Lozano et al., 2018; Workentine et al., 2013; Warren et al., 2011). The               

presence of phenotypic diversity is thought to be caused by environmental diversity, as many different               

spatial niches exist within the CF lung that are colonised by distinct populations P. aeruginosa               

(Markussen et al., 2014). Intra-species competition between P. aeruginosa isolates of the same population              

has also been shown to lead to distinct phenotypic variation, as each bacteria tries to outcompete the                 

others for resources (Waters & Goldberg, 2019). Variation in both of the phenotypic and antibiotic               

resistance profiles suggests that the lung environment is complex and no single selection pressure exists               

within the CF lung (Workentine et al., 2013).  

 

Along with phenotypic heterogeneity, there also exists genotypic heterogeneity, both within the CF lung              

of a single patient and between different patients (Lozano et al., 2018; Schick & Kassen, 2018). Analysis                 

of different populations of P. aeruginosa from different patients with CF revealed common mutations              

shared between them, which have been termed pathoadaptive mutations (Marvig et al., 2013). The              

mutations commonly appear in global regulator genes, such as lasR, rpoN, mucA, mexT , retS, exsD, and                

ampR, which control a wide range of virulence-related phenotypes (Marvig et al., 2013). Mutations in the                

mucA regulatory protein result in the overproduction of alginate, which causes mucoid colonies and              

biofilm formation, and is a common marker that the P. aeruginosa infection has switched from acute to                 

chronic (Heltshe et al., 2018). However, the switch from acute to chronic infection is driven through                

repression of the rsmA regulatory protein, and therefore loss-of-function mutations often appear in the              

rsmA gene, and the global regulatory gene, retS, which controls rsmA expression (Reis et al., 2011). Loss                 

of motility is a common adaptation to the CF lung, which typically occurs through mutations rpoN and                 

Type IV pili genes (Cai et al., 2015). Loss of quorum sensing frequently occurs in isolates from the CF                   

lung, which are coupled with mutations in the quorum-sensing regulator proteins, such as lasR, rhlR and                

pqsR (Winstanley et al., 2016). Other common pathoadaptive traits include loss of Type III Secretion               

Systems, accumulation of auxotrophic mutations, and mutations in DNA repair genes leading to             

hypermutation (Winstanley et al., 2016). 

 

However, mutations in global regulator genes are not the only route to achieving a change in a particular                  

phenotype (Jeukens et al., 2014; Khademi et al., 2019). The dataset of 4,094 isolates introduced in                
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Chapter 3 provides a unique opportunity to investigate the variation in phenotype of a population of                

isolates collected from a single patient, and to correlate that with the respective genotype. Therefore, as                

well as whole-genome sequencing, the isolates were screened for 10 virulence-related phenotypes that are              

known to vary between acute-stage P. aeruginosa infection and chronic-stage infection, and also known              

to vary between isolates of the same patient lung. The phenotypes that were screened for include; biofilm                 

production; rhamnolipid production; protease production (caseinase and gelatinase); quorum sensing          

(PQS, BHL and OdDHL); siderophore production; and motility (swimming and twitching). These            

phenotypes are explained in more detail in Chapter 1. 

 

In order to associate phenotype with genotype, this Chapter will use GWAS methodologies. Chapter 1               

reviews the packages that have been developed for bacterial GWAS. However, most of these packages are                

designed for ease-of-use and did not afford the customisability required for this study. Therefore, this               

Chapter will employ the underlying methodology of several of these packages, GEMMA (Zhou &              

Stephens, 2012). To date, only one GWAS has tried to associate a P. aeruginosa phenotype with a P.                  

aeruginosa genotype. This was for the development of the DBGWAS package by Jaillard et al., where the                 

authors associated antimicrobial resistance phenotypes of P. aeruginosa with the P. aeruginosa            

genotype, and uncovered both known and novel variants (Jaillard et al., 2018). In this Chapter, complex                

phenotypes will be associated with the 4,094 genotypes, to try and uncover genetic cause of any                

phenotypic variation observed within the dataset. 

 

4.1.1 Aims 

 

The events that trigger APEs in patients with CF are not currently well understood, although they may be                  

linked to changes in the virulence behaviour of bacteria that colonise the CF lung. In this study, we aim to                    

use GWAS, an emerging and powerful tool in the field of comparative genomics, to determine whether                

there is any association between genotypic and phenotypic virulence in the P. aeruginosa population of               

the CF lung that may be causative of APE. By using the genomes of 4,094 isolates and phenotypic data                   

for ten virulence-related phenotypes, this study is the largest P. aeruginosa GWAS to date, and will                

enable the most powerful analysis that will test the limit of current GWAS technologies. 
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4.2 Methods 
 

4.2.1 Phenotypic assays 

 

In order to identify potential markers of APE, virulence-related phenotypes that may be related to APE                

were identified (Emem Ukor, Floto Lab, University of Cambridge), and any association of these              

phenotypes with common genetic changes was investigated. The 4,408 Pseudomonas samples that were             

collected from three time-points before during and after an APE in 9 patients with CF from the TeleCF                  

clinical trial (Chapter 3), 10 virulence-related phenotypes were measured; caseinase production,           

gelatinase production, siderophore production, rhamnolipid production, swimming motility, twitching         

motility, biofilm formation, BHL production, PQS production and OdDHL production (Chapter 1)            

(Emem Ukor, Floto Lab, University of Cambridge).  

 

 

4.2.1.1 Protease production 

 

In order to identify the presence or absence of caseinase production, each of the 4,408 Pseudomonas                

strains were cultured overnight, and 5 µL aliquots were incubated at 37OC for 48 hours on skim milk                  

plates. Protease activity was identified by the formation of clearing zones around the colony growth due                

to casein hydrolysis (Emem Ukor, Floto Lab, University of Cambridge).  

  

In order to identify the presence or absence of gelatinase production, 3 µL of each overnight culture was                  

incubated for 24 hours on gelatin agar plates. Plates were flooded with saturated ammonium sulphate               

solution, and protease activity was identified by the formation of proteolytic clearing zones due to gelatin                

hydrolysis (Emem Ukor, Floto Lab, University of Cambridge).  

 

 

4.2.1.2 Siderophore production 

 

In order to detect the presence of siderophores, each of the 4,408 Pseudomonas strains were cultured                

overnight, and 5 µL aliquots were incubated at 37OC for 48 hours on chrome azurol S plates. Siderophore                  

production was identified by the formation of an orange/pink halo around the colony, due to the                
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Fe3+-chelating action of siderophores excreted from the colony (Emem Ukor, Floto Lab, University of              

Cambridge).  

 

 

4.2.1.3 Rhamnolipid production 

 

In order to detect the production of extracellular rhamnolipid, each of the 4,408 Pseudomonas strains               

were cultured overnight, and 5 µL aliquots were incubated at 37OC for 48 hours on proteose                

peptone-glucose-ammonium salt agar, supplemented with 0.02% cethyltrimethyl ammonium bromide and          

0.0005% methylene blue. Plates were incubated at room temperature for at least 24 hours, until               

extracellular rhamnolipid production was identified by the formation of blue halos around the colony              

growth, caused to the formation of a complex between the cationic methylene blue dye and partially                

anionic rhamnolipid molecules (Emem Ukor, Floto Lab, University of Cambridge).  

 

 

4.2.1.4 Motility 

 

In order to identify the presence or absence of the swimming motility phenotype, each of the 4,408                 

Pseudomonas strains were cultured overnight, and LB agar swim plates were inoculated with 5 µL               

aliquots. The plates were incubated at 37OC for 8 - 12 hours. Swimming motility was assessed                

qualitatively by examining for the circular haze of growth/turbid zone formed by bacterial cell migration               

away from the point of inoculation (Emem Ukor, Floto Lab, University of Cambridge).  

 

In order to identify the presence or absence of the twitching motility phenotype, LB agar swim plates                 

were inoculated with 10 µL of each overnight culture. The plates were incubated at 37OC for 48 - 72                   

hours. Twitch motility was assessed qualitatively by staining plates with 0.1% crystal violet after removal               

of agar, in order to assess growth at the interface between the agar and the polystyrene surface due to                   

strong adherence and biofilm formation on the polystyrene surface, consistent with interstitial colony             

expansion (Emem Ukor, Floto Lab, University of Cambridge).  
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4.2.1.5 Biofilm 

 

In order to quantify the biofilm phenotype, each of the 4,408 Pseudomonas strains were cultured               

overnight, and stationary-phase cultures were diluted 1:100 in fresh M63 minimal medium supplemented             

with 20% glucose and 20% casamino acids, then incubated at 37OC for 24 hours. Supernatant was                

discarded and wells were washed twice in sterile deionized water to remove residual planktonic bacteria.               

Adherent cells were stained with 0.1% crystal violet for 10 min at room temperature. Wells were washed                 

twice and air-dried overnight. 125 µL of 30% acetic acid was added to each well, and incubated for 10 –                    

15 min. Absorbance at 595 nm was measured using an EZ Read 400 microplate reader in order to                  

quantify the crystal violet-stained biomass (Emem Ukor, Floto Lab, University of Cambridge).  

 

 

4.2.1.6 Quorum sensing molecules 

 

In order to identify the presence or absence of OdDHL and BHL quorum sensing molecules, the                

acylhomoserine lactones in the supernatant were quantified using two lux reporter P. aeruginosa strains;              

JM109 (pSB1142) for OdDHL and JM109 (pSB536) for BHL. In order to identify the presence or                

absence of the PQS quorum sensing molecule, the 2-alkyl-4-quinolone PQS was quantified using the lux               

reporter strain; PpqsA::lux (Emem Ukor, Floto Lab, University of Cambridge).  

 

Each of the 4,408 Pseudomonas strains were cultured in 800 µL of buffered LB at 37OC for 24 hours. The                    

supernatant from planktonic stationary cultures was collected by centrifugation at 4000 rpm for 15 mins at                

room temperature. 100 µL each supernatant was co-incubated at 37OC for 3 - 5 hours with 100 µL of                   

overnight culture of JM109 pSB536, JM109 pSB1142 or PpqsA::lux reporter strains, in Grenier Cellstar®              

black, 96 well, polystyrene, flat micro-clear bottom microplates. Bioluminescence was measured with the             

Fluostar Omega (BMG Labtech) microplate reader. Measurement of AHL and AQ levels were performed              

by comparison to synthetic standards (Emem Ukor, Floto Lab, University of Cambridge).  

 

 

4.2.2 Preparing genomes for GWAS 

 

Sequence reads for the 4,094 isolates were generated according to the methods in Chapter 3, and were                 

mapped to the P. aeruginosa PAO1 reference genome (BioProject Accession PRJNA331), as in Chapter              
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3. For analysis of individual patient groups, the highest quality assembled isolate was used as a reference                 

(see Chapter 3, section 3.2.2.1), and all isolates from that patient group were mapped to it. 

 

SNPs were extracted from multiple-sequence alignments using SNP-sites (v2.4.1, Page et al., 2016) with              

default parameters, and a single VCF file, summarising all SNPs and INDELs across all isolates called                

against the P. aeruginosa PAO1 reference genome, was created. The VCF file was converted into               

PLINK-readable PED and MAP files using vcftools (v0.1.11, Danecek et al., 2011). The corresponding              

BED and FAM files were created using PLINK (v1.90b3v, Purcell et al., 2007) using default parameters.                

This was repeated for all phenotypes for all 4,094 isolates, and for each of the phenotypes for each patient                   

subgroup. 

 

In order to aggregate non-synonymous SNPs from each gene into a single variant, an annotation file for                 

the reference sequence was generated, the coding regions extracted, and any non-synonymous SNPs             

within each coding region aggregated into a single pseudo-SNP. These were then converted into a               

pseudo-VCF file, and data preparation was as described above. 

 

 

4.2.3 Running GWAS on SNPs 

 

GEMMA (v0.96, Zhou & Stephens, 2014) was used to perform association tests between SNPs and               

phenotypes. Linear Models (LM) were run using default settings. Population structure was controlled by              

GEMMA using a centred-genotype relatedness matrix, which was calculated within the programme.            

When fitting LMM to the entire dataset, the sequence type for each isolate was included as a covariate. 

 

 

4.2.4 Running GWAS on gene presence-absence 

 

Gene presence-absence data were generated for each patient subgroup and for the whole dataset, using               

Roary (v1.7.1, Page et al., 2015) with default settings. The gene presence-absence output matrix was               

converted into a pseudo-VCF file, and subsequent data preparation and association tests were run as               

previously with GEMMA. 
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4.2.5 Unitigs 

 

Unitig data (refer to Chapter 1) was generated using the unitig-counter script, as part of the pyseer                 

software suite (Lees et al., 2018) using default settings. Phenotypic data were associated with the unitigs                

using Fast-LMM within pyseer (v1.2.0). 

 

 

4.2.6 Analysing GWAS outputs 

 

The output of each association test was visualised as Manhattan and QQ-plots using R (v3.5.0). Each                

GWAS associated a maximum of 63,008 individual variants to a significance threshold of ⍺ = 0.05.                

Bonferroni correction was applied to counteract the problem of multiple testing, and was further rounded               

down to account for the multiple GWAS run in this chapter.  

 

p  <  =  7.94x10-7  ≈  1x10-80.05
63008  

 

Therefore, SNPs with reported p-values of < 1x10-8 were recorded as significant. SNPs that were present                

in less than 1% of isolates, regardless of significance, were discarded. SNPs that encoded synonymous               

mutations were discarded. The gene containing a significant association was annotated within the P.              

aeruginosa PAO1 genome using BLAST (v2.9.0, Camacho et al., 2009), and the gene annotation and               

function subsequently obtained from www.pseudomonas.com (Winsor et al., 2016).  

 

 

4.2.6.1 Analysing YfiR variants 

 

Coordinates of the YfiR protein were downloaded from the PDB under accession number 4ZHY. To               

identify the position of the non-synonymous mutations, the protein structure was investigated using             

Chimera (v1.13, Petterson et al., 2004). 
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4.2.7 Estimating phenotypic co-occurrence 

 

In order to measure the pairwise association between each phenotype, Cramer’s V was calculated with the                

Cramer package (v0.93) using R (v3.5.0). 
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4.3 Results 

 

4.3.1 Phenotypic clustering within patient groups 

 

In order to investigate whether APEs in patients with CF are associated with changes in virulence of the                  

P. aeruginosa bacteria that colonise their lungs, a GWAS study was carried out. Initially, the 4,094                

isolates from the cystic fibrosis lung of nine patients were tested for ten virulence-related phenotypes               

(Table 4.1) (Emem Ukor, Floto Lab, University of Cambridge) in order to investigate the phenotypic               

diversity within each patient compared to the genetic diversity (Chapter 3). Chapter 1 explores these               

phenotypes in more detail; several phenotypes are known to correlate with the development from acute to                

chronic P. aeruginosa CF infection, and several phenotypes have roles in P. aeruginosa virulence and               

invasive potential.  

 

The BHL production, OdDHL production, and PQS production phenotypes are related to quorum sensing              

(QS) in P. aeruginosa (Lin et al., 2018). QS molecules facilitate intracellular communication, which is               

cell density dependent (Lee & Zhang, 2015). The systems are all interconnected and regulate many               

virulence phenotypes in P. aeruginosa (Lee & Zhang, 2015).  

 

Biofilm production and rhamnolipid production assays were also carried out on the isolates in this study.                

A biofilm is a matrix of extracellular polymeric substances which encompass the bacterial colonies and               

can prevent the incursion of antibiotics to combat the infection (Nickzad & Deziel, 2014). BHL, OdDHL                

and PQS molecules are known to regulate the production of biofilm and rhamnolipids (Reis et al., 2011).  

 

Rhamnolipids are biosurfactants that are involved in increasing the affinity of bacteria to a surface prior to                 

biofilm formation, maintenance of a strong biofilm matrix, and in the dispersion of the biofilm to allow                 

bacteria to invade and colonise other niches. Caseinase and gelatinase production assays were also carried               

out. These are proteases that allow P. aeruginosa to evade the immune system, and are also QS-regulated                 

(Zhang & Li, 2016). 

 

Other phenotypes investigated were the motility mechanisms; twitching motility and swimming motility.            

These two forms of motility are functionally opposite to each other. When P. aeruginosa moves due to                 

abcde 
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Table 4.1 Ten phenotypes were experimentally investigated using the 4,094 P. aeruginosa isolates in this study. 

 

the twitching mechanism, it has decreased swimming motility, and vice versa (Burrows, 2012). Twitching              

motility utilises the Type IV pili, whilst swimming motility is flagellum-dependent motion. These forms              

of motility are also important for biofilm formation and biofilm dispersion (Burrows, 2012).  

 

The siderophore production assay identifies the ability of an isolate to uptake iron from its surroundings,                

which is essential for bacterial growth. P. aeruginosa express two siderophore systems, utilising             

pyoverdine or pyochelin. These two siderophores can be released into the environment, and then taken               

back into the cell using specific uptake proteins (Braud et al., 2011). 

 

 

Figure 4.1 A maximum-likelihood phylogeny of the P. aeruginosa isolates mapped against PAO1, displayed next to                

the presence/absence of each phenotype determined by experimental assays. Blue = phenotype absent, Red =               

phenotype present. 
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Table 4.2 The proportion of isolates where the phenotype is present for the isolates from each BAPS cluster. The                   

colour represents a sliding scale, where red represents 0% presence of the phenotype, yellow represents 50%                

presence of the phenotype, and green represents 100% presence of the phenotype. 

 

The presence or absence of each phenotype was displayed against the phylogenetic tree that was               

calculated in Chapter 3, section 3.3.2 (Figure 4.1). Clear clustering of phenotype presence/absence for              

some of the patient groups was observed.  

 

To further examine the phenotype presence/absence clustering in some patient groups, the proportion of              

presence and absence of each phenotype in each BAPS cluster (Chapter 3, section 3.3.2) is displayed in                 

Table 4.2. 

 

The isolates from patient K1 were mostly absent for all phenotypes measured; only siderophore              

production and BHL production were present in more than 10% of the isolates. All of the isolates in this                   

group are Manchester Epidemic Strain (MES) isolates. The other patient that harbours the MES isolates is                

patient K14. In contrast to the patient K1 isolates, the patient K14 isolates have over 50% presence for 7                   

out of the 10 phenotypes. This includes the largest proportion of swimming, twitching and OdDHL               

phenotypes across the whole dataset. This suggests that the K14 isolates may be more virulent than the                 

K1 isolates at the time of isolation, and that although they are both made up of the same epidemic strain,                    

they exhibit vastly different behaviours.  

 

In contrast to the MES isolates, the presence/absence of each phenotype was consistently observed in all                

patients harbouring the Liverpool Epidemic Strain (LES) isolates (patients K7, K9, K11 and K15). Four               
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of phenotypes were present in over 90% of these isolates, and only the swimming and twitching                

phenotypes were present in less than 10% of the isolates. This suggests that the virulence potential that                 

has contributed to the success of the LES isolates to transmit and invade new hosts persists, even after the                   

infection has become chronic (O’Brien et al., 2017). 

 

The phenotype presence/absence ratio in the isolates from patient group K3 and K6 is relatively even in                 

seven of the phenotypes (ranging from 21% - 62% of isolates). Less than 10% of isolates produce biofilm                  

or OdDHL, or have twitching motility. The majority of phenotypes have a high level of presence in the                  

isolates from patient K4, as six of the phenotypes have a presence of over 68%. The number of isolates                   

positive for OdDHL production and twitching motility are very low, as in patient group K3 and K6. 

 

The presence of both motility phenotypes is low across all of the patient groups combined. Twitching                

motility is only observed in 5.2% of all isolates, and swimming motility is present in just 17.6% of                  

isolates. This suggests that the majority of the isolates are either non-motile, or express a form of motility                  

that was not tested in this study, such as sliding or swarming motility (Murray & Kazmierczak, 2008).                 

Previous studies have suggested that a lack of motility can be a selective advantage when subject to                 

antibiotics, and causes phagocytosis resistance, which explains why a lack of motility is often observed in                

chronic cystic fibrosis infection (Staudinger et al., 2014; Mahenthiralingam et al., 1994). However, in              

contrast to the overall dataset, over 80% of isolates in the patient K14 group are positive for swimming                  

motility, and over 30% are positive for twitching motility, suggesting that the K14 MES isolates are either                 

more virulent than their K1 counterparts, or the population has not completely switched from acute to                

chronic infection. 

 

Production of biofilm is an important stage in the development of chronic lung infection, by protecting                

colonies from antibiotics and the host immune response (Staudinger et al., 2014). However, previous              

studies have shown that P. aeruginosa from long-term chronic cystic fibrosis infections are often              

impaired in biofilm formation as mutations in the quorum sensing pathways accumulate (Rasamiravaka et              

al., 2015), and therefore the absence of the biofilm phenotype in the majority of isolates is not                 

unexpected. Biofilm presence was only observed in two of the patient groups, the K4 patient group and                 

the K7, K9, K11 and K15 patient group. 

 

The phenotype with the highest prevalence across the dataset was siderophore production (70.7%             

presence). Iron is essential for bacterial survival (Skaar, 2010), and P. aeruginosa contains several              
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iron-uptake systems that scavenge for this nutrient. This includes two extracellular siderophores, two             

haem-uptake and utilisation systems, and two ferric-iron uptake systems (Marvig et al., 2014). A study by                

Harrison et al. in 2017 showed that siderophores were produced by wild-type bacteria under standard lab                

conditions, as well as under artificial CF conditions. However, the CF lung is iron-rich (Tyrrell &                

Callaghan, 2016), and studies have suggested that siderophore-lacking mutants survive through the uptake             

of haem and free iron instead (Marvig et al., 2014). As siderophores are secreted into shared environment                 

of a population of P. aeruginosa, it is suggested that ‘cheaters’, which have the ability to uptake                 

siderophores but do not pay the metabolic cost of producing them, are also common within the cystic                 

fibrosis lung (Anderson et al., 2015). This may explain the high, but not complete, prevalence of                

siderophore production within this dataset. 

 

Cystic fibrosis is a disease of progressive lung function deterioration, with periods of sudden and rapid                

lung function decline (Ramsey et al., 2017). These declines in lung function are called acute pulmonary                

exacerbations (APEs) (Bhatt, 2013). The isolates in this study were collected at different stages of an APE                 

for each patient. In this study, the acute-APE timepoint is defined as the day the patients were first treated                   

with antibiotics, the recovery-APE timepoint is defined as seven days after antibiotic treatment has              

finished, and the stable-APE timepoint is defined as seven days prior to the APE being initially identified.                 

These APEs play an important role in the progression of CF, and therefore, these timepoints have been                 

included as three additional phenotypes in this study.  

 

The proportion of isolates in each BAPS cluster that belong to each APE time point is dependent on how                   

many complete and incomplete exacerbations that have been sequenced, and how many of those isolates               

passed QC (Table 4.3). In general, more isolates are included in this study from the acute-APE timepoint,                 

which has the highest prevalence in every patient subgroup except for patients K3 and K6 where the most                  

prevalent time point is stable-APEs. In all patient subgroups, the recovery-APE timepoint contains the              

lowest proportion of isolates. 

 

 

Table 4.3 Three time points were investigated surrounding acute pulmonary exacerbations (APEs) using the 4,094               

P. aeruginosa isolates in this study. 
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4.3.1.1 Phenotypic co-occurrence  

 

Many phenotypes co-occur in the same isolate, and therefore a relationship may exist between the               

presence or absence of several phenotypes in this dataset. Cramer’s V was calculated for all phenotypes in                 

a pairwise manner (Table 4.4). The interpretation of the Cramer’s V statistic was in accordance with                

Cohen’s recommendations (Cohen, 1988). A value of 0 indicates no relationship between the two              

variables, a value of 0.3 indicates a moderate relationship, and a value of 0.5 indicates a strong                 

relationship between the two variables. A value of 1 would indicate a measurement of complete               

co-occurrence. 

 

There are five instances of strong relationships (green) between two variables. The strongest association              

was observed between the two secreted protease phenotypes; caseinase production and gelatinase            

production. In total, 53.4% of the isolates in the study produced both proteases, and 31.9% of the isolates                  

produced neither. Only 14.7% of the isolates produced either caseinase or gelatinase. This relationship              

makes biological sense, as several exoenzymes have both caseinolytic and gelatinolytic capabilities, and             

the individual exoenzymes are often regulated through the same QS network and hence production will be                

induced together (Yan et al., 2018).  

 

Both caseinase and gelatinase production were also strongly associated with siderophore and rhamnolipid             

production. Nearly 75% of isolates either both produced or both did not produce caseinase and               

siderophore, 72% of isolates either produced or both did not produce caseinase and rhamnolipids, 79% of                

abcd 

 

Table 4.4 A cross-table of the Cramer’s V associations between each pair of phenotypes. The scale is a sliding                   

colour scale, where red = 0, yellow = 0.3, and green = 0.5.  
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Figure 4.2 A schematic representation of quorum sensing within the P. aeruginosa cell. Image has been used with                  

license under creative commons v1.0 from Lee & Zhang, 2015. 

 

isolates either produced or did not produce both gelatinase and siderophores, and 55% of isolates either                

both produced or both did not produce gelatinase and rhamnolipids. All four of these phenotypes are                

virulence phenotypes under QS control. The QS systems in P. aeruginosa are all hierarchical, with the                

lasR QS system at the top of this hierarchy (Maura et al., 2016). The activation of the lasR QS system will                     

activate the other QS systems, which leads to the secretion of protease systems, production of               

rhamnolipid, and the production of the pyocyanin siderophore system (Maura et al., 2016) (Figure 4.2).  

 

Interestingly, there were only moderate relationships observed between the three QS assays, and moderate              

relationships observed between the QS assays and the phenotypes under QS control. This suggests that               

standard lab conditions may be confounding the assay results, where the phenotypes observed under assay               

conditions may differ to the phenotypes that are present in the CF lung environment, or that random                 

variations have been introduced during the experiments (Wright et al., 2013). 
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The lowest associations were identified between the two motility phenotypes, swimming and twitching,             

and all other phenotypes. Nearly 90% of the associations between the swimming phenotype and all other                

phenotypes scored less than 0.15, which is a very weak association. Just over 50% of the associations                 

between twitching and the other phenotypes were also very weak. This is primarily due to the low                 

presence of both swimming and twitching motilities (79% of the isolates were negative for both               

swimming and twitching), and the high presence of all of the other phenotypes. Only 3% of isolates tested                  

positive for both motilities, but the two motility mechanisms were found to be moderately associated with                

one another. 

 

 

4.3.2 Linear models are unsuitable for GWAS in highly structured datasets 

 

The diversity in the presence of phenotype for each patient suggests that there should be enough power to                  

associate phenotype with the variation of genotype identified in Chapter 3. This could provide genotypic               

markers that could be indicative of phenotype. Genome-Wide Efficient Mixed Model Association            

(GEMMA) was used to try and identify any associations with the isolate genotypes and the 13 phenotypes                 

(which include the 10 experimentally-tested phenotypes and the 3 different exacerbation state stages).             

Initially, a simple Linear Model (LM) association for the caseinase-producing phenotype was fitted             

against all Single Nucleotide Polymorphisms (SNPs) (n = 63,008) reaching 1% Minor Allele Frequency              

(MAF) for all 4,094 isolates in the dataset called against the P. aeruginosa PAO1 reference genome. The                 

LM association identified several thousand associations at a conservative p-value threshold of 1x10-8. 

 

The Manhattan plot in Figure 4.3a displays the p-value of each SNP association against its position in the                  

PAO1 genome. Figure 4.3b shows a QQ-plot of the expected vs observed p-values. The majority of the                 

observed p-values deviate significantly from the expected p-values. The horizontal lines at different             

p-value tiers in Figure 4.3b indicate that the associations reaching the threshold values are reported as                

positive associations due to strong population structure within the dataset, and hence are false positive               

results. False positive results due to population structure were observed for all 13 phenotypes using this                

method of correlation.  

 

The strong population structure is consistent with the population structure observed in Chapter 3, section               

3.3.2. The phylogenetic tree (Chapter 3, section 3.3.2) indicated very deep splitting, with long branches               

abcd 

173



Chapter 4 
 

 

Figure 4.3 All SNPs reaching a 1% MAF cutoff, called against the P. aeruginosa PAO1 reference genome for 4,094                   

isolates, were fit to a LM to test for association with the caseinase-producing phenotype and plotted as a Manhattan                   

plot (a) and QQ-plot (b). The red line in (a) represents the association threshold, and the black line in (b) represent                     

the distribution of expected p-values against observed p-values. 

 

separating each group of isolates. Principal component analysis identified that 93.4% of genetic variation              

could be explained by the first three principal components, which confirmed deep divergence and a high                

degree of clustering of isolates. Clustering of isolates by sequence type showed that each patient is only                 

infected with a single ST, but multiple patients may be infected with the same ST.  

 

Therefore, in order to extract meaningful associations from each GWAS, population structure control             

must be applied. Several methods of controlling population structure in structured datasets have been              

suggested, which include, but are not limited to: 

 

● Genomic Control - directly adjust the p-values so that the vast majority are non-significant              

(Devlin et al. 1999). 
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● Subsampling - expect individuals in the subsampled population to have similar phenotypes to the              

main population (Thomas et al. 2009). 

● Principal Component Analysis - uses PCA values as covariates in the association study (Abraham              

et al. 2014). 

● Linear Mixed Models (LMM) - a method of analysing non-independent, hierarchical, longitudinal            

or correlated data. It takes random effects into consideration as well as fixed effects (Widmer et                

al. 2014). 

 

 

4.3.3 Using subsampled groups to control for population structure 

 

The horizontal lines of associated SNPs shown in Figure 4.3b correspond to SNPs that are unique to                 

individual patient groups. Therefore, to extract true significant hits that are associated with a phenotype,               

population structure control was introduced by separating sequences using BAPs clustering (Chapter 3,             

section 3.3.2) into five separate datasets; K1 (n = 646) and K14 (n = 265); K3 and K6 (n = 1197); K4 (n =                        

660); and K7, K9, K11 and K15 (n = 1389). One drawback of subsampling is that the quantity of                   

genotypic and phenotypic data included for each GWAS analysis will be reduced, which will lead to a                 

reduced power to identify correct associations (Peterson et al., 2017). 

 

 

Table 4.5 The percentage of phenotype-positive isolates in each subsampled group, including presence of each APE                

timepoint. n = number of isolates in each group.  
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Figure 4.4 Power calculations for different odd ratios (OR) of SNP associations at MAF of 16% can require several                   

thousand isolates in order to have enough power to detect true positive results. By subsampling this dataset, so that                   

each group contains between 265 and 1,389 isolates, it is unlikely that there will be enough power to detect all true                     

positive associations. Image used under license (Creative Commons v4.0) from Lees et al. 2016. 

 

The percentage of positive phenotypes for the isolates in each subsampled group are summarised in Table                

4.5. The K14 patient group contains the fewest isolates, with only 265 in total. The LES isolates form the                   

largest group, comprising of 1,389 isolates from patients K7, K9, K11, K15. Due to the reduced number                 

of isolates in each subsampled group, even if each SNP has a high odds ratio, even the largest patient                   

group may lack the power to detect all true positive SNPs (Figure 4.4, Lees et al., 2016).  

 

Another drawback to using the subsampling method to control for population structure in this dataset is                

the now-skewed case/control ratio for each phenotype within each group. A similar number of both case                

phenotypes and control phenotypes is most desirable to result in an effective GWAS (Cook et al. 2017).                 

However, within the subsampled groups, case/control ratios range from as low as 0%, up to 99.4%. For                 

example, the LES patient group contains only three isolates that were positive for the swimming motility                

phenotypes, and just eight of the isolates are negative for the gelatinase phenotype. Associations reported               

for extreme case/control ratios such as these may not be reliable and cannot necessarily be extrapolated                

for the rest of the dataset. 
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Table 4.6 Results that reached the significance threshold in LM association tests against the 13 phenotypes. 

 

LM association tests were fit for each of the 13 phenotypes to each of the subsampled patient groups,                  

which was successful at reducing the effects of population structure. No associations were reported with               

any phenotype for the isolates from patient groups K1, K14, and K4. This is probably due to a lack of                    

power to detect true positive results, as there were so few samples within the datasets. No significant                 

associations were identified for the subsampled group containing isolates from patient groups K7, K9,              

K11 and K15, even though this was the largest of the subsampled groups, suggesting there are multiple                 

different genotypic causes of each phenotype. Five phenotypic associations reached the significance            

threshold for isolates from patients K3 and K6, which was the second largest subsampled group (Table                

4.6).  

 

Two SNP associations reached the significance threshold for the rhamnolipid-producing phenotype; a            

serine to asparagine mutation in the hypothetical protein, PA2654, and a threonine to alanine mutation in                

the arginine decarboxylase, SpeA. The PA2654 hypothetical protein is uncharacterised, but predicted to             

be part of the P. aeruginosa motility pathways (Corral-Lugo et al., 2018). Rhamnolipids are required for                

P. aeruginosa swarming and sliding motility, and previous studies have shown that the production of               

rhamnolipid is not altered by the presence or absence of motility mechanisms (Murray & Kazmierczak,               

2008). Therefore, if the predicted function of the hypothetical protein is correct, then this association is                

unlikely to cause a decrease in rhamnolipid production based on our current understanding of P.               

aeruginosa biology. 

 

SpeA is an arginine decarboxylase, responsible for the conversion of L -arginine into agmatine (Gilbertson              

& Williams, 2014). Agmatine is used in the biosynthesis of several polyamines, such as spermidine and                

putrescine (McCurtain et al., 2019). Nitrogen exhaustion in P. aeruginosa has previously been shown to               

inhibit rhamnolipid production (Reis et al., 2011), and therefore it is possible that if the T77A mutation in                  
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SpeA inhibits function, the resulting lack of useable nitrogen could reduce rhamnolipid production.             

However, L -arginine is not the only source of nitrogen for the P. aeruginosa bacterium, and               

decarboxylation via SpeA is not the only metabolic pathway for arginine (Lu et al., 2004) (Figure 4.5).                 

Therefore any effect would be small, and this is likely to be an auxotrophic mutation which has been                  

coselected with rhamnolipid production.  

 

Two SNP associations reached the significance threshold for the PQS-producing phenotype; an arginine             

to lysine mutation in the OxyR global regulator, and a lysine to proline mutation in the HcnB hydrogen                  

cyanide synthase. The oxyR gene encodes a global regulator protein that responds to oxidative stress               

induced by reactive oxygen species (Ochsner et al., 2000). A transcriptional analysis by Wei et al.                

indicated that OxyR knockout mutants increase transcription of several secondary regulators, including            

the pqsR gene (Wei et al., 2012). Previous studies have identified that pqsR positively regulates the PQS                 

system (Brouwer et al., 2014), and therefore if R94K inhibits the function of OxyR, an increase in PQS                  

would be observed. However, this mutation is only found within 14.8% of the isolates from patients K3                 

abcd 

 

 

Figure 4.5 A diagram of the arginine metabolic and catabolic pathways. SpeA forms only a small part of this                   

network, decarboxylating L -arginine to agmatine. Image used with permission from Lu, 2006. 
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and K6, whereas the PQS-producing phenotype is present within 45.4% of these isolates. Two other               

non-synonymous mutations were present in the OxyR protein, but no INDELs were observed.             

Non-synonymous mutations were present within 35% of the isolates in this group. Although these              

mutations do not completely explain all of the phenotypic variation observed within this subgroup, there               

is published experimental support for the biological association. 

 

HcnB is part of the biosynthetic pathway for hydrogen cyanide (HCN), which is a dangerous virulence                

factor that contributes to high mortality rates during acute infection (Ryall et al., 2008). The HCN                

biosynthetic cluster is regulated by QS systems, but no feedback mechanism has been identified that               

suggests that HCN expression causes a change in the expression of QS molecules (Lee & Zhang, 2015).                 

The non-synonymous mutation in hcnB that was identified in association with the PQS phenotype, in               

isolates from patients K3 and K6, was also identified in association with the acute-APE timepoint. As a                 

potent virulence factor, an increase in HCN may lead to a decline in lung function. The non-synonymous                 

mutation in hcnB is a reversion to the wild-type hcnB allele present in P. aeruginosa PAO1 reference                 

strain. If this reversion mutation leads to an induction of HCN production, it may contribute to a decline                  

in lung function and overall health of the patient, similar to what is seen during an acute-APE. 

 

An association for both the BHL-producing phenotype and the recovery-APE timepoint, was identified             

with a phenylalanine to leucine mutation in the hypothetical protein, PA2006. The PA2006 gene is               

hypothesised to encode a transmembrane transport protein, but no function has been definitively assigned.              

BHL is both a secreted molecule and imported molecule, and if PA2006 was involved in the transport of                  

BHL, a non-synonymous mutation could decrease the detection of BHL in the phenotypic assay.              

However, PA2006 has not previously been linked to the transport of BHL, and so functional studies                

would need to be undertaken to understand this association better. No further biological association can               

be hypothesised for BHL-production or the recovery-APE timepoint until a function is assigned to              

PA2006. 

 

 

4.3.4 Aggregating non-synonymous SNPs in subsampled groups 

 

To increase the power of the GWAS to identify less penetrant variants, non-synonymous SNPs from the                

same gene were aggregated together to form a single aggregated SNP. Aggregating all non-synonymous              

adv 
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Figure 4.6 Aggregating together all non-synonymous SNPs within the same gene may avoid separately testing               

several mutations that have the same causative effect within the same gene.  

 

mutations found within a single gene may avoid separately testing several mutations that have the same                

causative effect within the same gene. In this way, all non-synonymous mutations within the same gene                

can be combined and tested against the phenotype, rather than being tested independently (Figure 4.6). 

 

LM association tests were run for each aggregated SNP with each subsampled patient group for all 13                 

phenotypes. In total, 13 associations reached the significance threshold for four of the phenotypes (Table               

4.7). All associations were identified within the subgroup of isolates from patients K3 and K6, as in the                  

previous section. 

 

A total of eight unique associations were identified with the PQS-producing phenotype. Three of these               

associations are with hypothetical proteins of no known or predicted function; PA1797, PA1792 and              

PA4835. No speculation on the validity of these associations can be made until biological function has                
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Table 4.7 Results that reached the significance threshold in LM association tests against the 13 phenotypes. 
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been assigned. Mutations within the groEL gene, which is involved in protein folding (Crouzet et al.,                

2017), the cobC gene, which is involved in cobalamin biosynthesis (Kumari et al., 2014), and the ccoO2                 

gene, which is responsible for haeme biosynthesis in anaerobic conditions (Okkotsu et al., 2014) were               

also associated with the PQS-producing phenotype. However, these have no known biological basis for              

interacting with the PQS system, and therefore are assumed to be false-positive results until such a time as                  

there is a more-detailed understanding of the P. aeruginosa biochemical pathways.  

 

Mutations in the algG gene were also associated with the PQS-producing phenotype. AlgG knockout              

mutants have been shown to cause the loss of alginate secretion, which is responsible for the mucoid                 

phenotype and biofilm production (Hoffmann et al., 2007). Absence of PQS has been shown to decrease                

biofilm production (Tettmann et al., 2016). There may therefore be a feedback mechanism between              

absence of biofilm formation and absence of PQS production, but no such feedback has been identified to                 

date. 

 

Finally, mutations in the fahA gene were also associated with the PQS phenotype. The fahA gene is                 

responsible for the final step in the production of fumarate. This process has a tenuous link to PQS                  

production, as they share common precursor molecules, such as chorismate (Tielen et al., 2013). A               

mutation which results in a knockout of the fahA gene may affect the enzymatic competition for these                 

precursor molecules, but is unlikely to cause a dramatic increase in PQS production as these precursor                

molecules are also used in tyrosine and tryptophan biosynthesis. In patient K3, the fahA gene (PA2008) is                 

situated 6 kbp downstream of the 48 kbp deletion (PA1957 - PA2002) identified in Chapter 3, section                 

3.3.7.1. In the isolates containing the large deletion, the atoBE genes are absent, preventing the               

conversion of acetoacetate to 2-acetyl-CoA. The fahA gene is involved in the prior step, converting               

4-fumarylacetoacetate into acetoacetate and fumarate (Ketelboeter et al., 2014). Therefore, if that            

pathway is no longer functional, accumulation of mutations in fahA could have occurred as a result of                 

spontaneous mutation due to the large deletion. 

 

As no strong causative link could be found for either of the algG or fahA mutations, it suggests that all                    

eight of the genes that were associated with the PQS phenotype may be false positives. 

 

One association was identified for the BHL-producing phenotype and the same association was also              

identified for the recovery-APE timepoint. The biological relevancy of this association cannot be             
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determined, as the SNP association is with the PA2655 hypothetical protein, which has no known or                

predicted function. 

 

Three associations were identified with the OdDHL-producing phenotype. OdDHL is a quorum-sensing            

molecule that is responsible for the activation of several secreted virulence-related proteases (e.g lasA,              

lasB, apr proteases), as well as inducing other quorum sensing systems responsible for further virulence               

(Lee & Zhang, 2015). Two of the associations are with hypothetical proteins. One of the hypothetical                

proteins has no similarities with any gene within the P. aeruginosa PAO1 reference genome, and has no                 

known function. The PA4193 hypothetical protein is predicted to be a transmembrane transport protein.              

OdDHL is both a secreted molecule and imported molecule, and if PA4193 was involved in the transport                 

of OdDHL, a non-synonymous mutation in the transport protein could decrease the detection of OdDHL.               

However no studies have made this biological association, and so functional studies would need to be                

undertaken to understand this association better. 

 

The final association identified with the OdDHL-producing phenotype was with pbpG, which is             

homologous to the E. coli penicillin-binding protein 7 (Song et al., 1998). Variation in the               

penicillin-binding proteins have been generally linked with resistance to β-lactam antibiotics, but pbpG             

modifications do not increase MIC values for the β-lactam antibiotics in P. aeruginosa (Ropy et al.,                

2015). Knock-out of pbpG does alter the structure of the outer cell wall (Ropy et al., 2015), but is unlikely                    

to change the secretion or uptake of the OdDHL molecule. 

 

 

4.3.5 Linear mixed models are effective at controlling for population structure in structured             

datasets 

 

A second method of population structure control, which addresses some of the problems identified for the                

subsampling method (Section 4.3.3), is to fit Linear Mixed Models (LMMs). Fitting a LMM requires a                

correlation matrix of the genetic distances between all of the isolates, equivalent to a PCA matrix. These                 

values are then used to reduce the effects of population structure, by using the correlation matrix as a                  

covariate (Zhou & Stephens, 2012). By fitting a LMM, it is possible to use the genetic information of all                   

4,094 isolates to uncover associations with the phenotype, substantially increasing the power of the              

association test compared to the subsampling method.  
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Initially, the LMM method was applied to each of the subsampled patient groups separately. However, no                

new associations were uncovered from the LMM results compared to the LM, suggesting that the LMM                

population structure control had little effect on each patient group (Figure 4.7a). This suggests that each                

individual patient group population is relatively unstructured. Identical results were reported when LMM             

were fit to all 13 phenotypes with each subsampled group.  

 

Fitting the LMM to all of the 4,094 isolates effectively controlled for the strong population structure                

within the dataset (Figure 4.7b), allowing the identification of relevant associations not previously             

reported due to population structure. Of the 13 phenotypes associated for whole dataset, three yielded               

results that reached association threshold (Table 4.8); biofilm production, gelatinase production, and BHL             

production. 

 

 

 

Figure 4.7 a) LM (left) and LMM (right) QQ-plots showed similar results for the subsampled patient groups, and                  

identified the same associated SNPs. b) LMM (right) effectively controlled for population structure in the whole                

dataset compared to the LM (left) method, and identified several potential associations. 
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Table 4.8 LMM association tests for each of the 13 phenotypes on the entire dataset mapped against P. aeruginosa                   

PAO1. The data which reached significance threshold was filtered for non-synonymous SNPs and for population               

structure. 

 

Four very strong associations were identified with the biofilm-producing phenotype, with p-value results             

reported from 9.00x10-53 to 2.81x10-91. Three of these associations corresponded with mutations in             

hypothetical proteins; PA5136, PA5412 and PA2095. Mutations in both PA5136 and PA5412 appear with              

the same MAF and with the same p-value. One, or both, of these associations may be a true positive                   

result, and may be causative of the biofilm phenotype. Unfortunately, no function can be predicted for the                 

three significant hypothetical proteins, and therefore functional studies would need to be conducted in              

order to understand how they may impact biofilm formation.  

 

A negative association was uncovered between biofilm production and a P57Q mutation in RmlA, which               

has putative biological support. Previous studies by Michael et al. have confirmed that transposon              

knockout of the rmlA gene decreases biofilm production by up to 60% (Michael et al., 2016). Therefore,                 

if the P57Q mutation knocks out or knocks down the rmlA gene, it would lead to a reduction in biofilm                    

production, which is the predicted direction of the effect. However, this mutation is only present in 9.1%                 

of isolates, and so does not fully explain the 71.1% absence of biofilm production in this study, and would                   

need to be experimentally verified. 
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Five SNP associations were identified with the gelatinase-producing phenotype. Three of these were             

identical mutations found in the PA5136, PA5412, and PA2095 hypothetical proteins that were recorded              

for the biofilm-producing phenotype. This suggests a similar distribution of isolates that produce biofilm              

also produce gelatinase (Cramer’s V = 0.258, suggesting a moderate relationship). The other two results               

were base-pair changes in intergenic regions. The first is upstream of PA3534 (glpD), which is               

responsible for energy metabolism in P. aeruginosa (Shuman et al., 2018). The second is upstream of the                 

divergently transcribed PA1787 (acnB) and PA1788 (hypothetical protein), which are essential genes in             

the TCA cycle of bacteria (Lee et al., 2015). There are no known biological relationships between these                 

genes and the gelatinase-producing phenotype. 

 

Five SNP associations were identified with the BHL-producing phenotype. Three of these were the same               

hypothetical proteins that were reported for the biofilm and gelatinase-producing phenotype; PA5136,            

PA5412, and PA2095. The same mutation in rmlA that was implicated in biofilm production, was also                

identified here. Previous studies have shown that rmlA is under QS control, but there is no evidence of                  

feedback to QS from the rml system (Wagner et al., 2003).  

 

A mutation in lon protease was also associated with the BHL-producing phenotype. The lon protease has                

been previously implicated in BHL production as a negative regulator of the rhlR and rhlI genes.                

Therefore, the P32S mutation may knockout or knockdown the lon protease function, leading to an               

increase in BHL production. However, the P32S mutation is only present in 4.6% of the isolates, and can                  

only explain some of the 62.9% presence of the BHL phenotype, and would need to be verified                 

experimentally. 

 

 

4.3.6 Aggregating non-synonymous SNPs in the entire dataset  

 

LMM association tests were also run for the SNPs aggregated by gene (see section 4.3.4), in order to                  

address some of the problems identified for the subsampling method (Section 4.3.3) for the associations               

identified using the aggregated SNPs method. In total, 4,909 genes had one or more non-synonymous               

SNPs. Using this method, two of the experimental phenotypes yielded results that reached the association               

threshold (Table 4.9); biofilm production and caseinase production. Additionally, significant associations           

were identified with the acute-APE timepoint. 
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Table 4.9 LMM association tests for each of the 13 phenotypes on the entire dataset using aggregated                 

non-synonymous SNPs. Results that reached the significance threshold were filtered for population structure. 
 

Five aggregated SNP associations were identified for the biofilm-producing phenotype. Three of these             

had previously been reported for the biofilm-producing phenotypes when fitting LMM to all SNPs              

(section 4.3.5); hypothetical proteins PA5136 and PA2095, and RmlA. These are now reported with              

increased MAF and a higher p-value, indicating the presence of more than one non-synonymous mutation               

associated with similar causative effects within these genes.  

 

Two additional associations were reported with biofilm production; non-synonymous SNPs in tolQ and             

yfiR. The TolQ protein forms part of a complex which maintains outer-membrane integrity (Wei et al.,                

2009), and expression has been shown to increase under biofilm conditions.  

 

YfiR has previously been implicated in biofilm production. Malone et al. showed that a knockout of yfiR                 

can have a positive impact on the production of biofilm (Malone et al., 2010). YfiR is a repressor of the                    
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Figure 4.8 A diagram of the cascade that activates biofilm formation. YfiR represses YfiN, preventing biofilm                

formation. Figure used under licence by creative commons v4.0 from Maunders & Welch, 2017. 

 

YfiN protein, which in turn produces c-di-GMP (Yang et al., 2015). c-di-GMP is an intracellular               

signalling molecule that activates both the pel and psl systems, which produce the required secreted               

molecules to form stable biofilms (Yang et al., 2015). Therefore, a knockout or destabilisation of the YfiR                 

protein will prevent the repression of YfiN, and lead to the constitutive expression of biofilm (Figure 4.8).  

 

YfiR causes repression of YfiN by binding directly to the Per-Arnt-Sim (PAS) domain; a common protein                

and small molecule binding site found in all kingdoms of life (Moglich et al., 2009). Typically, YfiR is                  

released from the YfiN protein, which is located on the inner membrane, by the outer membrane protein                 

YfiB. Crystal studies of YfiB have identified that it is a receptor protein of an as-of-yet undetermined                 

peptidoglycan molecule (Li et al., 2015b). YfiB then binds to YfiR, releasing the YfiN protein to activate                 

the biofilm-producing systems (Yang et al., 2015). 
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Figure 4.9 The YfiR crystal structure with the four non-synonymous mutations highlighted in green for A) I41V B)                  

W61* C) A100T D) P178L. 

 

Within this dataset, four non-synonymous changes in YfiR were aggregated; I41V, W61*, A100T, and              

P178L. Figure 4.9 shows the crystal structure (protein data bank: 4ZHY) of YfiR from Yang et al., and                  

the mutations identified in this study. 

 

The W61* mutation (Figure 4.9b) introduces an early stop codon, and would result in a natural knockout                 

of the YfiR protein. However, this mutation is only observed in two of the isolates in the dataset. The                   

I41V (Figure 4.9a) and A100T (Figure 4.9c) mutations are present in all of the LES isolates, but no other                   

isolates in this dataset. The structural impact of these mutations is currently unknown. However, neither               

of the two affected residues interfere with YfiB binding sites, YfiN binding sites, or YfiR dimerisation                

sites directly, suggesting an indirect impact of the mutations on function. The P178L (Figure 4.9d)               

mutation is present in twelve isolates. Proline is commonly present at the beginning of alpha-helices, and                
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is found at the start of the final alpha-helix in YfiR. It does not directly interact with the YfiN binding                    

site, however it is possible that if the final alpha helix was disrupted, the hydrophobic pocket that binds                  

YfiN may also be disrupted. 

 

Eight aggregated SNP associations were identified with the caseinase-producing phenotype.          

Non-synonymous SNPs in the genes of two hypothetical proteins, PA5136 and PA2095, as well as in                

RmlA, were reported as significant for both biofilm production and caseinase production. This is not               

unexpected, as there is a moderately strong association between the caseinase-producing phenotype and             

biofilm-producing phenotype (Cramer’s V = 0.358) (see section 4.3.1.1), but there has been no biological               

link found between rmlA and caseinase production. 

 

Associations were also reported for caseinase production with three other hypothetical proteins; PA1064,             

PA3189, and PA3188. PA1064 has no known function, and therefore the relevance of this association               

cannot be determined. PA3188 and PA3189 form two adjoining proteins of an operon responsible for               

glucose uptake, with no known link to caseinase production (Raneri et al., 2018).  

 

Finally, two further significant associations with caseinase production were reported for HisM and SerC.              

HisM is a histidine transport protein, and SerC is a protein responsible for the metabolism of several                 

cofactors required for cell survival (Winsor et al., 2016). These are well characterised proteins that have                

no known links to caseinase production, and therefore they may be false positive results. Without detailed                

experimental analysis, no biological link with caseinase production can be determined. 

 

Three associations with the acute-APE timepoint were identified for PA5136, PA2095, and RmlA. These              

were the same associations that were reported for the biofilm-producing and caseinase-producing            

phenotypes, which suggests that the isolates collected at the acute-APE timepoints may be linked with a                

change in the biofilm-producing and caseinase-producing phenotypes. An increase in biofilm and            

caseinase indicates a greater virulence of the strains, however, any link with the acute-APE timepoint               

would need to be followed up experimentally. 
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4.3.7 Gene presence-absence in subsampled groups can identify major gene truncations 

 

 

Table 4.10 LM and LMM association tests for each of the 13 phenotypes for the gene presence-absence data for                   

each patient group. 

 

To increase the power of the GWAS to identify structural variants, in contrast with single or aggregate                 

variants, association tests were also run for the presence and absence of genes in the pangenome, which                 

may also be associated with particular phenotypes. LM and LMM were fit for the pangenome of the                 

subsampled patient groups identified in section 4.3.3. Significant associations were reported with the PQS              

producing and BHL producing phenotypes (Table 4.10).  

 

One significant association was identified with the PQS-producing phenotype and the presence of the              

PA3477 gene in the isolates from patient group K3 and K6. This gene was annotated as RhlR_2, a second                   

copy of the rhlR gene, a QS transcriptional regulator (Medina et al., 2003). Upon closer inspection,                

RhlR_2 was found to be a truncation of the full RhlR protein (Figure 4.10), where an early stop codon has                    

been introduced in place of glutamine at position 140. A second hypothetical start codon is present at                 

position 158, however, experimental studies would be necessary to determine whether this would be              

transcribed, and to confirm whether the two independent domains would be functional. 

 

Previous studies have shown that RhlR is linked to PQS production. The BHL QS molecule binds to the                  

RhlR protein, and the RhlR-BHL complex prevents pqsR gene expression, inhibiting the PQS quorum              

sensing system (Brouwer et al., 2014). It is possible that the truncated RhlR_2 may be inactive and cannot                  

successful bind BHL or the pqsR regulatory target, leading to an increase in the PQS-producing               

phenotype. The truncated RhlR_2 gene is only present in 18.7% isolates from patients K3 and K6, and                 

hence cannot fully explain the presence of PQS producing phenotype in this subgroup, which is present in                 

45.4% of isolates. Follow-up investigations confirmed that only the isolates from patient K3, and not               

those from patient K6, harbour the truncated RhlR_2. The truncation has been acquired in a distinct                

sub-lineage of the K3 population (Figure 4.11).  
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Figure 4.10 A comparison of the two amino acid sequences for the complete RhlR and the truncated RhlR_2                  

proteins. The truncated RhlR_2 contains a stop codon in the middle of the sequence (red), prior to a start codon                    

(green), which are separated by 18 amino acids (grey). 

 

 

 

 

Figure 4.11 The patient K3 phylogeny, with the RhlR truncation indicated next to the phylogeny in red.  

 

This sub-lineage is made up of isolates collected over every time point of each of the 4 exacerbations                  

reported for patient K3. The frequency of the rhlR truncation appeared to increase at the acute-APE                

timepoint for the first three exacerbations, when compared to the stable-APE and recovery-APE             

timepoints (Figure 4.12). However, the frequency of isolates with the rhlR truncation was significantly              

decreased during the fourth exacerbation, and decreased to zero in the recovery-APE timepoint of the               

fourth exacerbation. It is possible that this relates to an out-competition of this sub-lineage in subsequent                

APEs, however additional sequencing data from further APEs would be required to confirm this. 
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Figure 4.12 A frequency plot showing the presence of the full RhlR protein, compared to the truncated RhlR_2                  

protein, in isolates collected from patient K3, plotted against the exacerbation timepoints.  

 

Two genes were identified above the significance threshold in isolates from patient group K7, K9, K11                

and K15, and were associated with the BHL producing phenotype. The genes were OpdD and DppA2.                

Both the OpdD porin and the DppA2 protein are involved in dipeptide transport, and knockout mutants of                 

both genes inhibit biofilm formation (Lee et al., 2018). However, no direct associations have been               

identified between either of these genes and the BHL-producing phenotype. 

 

 

4.3.7.1 Gene presence-absence for the entire dataset 

 

Association tests were run using LM and LMM for the pangenome of the whole dataset. All results                 

reported for LM were as a result of population structure, and so were uninformative. One LMM                

association was reported for the PQS-producing phenotype (Table 4.11). 
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Table 4.11 LM and LMM association tests for each of the 13 phenotypes on the gene presence-absence data for the                    

whole dataset. Results that reached the significance threshold were filtered for population structure. 

 

The significant result identified using LMM association tests for the gene presence-absence in the whole               

dataset was the same RhlR_2 protein that was previously reported for the PQS phenotype (section 4.3.7)                

in isolates from patient K3.  

 

All of the patient groups, apart from patient group K3 and K6, contained isolates that harbour only the                  

complete RhlR protein, and not the truncated version. 

 

 

4.3.8 Using kmers to identify complex variation 

 

Kmers are lengths of genome that can be used to capture more complex variation than simply SNPs called                  

against a reference, but other variation, such as INDELs, short repeats, and structural rearrangements              

(Aun et al., 2018). To further increase the power of the GWAS to identify these alternative variations that                  

may be associated with particular phenotypes, association tests were also run with kmers. 

 

Due to the large size of the P. aeruginosa dataset, counting kmers for all isolates was found to be too                    

computationally intensive for this analysis. However, Jaillard et al. identified a way to use compact De                

Bruijn graphs to compress kmers into unitigs, reducing the computational power required to analyse large               

datasets (Jaillard et al., 2018). In total, 53,000 unitigs were identified in this dataset. LM and LMM were                  

used to identify associations between the unitigs of all 4,094 isolates and each of the 13 phenotypes.                 

Significant unitigs were mapped successfully against the P. aeruginosa PAO1 reference genome for             

annotation.  

 

All LM results were dominated by population structure, as has been seen previously. The LMM               

association tests only identified two significant associations, one with the biofilm producing phenotype             

and one with the caseinase producing phenotype. These unitigs each mapped to a single locus within the                 

P. aeruginosa genome (Table 4.12). 
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Table 4.12 Unitig association tests for each of the 13 phenotypes for the whole dataset. Results that reached the                   

significance threshold were filtered for population structure. 

 

An insertion in the region encoding the PA2462 protein, causing a frameshift, was identified as               

significantly associated with biofilm formation. There is no predicted function associated with this             

protein, but it is hypothesised to be involved in arginine metabolism and biosynthesis (Winsor et al.,                

2016). It has not previously been linked to biofilm formation.  

 

A single base pair deletion in the cdrA gene was identified as significantly associated with caseinase                

production. This gene is involved in the production of extracellular matrix proteins that bind the P.                

aeruginosa biofilm and prevent proteolysis (Reichhardt et al., 2018). However, this has also never been               

linked to caseinase production. 

 

 

4.3.9 Accounting for missing data 

 

In several cases, when determining the experimental phenotypes, some data was not collected. This              

occurred when the isolates did not grow on a plate, and were subsequently recorded as absent for the                  

phenotype, rather than as no growth. The proportion of missing data is outlined in Table 4.13. Of the ten                   

phenotypes that were investigated experimentally, data was recorded for 100% of isolates for four of the                

phenotypes; biofilm formation, OdDHL production, BHL production and PQS production. Of the            

remaining experiments, the highest proportion of missing data was for rhamnolipid production, where no              

phenotype could be recorded for 1,503 (36.7%) of the isolates. The lowest proportion of missing data was                 

for the twitching motility phenotype, where a phenotype was recorded for 99.4% of isolates. 

 

In order to investigate whether the missing data affected the GWAS results, each LMM association test                

was re-run for the whole dataset, for the phenotypes with missing data excluded; caseinase production,               

gelatinase production, rhamnolipid production, siderophore production, swimming motility and twitching          

abcde 
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Table 4.13 The number of isolates for each phenotype experiment where no phenotype was recorded. 

 

motility. After missing data was removed from these phenotypes, the number of isolates included for each                

phenotype ranged from 2,591 - 4,069 isolates, which should still have a high enough power to identify                 

any strong associations. 

 

LMM were run against SNPs, aggregated SNPs and gene presence-absence for the whole dataset, to               

identify any associations with the six phenotypes minus any missing data. No significant results were               

identified for the gene presence-absence data. This is consistent with section 4.3.7.1, where no significant               

results were identified for the six phenotypes which were present with missing data still included. 

 

Seven significant results were identified for the caseinase-producing phenotype using LMM against            

aggregated SNPs (Table 4.14). These genes were the same as those associated with caseinase production               

in section 4.3.6. Change in p-values are due to the altered phenotypic and genotypic proportions in the                 

dataset once missing data was removed. The association between caseinase production and SerC, which              

was identified in section 4.3.6 as a false positive result, was no longer identified as significant after the                  

missing data was removed.  

 

Finally, LMM were run against SNPs (Table 4.15) for the phenotypes minus missing data. Four               

significant non-synonymous mutations were identified, and all were associated with both the caseinase             

abcdefgh 
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Table 4.14 LMM association tests for each of the 6 phenotypes on the entire dataset using aggregated SNPs                  

non-synonymous SNPs, filtered for the missing data. 

 

producing and siderophore producing phenotypes. All of these were identical to the results of section               

4.3.5, with some variation in the p-values. A strong association between these two phenotypes was               

identified in section 4.3.1.1, but after missing data was removed, the Cramer’s V statistic increased to                

0.581, which suggests a very strong association between these phenotypes. 

 

Overall, no different significant associations were identified when the missing experimental phenotypic            

data was removed from the analysis. 

 

 

 

Table 4.15 LMM association tests for each of the 6 phenotypes for SNPs called against a reference, filtered for the                    

missing data. The results that reached the significance threshold were filtered for population structure. 
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4.3.10 Investigating global transcriptional regulators 

 

Although the GWAS used a wide variety of techniques to identify genotype-phenotype associations, and              

was able to identify several plausible genotypic associations with the virulence-related phenotypes, there             

are other methods that may identify further associations that are missed by typical GWAS algorithms. For                

example, GWAS may not associate multi-variant loci, true significant associations may be hidden by              

population structure, and GWAS may miss associations that are masked by skewed presence-absence             

ratios of phenotype. Therefore, some additional known virulence-related genes were manually           

investigated for their potential association with the ten phenotypes. 

 

A change in pathogenicity commonly occurs with mutations in global transcriptional regulator genes             

(Marvig et al., 2013; Winstanley et al., 2016). In this chapter, a change in biofilm has been associated                  

with a premature stop codon in the QS transcriptional regulator rhlR (section 4.3.7), and so the sequences                 

of the global transcriptional regulator genes lasR, mucA, retS, gacS and ampR were extracted from all                

4,094 isolates in order to identify any potentially-causative mutations missed by GWAS.  

 

A frameshift-causing insertion within the transcriptional regulator mucA was present in 34% of patient K3               

isolates and 93% of patient K14 isolates. Only two other mutations were present in mucA, both were in                  

patient K4, and both were synonymous mutations. This suggests that all isolates from patients K1, K4,                

K6, K7, K9, K11, and K15 are not currently overexpressing alginate, which is a frequently-observed               

phenotype that aids initial chronic adaptation to the CF lung (Feliziani et al., 2010). Non-mucoid P.                

aeruginosa, often caused by phenotypic reversion through mutations in alginate biosynthetic pathway,            

can be isolated alongside mucoid P. aeruginosa from CF lungs in late-stage infection (Malhotra et al.,                

2018). The frameshift mutation in patient K3 is only present in isolates close to the root of the phylogeny,                   

and suggests the presence of both mucoid and non-mucoid P. aeruginosa in the lungs of patient K3                 

(Figure 4.13).  

 

The majority of patient K14 isolates that contain the frameshift mutation in mucA also harbour a number                 

of mutations in algU. Mutating algU is a known mechanism by which P. aeruginosa reverts back to a                  

non-mucoid phenotype, suggesting that the patient K14 isolates once expressed the mucoid phenotype,             

but were non-mucoid at the time of sampling (Marvig et al., 2015). However, multiple mutations in                

asdfghj 
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Figure 4.13 A frameshift mutation in mucA is only present in the isolates towards the root of the phylogeny (blue),                    

indicating that both mucoid and non-mucoid P. aeruginosa exist in patient K3. 

 

hundreds of genes are suspected to change the expression levels of the alginate biosynthetic operon,               

though mutating mucA is by far the most common cause, so a phenotypic assay would be required to                  

confirm the mucoid phenotype of all isolates (Malhotra et al., 2018). 

 

One synonymous and one non-synonymous mutation was identified in the QS regulator, lasR. The              

non-synonymous mutation, R217W, was present in 98% of isolates from patient K1, and has been shown                

to reduce the transcription of lasR-regulated genes (Feltner et al., 2016). The R217W mutation occurs in                

the DNA-binding region of lasR, suggesting a reduction in transcription is caused by the reduced binding                

of lasR to DNA targets (Feltner et al., 2016). A knockdown of lasR may be responsible for the low levels                    

of QS and QS-regulated virulence phenotypes observed for the patient K1 isolates. 

 

In total, 26 synonymous mutations were observed in the global regulatory genes retS or gacS. These are                 

fixed mutations, as they were present in 100% of isolates of the patient the mutations were identified in.                  

Only patient K4 isolates contained non-synonymous mutations in either gene: I339M was found in 99%               

of patient K4 retS sequences; and V440A and A521T was found in 100% and 2.6% of patient K4 gacS                   

sequences respectively. Mutations in retS complement the activation of the transcriptional switch from             

acute to chronic infection through the LadS-dependent pathway. However, mutations in gacS will             

advantages 

 
198



Chapter 4 

 

Figure 4.14 Three non-synonymous mutations were identified (blue) in ampR in a) patient K6, and b) patient K3.  

 

hypothetically reverse this switch from chronic transcription to the more-virulent acute transcription            

(Marvig et al., 2015). If the V440A and A512T mutations in gacS do revert the isolates from patient K4                   

to a more virulent state, it may explain the higher prevalence of virulence-related phenotypes observed for                

these isolates. 

 

Within the global regulator ampR, there are two non-synonymous mutations in the isolates from patient               

K3 (E88K in 16.2% of isolates, and P211T in 3.2% of isolates), and one non-synonymous mutation in the                  

isolates from patient K6 (T97S in 12.6% of isolates). These mutations are associated with specific clonal                

expansions within each patient phylogeny (Figure 4.16). 

 

The effect of each mutation on the P. aeruginosa phenotype depends on the conformational changes they                

cause to the AmpR protein. For example, the E88K mutations observed in patient K3 has been previously                 

shown to act as a gain-of-function mutation, by locking AmpR in an active conformation (Tueffers et al.,                 

2019; Balasubramanian et al., 2015). This would have the main effect of increasing antibiotic resistance               

through the overexpression of AmpC, which would increase resistance to the β-lactam class of antibiotics,               

as well as increasing expression of MexXY-OprM efflux pump, which confers resistance to the              

aminoglycosides (Balasubramanian et al., 2015). AmpR has also been shown to positively regulate the              

lasR QS system, and so locking AmpR in an active conformation would upregulate production of all                
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QS-regulated virulence factors, such as the T3SS, secreted proteases, and hydrogen cyanide production             

(Balasubramanian et al., 2015). Finally, an active AmpR has been shown to increase iron uptake, and                

downregulate chronic phenotypes through direct interaction with RsmZ (Balasubramanian et al., 2015).            

The T97S and P211T mutations have not yet been characterised, and so could either be a gain-of-function                 

mutation, or a loss-of-function mutation, which would have the opposite effect on the P. aeruginosa               

phenotype. Therefore, any mutation in AmpR can have a significant impact on the P. aeruginosa               

pathogenicity. 
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4.4 Summary of results and discussion 
 
This study represents the largest study of comparative phenotypic-genotypic correlations of P. aeruginosa             

clonal isolates from the lungs of patients with CF, comparing 4,094 unique genotypes and 13 phenotypes.                

In this study, a substantial number of GWAS tests were carried out on a large number of isolates, in order                    

to thoroughly examine potential genotype-phenotype correlations. In total, 516 iterations of genome-wide            

association studies were run to identify any causative genotypic variation for thirteen phenotypes             

expressed by the 4,094 isolates in this dataset. The results for the five subsampled patient groups are                 

summarised in Table 4.17, and the results for the associations between the whole dataset are summarised                

in Table 4.18. A list of all associations identified are listed in Table 4.19. 

 

 

Table 4.16 Summary of all GWAS tests run on the isolates from the five subsampled patient groups. LR = Linear                    

Regression, LMM = Linear Mixed Models, GPA = gene presence absence. Red = No results or results reported due                   

to population structure, yellow = significant results with no known biological link, green = significant results with a                  

biological link. 

 

 

Table 4.17 A table summarising the association tests run for the whole dataset. LR = Linear Regression, LMM =                   

Linear Mixed Models, GPA = gene presence absence. Red = No results or results reported due to population                  

structure, yellow = significant results with no identifiable biological link, green = significant results with identifiable                

biological link, grey = not run. 
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Table 4.18 A list of all of associations identified in this study.  

 

Four different association tests identified biologically plausible genotypic associations; with biofilm           

production, BHL production, and PQS production. Fitting LMM to aggregated SNPs for the whole              

dataset identified mutations in yfiR that could plausibly cause a change in biofilm production, through an                
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induction of the c-di-GMP cascade. Fitting LMM to all SNPs for the whole dataset identified a mutation                 

in the lon protease that could potentially cause a change in BHL production, through interaction with the                 

rhl quorum sensing system. In isolates from patient group K3 and K6, an increase in PQS production was                  

associated with a gene truncation in rhlR, which was identified by fitting LMM to gene presence-absence                

associations for the whole dataset and for the K3 and K6 subsampled group. Additionally, mutations in                

oxyR were plausibly associated with a change in PQS production, through transcriptional interactions with              

the pqs quorum sensing system, for the K3 and K6 subsampled group, which was identified by fitting LM                  

and LMM to all SNPs for this patient subgroup. 

 

As biologically relevant results have been identified using these methods, it shows that there is enough                

power in this dataset to uncover true positive associations with complex phenotypes. Therefore,             

associations identified with no clear biological connection, for example the 15 uncharacterised            

hypothetical proteins, could also be true associations. P. aeruginosa molecular biology is far from fully               

understood, and these uncharacterised mutations may cause changes in these complex phenotypes through             

mechanisms that are not yet understood. Gene knockout studies would quickly identify whether these              

uncharacterised genes have the predicted effect on the phenotypes under standard lab conditions.  

 

However, based on current understanding of P. aeruginosa biology, 17 of the genes identified are               

unlikely to be true positive associations. This is because these genes are involved in well-studied               

pathways that are unrelated to the phenotypes they have been associated with. However, further              

experimental studies should still be carried out, and as our understanding of P. aeruginosa biology               

improves, these associations may yet yield some biological relevance. 

 

Mutations within six genes were associated with APE timepoints, four for acute-APE and two for               

recovery-APE. This suggests that there may be genetic associations with APE timepoints. The             

associations identified with acute-APE timepoints were also significant for many of the virulence related              

phenotypes; biofilm formation, caseinase production, BHL production, gelatinase production and PQS           

production. This is evidence that many virulence-related phenotypes may be significantly affected during             

acute APE, as well as the genotype, and may be one of the triggers or consequences of these                  

exacerbations. 

 

There are several other examples where multiple phenotypes were associated with the same genetic              

variant. This may occur because there is a correlation between the phenotypes, leading to a similar                
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distribution of these phenotypes among the isolates. For example, PA2095 was associated with both              

biofilm and caseinase production. These two phenotypes have a high Cramer’s V value, indicating that               

there is a moderately strong correlation between the phenotypes in the dataset. Other justifications for               

these multiple-phenotype single-variant associations include similar induction pathways that are related to            

the genetic variant, the associations may be artifacts of the data due to a small sample size, or both the                    

phenotypes and genetic variants have been co-selected.  

 

The majority of the association studies did not manage to identify any significant genetic variation               

associated with phenotypic variation. In these cases, it is likely that there are multiple genetic variants                

which cause the change in phenotype, and there is not enough power in this dataset to identify these                  

variants. Aggregating mutations in genes by known pathway, or by transcriptome response may also              

increase power to identify variants that influence the expression of the tested phenotype. 

 

This study shows that it is important to use different association techniques to measure the different types                 

of variation within DNA sequences; individual SNPs, aggregated SNPs, kmers (unitigs), and gene             

presence/absence. In this study, significant biologically-relevant associations were identified using most           

of the different techniques. Although in this study, using unitigs was not able to uncover any biologically                 

relevant associations, this method can be used to identify short INDELs, as well as repeat regions and                 

structural variation, which may be relevant to other datasets. 

 

It is also noted that there was very little congruence in the associations identified using the different                 

techniques. For example, the stop codon causing the gene truncation in rhlR identified in the gene                

presence-absence study, was not identified in any of the SNP association studies. For the LM and LMM                 

SNP association tests, the SNP that results in the stop codon did not reach the significance threshold,                 

suggesting that other true positive results could be hidden after p-value corrections for multiple testing has                

been applied. Wilson recently identified one method that may be used to overcome this limitation, by                

applying the harmonic mean p-value, which uses a sliding window to combine dependent p-values to               

reduce the burden of significance correction to identify causative mutations (Wilson, 2019).  

 

In all cases, there was congruence between the associations identified using LM and LMM for the                

unstructured patient groups. In some cases, there was also congruence between the studies using SNPs               

and those using aggregated SNPs. For example, mutations in rmlA, PA5136, and PA2095, were              

significant using both SNPs and aggregated SNPs methods. This suggests that there were multiple              
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mutations within these genes that have the same direction of causative effect on the phenotypes they are                 

associated with. However, in other cases such as the lon protease, significant mutations were detected               

using SNPs techniques, but were not identified using the aggregated SNPs techniques. This suggests that               

there are multiple non-synonymous mutations in the lon protease that do not all cause the same effect,                 

which aren’t accounted for when aggregating SNPs together. 

 

The use of simple LM on the structured dataset in this study was uninformative. LM was only able to                   

identify SNPs associated with the strong population structure present within these isolates. This was              

overcome by using LMM, which allowed the dataset to be analysed as a whole to increase power to                  

identify true positive associations. Both LM and LMM were used to analyse the subsampled patient               

groups, however the significant p-values reported using both models were identical, which suggests that              

the population structure matrix applied in the LMM did not reduce the ability of the test to identify                  

mutations in unstructured datasets. 

 

One strength of this study was the large sample size, of 4,094 isolates. However, by using subsampling of                  

patient groups into BAPS clusters, associations that are specific for each patient group could be identified.                

For example, associations with oxyR, which were found to have biological relevance, were only              

significant in the subsampled population group for isolates from patients K3 and K6. Even when               

identifying associations within the whole dataset, instances where patient specific associations were            

identified still occurred. The truncation in rhlR was identified using LMM and gene presence-absence for               

the whole dataset, but was only present in the isolates from patient K3 isolates. In order to identify                  

common mutations across different patients that have the same causative effect on the phenotype, we               

would need a much greater number of patients included in the study. Currently, the effective patient                

sample size is only nine patients, and therefore the conclusions of this study may not be representative of                  

the whole P. aeruginosa CF population. However, the phenotypes investigated in this study are complex,               

and countless causative mutations in several pathways can impact expression of each phenotype.             

Therefore, a more diverse dataset may allow the identification of many more mutations in many different                

pathways that could impact these phenotypes.  

 

In conclusion, we have identified biologically relevant associations for complex phenotypes, and found             

further associations that require experimental validation. We have shown that LMM can effectively             

control for population structure in highly structured datasets, and that it is necessary to use multiple                

different GWAS approaches to capture different types of genetic variation. 
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Chapter 5  

 

Conclusions 
 

 

 

5.1 Restatement of the research aims 
 

P. aeruginosa are metabolically and genetically diverse Gram-negative bacteria that are able to colonise a               

wide-range of environmental niches. Up to 80% of patients with cystic fibrosis obtain chronic P.               

aeruginosa lung infections that remain within the patient for the rest of their life, and acquisition of                 

chronic P. aeruginosa infection is associated with increased lung inflammation and with greater             

morbidity and mortality. Patients with CF undergo periods of sudden and rapid worsening of symptoms               

called acute pulmonary exacerbations, which are suspected to be caused by bacteria. Chronic P.              

aeruginosa infections have been associated with an increase in the frequency of APEs and the               

consequential hospitalisations. 

 

This dissertation forms part of a wider study where 15 patients with CF were asked to undertake                 

home-based measurement of their health over the course of six months, as well as provide daily sputum                 

samples. Sputum samples were selected from nine patients who experienced a total of 18 APEs between                

them, and 96 P. aeruginosa isolates were collected from each sputum sample at the acute timepoint,                

stable timepoint, and recovery timepoint of each APE that each patient experienced. In total 4,094 P.                

aeruginosa isolates were whole-genome sequenced, and each isolate was screened for 10            

virulence-related phenotypes. 

 

In this dissertation, these 4,094 whole-genome sequences were analysed to quantify the inter- and              

intra-patient diversity of the P. aeruginosa communities, and investigate the evolution of each community              

when facing the pressures of the CF lung. The whole-genome sequences of these 4,094 isolates also                

offered a unique insight into the changes that occur in the bacterial population over the course of an APE.                   
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In addition, GWAS methods were employed to determine the genetic basis for any phenotypic diversity               

that was observed within this dataset. 

 

Finally, this dissertation investigated the population structure and genetic diversity of 353 P. aeruginosa              

isolates from two UK-based bloodstream infection surveys. The antimicrobial resistance profiles and            

whole-genome sequences of all isolates were determined, and phenotypic antimicrobial resistance was            

associated with genotypic markers. 
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5.2 Key findings and future directions 
 

5.2.1 Bacteraemia-associated P. aeruginosa surveillance 

 

This chapter has provided the first insight into the population structure of bacteraemia-causing P.              

aeruginosa isolates (n = 353) from across the UK. These were found to represent the well-characterised                

diverse P. aeruginosa population structure, punctuated with sporadic emergence of highly-successful           

epidemic clones. Two of these highly-successful epidemic clones were present in the local bacteraemia              

surveillance dataset; ST395 and ST253. These two international and high-risk clones are typically             

associated with MDR and XDR bloodstream infections around the globe. However, no evidence of MDR               

was present within the local ST253 isolates or the majority of the ST395 isolates. However, two subclades                 

of the ST395 isolates were associated with rapid acquisition of multiple AMR phenotypes, most likely               

caused by overexpression of non-specific efflux pumps. A third epidemic clone was identified within the               

BSAC surveillance collection; the ST175 clade. The ST175 isolates were found to be distributed across               

the UK and Ireland, and were associated with MDR and XDR infections. On a global scale, ST175                 

infection is associated with the presence of MBLs and ESBLs, causing extensive resistance to all classes                

of β-lactam antibiotics. However, no evidence of MBLs or ESBLs were identified in the whole-genome               

sequences of the ST175 isolates in this study. Strong temporal signal was present within the ST175                

phylogeny, which indicated the emergence of the ST175 epidemic clone in the UK sometime between the                

mid-1980s and mid-1990s. All three of the high-risk and international STs were found to have a high                 

number of genomic islands compared to the rest of the isolates in the dataset. Most of the acquired genes                   

were related to iron uptake, phage defence, Type VI secretion and motility systems.  

 

Within the local collection, very little antimicrobial resistance was identified for the aminoglycoside             

antibiotics tobramycin, gentamicin and amikacin, and no resistance was identified for the drug-of-last             

resort, colistin. Resistance rates were highest for the ticarcillin-clavulanate combination therapy, where            

almost 50% of isolates were resistant. Widespread MDR was observed for isolates collected as part of the                 

BSAC surveillance programme. Only one isolate showed resistance to colistin, indicating that colistin is              

still a viable therapeutic option to treat MDR infections. Resistance to the aminoglycoside amikacin was               

also infrequent, suggesting that resistance determinants to this antibiotic may be more difficult for P.               

aeruginosa to obtain, and should be considered a last-resort treatment for MDR infections alongside              

colistin.  
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Given the prevalence of high-risk and international clones within the dataset, continued surveillance of              

bacteraemia-associated P. aeruginosa infection will improve understanding of their distribution, whilst           

also monitoring the spread of AMR. From an increase in surveillance, possible methods of transmission               

could be identified, and future transmission of other high-risk clones could potentially be prevented.              

Future work should try to identify potential reservoirs within hospitals that may contribute to frequent               

reinfection by these high-risk and international clones. 

 

Further work is also required to elucidate the mechanism of AMR for the isolates which contain no                 

known causative gene or gene variant. Transcriptomic approaches could help to understand AMR-related             

gene expression, such as overexpression of multi-drug efflux through currently unknown mechanisms.            

Increasing our understanding of AMR resistance mechanisms will provide new targets for antimicrobial             

compound development. 

 

 

5.2.2 Diversity of exacerbation-related P. aeruginosa 

 

The second chapter analysed the whole-genome sequences of 4,094 P. aeruginosa isolates from nine              

patients with CF. Each patient was found to be infected with their own individual and distinct strain of P.                   

aeruginosa, but different patients were infected with the same ST. This chapter also found evidence of                

divergent, co-existing lineages of P. aeruginosa within patients K1, K4, K11 and K14, which suggests               

that separate populations of isolates inhabit separate niches within the lung.  

 

This chapter attempted to identify hypermutation within the P. aeruginosa isolates, without the need for a                

phenotypic assay. The presence of large root-to-tip distances and large transition/transversion ratios            

within the phylogeny indicated that one lineage from patient K14 diverged from the other due to                

hypermutation. No hypermutators in other patients could be identified through outlier root-to-tip            

distances. Over 94% of the isolates in patients K1, K3 and K4 had transition/transversion ratios greater                

than 3:1, which indicates that the isolates are either currently hypermutating, or are descended from a                

hypermutator strain. Ancestral node-to-node transition/transversion ratios for patient K1, K3, and K4            

isolates were also elevated, but no obvious loss-of-function mutations were identified in the mutome,              

suggesting that these isolates are descended from hypermutators that have reverted to wild-type. 
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Ancestral hypermutation may also justify the Bayesian time to MRCA estimates for the groups of isolates                

that showed temporal signal. For example, Bayesian dating suggested that patient K1 isolates were              

mutating at a rate 5-18x higher than wild-type, and that isolates from patient K3 were mutating at a rate                   

2-8x higher than wild-type. Bayesian dating suggested that the time to the MRCA isolate of patient K7                 

and K15 was 0.54 to 1.12 years prior to the study, however, direct transmission between the two patients                  

was ruled out. Transmission of P. aeruginosa ST3307 was suspected between patients K3 and K6, as the                 

patient K6 isolates were nested within the patient K3 isolates phylogeny. Bayesian dating indicated a time                

to MRCA of the patient K6 isolates and the closely-related patient K3 isolates as 0.71 to 1.74 years prior                   

to the study. 

 

The phylogeny of the patient K3 isolates provided an insight into P. aeruginosa evolution over the course                 

of infection. Gene presence-absence of the patient K3 isolates indicated large areas of both gene               

acquisition and gene loss that are associated with the switch from acute to chronic infection. The acquired                 

T6SS genes in the patient K3 isolates shared over 99% identity with the Pseudomonas aeruginosa               

LESB58 reference genome. Regions of recombination were also identified within the patient K3 isolates              

that may have originated from the LESB58 genome. It is therefore possible that the ST3307 isolates                

co-existed with a LES clone in the lungs of patient K3, before being outcompeted. 

 

This study found that the diversity of the isolates within each patient was unchanging over the course of                  

the three APE timepoints, and also across different APEs experienced by the same patient. However, for                

the patient K1 and K4 isolates, there was evidence of non-random phylogenetic clustering of isolates               

belonging to a particular APE that each patient underwent. This suggests that the lineage architecture               

within the lungs of these patients is potentially altered during the time in-between exacerbations.              

However, for all patients, no clustering was observed for isolates belonging to a specific timepoint across                

each APE, suggesting that the P. aeruginosa population structure is not affected over the course of each                 

APE by physiological changes and treatment. 

 

The AMR profiles of all 4,094 isolates in the study were predicted from their genomes. The results                 

showed that the predicted AMR profile of the isolates within each patient did not vary significantly, and                 

no genetic cause for overexpression of efflux pumps could be identified. There was very little variation in                 

the presence/absence of AMR genes. 
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Further work on this dataset should initially focus on understanding the genetic basis for the non-random                

phylogenetic clustering of patient K1 and K4 isolates associated with a particular APE, and then               

characterising any selective advantage these mutations might afford. Secondly, there is evidence that             

ST3307 has co-existed with, and subsequently outcompeted, a Liverpool Epidemic Strain whilst in the              

lungs of patient K3. Epidemic strains are highly virulent and adapted to the CF lung, and therefore further                  

work should investigate how ST3307 outcompeted LES. Finally, very little diversity was observed within              

the isolates from patient K15, providing a unique insight into the initial adaptation and evolution of P.                 

aeruginosa isolates within the CF lung. This offers a rare opportunity to follow the development of a                 

newly-acquired chronic infection, and future work should focus on sequencing follow-up isolates to             

identify how early P. aeruginosa chronic infections adapt and evolve within the lungs. 

 

 

5.2.3 GWAS of complex P. aeruginosa phenotypes 

 

This chapter associated genotype with ten virulence related phenotypes, plus three APE timepoints, for              

the 4,094 P. aeruginosa isolates in the CF dataset. This is the first GWAS to associate P. aeruginosa                  

genotype with complex phenotypes. In total, 516 iterations of GWAS were run to identify any causative                

genotypic variation for the thirteen phenotypes exhibited by the 4,094 isolates in this dataset. 

 

Four different association studies identified biologically plausible genotypic associations with; biofilm           

production, BHL production, and PQS production. Change in biofilm production was associated with             

mutations in the YfiR protein, which induces the c-di-GMP cascade and results in upregulated              

biofilm-associated pathways. Change in BHL production was associated with mutations in the lon             

protease, which is known to interact with the rhl quorum sensing system. A change in PQS production                 

was associated with a gene truncation in rhlR, which interacts with the pqs quorum sensing system.                

Additionally, mutations in oxyR were plausibly associated with a change in PQS production, through              

transcriptional interactions also with the pqs quorum sensing system. Mutations within six genes were              

also associated with APE timepoints, four for acute-APE and two for recovery-APE. 

 

Associations with an additional 15 uncharacterised hypothetical proteins were also uncovered. As            

biologically relevant results have been identified using these methods, it is possible the 15 uncharacterised               

hypothetical proteins could also be true associations. P. aeruginosa molecular biology is far from fully               
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understood, and any uncharacterised mutations may cause changes in phenotypes through unknown            

mechanisms.  

 

This study highlighted the importance of using different association techniques to capture the different              

types of variation within DNA sequences; individual SNPs, aggregated SNPs, kmers, and gene             

presence/absence. Additionally, the use of simple LM on the structured dataset in this study was               

uninformative, due to strong population structure. This limitation was overcome by employing LMM,             

which successfully controlled for population structure in the highly-structured dataset.  

 

Future work should focus on confirming the associations identified in this chapter. Lab experiments              

would be required to prove whether the associations identified are true positive results. Secondly, lab               

experiments should characterise whether the hypothetical proteins are associated with a change in             

phenotype and through which mechanisms. 

 

Finally, using GWAS to understand genotypic and phenotypic changes that occur frequently in the P.               

aeruginosa CF population would require a more diverse sample of isolates. Therefore, increasing the              

number of patients recruited in future studies could identify more frequently-occurring P. aeruginosa             

mutations in the CF lung. An improved understanding of common mutations within the CF lung could                

provide new targets for therapeutics to prevent chronic infection.  
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5.3 Concluding remarks 

 
This dissertation has provided evidence that high-risk epidemic P. aeruginosa strains are present in the               

UK and Ireland bacteraemia surveillance programmes on both a local and national level. However, in this                

dataset, these high-risk and epidemic strains are not associated with the presence of MBLs and EMBLs                

that are widely reported in the literature. Phenotypic and genotypic antimicrobial susceptibility testing             

demonstrated that colistin and the aminoglycoside antibiotics are still viable therapeutic options to treat              

MDR bacteraemia infections. 

 

This dissertation has also applied whole-genome sequencing to improve current understanding of the             

diversity of P. aeruginosa infection in the CF lung. Changes in lineage architecture associated with some                

APEs have been newly identified.  

 

Finally, this dissertation has identified biologically relevant associations for complex phenotypes in P.             

aeruginosa, which will be validated experimentally. LMM have been shown to effectively control for              

population structure in highly structured datasets, and multiple different GWAS approaches are required             

to capture different types of genetic variation that may be associated with a phenotype. 
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Appendices 

7 Appendices 

 

7.1 Chapter 3 metadata 

 

 
A list of all isolates included in both bacteraemia surveys, their accession numbers, locations, sampling               

dates, and MIC values, can be found at the following repository: 

 

https://github.com/SamuelKidman/PhD_Appendix/blob/master/Chapter_3_metadata.csv 

 

Note: The 2017/18 local isolate sequencing data will become available on 20/02/2020. 

 
 
 
 
A list of all isolates included in this chapter and their assembly statistics can be found at the following                   

repository: 

 

https://github.com/SamuelKidman/PhD_Appendix/blob/master/Chapter_3_assembly_data.csv 
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7.2 Chapter 4 metadata 

 

 
A list of all isolates included in this chapter and their assembly statistics can be found at the following                   

repository: 

 

https://github.com/SamuelKidman/PhD_Appendix/blob/master/Chapter_4_assembly_data.csv 

 

Note: The ENA accessions for individual isolates are unavailable at time of print, but will become 
available under the ENA study accession number ERP022089 
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7.3 Chapter 5 metadata 

 

 
A list of all isolates with corresponding phenotypes can be found at the following repository: 

 

https://github.com/SamuelKidman/PhD_Appendix/blob/master/Chapter_5_phenotypes.xlsx 
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