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Abstract

Title: Nonlinear resonance and excitability in interconnected systems
Author: Giuseppe Ilario Cirillo

Engineering design amounts to develop components and interconnect them to obtain a
desired behaviour. While in the context of equilibrium dynamics there is a well-developed
theory that can account for robustness and optimality in this process, we still lack a corre-
sponding methodology for nonequilibrium dynamics and in particular oscillatory behaviours.
With the aim of fostering such a theory, this thesis studies two basic interconnections in
the contexts of nonlinear resonance and excitability, two phenomena with the potential of
encompassing a large number of applications.

The first interconnection is considered in the context of vibration absorption. It corre-
sponds to coupling two Duffing oscillators, the prototypical example of nonlinear resonator.
Of primary interest is the frequency response of the system, which quantifies the behaviour
in presence of harmonic forces. The analysis focuses on how isolated families of solutions
appear and merge with a main one. Using singularity theory it is possible to organise these
solutions in the space of parameters and delimit their presence through numerical methods.

The second interconnection studied in this dissertation appears in the context of excitable
circuits. Combining a fast excitable system and a slower oscillatory system that share a
similar structure naturally leads to bursting. The resulting system has a slow-fast structure
that can be leveraged in the analysis. The first step of this analysis is a novel slow-fast model
of bistability between a rest state and a spiking attractor. Following this, the analysis moves
to the complete interconnection, and in particular on how it can generate different patterns
of bursting activity.
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Chapter 1

Motivations and scope of the thesis

From multistability in mechanical and electrical circuits to oscillations in living organisms and
chaotic motions in fluids we are surrounded with dynamical systems showing fascinating and
complex behaviours that go beyond equilibrium dynamics. The past century has witnessed a
large part of research in the applied sciences dedicated to these more complex phenomena.
Inspired by this richness and these efforts, there is an ever-increasing interest in exploiting
the potential of these phenomena to achieve new horizons with human-made systems.

The efforts undertaken in micro and nanoelectromechanical engineering [64, 78] are
an example of this. The extremely small dimensions involved in these systems make the
appearance of nonlinear effects readily observed [11], making them a perfect ground to exploit
nonequilibrium dynamics. Prominent in this field is the use of resonant systems, leading to
the necessity of methodologies for the design of nonlinear resonators.

Another important source of applications lies at the intersection between biology and
engineering. Among the many possibilities, close to the themes of this thesis is the interaction
between robotics and neuroscience. In these fields there is a growing interest in developing
artificial systems that can interact with the nervous system of living organisms or replicate
its performance. Two prominent examples of engineering applications in this context are the
attempts toward robotic prostheses that can interface with the central nervous system [2], and
the developments of agile robots that can move autonomously, with designs often inspired by
biological systems [7]. Excitability is a fundamental property of the elements found in neuronal
systems, highlighting the need for tools and theories to study and design interconnections
between excitable elements.

Despite the broad range of applications and large variety of phenomena, theoretical studies
are most often framed in the context of dynamical systems theory. Granted, this encompasses
a large variety of tools. Yet, also thanks to the incredible growth of the field in the past
century, it is what comes closer to a unifying framework to understand non-equilibrium
phenomena of interest in engineering and the applied sciences in general.

1



2 Motivations and scope of the thesis

But while dynamical systems theory gives the tools to characterise and classify different
phenomena, from a design prospective there is also the need of tools and techniques to realise
them. Realising a system requires designing its elementary components and interconnecting
them to generate new behaviours. A resonant system is obtained by connecting two elements
that store energy (elastic and kinetic in a mass-spring-damper system, electrical and magnetic
in an RLC circuit); an excitable system is realised from a fast source of positive feedback
and a slow source of negative feedback (an instantaneous active element and a slow passive
element in an electrical circuit, a fast excitatory current and a slow inhibitory current in a
biological membrane). This calls for a theory to predict and design the behaviour of a system
starting from its elementary components, an interconnection theory. An interconnection
theory that takes into account uncertainties and costs is the essence of systems and control
theory.

In the past decades systems theory has made significant progress in understanding
questions of stability, robustness and optimality in the context of equilibrium dynamics.
Largely, this can be seen as an effort to go from descriptive characterisations of these properties
to constructive procedures for the design of stable systems by interconnection [58]. A central
motivation of this thesis is that undertaking similar efforts in the context of phenomena away
from equilibrium could be extremely advantageous, and lead to theories that can be used in
designs that tackle problems like the ones mentioned above in relation to robotics.

The first step in this direction is arguably a theory for oscillations and multistability.
Example of recent advances in that context include the efforts to extend differential analysis
beyond contractions [26, 27] and the use of describing-function methods to design central
pattern generators [48]. Here we complement these efforts from a different viewpoint. Starting
from applications in which equilibrium theory is not enough, we study interconnections of
elementary systems that lead to nontrivial behaviour, with particular attention to design
questions.

To do this we consider two domains that historically have driven the central questions of
systems and control theory: mechanical and electrical systems. In these domains we study
nonlinear resonance and excitability, given their potential in different applications. While the
systems we chose have an importance of their own, we think of them as a fundamental first step
towards an interconnection theory: They correspond to interconnections of elementary systems
that are well understood in isolation but generate nontrivial behaviours once interconnected.

1.1 Outline and contributions

Before entering in the details of the different interconnections treated in this thesis, the next
chapter summarises the fundamental examples of nonlinear resonance and excitability. We
consider the Duffing oscillator as the archetype nonlinear resonator. The key characteristic
of its frequency response is that the resonant frequency depends on the amplitude of the
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input force. In the context of excitability the fundamental example is the FitzHugh-Nagumo
model. We use this model to ground our understanding of the action potential generation
and the related appearance of relaxation oscillations. The model is closely related to the van
der Pol oscillator, the canonical exampled of self-sustained oscillations and an interesting
connection between two types of oscillations: quasiharmonic and relaxation oscillations. We
think of these systems as the basic building blocks of the interconnections studied in the
following chapters: They are the elementary systems that we seek to interconnect to create
novel dynamical properties.

Following these preliminaries, chapter 3 studies the interconnection of two Duffing
oscillators in the context of vibration absorption. This interconnection models an absorber
attached to a main structure. The main focus of the analysis is on family of periodic solutions
that are detached from the main branch of the frequency response. These isolated branches
are called detached resonance curves. Their presence in parameter space can be characterised
using singularity theory. Through this characterisation it is possible to delimit the appearance
of these solutions in the space of design parameters, a first step towards an improved design
of the absorber. Results of this chapter were developed in collaboration with the Space
Structures and Systems Lab (S3L) led by Prof. Gaëtan Kerschen and in particular with
Dr. Giuseppe Habib. They appeared in [8].

The following chapter moves from mechanical systems to electrical circuits. The main focus
is on developing a theory of bursting from the interconnection of excitable elements. Chapter 4
makes a first step studying how to generate a system in which a stable equilibrium (resting
state) coexists with a stable fast oscillation (spiking state). The mechanisms underlying this
bistability have only recently been approached in the context of slow-fast systems, despite its
importance in several examples of bursting oscillations, a topic amply studied in neuronal
dynamics. Following up on previous work, the chapter studies a classical model of excitability
augmented with a source of slow of positive feedback, closely mimicking how this structure
is realised in biological membranes. Results of this chapter were presented at the SIAM
Conference on Applications of Dynamical Systems (DS19) and have been submitted for
publication (a preprint is available [9]).

The final contribution of this thesis is in chapter 5. Interconnecting two of the elementary
systems of chapter 2 provides a design methodology for bursting systems. After recalling how
a similar structure is found in different published models of neuronal activity, the chapter
focuses on how modulating properties of a subsystem produces different patterns usually
studied in isolation. In our view this is a simple instance of the more important question of
how a system can be modulated between different behaviours, a topic of growing importance
in the neurophysiology community. A preliminary version of the same ideas was used to
study hyperpolarisation-induced bursting, a poster summarising the results was presented at
the 4th International Conference on Mathematical Neuroscience (ICMNS).





Chapter 2

Preliminaries: nonlinear resonance
and excitability

In this preliminary chapter we revisit the canonical mathematical models of nonlinear
resonance and excitability: the Duffing oscillator and the FitzHugh-Nagumo model. We see
these as the elementary systems that appear in these contexts, making them the natural
starting point to realise more complex behaviours and phenomena. They also represent two
distinct types of oscillations: quasiharmonic and relaxation oscillations.

The first class of oscillations appears in weakly-damped weakly-nonlinear systems. We
consider the Duffing oscillator in this regime.

The second class of oscillations appears in the context of strongly dissipative systems with
time-scale separation, the key property used in the analysis of the FitzHugh-Nagumo model.

These two types of oscillations appear as distinct limits of the van der Pol oscillator,
probably the best-known model of self-sustained oscillations. We review its structure and the
corresponding limits in passing from one type of oscillation to the other.

Throughout the chapter we also give examples of concrete realisations of these elementary
systems, whose development often went hand in hand with the theoretical analyses.

2.1 Nonlinear resonance

Resonant systems are characterised by high-amplitude response to periodic input in a selected
range of frequencies. The simplest and most well-known example of resonant system is the
weakly-damped harmonic oscillator

(2.1) ÿ + 2ζνẏ + ν2y = u

where ν is the natural frequency and ζ the damping ratio. It is not restrictive to assume
ν = 1, since this is obtained using the dimensionless time τ = νt. This equation admits

5



6 Preliminaries: nonlinear resonance and excitability

realisations in many domains of interest in engineering, two common examples being a
mass-spring-damper system and an RLC circuit.

Restricting our attention to harmonic inputs u = f cos(ωt) yields

(2.2) ÿ + 2ζẏ + y = f cos(ωt)

The easiest way to study this equation is to use linearity to reduce to the case u = f exp(jωt).
Using the ansatz y = w exp(jωt) yields

(2.3) w(−ω2 + 2ζjω + 1) exp(jωt) = f exp(jωt)

which leads to the frequency response

(2.4) w

f
= 1

(jω)2 + 2ζjω + 1

For small ζ the amplitude of the frequency response (2.4) has a peak near the natural
frequency ν = 1. As ζ tends to 0 the value of this peak tends to infinity and its position
moves closer to 1, the natural frequency.

The reason while the simple harmonic oscillator is so prominent in oscillatory phenomena
is twofold. On the one hand, every linear system can be decomposed in independent modes
with the model above corresponding to one resonant mode. On the other hand, considering
a small-oscillation regime, a resonant system can be linearised, leading to a description in
terms of damped harmonic oscillators.

Although this line of thinking has been the essence of vibration mechanics for a long
time, applications in which the nonlinear regime is of interest are becoming more prominent,
ranging from nano/microelectromechanical systems [64] to structural dynamics [95]. The
entry point for most of them is the study of the Duffing oscillator, which often serves as the
nonlinear counterpart of the harmonic oscillator.

2.1.1 The Duffing oscillator

Examples of nonlinear oscillations and resonances have been studied since the early 1800s [60].
Two notable examples appear in the work of Helmholtz [99] and Rayleigh [89]. However, it is
George Duffing who is often accredited [60] with the first systematic study of the response of
a nonlinear system to periodic inputs. Motivated by applications in mechanical engineering
Duffing studied the effect of adding a nonlinear spring to a damped harmonic oscillator
in his monograph Forced oscillations with variable natural frequency and their technical
significance [20]. While he considered both quadratic and cubic springs, his name is most
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often associated with the latter case

(2.5) ÿ + 2ζẏ + y + αy3 = u

This, thanks also to Duffing’s work, has become the prototypical example of nonlinear
resonant system.

y

d d

Figure 2.1 Simple realisation of a Duffing oscillator.

As the harmonic oscillator can be used to model several physical systems, the same is true
for the Duffing oscillator; the reason is similar, while linearising a nonlinear characteristic
leads to a linear spring, retaining few more terms of a Taylor expansion often leads to an
equation of the form (2.5). A simple example is the system shown in figure 2.1, consisting
of a mass constrained to a line with two (linear) springs connected transversally. Assuming
springs of same constant k and rest length d0, and using y and d defined in figure 2.1, the
force developed by each spring is

(2.6) Fs = k

(√
d2 + y2 − d0

)
The resulting force along the free direction is

(2.7) F = 2 y√
d2 + y2Fs = 2ky

(
1 − d0

d2 + y2

)

If d > d0 and the displacement y is not too large, a third order Taylor expansions of (2.7)
leads to a cubic approximation of the force as in (2.5).

While in the example above the coefficient of the nonlinearity is positive, also the case
of negative constant can be of interest. This case is rarely meaningful for all values of y,
since it leads to unbounded trajectories. However, when the dynamics is restricted to a
neighbourhood of the origin it can be used to approximate other systems. A standard example
is the mathematical pendulum: A third-order Taylor expansion of its restoring force leads
to (2.5) with α negative.

Although not studied in this dissertation, another popular choice of parameters corresponds
to a double-well potential. This is obtained using a negative linear spring with a positive
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cubic one. Qualitatively, its behaviour is similar to the one of the system in figure 2.1 when
d0 > d, making the origin unstable.

In [5] several other examples of physical realisations are reported. It is of particular
interest to mention how those related to structural dynamics are derived. They are obtained
considering nonlinear effects during the vibration of beams and cables. Starting from the
continuous description of theses structures in terms of partial differential equations, the
model is approximated with a discrete system by projecting the motion onto a finite number
of linear modes. If only one mode is sufficient for the problem at hand, the resulting system
has one degree of freedom. Often, this can be approximated using (2.5). The same line
of reasoning leads to model two structures as two simple Duffing oscillators, an approach
that motivates the use of two Duffing oscillators to model a main structure and a vibration
absorber in the next chapter.

2.1.2 Frequency response of a Duffing oscillator

As for the harmonic oscillator, we will be interested in the response of (2.5) to harmonic
forcing u = f cos(ωt)

(2.8) ÿ + 2ζẏ + y + αy3 = f cos(ωt) = f

2 (exp(jωt) + exp(−jωt))

Solutions of this equation are usually studied using perturbation techniques. These require
the introduction of a small parameter ε used to obtain approximate solutions. In the case
of (2.8) the model is mostly studied in the weakly-nonlinear regime, which fits well with the
idea that the cubic restoring force comes from a Taylor expansion. This regime arises from
imposing small force and small nonlinearity: f = εf ′, α = εα′. It is also common to assume
small damping, ζ = εζ ′, given that this is necessary to observe resonant behaviour. This
is the canonical starting point for perturbation techniques applied to the Duffing oscillator.
Among them, averaging has received particular attention [85].

In this thesis we are interested in frequency responses of resonant systems. A simple way
to approximate them is the harmonic-balance method. In terms of steady-state solutions this
leads to similar results as perturbation techniques [42] but usually amounts to less effort. In
its simplest form harmonic balance corresponds to assume

(2.9) y = w exp(jωt) + w exp(−jωt)
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Inserting this expression in the equation of motion (2.5) and considering the coefficient of
the first harmonics leads to

(2.10)
3a3α− aω2 + a = f

2 cos(ϕ)

2ζaω = −f

2 sin(ϕ)

where w = a exp(jϕ). This pair of equations can be solved numerically to obtain the frequency
responses in figure 2.2.

In contrast to the linear case, the frequency response depends on the input amplitude f .
Moreover, the frequency at which the response reaches maximum amplitude is not fixed and
multiple solutions can coexist for the same value of ω. Depending on the value of α we can
distinguish two cases. If α < 0 the spring has a softening characteristic, since it becomes

0.8 1 1.2
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ω

a

0.8 1 1.2

−π

0

ω

φ
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0

3.5

ω

a

0.8 1.8

−π

0

ω

φ

Figure 2.2 Frequency responses of a Duffing oscillator (first-order approximations). Left:
amplitude. Right: phase. Top: f = .03, c = .01, α = −.03, α = −.01, α = 0,

α = .01, α = .05. Bottom: α = .05, c = .05, f = .01, f = .1,
f = .2, f = .5.
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softer as the displacement increases (the ratio force/displacement decreases). In this case
high-amplitude motion and multistability are found for frequencies that are lower than ω = 1,
the natural frequency of the linearised system. Similarly, the case α > 0 is called hardening,
with high-amplitude oscillations and multistability found at higher frequency. As one would
expect, and as shown in figure 2.2, these effects increase with the amplitude of forcing.

Reducing (2.10) to a single equation for the amplitude a it is possible to obtain a
qualitative understanding of the frequency response of the Duffing oscillator. This reduction
can be achieved squaring and summing the two equations. Substituting A = a2, F = f2 and
Ω = ω2 in the result yields

(2.11) 9A3α2 +A2 (−6Ωα+ 6α) +A
(
Ω2 + Ωc2 − 2Ω + 1

)
= F

2

This scalar equation can be studied with the methods presented in the next chapter. The
main outcome of this analysis is a classification of the behaviour in two distinct regimes: One
in which the frequency response is monovalued, the other in which multiple responses for the
same frequency are possible. A similar analysis was developed by Holmes and Rand [47], who
characterised in a similar way the parameter space of (2.5) using averaging and catastrophe
theory.

2.2 Intermezzo: The van der Pol oscillator

As the Duffing oscillator is the canonical example of nonlinear resonance, the van der Pol
oscillator is the canonical example of self-sustained oscillations. In the context of this thesis it
also represents a continuous bridge between quasiharmonic oscillations studied in mechanics
and relaxation oscillations studied in neurodynamics.

The Duffing oscillator does not exhibit oscillatory solutions in absence of periodic forcing.
In contrast, self-sustained oscillations are observed in the van der Pol oscillator thanks to a

v

v0

i0

Figure 2.3 Simple realisation of a van der Pol oscillator.
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nonlinear damping term that can deliver energy to the system

(2.12) ÿ + µ(y2 − 1)ẏ + y = u

Van der Pol introduced this equation while studying circuits that contain triodes. Since
the appearance of semiconductor technology it is common to realise this oscillator using a
tunnel diode instead, as shown in figure 2.3 (more recent and reliable realisations are based
on operational amplifiers).

This oscillator can exhibit both quasiharmonic oscillations and relaxation oscillations, as
already noted by van der Pol when he coined the latter term [96]. The parameter µ controls
the type of oscillations.

The case µ ≪ 1 corresponds to quasiharmonic oscillations. Since for µ = 0 one recovers
the harmonic oscillator, it is natural to see trajectories of (2.12) as perturbations of the cycles
obtained at µ = 0, as done for example using averaging techniques [85] (if only the limit cycle
is of interest harmonic balance is a convenient alternative).

−8 8

−2

2

ẏ

y

0 1

−2

2

t

y

Figure 2.4 Different limit cycles in the van der Pol oscillator ( µ = .1, µ = 1,
µ = 2, µ = 5)). Top: phase space ẏ-y. Bottom: time trajectories (period

normalised between 0 and 1).
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Relaxation oscillations will be described in more detail in the next section. They are
obtained in (2.12) when µ ≫ 1. In this case it is convenient to rewrite the equations using
the so-called Liénard transform

(2.13) v = y w = y − y3

3 − ẏ

µ

which leads to the state-space form

(2.14)
v̇ = µ(v − v3

3 − w)

ẇ = (v − u)/µ

The substitution of v for y in (2.13) leads to the canonical labelling of the variables used for
the FitzHugh-Nagumo model and reminds us that in most realisations y corresponds to a
voltage. Indeed, deriving the equation directly from the circuit in figure 2.3 leads to a from
similar to (2.14), where v is the voltage across the capacitor and w the current through the
inductor.

Periodic trajectories obtained for different values of µ are shown in figure 2.4. For small
µ the trajectory describes (nearly) a circle in the ẏ-y plane, with the time trace being almost
sinusoidal. As µ increases the trajectory deviates from a circle and alternates between fast
and slow phases. The system shows slow-fast behaviour.

2.3 Excitability

Most biological cells maintain a difference of electrical potential across their membrane.
When a small current is injected through the membrane, the cell responds passively, with
a small voltage deviation. But beyond a certain threshold, some cells respond with a large
voltage excursion, called an action potential or spike. This excursion is often stereotyped
and independent from the details of the applied current. Cells with this property are called
excitable. Prominent examples in this category are neurons and muscle cells.

As already noted by van der Pol [97], electrical properties of excitable membranes share
similarities with his model of self-sustained oscillations, especially in the case of large µ.
Indeed, FitzHugh [25] analysed a modified version of the van der Pol oscillator with the
objective to give a qualitative description of the action potential and a mathematical model
of excitability. This model is now known as the FitzHugh-Nagumo model.

FitzHugh’s work was based on the model developed by Hodgkin and Huxley [46] during
their seminal work on the giant axon of the squid. In that work they produced the first
biophysical description of the action potential and laid the foundations for the formalism
that we now use to model excitable membranes.
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In the following we start from the simplified description of the action potential due to
FitzHugh and later review the formalism developed by Hodgkin and Huxley.

2.3.1 The FitzHugh-Nagumo model

The model studied by FitzHugh [25] and implemented by Nagumo and co-workers [71]
corresponds to a modified version of the van der Pol equation∗ (also known as Bonhoeffer-van
der Pol model)

(2.15)
εv̇ = i− v3

3 + v − w

ẇ = v − aw

In these equations a is assumed positive and such that the two curves i = v3

3 + v − w and
v − aw = 0 have a unique intersection for all values of i.

Following the implementation of the van der Pol oscillator, it is not hard to give a circuit
implementation for these equations. The dynamics of v

(2.16) εv̇ + v3

3 − v + w = i

corresponds to a current balance: An externally applied current (i) is equal to the sum of the
current through a capacitor (εv̇), the current through a passive branch (w) and the current
through an element with a cubic i-v characteristic (v3/3 − v). This latter element is realised
in figure 2.3 with a tunnel diode, a battery and a current source. The dynamics of w is a
balance of voltages on the corresponding branch

(2.17) ẇ + aw = v

The total voltage (v) is the sum of the voltages across an inductor (ẇ) and a resistor (aw)
connected in series. This last element is not present in the van der Pol oscillator shown in
figure 2.3.

Compared to the van der Pol equation of the previous section also the external input
is different. In (2.15) the input is an externally applied current, similarly to what happens
in excitable cells. In the work of van der Pol, the triode circuit was instead driven by an
external electromagnetic field.

The key to analyse (2.15) is to exploit its slow-fast structure determined by the small
constant ε. We postpone a more complete introduction to this theory to chapter 4 and limit
ourselves to a qualitative description here.

∗FitzHugh in his work used a different sign convention for w and had an additional term in the dynamics
of w, these differences do not alter the dynamics of v.
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Due to time-scale separation at most points on the v-w plane we have v̇ ≫ ẇ, so that the
dynamics is dominated by the fast equation

(2.18) εv̇ = i− v3

3 + v − w

with w (nearly) constant. This is true until a trajectory arrives to a point that makes the
right hand side of (2.18) of order ε, which happens in an ε-neighbourhood of the curve

(2.19) w = i− v3 + v

This equation corresponds to fixed point of the fast dynamics (2.18) and defines the so-called
critical manifold of the system.

The fast dynamics (2.18) is shown on the left of figure 2.5. Depending on the value of
w and i there are one, two or three fixed points. Correspondingly, the critical manifold is
divided in three branches, separated by the two fold points at v = ±1. The external branches
correspond to stable fixed points and are attractive, whereas the middle branch corresponds
to unstable fixed points and is repulsive.

The right part of the same figure shows the phase plane with the trajectory of one action
potential. The dynamics away from an ε-neighbourhood of the critical manifold is dominated
by the fast dynamics (2.18) and trajectories quickly converge towards one of the two stable
branches. Once in an ε-neighbourhood of one of these branches the trajectory remains close

v

w − i

v

w

Figure 2.5 Dynamics of the FitzHugh-Nagumo model. Left: bistable fast dynamics, two
branches of stable fixed points ( ) are separated by a branch of unstable ones ( ).
Right: geometric construction of the action potential, near the critical manifold ( )
trajectories follow the slow dynamics (2.20), determined by the slow nullcline ( ); away
from an ε-neighbourhood of the critical manifolds trajectories follows the fast dynamics (2.18).
The trajectory shown ( ) corresponds to an action potential, fast parts are marked by a
double arrow, slow parts by a single one.
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to the critical manifold. The behaviour near the critical manifold is slow and approximately
dictated by the slow dynamics

(2.20)
0 = i− v3 + v − w

ẇ = v − aw

The variable w increases along a trajectory if v − aw > 0, corresponding to points below the
w-nullcline v− aw = 0, while it decreases in the opposite case. The only point on the critical
manifold at which v − aw = 0 corresponds to a fixed point of the system.

There are two possibilities near a stable branch of the critical manifold∗. If no fixed point
is present on that branch the trajectory slides along the manifold until it reaches a fold. In
a neighbourhood of a fold the slow drift leads outside the ε-neighbourhood of the critical
manifold where the dynamics follows the slow system (2.20), and the trajectory is attracted
by the other stable branch following the fast dynamics. If there is a fixed point on a stable
branch then it is attractive for the slow dynamics (2.20), and trajectories close to that branch
asymptotically converge to the stable fixed point.

Geometrically, a single action potential corresponds to a trajectory that goes once around
the critical manifold with alternating fast and slow parts as shown in figure 2.5. For i low
enough there is one fixed point on the stable branch at lower voltages, corresponding to a rest
state. Applying a short impulse of current increases the value of v; if this brings the system
to a point that is attracted by the high-voltage branch of the critical manifold then the
trajectory generates an action potential, i.e. it follows a path similar to the one in figure 2.5.
Two properties are easily derived from this construction: The shape of the action potential is
largely independent of the input and it is determined by the geometry of the critical manifold.
The action potential is all or none, once the unstable branch is passed the only possibility is
to complete a full action potential†.

Depending on the value of i, the intersection between the critical manifold and the slow
nullcline can lie on a stable or unstable branch. In the former case the dynamics tends to
the corresponding fixed point, while in the latter the trajectory periodically jumps between
the two stable branches of the critical manifold, generating a relaxation oscillation that
corresponds to a train of action potentials.

Figure 2.6 illustrates the time trajectories corresponding to both cases. Starting from
rest a short impulse generates a spike, while a steady value of applied current induces tonic
spiking.

∗Ignoring the boundary case of a fixed point on a fold.
†This second property is true only in the singular limit ε = 0. For ε > 0 there is a continuum of trajectories

that go from a small cycle around the fixed point to a fully developed action potential. These trajectories are
limited to such a small set of initial conditions that for most purposes the action potential can be considered
an all-or-none phenomenon.
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t

v

t
i

Figure 2.6 Time trajectories of FitzHugh-Nagumo model. A small pulse generates a spike, a
steady current generates continuous spiking corresponding to a relaxation oscillation.

The transition between rest and spiking corresponds (in the singular limit ε = 0) to
the slow nullcline intersecting the critical manifold at a fold point. This situation leads to
canard trajectories, i.e. trajectories that lie on both stable and unstable branches of a critical
manifold. For ε > 0 but small enough these trajectories give rise to a canard explosion [61].
Without going into detail, this phenomenon is interesting in the context of neuronal dynamics,
and for the FitzHugh-Nagumo model in particular, because it explains the appearance of
large oscillations near a Hopf bifurcation. This bifurcation marks the transition between
rest and spiking in the FitzHugh-Nagumo model. Due to the presence of a canard explosion,
when i is increased in (2.15) and the Hopf bifurcation is crossed, the amplitude of the limit
cycle rapidly grows in a small range of values of i, leading to a limit cycle that corresponds
to a sequence of fully-formed action potentials. A natural question in this context is how
small ε needs to be to observe this type of phenomenon. While the general theory developed
in [61] only guarantees its presence if ε is small enough, quantitative results are possible,
which depends on geometric properties of the vector field [14].

2.3.2 Hodgkin-Huxley model

The FitzHugh-Nagumo model and its slow-fast analysis form the basis of our understanding
of the action potential. However, its relation to the processes underlying electrical activity of
biological membranes is only qualitative. The quantitative theory is based on the work of
Hodgkin and Huxley on the giant axon of the squid [46]. Through a series of experiments
they arrived at a model composed of three currents, corresponding to the three branches of
an equivalent circuit as the one shown in figure 2.7.

We now associate these different currents to different types of ion channels, proteins
scattered across the membrane that allow the passage of selective ionic species. We will not
enter in the biophysical details, which have since been clarified [43, 52], but restrict ourselves
to the description as an equivalent circuit.
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Figure 2.7 Equivalent circuit for the Hodgkin-Huxley model.

Each channel is characterised by a conductance and a reverse potential with the corre-
sponding current given by

(2.21) ix = gx(v − vx)

The membrane itself acts as a capacitor, resulting in the following balance of currents

(2.22) Cv̇ +
∑

x

ix = i

where i is an externally applied current∗.
At rest the voltage inside the cell is about 70 mV lower than outside. Following the

modern convention the membrane potential is taken as the difference between internal and
external potential. Positive currents have the effect of reducing this voltage and correspond
to positive ions moving from the inside to the outside of the cell. The reversal potential
of a current corresponds to the voltage at which no ion passes through the corresponding
channels, the current through the branch is zero. If v > vx then current x is positive (its
effect is to reduce the membrane potential), while if v < vx it is negative. Most currents
found in biological models have a well-defined sign in the range of voltages in which a cell
operates. In the Hodgkin-Huxley model one current corresponds to movement of positive
ions of sodium (iNa), typically from the outside to the inside of cells (inward current). A
second branch of the circuit models a potassium current (iK), with positive ions going from
the inside to the outside (outward current). A third smaller current, termed leak (il), carries
a mixture of ions, among which the most prominent is chlorine.

One of the key insights of Hodgkin and Huxley was to realise that conductances of ion
channels are not necessarily constant but can vary with time and depend on other variables†.
In the squid’s giant axon sodium and potassium currents have this property, while the leak

∗A constant current can also model the presence of ionic pumps that exchange ions between the interior
and exterior of a cell in a nearly constant manner (at least in the time-scales of interest).

†In the Hodgkin-Huxley model conductances depend only on the membrane potential. However, examples
of conductances depending on other quantities are common in other cells, a prominent example are potassium
conductances that depend on calcium concentration.
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Figure 2.8 Activation functions and time constants Hodgkin-Huxley model ( m, h,
n).

conductance is constant. What Hodgkin and Huxley noted is that these two conductances
depend on the voltage across the membrane. They introduced auxiliary variables to describe
this dependence

(2.23) gNa = ḡNam
3h gK = ḡKn

4

The constants ḡNa and ḡK are known as maximal conductances, they correspond to the
maximum values that a conductance can reach. The variables m, h and n are dynamic
variables called gating variables. They take values between zero and one and follow a dynamics
of the form

(2.24) τx(v)ẋ = x∞(v) − x

The function x∞(v) is the steady-state value of the variable x when the voltage is held
constant. The function τx(v) is the time constant with which the dynamics converges to this
value. Figure 2.8 shows these two functions for the three gating variables of the Hodgkin-
Huxley model. Looking at that figure one notices that m∞(v) and n∞(v) increase as v
increases (activation variables), whereas h∞(v) decreases (inactivation variable). Since the
sodium current tends to increase the membrane voltage, we see that m corresponds to an
autocatalytic process: Increasing v increases m that increases iNa, which in turn increases v
even more generating a positive feedback loop. On the contrary the other two variables have
a restorative effect: When v increases their net effect is to oppose this change, generating a
negative feedback loop.

Key to the generation of an action potential is how these two processes are combined.
Looking at the time constants in figure 2.8 we see that m is faster than h and n (especially for
low voltages, in the so-called subthreshold regime), and comparable to v. This observation,
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combined with the fact that during the action potential h+n ≈ .85, led FitzHugh to study his
simplified model. In that simplification the fast positive feedback effect of m is captured by the
(instantaneous) linear term in the static i-v characteristic v3 − v; the slow negative feedback
of h and n is represented by w. Rinzel [82] went a step further. Fixing m to its steady-state
value m∞(v) and combining h and n in a unique variable, he obtained a two-dimensional
model that approximates the dynamics of the full four-dimensional Hodgkin-Huxley model
and has the same geometry of the FitzHugh-Nagumo model.

An alternative approach to reduce the Hodgkin-Huxley model to a planar one was proposed
by Abbott and Kepler in [1], and later generalized in [54] to arbitrary conductance-based
models. In their work, rather than restricting h and n to a linear relation, they imposed the
constrains

(2.25) h ≈ h∞(u) n ≈ n∞(u)

where u is a new (slow) potential. Starting from the Hodgkin-Huxley model and (2.25) it is
possible to derive dynamic equations for v and u, resulting in a planar model. This model is
similar, in geometric structure and dynamics, to the ones obtained by FitzHugh and Rinzel.

While all these models aim to study the generation of action potentials in neurons, other
works have focused on their behaviour in the so-called subthreshold regime: The range of
voltage values in which a neuron does not generate action potentials, but acts as a passive
circuit. Mauro et al in [67] noticed how in this regime it is possible to observe decaying
oscillations, typical of RLC circuit, despite the absence of inductors in the equivalent circuit.
They explained this phenomenon by noting that linearising the ion channels effectively
leads to an equivalent inductance (or capacitance), and referred to it as a phenomenological
inductance. To distinguish this phenomenon from a truly nonlinear one, membranes in this
regimes have been termed quasi-active [57].





Chapter 3

Detached resonance curves in the
nonlinear tuned vibration absorber

In the previous chapter we described the simplest example of nonlinear resonance: the Duffing
oscillator. While in many cases the dynamics of a complicated structure can be confidently
modelled by a single degree of freedom there are cases in which this is not possible. In fact,
in some applications interaction between distinct degrees of freedom is sought; for example
when designing vibration absorbers, additional elements attached to a primary structure to
reduce the amplitude of oscillations.

In this chapter we study an example of such design: The nonlinear tuned vibration absorber
introduced in [37]. Primary structure and absorber are modelled as two harmonic oscillators
with a cubic spring, resulting in two coupled Duffing oscillators. The main phenomenon
studied in this chapter is the appearance of detached family of solutions in the frequency
response. Since these solutions correspond to high-amplitude vibrations of the primary
structure their appearance limits the benefits of using the absorber. Singularity theory
organises the geometric structure of these solutions through a degenerate singularity: the
asymmetric cusp. Starting from it the presence of these solutions can be studied numerically
with respect to design parameters, a first step towards an improved design.

3.1 Introduction

Vibration absorption is one of the classical applications of resonance dating back to the
pioneering work of Frahm [28] and Den Hartog [12]. While this classical work, rooted in linear
vibration theory, has been successfully used in many applications, the demand for lighter
and better-performing structures is pushing these techniques to their limits. The presence of
nonlinearities in virtually any real system limits the regimes in which these solutions can be
used, leading to conservative designs.

21
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Motivated by this, recent years have seen an increasing interest in mitigating vibrations in
presence of nonlinearities. Although considering nonlinear effects allows phenomena without
a linear counterpart, such as the appearance of self-sustained oscillations, this chapter focuses
on the specific case of oscillations induced by a periodic external force. A first distinction in
this context is between absorbers that target a specific range of frequencies and those that
have a more broadband character, attenuating multiple resonances at the same time.

A prominent example of this latter case is the nonlinear energy sink (NES) [95], an
absorber whose elastic characteristic does not have a linear component. The fundamental
property of the NES is its ability to unidirectionally channel vibrational energy from a
primary structure, even in the presence of multiple resonances [55]. A limitation of this
device is its inability to respond to a wide range of amplitudes: There is a threshold in input
energy below which the NES does not induce significant dissipation [95].

An alternative approach is to build upon the linear theory of vibration absorbers and
target a wide range of amplitudes in a specific frequency range. This is the philosophy
underlying the nonlinear tuned vibration absorber (NLTVA) studied in this chapter. In
this design the characteristic of the absorber has the same functional form of the primary
structure. In our study we take the latter as a Duffing oscillator with hardening nonlinearity,
leading to the interconnection of two Duffing oscillators, as in the first design proposed for
the NLTVA [37]. Since then the absorber has been generalised to a primary structure with
arbitrary polynomial characteristics [39]. Moreover, similar solutions have also been proposed
to mitigate limit cycle oscillations [38] and chatter in machine tools [40].

While the original design showed good performances beyond the linear regime, for high-
amplitude forcing detached families of solutions appear in the frequency response. These
detached resonance curves (DRCs) are a classical topic of research. They have been observed
and studied since the 60s in both mechanical and electrical systems. After a period of
relatively low interest they have recently regained momentum, especially in the mechanical
engineering community. A comprehensive review of the topic and its history is available
in [36].

The presence of such solutions in the context of vibration absorption is detrimental since
it limits the range of excitations in which the absorber is effective. Detached resonance curves
have been studied in this context by numerical methods [15, 35]. A common theme in those
works is that DRCs are associated with degenerate bifurcation. It is therefore natural to
appeal to techniques from singularity theory, as developed in [33] (singularity theory with a
distinguished parameter) to characterise and study them.

By relying on this theory it is possible to identify an organising centre for the phenomena:
A degenerate bifurcation that organises the presence of DRCs in parameter space, the
asymmetric cusp. Less degenerate singularity in its unfolding correspond to appearance and
merging of DRCs. Moreover, this characterisation can be used to study numerically these
curves and delimit their presence in the space of design parameters of the NLTVA.
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3.2 Nominal response of the
nonlinear tuned vibration absorber

The interconnection studied in this chapter is shown in figure 3.1. It corresponds to a
nonlinear tuned vibration absorber (NLTVA) connected to a primary structure as proposed
in [37]. The corresponding equations of motion are

(3.1)

Mÿ + Cẏ +Ky + fnl(y) = gf cos(ωt),

M =
(
m1 0
0 m2

)
K =

(
k1 + k2 −k2

−k2 k2

)
C =

(
c1 + c2 −c2

−c2 c2

)

fnl(y) =
(
knl1y

3
1 + knl2(y1 − y2)3

knl2(y2 − y1)3

)
g =

(
1
0

)

where the components of y = (y1, y2) are the displacements of the two masses in figure 3.1.
For design purposes parameters of the main structure (m1, k1, c1, knl1) and mass of the
absorber (m2) are assumed fixed, while all other parameters can be chosen to minimise the
amplitude of oscillations of the main structure (y1).

f cos(ωt)

y1

y2

Figure 3.1 Nonlinear tuned vibration absorber attached to a primary structure.

The NLTVA extends the analogous linear design developed by Den Hartog [12], who
proposed to realise the absorber so that the frequency response of the interconnected system
has two peaks of equal height∗. In designing their nonlinear absorber in [37], Habib and
coworkers used the same principle, extending Den Hartog’s equal-peak method to the nonlinear
case. Specifically, they proposed to use for the linear part the values obtained from the linear
design and chose the coefficient of the nonlinear spring to enforce the equal-peak condition
outside the linear regime. Using a one-harmonic approximation for the frequency response

∗The procedure uses the fact that for fixed linear stiffness the frequency response passes through two fixed
points. Den Hartog proposed to choose the linear stiffness so that these two fixed points are at the same
height and to select the damping coefficient to have horizontal tangent through one of the fixed points. More
details can be found in [12].
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they obtained the following formulae

k2 = 8rk1
[
16 + 23r + 9r2 + 2(2 + r)

√
4 + 3r

]
3(1 + r)2(64 + 80r + 27r2)

c2 =
√
k2r(8 + 9r − 4

√
4 + 3r)

4(1 + r)

knl2 = 2r2knl1
1 + 4r

(3.2)

where r = m2/m1 is the mass ratio.
Using dimensionless time and positions (3.1) can be rewritten in the form

ÿ1 + y1 + µ1ẏ1 + y3
1 + k(y1 − y2) + α(y1 − y2)3 + µ2(ẏ1 − ẏ2) = f cos(ωt)

rÿ2 + k(y2 − y1) + α(y2 − y1)3 + µ2(ẏ2 − ẏ1) = 0
(3.3)

where y, f and ω now denote dimensionless quantities. Following [37] we consider the nominal
values r = .05 and µ1 = 0.002, resulting in the following values for the other parameters

(3.4) k = 0.0454 µ2 = 0.0128 α = 0.0042

Figure 3.2 shows different frequency responses of the system obtained varying the forcing
amplitude f . These responses, as all the following ones, are shown with axes linearly scaled.
They were computed using a shooting algorithm similar to the one used in [72] for the
computation of nonlinear normal modes.

The figure makes it clear that for low amplitudes (case a, b and c) the design is effective in
that it maintains two peaks of equal height despite the presence of nonlinear effects. However,
as the forcing amplitude increases a DRC appears (case d), which eventually merges with the
main family of solutions (case e). This DRC corresponds to large-amplitude oscillations that
make the absorber less effective in this regime.

This adverse dynamics was investigated using numerical continuation of periodic solutions
and their bifurcations in [15]. Here that analysis is complemented with the viewpoint of
singularity theory [33]. In the same spirit of [102, 105] for forced Hopf bifurcations, we
can identify frequency responses with bifurcation diagrams. The starting point is to reduce
the frequency response of (3.1) to a scalar equation∗. As in the previous chapter for the
Duffing oscillator, this can be achieved using the harmonic-balance method retaining only
one harmonic, as detailed in appendix 3.A. The outcome is an equation of the form

(3.5) g(x, ω, f, k, α, µ2) = 0

∗This passage is not necessary since both analytically and numerically the analysis can be carried out
through local (Lyapunov-Schmidt) reductions [33, 34]. The availability of a global reduction allows the use of
simpler techniques.
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whose solutions correspond to periodic motions of (3.1). In the terminology of [33] the
relative displacement x = y1 − y2 is the state variable, the frequency ω is the bifurcation
(distinguished) parameter and other parameters correspond to unfolding parameters. In the
following we use (3.5) to approximate the frequency response, and verify our results through
numerical computations.

Figure 3.2 summarises the type of information obtained applying singularity theory. At
low forcing amplitudes the response resembles that of a linear system (case a). Increasing
f parts of it become bistable (case b and c) in regions delimited by two fold points. The
appearance of these two folds correspond to a degenerate singularity, a hysteresis point
( ). The other types of singularities encountered increasing further the forcing amplitude
characterise the presence of a DRC. An isola singularity ( ) corresponds to the appearance
of an isolated family of solutions (case d), while a simple bifurcation ( ) corresponds to its
merging with the main branch of solutions (case e). Thus, singularity theory allows us to
identify transitions between qualitatively different frequency responses, with in particular
isola and simple bifurcation delimiting the presence of DRCs.
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Figure 3.2 Frequency responses of an NLTVA attached to a main structure. Transitions
between different diagrams correspond to different singularities ( hysteresis, isola, simple
bifurcation). Excerpts illustrate the different types of frequency responses, the effect of the
last hysteresis is not shown as it is minimal. Continuous lines correspond to stable solutions,
dotted lines to unstable solutions. a) f = 0.05, b) f = 0.1, c) f = 0.125, d) f = 0.15, e)
f = 0.2.
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We remark that parts of the frequency response in figure 3.2 are unstable due to the
presence of quasiperiodic motions. Notably, in cases b and c this motion is the only stable
one in an interval of frequencies. These types of solutions were investigated numerically
in [15] where further details are available. Unfortunately, they do not directly fit in the
framework used in this chapter and will not be considered in the following. Extending the
current developments to include these types of solutions is a natural direction for future
works.

3.3 Singularities of codimension one and transition set

Before studying the NLTVA and its DRCs in detail, this section and the next one review the
basic elements of the theory underlying the developments in this chapter. Further technical
details are available in [33].

Singularity theory (with one distinguished parameter) studies bifurcation problems corre-
sponding to a scalar equation∗

(3.6) g(x, ω, µ) = 0

The variable x ∈ R is called state variable, ω ∈ R is the bifurcation parameter (the frequency
in the present work) and µ ∈ Rk are additional (unfolding) parameters. On a first instance
these additional parameters are thought as fixed and the set of solutions of (3.6) in the x-ω
space is the bifurcation diagram (corresponding to a frequency response in our case).

Singularities correspond to special points on the bifurcation diagram at which x cannot
be expressed as a smooth function of ω. For this to be the case the implicit function theorem
has to fail, leading to the conditions at a singularity†

(3.7) g = 0 ∂g

∂x
= 0

A fold (or limit point) is the least degenerate singularity. These points appear when other
than (3.7) also the following (nondegeneracy) conditions are verified

(3.8) ∂g

∂ω
̸= 0 ∂2g

∂x2 ̸= 0

∗The theory generalises to square systems, in which there are n equations and x ∈ Rn. We will not need
such a generalisation in the following.

†In the following we often write functions without arguments to simplify expressions. In those cases it
is understood that all functions are evaluated at the same point. For example (3.7) corresponds to a point
(x0, ω0) on a bifurcation diagram at which g(x0, ω0, µ) = 0 and ∂g/∂x(x0, ω0, µ) = 0 (a bifurcation diagram is
obtained for µ fixed).
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If this is the case the diagram is locally equivalent to one of those obtained from

(3.9) ± x2 ± ω = 0

Equivalence means that a bifurcation problem (3.6) verifying (3.7) and (3.8) can locally
be transformed in (3.9) through a change of coordinates. Fixing the class of changes of
coordinates allowed defines a way to identify different bifurcation diagrams as qualitatively
the same and leads to the key notion of persistence.

3.3.1 Persistent and nonpersistent diagrams

Formally, given two bifurcation problems g(x, ω) = 0 and f(x, ω) = 0, equivalence between
the two is based on the relation

(3.10) f(x, ω) = S(x, ω)g(ϕx(x, ω), ϕω(ω))

where Φ(x, ω) = (ϕx(x, ω), ϕω(ω)) is a diffeomorphism and S(x, ω) is a smooth function∗.
In [33] also S(x, ω) > 0, ∂ϕx

∂x > 0 and dϕω

dω > 0 are required to assure that stability and
orientation of the diagram are preserved. Starting from (3.10) it is possible to define two
different but related notions of equivalence: global and local. As the name suggests, the first
one considers functions which are globally defined, with x and ω varying in a fixed set U ×L.
In this case (3.10) has to additionally preserve this domain. In the case of local equivalence the
functions involved are supposed to be defined only in a neighbourhood of a point, commonly
taken as the origin. More precisely, instead of functions germs are considered. These are
defined as equivalence classes of functions that coincide on a neighbourhood of the origin.
The precise definitions are not important here since more technical aspects of the theory
are not needed in the following. It is only necessary to distinguish local results from global
ones. In the first category fall the classifications of singularities and related perturbations
of sections 3.3.2 and 3.4, which cover most of the results used in this chapter. The only
exception is the theorem about persistence on a bounded domain at the end of the current
section, which uses the global notion of equivalence instead.

The notion of equivalence naturally leads to the notion of persistence: A diagram is said
to be persistent if any sufficiently small perturbation results in an equivalent diagram, it is
nonpersistent otherwise. Persistent diagrams are robust to small enough perturbations, they
are the ones that are commonly observed in numerical simulations and experiments. Referring
to the previous section, all the frequency responses shown are persistent. Moreover, all the
responses that correspond to values of f between two consecutive singularities in figure 3.2
are equivalent. This gives a more precise idea of how singularity theory can be used to analyse

∗In some cases the requirement of smooth equivalence is too stringent and all these functions are only
required to be continuous. This happens in more degenerate cases than the ones we study so we do not need
this more general notion.
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forced oscillations: It provides the tools to divide the parameter space in different zones
characterised by a unique (up to equivalence) response. A noteworthy result in this direction
is [33, Ch.3 Thm.10.1], which lists all possible sources of nonpersistence for a parametrised
family of diagrams g(x, ω, µ) where µ ∈ W , with W ⊂ Rk a disk. Specifically, there are
three sources of nonpersistence (that can occur in the interior of the domain considered),
corresponding to three sets:

i) simple bifurcation and isola points,

B =
{
µ ∈ Rk : ∃(x, ω) ∈ R × R, g = ∂g

∂x
= ∂g

∂ω
= 0 at (x, ω, µ)

}

ii) hysteresis points,

H =
{
µ ∈ Rk : ∃(x, ω) ∈ R × R, g = ∂g

∂x
= ∂2g

∂x2 = 0 at (x, ω, µ)
}

iii) double limit points,

D =
{
µ ∈ Rk : ∃(x1, x2, ω) ∈ R × R × R, x1 ̸= x2, g = ∂g

∂x
= 0 at (xi, ω, µ), i = 1, 2

}

Based on these the transition set is defined as Σ = B ∪ H ∪ D ; diagrams obtained for µ in
the same connected component of W \ Σ are equivalent∗.

The conditions defining H and B correspond to codimension one singularities, defined
in the next section. Crossing one of these sets usually leads to the transitions shown there,
apart from exceptional cases in which more degenerate singularities are present. The set
D is partially different from the other two: It corresponds to a nonlocal phenomenon, the
occurrence of two limit points for the same value of ω, as shown figure 3.3.

3.3.2 Singularities of codimension one

Having defined the notion of persistence one can ask whether a singular point is persistent, i.e.
if it is preserved by small perturbations. As already remarked only limit points are persistent,
all other singularities delimit transitions between nonequivalent diagrams. Singularity theory
divides singularities based on the notion of equivalence and classifies local perturbations of
nonpersistent ones.

Singularities are characterised by two groups of algebraic conditions on the derivatives
of (3.6) at a point. Defining conditions correspond to derivatives of (3.6) being equal to

∗Strictly speaking there are other sources of nonpersistence in a bounded domain U × L. These are related
to how the diagram meets the boundary of the domain and are discussed in [33, Ch.3 §10]. These are unlikely
to be important in the current setting and therefore ignored.
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(a) Unperturbed diagram.
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(b) Perturbed diagrams.

Figure 3.3 The double limit point and its perturbations. At the singularity two fold points
on different branches coincide. A perturbation can remove this coincidence and lead to either
the two branches being in different ω intervals (left perturbation) or the coexistence of the
two branches for some values of ω (right perturbation).

zero and always include (3.7); nondegeneracy conditions correspond (in the simpler cases) to
derivatives of (3.6) being different from zero.

In section 3.2 we encountered three singularities in figure 3.2. These are the least
degenerate after the limit point: hysteresis, isola and simple bifurcation.

The hysteresis is the singularity that underlies the passage from monostability to bistability.
It can already be found in the frequency response of the Duffing oscillator at the boundary
between these two regimes. Algebraically it is characterised by the defining conditions

(3.11) g = ∂g

∂x
= ∂2g

∂x2 = 0

and the nondegeneracy conditions

(3.12) ∂g

∂ω
̸= 0 ∂3g

∂x3 ̸= 0
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(a) Unperturbed diagram.
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(b) Perturbed diagrams.

Figure 3.4 The hysteresis and its perturbations. At the singularity the diagram has a point
with vertical tangent. A perturbation can remove this point and lead to either a monotonic
curve (left perturbation) or the coexistence of mulitple branches separated by folds (right
perturbation).
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Geometrically it corresponds to points at which the diagram has vertical tangent, as in
figure 3.4a. When perturbed, this nonpersistent diagram can only result in one of the two
diagrams in figure 3.4b.

The second example of nonpersistent singularity is the isola, characterised by the conditions

(3.13) g = ∂g

∂x
= ∂g

∂ω
= 0 ∂2g

∂x2 ̸= 0 det(d2g) > 0

where d2g is the Hessian matrix of g with respect to x and ω. In figure 3.2 it corresponds
to the transition between cases c and d, when a DRC appears. The bifurcation diagram of
an isola corresponds to an isolated solution as in figure 3.5a. Perturbing this nonpersistent
diagram can only result in two outcomes, no solutions or a closed branch of solutions, both
shown in figure 3.5b.

x

ω

(a) Unperturbed diagram.

x

ω

x

ω

(b) Perturbed diagrams.

Figure 3.5 The isola and its perturbations. The singularity corresponds to an isolated
solution. A perturbation can either remove it, leaving no solutions in a neighbourhood (left
perturbation), or lead to a closed curve of solutions (right perturbation).

The third example of nonpersistent singularity is the simple bifurcation point (or trans-
critical bifurcation). This corresponds to the centre of X-shaped diagrams, as in figure 3.6a,
and it is characterised by

(3.14) g = ∂g

∂x
= ∂g

∂ω
= 0 ∂2g

∂x2 ̸= 0 det(d2g) < 0

The corresponding perturbations are shown in figure 3.6b. Comparing with figure 3.2 one
sees that this is the local phenomenon underlying merging of a DRC with a main branch.

The three singularities above account for all the codimension one singularities. The
codimension of a singularity can be thought of as a measure of its complexity; it corresponds
to the number of defining conditions that characterise it beyond the two conditions (3.7).
Using this concept singularities can be classified. All singularities up to codimension three
are presented in [33, Ch.4], while in [56] the classification is extended up to codimension
seven.

The codimension coincides also with the number of parameters necessary to obtain all
the possible perturbations of a given singularity, i.e. the number of parameters in a universal
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(b) Perturbed diagrams.

Figure 3.6 The simple bifurcation and its perturbations. At the singularity four branches
of solutions meet, forming an X-shaped diagram. A perturbation can break this diagram
in two, leaving two branches separated in the x coordinate (left perturbation) or in the ω
coordinate (right perturbation).

unfolding. Without entering into details, for which we refer to [33, Ch.3], a universal unfolding
is the technical tool used to enumerate the persistent diagrams that can be obtained by small
perturbations of a singular one, as in the case of figures 3.4 to 3.6.

3.3.3 Numerical computation

The knowledge of all the possible sources of nonpersistence and their algebraic characteri-
sations can be used as a base for algorithms that explore the parameter space of a system.
Methods based on this idea appeared in the context of chemical reactions in [3, 4]. Ideally,
one could compute the transition set Σ to obtain a rather complete picture of the possible
frequency responses. An approach to do this, along the lines of standard techniques used
in this context, starts by reducing the problem of computing a frequency response to the
solution of a set of nonlinear equations in x and ω, for example through harmonic balance.
Once this is done, it is common to compute solutions using continuation techniques and
to use bordering techniques∗ to detect and continue bifurcations [34]. The same ideas can
be used to detect and track singularities [34, Ch.7]. The conditions defining the sets B

and H correspond to the presence of a singularity, while those defining D correspond to
the occurrence of two fold points for the same value of ω, allowing the computation of the
transition set.

In the following we do not need the full power of this machinery. Since we can approximate
the frequency response with only one equation, we can use directly their defining conditions
to detect and track singularities†.

As a simple illustration of the ideas outlined above figure 3.7 shows the result of continuing
the singularities found in figure 3.2 varying µ2. In this figure crossing one of the three lines

∗Bordering is a common technique to construct functions that become zero at bifurcations and singularities.
These are known as test functions and can be used in continuation algorithms to identify and track singularities.
In several cases these functions can be obtained as components of the solution vector of a linear system, which
is formed adding colums and rows (a border) to the jacobian matrix of the system.

†Numerical solution of the equations was carried out in python using the package SciPy [53].
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in the hysteresis set H results in the generation (or merging) of two fold points. More
interesting for the following developments are the sets B and B′. These correspond to simple
bifurcations and isola singularities and delimit the parameter values for which a DRC is
present.

We mention that some more quantitative aspects of the response are not captured by this
analysis. For example, frequency responses corresponding to higher values of µ2 contain a
unique resonance peak, but are equivalent to those found for lower values of µ2 and f , which
contain two peaks. While the fact that the amplitude corresponding to two hysteresis points
grows and exceeds the limits considered in figure suggests a strong change, the disappearance
of one resonance peak cannot be inferred directly.

3.4 A cusp singularity organises detached resonance curve

A central insight in singularity theory is that more degenerate singularities organise transitions
between parameter regions with a lower order of degeneracy. For example, distinct regions
containing fold points in figure 3.2 are separated by few codimension-one singularities. The
same approach can be repeated with singularities of higher codimension.

This idea can be exploited to analyse detached resonance curves of the NLTVA. Figure 3.2
indicates that presence of a DRC is delimited by an isola ( ) and a simple bifurcation ( ). In

0.5 1 1.5

5 · 10−2

0.25

µ2/µ2

f

Figure 3.7 Transition set for an NLTVA attached to a Duffing oscillator (µ2 nominal value).
The parameter space is divided into different zones by hysteresis, isolas and simple bifurcations
( hysteresis (H ), isola (B′), simple bifurcation (B)).
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turn, figure 3.7 reveals that the sets B and B′ merge for µ∗
2 = 1.449µ2 (µ2 nominal value)

and that no DRC exists for µ2 > µ∗
2. The value of µ∗

2 is in good agreement with the one
found in [15] (≈ 1.44µ2) considering that here only one harmonic is retained. This critical
point is a singularity of codimension two: the asymmetric cusp.

3.4.1 The asymmetric cusp

The defining conditions of the asymmetric cusp are

(3.15) g = ∂g

∂x
= ∂g

∂ω
= det(d2g) = 0

while its nondegeneracy conditions are

(3.16) ∂2g

∂x2 ̸= 0 ∂3g

∂v3 ̸= 0

where ∂
∂v is the directional derivative with respect to a zero eigenvector v of d2g, the Hessian

of g(x, ω).
Figure 3.8a shows the (nonpersistent) diagram corresponding to the normal form of this

singularity

(3.17) g(x, ω) = x2 + ω3 = 0
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Figure 3.8 The asymmetric cusp and its persistent perturbations. Left: transition set in the
parameter space of the universal unfolding ( isolas, simple bifurcations). Right:
bifurcation diagrams: a) unperturbed, b-c) persistent perturbations..
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while figure 3.8b and c illustrate the persistent diagrams of a universal unfolding

(3.18) G(x, ω, α, β) = x2 + ω3 + α+ βω = 0

The transition set in figure 3.8 is easily recognised in figure 3.7. Indeed, whenever an
asymmetric cusp is found, singularity theory predicts a line of simple bifurcation points and
a line of isola points delimiting the presence of a separate branch of solutions. In the context
of forced oscillations these delimit the presence of DRCs.

3.5 DRCs in parameter space

3.5.1 Delimiting the presence of a DRC

Starting from figure 3.7 and specifically the asymmetric cusp ( ), it is possible to delimit
the presence of a DRC when design parameters are varied. Points corresponding to this
singularity describe a line in the α-µ2-f space. In figure 3.7 increasing µ2 reduces the range of
values of f for which a DRC is present, until the asymmetric cusp is encountered at µ∗

2. This
is intuitively expected as large damping destroys resonance phenomena. Similarly, starting
from a point on the line of asymmetric cusp in the α-µ2-f space and decreasing µ2 generates
the two branches of the transition set associated with the unfolding of an asymmetric cusp:
a family of isolas and one of simple bifurcations. As shown in the 3D plot of figure 3.9 these
delimit a DRC.

The analysis is continued in the lower part of figure 3.9. Projecting the line of asymmetric
cusps onto the α-µ2 plane the zone in which a DRC is present can be delimited for different
values of k, forming a surface in the α-µ2-k space. The bottom plot in figure 3.9 shows these
lines of asymmetric cusps for few values of k, to each of them correspond a 3D plot similar
to the one shown for the nominal value of k. Hence, through this figure it is possible to
determine the values of α, k and µ2 for which a DRC is present in the frequency response.

3.5.2 Design of a fifth-order spring

Since detached resonance curves might restrict the application range of a nonlinear vibration
absorber a natural question is how to design systems that avoid them. In the present context
a natural choice is the addition of a fifth order spring to the absorber. The rationale behind
this choice is that a fifth order spring does not influence the response for low values of f . This
allows us to reuse the parameters (3.2) designed in [37], while influencing the response for
higher forcing amplitudes when the absorber’s performances are reduced due to the presence
of DRCs.
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Figure 3.9 Characters of DRCs in parameter space: The bottom plot shows lines of asymmetric
cusps in the µ2-α plane for different values of k; each line determines the boundary in parameter
space of the region where a DRC is present, as shown in the upper plots ( asymmetric
cusp, isola, simple bifurcation).
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Figure 3.10 Effect of a fifth order spring on appearance and merging of DRCs: Two asymmetric
cusps at β ≈ 10−4 and β ≈ 1.2 10−4. The dotted area corresponds to a zone in which no DRC
is present. a) β = 8 10−5, f = .34; b) β = 9 10−5, f = .41; d) β = 9.75 10−5, f = .32;
e) β = 9 10−5, f = .25; f) β = 13 10−5, f = .3.
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Figure 3.11 Effect of a fifth order spring on appearance and merging of DRCs: Asymmetric
cusp at β = 3.7 10−2 and corresponding DRC in the response. The dotted area corresponds
to a zone in which no DRC is present.

We revisit the analysis of the previous sections with the modified nonlinearity

(3.19) fnl(y) =
(
y3

1 + α(y1 − y2)3 + β(y1 − y2)5

α(y2 − y1)3 + β(y2 − y1)5

)

The influence of the fifth-order spring is illustrated in figures 3.10 and 3.11. The analysis
reveals three regions in which DRCs are present, each organised by an asymmetric cusp.

For design purposes a significant outcome is that no DRC exists for β > β2 ≈ 1.2 10−4.
A new asymmetric cusp appears at β = β3 ≈ 3.7 10−2 (figure 3.11), providing a range of
parameter [β2, β3] where the model is free of DRCs.

Figure 3.10 also shows the presence of another asymmetric cusp at β1 ≈ 10−4 and
corresponding DRC for β < β1. For completeness figure 3.12 shows this other DRC in the
response of the second mass where it is more visible.

We remark that, although the computations of singularities relyed on the first-order
approximation derived in appendix 3.A, the frequency responses showed were all computed
using a shooting algorithm similar to the one described in [72]. These figures confirm the
presence of the boundaries between the different frequency responses reported above and
show that results of this chapter approximate well the behaviour of the equations.

A natural improvement is to use directly more accurate approximations to perform similar
analyses. The fact that numerical techniques to identify and track singularities are already
available [34, Ch. 7] makes this a concrete possibility. Moreover, these numerical techniques
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Figure 3.12 New DRC due to a fifth order spring, responses of the second mass in cases b
and d of figure 3.10.

are at their essence the same ones commonly used by researcher in structural dynamics
(continuation and bordering), something that should facilitate their integration with already
developed tools.

3.6 Conclusions

This chapter studied the interconnection of two Duffing oscillators in the context of vibration
absorption. The focus of the analysis was on appearance and merging of detached resonance
curves and their characterisation in terms of isolas, simple bifurcations and asymmetric cusps.
The latter provides a full characterisation of the geometry of these solutions in parameter
space. Starting from it it is possible to quantitatively investigate the presence of these curves
with respect to design parameters.

In the context of this thesis we think of this system as the simplest example of a resonance
phenomenon obtained through interconnection. Under this viewpoint, the last part of this
chapter is an attempt to characterise the effect that one the two subsystems (the absorber)
has on the final interconnection. The choice of this subsystem is of course not casual, but
rather dictated by the problem. In the next two chapters, and in particular in chapter 5,
we undertake similar efforts in the context of excitable systems. Although techniques and
phenomena will differ, the final objective will be the same, to understand how modifying a
subsystem influences the behaviour of the resulting interconnection.



Appendix

3.A Reduction of first-order harmonic balance
to a scalar equation

In this section, starting from a one-harmonic approximation of (3.1) (with a fifth-order spring),
we arrive to a single equation that approximates the frequency response of the system. The
equations of motion (in dimensionless form) are

(3.20)

Mÿ + Cẏ +Ky + fnl(y) = g
f

2 (exp(jωt) + exp(−jωt))

M =
(

1 0
0 r

)
K =

(
1 + k −k
−k k

)
C =

(
µ1 + µ2 −µ2

−µ2 µ2

)

fnl(y) =
(
y3

1 + α(y1 − y2)3 + β(y1 − y2)5

α(y2 − y1)3 + β(y2 − y1)5

)
g =

(
1
0

)

Defining

(3.21) q = Ly L =
(

1 0
1 −1

)

the equations of motion are rewritten as

LTMLq̈ + LTCLq̇ + LTKLq + LT fnl(Lq) = LT g
f

2 (exp(jωt) + exp(−jωt))(3.22)

(1 + r)q̈1 − rq̈2 + q1 + µ1q̇1 + q3
1 = f

2 (exp(jωt) + exp(−jωt))

−rq̈1 + rq̈2 + kq2 + µ2q̇2 + αq3
2 + βq5

2 = 0
(3.23)

39
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Setting q1 = w1 exp(jωt) + w1 exp(−jωt), q2 = w2 exp(jωt) + w2 exp(−jωt) and injecting
in (3.23) yields for the first harmonic

g1(w1, w2) := −ω2(1 + r)w1 + ω2rw2 + w1 + jµ1ωw1 + 3w2
1w1 = f

2(3.24)

g2(w1, w2) := ω2rw1 − ω2rw2 + kw2 + jµ2ωw2 + 3αw2
2w2 + 10βw3

2w
2
2 = 0(3.25)

Equation (3.25) can be solved for w1, yielding

(3.26) w1 = ψ(w2) := w2 − k

ω2r
w2 − jµ2

ωr
w2 − 3α

ω2r
w2

2w2 − 10β
ω2r

w3
2w

2
2

The functions g1(w1, w2) and ψ(w2) verify, for θ ∈ R

(3.27)
g1(exp(jθ)w1, exp(jθ)w2) = exp(jθ)g1(w1, w2)

ψ(exp(jθ)w2) = exp(jθ)ψ(w2).

Thus for the equation obtained by substituting (3.26) in (3.24)

(3.28) g1(ψ(w2), w2) = f

2

a similar property holds, i.e. for all θ ∈ R

(3.29) g1(ψ(exp(jθ)w2), exp(jθ)w2) = g1(exp(jθ)ψ(w2), exp(jθ)w2) = exp(jθ)g1(ψ(w2), w2)

Substituting w2 = x exp(jϕ) in (3.28), multiplying by exp(−jϕ) and using (3.29) yields

(3.30) g1(ψ(x), x) = f

2 exp(−jϕ)

where x and f are real variables but g1 is complex-valued. Taking the square of the absolute
value of both sides of (3.30) results in a real equation

(3.31) g := |g1(ψ(x), x))|2 − 1
4f

2

whose solutions correspond to solutions of (3.24) and (3.25).
Furthermore, due to the structure of the gi

g1 = w1h1(|w1|2) + ω2rw2

g2 = w2h2(|w2|2) + ω2rw1
(3.32)

the resulting equation (3.31) depends quadratically on x and f , thus it is possible to substitute
X = x2 and F = f2.

Setting β = 0 yields the frequency response of the system without fifth-order spring.



Chapter 4

The geometry of
rest-spike bistability

The coexistence of a rest state with a spiking attractor is often a building block of bursting
oscillations. While the latter have received a great deal of attention from the neurodynamics
community, the mechanisms underlying rest-spike bistability in slow-fast systems have been
explored less.

In the FitzHugh-Nagumo model fast positive feedback leads to bistability in the fast
time-scale. Similarly, a slow source of positive feedback can be used in conjunction with
the motif of excitability to obtain bistability between a fixed point and a limit cycle. While
similar ideas appear in few other models in the literature, the objective of this chapter is
to capture this process in a distinct dynamic variable, leading to a model with two slow
variables.

This is achieved adding a slow inward current to a classical model of excitability, the
Morris-Lecar model. The resulting model has a slow-fast structure similar to the one found
in biological systems. Analysing it with geometric singular perturbation theory uncovers the
geometry underlying this type of bistability.

4.1 Introduction

After the action potential, bursting [10] is probably the first type of pattern one comes across
when studying electrical activity of excitable membranes. Its generation often rests on the
coexistence of a fixed point with a spiking attractor when appropriate variables are held
fixed [21, 51]. Despite this, the study of the mechanisms underlying this bistability in the
context of slow-fast systems has received little attention.

In the neurodynamics literature we are aware of only two published models that aim
at this. The first one was proposed by Hindmarsh and Rose [44] in their classical work on
low-frequency spiking. The second one is the more recent transcritical model [19] proposed

41
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as a two-dimensional reduction of the Hodgkin-Huxley model with a slow inward (calcium)
current added.

Both models are planar with one fast and one slow variable and can be analysed with
phase-portrait techniques similar to those used for the FitzHugh-Nagumo model in chapter 2.
In that case the slow variable acts exclusively as a recovery variable, slowly counteracting
changes in the voltage. On the contrary, in the two slow-fast model that show rest-spike
bistability, the slow variable can also be a source of positive feedback.

In the Hindmarsh-Rose model this is obtained making the slow nullcline in the FitzHugh-
Nagumo model nonmonotonic (quadratic). This change does not alter the cubic-shaped
critical manifold but leads to multiple fixed points on it. One of them is stable and coexists
with a spiking attractor in a range of input currents.

The transcritical model, instead, realises the slow positive feedback changing how the
slow variable enters the fast dynamics: with a quadratic term rather than a linear one.
The resulting phase portrait is quite different from the classical one studied by FitzHugh.
Following [19], a subsequent analysis in [29] showed the key role of a transcritical bifurcation
in shaping the critical manifold of this model.

Both models can be analysed graphically to explain the dynamical mechanisms underlying
this bistability but do not fully capture the physiology of the phenomenon. The present
chapter aims at filling this gap, studying a model that is simple enough to allow a geometric
analysis but at the same time closer to the structure of excitable cells.

Our starting point is the model developed by Morris and Lecar [70]. This model follows
the formalism established by Hodgkin and Huxley [46], combining an instantaneous inward
current with a slow outward current. These correspond to the basic elements of the classical
FitzHugh-Nagumo model, making the geometry of the two models essentially the same. In this
sense the Morris-Lecar model combines the physiological interpretation of the Hodgkin-Huxley
model with the mathematical tractability of the FitzHugh-Nagumo circuit.

Augmenting the Morris-Lecar model with a slow source of positive feedback, corresponding
to a slowly-activating inward current, results in a model that is conductance based and
shows rest-spike bistability. This slow-fast system can be analysed using geometric singular
perturbation theory. The fast dynamics is one dimensional and shares the bistable dynamics
common to excitable models, whereas the slow dynamics is two-dimensional and can be
analysed comprehensively. This generalised picture offers a number of advantages. From
a physiological viewpoint, it is not only more interpretable but also more realistic. This is
because the kinetics of slow inward and slow outward currents often differ significantly from
each other in actual neurons. From a mathematical viewpoint, it also offers a more coherent
picture. The critical manifold is N-shaped, as commonly found in conductance-based models
due to bistability in the fast time-scale. Slow variables determine the slow dynamics but
their different roles do not influence the geometric structure of the critical manifold.
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4.2 A Model of Rest-Spike Bistability

The model studied in this chapter is defined by∗

(4.1)
εv̇ = i− iion(v, n, p)
ṅ = −n+ Sn(v)
τ ṗ = −p+ Sp(v)

where ε is a small parameter representing two distinct time-scales. The total ionic current is
the sum of a leak current and three voltage-gated currents:

(4.2)
iion = gl(v − vl) + Sm(v)(v − 1) + n(v + 1) + p(v − 1)

= c(v) + cn(v)n+ cp(v)p

while Sx(v) are activation functions of the form

(4.3) Sx = gx

2

(
tanh

(
v − ax

bx

)
+ 1

)
The parameters v− = −1 < vl < v+ = +1 can be thought of as reversal potentials. In the
absence of an external current i, the voltage range [−1, 1] is positively invariant. The currents
Sm(v)(v − 1) and p(v − 1) are then negative (inward currents) whereas the current n(v + 1)
is positive (outward current). The variables n and p are gating variables that model the
slow activation of the two currents p(v − 1) and n(v + 1). The inward current Sm(v)(v − 1)
has instantaneous activation, a standard simplification for currents that activate in the fast
time-scale.

The main qualitative difference with respect to the Morris-Lecar model is the slow inward
current p(v − 1). In the absence of this term, the model is two-dimensional and has a phase
portrait similar to the classical FitzHugh-Nagumo model. With this additional slow inward
current, both continuous spiking and rest coexist for the same value of applied current, as
shown by the simulation in figure 4.1 (numerical values of the parameters are in appendix 4.B).

Through geometric singular perturbation theory [22, 41, 63] it is possible to study the
slow-fast system (4.1) in the limit of ε tending to zero. The singular limit of this model is
the differential-algebraic system

(4.4)
i = iion(v, n, p)
ṅ = −n+ Sn(v)
τ ṗ = −p+ Sp(v)

∗Compared to the Morris-Lecar model we normalize voltage so that reversal potentials are between 1 and
-1 and assume that activation variables have time constants independent from v.
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Figure 4.1 Rest-spike bistability in the model (4.1).

which we call slow dynamics or reduced system. After rescaling time, the same limit leads to
the layer (or fast) dynamics

(4.5)
v̇ = i− iion(v, n, p)
ṅ = 0
ṗ = 0

Fixed points of this system correspond to the critical manifold C0

(4.6) iion(v, n, p) = i

to which the slow dynamics (4.4) is constrained. Normally-hyperbolic compact subsets of C0

persist as invariant manifolds of (4.1) for ε small enough. These manifolds are not necessarily
unique but in the following we assume one family of perturbations Cε fixed and call them
slow manifolds.

Perturbations of subsets of C0 maintain their type of stability with corresponding (local)
stable and unstable manifolds. These admit invariant foliations, with each point on the
critical manifold acting as base for a fibre. Invariance of the foliation can be interpreted as
points on each fibre “shadowing” the corresponding base point, in forward time for points on
the stable manifold and backward time for those on the unstable one. Points on Cε follow a
slow dynamics that is a regular perturbation of the reduced system (4.4).

A point x on the critical manifold is normally hyperbolic if it is a hyperbolic fixed point
of the layer dynamics. If this is the case, as ε → 0 the fibres based at x tend to its stable
and unstable manifolds in the layer dynamics. In the case of (4.1) the layer dynamics (4.5) is
one dimensional, so that hyperbolic fixed points are either attractive or repulsive, with their
invariant manifolds corresponding to lines with n and p constant.

For the parameter values considered here (appendix 4.B) the critical manifold can be
divided in three normally-hyperbolic branches. These are separated by two lines of folds Fl
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and Fh, which verify

(4.7) ∂iion

∂v
= dc

dv
(v) + n+ p = 0

These two lines of folds are connected by an unstable branch Sr. The other branches, S−
a and

S+
a , are both stable. Figure 4.2 shows the typical shape of the critical manifold for fixed i.

v

p
n

Fl

PhFhPl

Figure 4.2 Reduced dynamics (4.5) on the critical manifold (4.4) and its projection onto the
v-p plane, together with the lines of folds Fl, Fh and their projections Pl, Ph. A saddle point
and its stable ( ) and unstable ( ) manifolds in the reduced system are shown on
the critical manifold. The black trajectory is a singular relaxation oscillation composed of
two slow parts (single arrow) connected by two trajectories along fast fibres (double arrow,
dotted in the projection).

Around any point not on the lines of folds, the critical manifold can be parametrised with
the slow variables n and p. This parametrisation, however, does not extend to the whole
manifold due to the presence of folds. Following [91, 92, 101], we can use v and p to overcome
this problem. This parametrisation corresponds to the solution n(v, p, i) of (4.6) and is valid
in the interval v ∈ (−1, 1) (in fact v ∈ (−1, ∞)). Geometrically, using v and p as coordinates
corresponds to project manifold and slow dynamics onto the v-p plane as shown in figure 4.2.

The reduced dynamics in these coordinates is obtained differentiating the constraint
in (4.4) and substituting n(v, p, i). This leads to two equations of the form

(4.8)
∂iion

∂v
v̇ = −∂iion

∂n
ṅ− ∂iion

∂p
ṗ

τ ṗ = −p+ Sp(v)
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The first equation becomes singular on the lines of folds ∂iion
∂v = 0. Multiplication by ∂iion

∂v

recovers a regular differential equation

(4.9)
v̇ = −∂iion

∂n
ṅ− ∂iion

∂p
ṗ

τ ṗ = ∂iion

∂v
(−p+ Sp(v))

The original system (4.8) and the desingularised one (4.9) share the same trajectories with
different time parametrisations. In particular, in (4.9) time is reversed on the unstable branch
∂iion

∂v < 0 and new fixed points can appear on the lines of folds. These are called folded
singularities and verify

(4.10) ∂iion

∂v
= 0 ∂iion

∂n
ṅ+ ∂iion

∂p
ṗ = 0

Away from the lines of folds the two systems (4.8) and (4.9) are largely equivalent but
important differences occur in the neighbourhood of Fl and Fh. Moreover, near these lines
the perturbed dynamics is no longer constrained by normal hyperbolicity and cannot be
obtained as a regular perturbation of the reduced system (4.8).

Different dynamical phenomena are possible near lines of folds. The least degenerate
situation occurs when the desingularised vector field has no zeros:

(4.11) ∂iion

∂n
ṅ+ ∂iion

∂p
ṗ ̸= 0

Under this assumption the desingularised vector field (4.9) can point either to the unstable
branch or the stable one. Assuming the additional nondegeneracy condition

(4.12) ∂2iion

∂v2 ̸= 0

the first case corresponds to jump points; at them the reduced system (4.8) admits two
solutions backward in time but none forward. For ε > 0 the stable branch of Cε near
these points can be continued using the flow [92]. Doing so shows that trajectories on the
slow manifold pass the folds and reach points in state space where the fast dynamics (4.5)
dominates. Under its influence the trajectory reaches a fibre contained in the stable manifold
of the other stable branch of Cε.

Condition (4.11) corresponds to the vector field (4.1) being transverse to the critical
manifold (4.6), a condition that is violated at folded singularities. These are fixed points of
the desingularised system (4.9) but not necessarily of the reduced dynamics (4.8). Depending
on the type of fixed point they can correspond to the singular limit of canard trajectories, i.e.
intersections between stable and unstable branches of the slow manifold [91]. Along lines of
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folds the desingularised vector field can change direction only at these points, so that the
boundary of the set of jump points is composed of folded singularities [101].

4.3 Reduced Dynamics

This section studies the reduced system (4.8) numerically, highlighting its persistence proper-
ties for small ε > 0.

Fixed points of the system can be parametrised by v through the steady-state i-v curve

(4.13) is(v) = iion(v, Sn(v), Sp(v))

This is shown in figure 4.6 and is an S-shaped curve, with two folds separating three families
of fixed points Xl, Xm and Xh; Xl corresponds to low voltages, Xm to intermediate voltages
and Xh to high voltages. For fixed i, we denote points in each family with corresponding
lower-case letters xl, xm and xh. In addition to these three fixed points, the desingularised
dynamics (4.9) has a folded focus xf ∈ Fl. This does not lead to canard trajectories [91] and
only delimits jump points on Fl.

Fl Fh

xl

xm

xh

xf

v

p

Figure 4.3 Typical phase portrait of the reduced system (4.8). Fixed points of the desin-
gularised system (4.9) are denoted by crosses, xl is a stable node, xm and xh are saddle
points and xf is a folded focus (unstable). Few trajectories ( ) as well as stable ( )
and unstable ( ) manifolds of the saddle points are shown. Along the two lines of folds
Fl and Fh the system is singular: trajectory at those points are defined only in forward or
backward time; the first of these two cases corresponds to jump points. The stable manifold
of xm separates initial conditions in S−

r (left of Fl) that reach a jump point from those that
converge to xl.
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Figure 4.3 shows the typical phase portrait of (4.8). The fixed point xl is a stable node,
while xm and xh are both saddle points. Their stable and unstable manifolds do not extend
beyond Fl and Fh due to loss of existence and uniqueness along these lines. In particular,
unstable manifolds terminate at jump points.

For ε > 0 hyperbolic fixed points persist in the slow dynamics with their stable and
unstable manifolds [22, 90]. In the perturbed system (4.1) these fixed points are still
hyperbolic. In particular, saddle points remain saddle, with their invariant manifolds being
obtained as a combination of trajectories of the slow dynamics and fast fibres. The unstable
manifold of xm is completely contained in the slow manifold. Its stable manifold, instead, is
two dimensional: It includes the stable manifold in Cε as well as all fast fibres based on that
curve. In the singular limit this surface tends to the stable manifold of xm in the reduced
system (4.8) and all nearby segment with constant n and p that intersect it. Similarly, xh

perturbs to a saddle with a one-dimensional stable manifold and a two-dimensional unstable
manifold.

Adding a trivial equation for i to (4.1), the same is true for the family of fixed points
xm(i). At least for i in a small interval, this family persists together with its two-dimensional
unstable manifold and three-dimensional stable manifold. Sections of these manifolds for
fixed i coincide with the invariant manifolds of the corresponding fixed point.

When i varies on larger domains the outlined phase portrait can undergo two distinct
qualitative changes: Increasing i leads to a fold of the i-v curve at which xl and xm merge in
a saddle-node bifurcation, leaving only one fixed point xh ∈ Sr. Likewise, decreasing i, xm

and xh reach a similar fate, leaving xl ∈ S−
a as the only fixed point.

To obtain this second bifurcation it is necessary that one of the two fixed points crosses
the line Fl and changes branch∗. In our case xm crosses Fl. This passage corresponds to an
exchange of stability with the folded singularity through a folded saddle-node [62]. Beyond
this crossing, the folded singularity is a saddle, while xm is a node of the reduced system. In
a similar fashion increasing the applied current leads to xh crossing Fh, which happens once
xh is the only fixed point left. After this crossing, xh is a stable fixed point on an attractive
branch.

Finally, varying i can lead to changes in the type of folded singularity. As already
mentioned xm ∈ Fl corresponds to a folded saddle-node, thus varying i and moving xm

between branches leads to different types of folded singularity: It is a saddle when xm ∈ Sr

and a node when xm ∈ S−
a . Both situations lead to canard trajectories [91]. Moreover,

since xf is a focus in the phase portrait described above, it has to change to a node before
becoming a folded saddle-node.

∗This assumes that the bifurcation does not happen exactly on Fl.
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4.4 Rest-spike bistability

Returning to the phase portrait in figure 4.3, this section analyses the global return mechanism
that leads to rest-spike bistability.

Away from the slow manifold the dynamics is dominated by (4.5) and tends to one of the
two attractive branches that perturb from S−

a and S+
a . On these branches, away from fold

points, the dynamics is a perturbation of the reduced system (4.8).
Close to a lines of folds, near jump points, trajectories on a stable branch of the slow

manifold pass the folds and quickly reach a fibre of the opposite branch. After this fast
passage the trajectory is dominated once again by the slow dynamics. Points near a stable
branch of the critical manifold in a neighbourhood of a line of folds follow similar paths, with
the flow contracting in the direction transverse to the manifold [92].

In the singular limit ε = 0 this corresponds to trajectories on the slow manifold reaching
a line of folds and jumping to the opposite branch, following lines of constant n and p as
shown in figure 4.2. The points at which these singular trajectories arrive correspond to the
projections of Fl and Fh along fast fibres. We call these projections Pl ⊂ S−

a and Ph ⊂ S+
a .

Based on this construction, the analysis of the system can be continued referring only
to the v-p plane and the reduced dynamics: When a trajectory reaches a jump point it is
transported to the corresponding projection keeping p fixed, as shown in figure 4.2 for a limit
cycle.

Rest-spike bistability follows from how the stable and unstable manifold of xm constrain
trajectories. The role of the stable manifold is simple, it separates initial conditions on S−

a

that reach a jump point on Fl from those that remain on the critical manifold and tend to
xl. The unstable manifold, instead, determines if the system is multistable. This is the case
if the unstable manifold stays away from xl. Otherwise almost all trajectories converge to xl.
These two situations are treated separately in the following sections.

4.4.1 Multistability

In the following, x1 denotes the intersection of the unstable manifold of xm with Fl, and x−1

the intersection of the stable manifold of xm with Pl. Following the singular flow from x1

leads to x2 ∈ Ph, then to x3 ∈ Fh and back to Pl at x4 (see figure 4.4).
This section assumes the situation depicted in figure 4.4 in which the trajectory starting

at x4 reaches a jump point on Fl (x5). The point x4 and the line p = gp delimit a segment
Il ⊂ Pl. The reduced dynamics maps this segment to Fl in finite time. The map Πl defined
in this way is smooth: It can be obtained through the desingularised reduced system (4.9),
and this vector field is transverse to Fl at all points in Πl(Il). Similarly, on S+

a we can
define a segment Ih ⊂ Ph between x2 and p = gp, and a corresponding map Πh : Ih → Fh.
Projection along fast fibres is denoted by Πf (from Fl to Ph and from Fh to Pl). Since the
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Fl PhFhPl
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Figure 4.4 Reduced dynamics in the multistable case. The stable manifold of xm ( )
separates initial conditions that reach a jump point on Fl from those that converge to xl.
Jump points are mapped to their projections (e.g. x1 to x2 and x3 to x4). The unstable
manifold of xm ( ) delimits an invariant set for the dynamics.

dynamics is bounded by the line p = gp. We have

(4.14) Πf ◦ Πl(Il) ⊂ Ih Πf ◦ Πh(Ih) ⊂ Il

which allows us to define the singular Poincaré map

(4.15) Π = Πf ◦ Πh ◦ Πf ◦ Πl : Il → Il

This construction shows that the stable manifold of xm divides the state space into
two invariant sets. One is the basin of attraction of xl, while the other one has dynamics
characterized by the Poincaré map (4.15). Since this is a smooth map of an interval into
itself it admits at least one fixed point that corresponds to a singular relaxation oscillation.
As shown in [92], if this fixed point is hyperbolic, under the additional hypothesis that the
singular trajectory intersects Pl and Ph transversally, it perturbs to a hyperbolic limit cycle
for ε > 0. In fact the Poincaré map (4.15) is (up to conjugacy) a global version of the one
used in that reference.

In general this construction guarantees only multistability, to obtain a more accurate
picture a detailed characterization of the map (4.15) is necessary. While this is beyond
the scope of this work, it is plausible to expect that this map has a unique and attracting
hyperbolic fixed point, at least for large ranges of parameter values. The reason for this is
that trajectories between Pl and Fl are attracted towards the unstable manifold of xm, which
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is transverse to Fl, a situation that naturally leads to Πl being a contraction with respect to
some metrics. The maps Πf can be largely ignored, parametrising all intervals using the p
coordinate of their points reduces these projections to the identity. This leaves only the map
Πh, and it would be enough for this map to be non-expanding in an appropriate metric to
obtain that Π is a contraction.

4.4.2 Monostability

Constructing the Poincaré map (4.15) requires that x4 falls inside the interval defined by x−1

and p = gp on Pl. Figure 4.5 shows the reduced phase plane of (4.1) when this is not the
case. In this situation most trajectories on S−

a and S+
a are attracted by the stable fixed point

xl, the only exception being the stable manifold of xm.
This can be seen through a construction similar to the previous one, but starting from

x−1 ∈ Pl, and following the singular flow “backward” in time as shown in figure 4.5. The first
step leads to Fh using the inverse of Πf ; continuing with the slow flow the trajectory arrives
to Ph and from it the inverse of the fast projection leads back to S−

a on the line of folds Fl.
Finally, through the slow dynamics, the trajectory reaches Pl, at a point that we call x−2.
Any compact segment in Pl that lies between x−1 and x−2 is mapped to the segment in Pl

delimited by x4 and x−1. Since any point strictly inside this second segment converges to xl,
the same conclusion extends the initial points.

Fl PhFhPl

xm

xl

x−2

x−1

x1
x2

x3
x4

v

p

Figure 4.5 Reduced dynamics in the monostable case. The stable manifold of xm ( )
separates initial condition that arrive to a jump point on Fl from those that converge to xl

(not shown). The unstable manifold of xm ( ) converges to xl after one jump. Similarly,
almost all initial conditions on stable branches converge to xl, the only exception are the
ones that lie on the stable manifold of xm.
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The same argument shows that points in the portion of S−
a delimited by the trajectories

starting at x−1 and x−2 tend to xl. The only exception being these boundary trajectories,
they reach xm and points on them belong to its stable manifold. The same argument can be
iterated on S−

a and adapted to S+
a , leading to the conclusion that almost all points on S−

a

and S+
a are in the basin of attraction of xl

∗. This situation persists for ε > 0, and since most
points are attracted to stable branches of the slow manifold, we obtain that for almost all
initial conditions the perturbed dynamics converges to xl.

4.4.3 Homoclinic trajectory and bifurcation diagram

Transitions between monostability and bistability in system (4.1) are controlled by the applied
current i. The phase portraits in figures 4.4 and 4.5 suggest the presence of a homoclinic
trajectory, which can be obtained by decreasing the applied current from the bistable case.
In the singular limit this trajectory corresponds to the condition x4 = x−1 and delimits the
boundary of bistability. The value of applied current at which this happens will be denoted
by iH . While we cannot expect that this homoclinic trajectory persists for ε > 0 with i

fixed, it is natural to ask whether for ε > 0, fixed and small, we can find an iH(ε), close to
iH , at which a homoclinic trajectory exists. There is a natural transversality condition that
guarantees this property. The family of fixed points xm(i) admits a three-dimensional stable
manifold and a two-dimensional unstable one. Their intersection is a homoclinic trajectory.
In the singular limit, following the unstable manifold of xm(i) leads back to S−

a after two
jumps. Extending C0 to include i, xm(i) is a (normally hyperbolic) invariant set in it, with
two-dimensional invariant manifolds. The continuation of the unstable one using the singular
flow intersects the stable manifold in the plane i = iH after two jumps. If this intersection

i

v

Figure 4.6 Bifurcation diagram of (4.1). Solid lines denote stable solutions, dotted correspond
to unstable ones; blue lines correspond to fixed points, red lines to limit cycle, in the latter
case both maximum and minimum are shown.

∗This assumes that the stable manifold of xm constructed in this way is not bounded in p. Numerical
computations confirm this.
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is transverse then it persists for small ε and i close to iH . This is shown in appendix 4.A
adapting the arguments used in [92] to prove existence of relaxation oscillations.

To conclude this section, figure 4.6 shows the bifurcation diagram of the system computed
with AUTO-07p [16]. The numerics confirms the presence of a family of limit cycle (red
curves), which terminates in a homoclinic trajectory for low values of i (the numerical
continuation was stopped at period T = 104).

4.5 A common geometric picture

The bifurcation diagram of the previous section is only one among the many possible scenarios
that can be modulated to obtain bursting. A natural question is if also other scenarios are
compatible with the three-dimensional geometry of figure 4.2. While a detailed study of all
the possibilities is beyond the scope of the present work, we wish to highlight how different
types of bistability could share the same geometric structure. To do this we use ideas and
techniques from [79]. As in section 4.3 we identify fixed points with the i-v curve

(4.16) is(v) = iion(v, Sn(v), Sp(v))

and divide them in three families Xl, Xm and Xh, separated by two folds. As noted in sec-
tion 4.3, there is a value of current ic, between the two folds, at which xm crosses Fl to
enter the unstable branch Sr. The scenario studied in section 4.4 assumes ic < iH since the
homoclinic bifurcation occurs when xm ∈ S−

a .
A first variation consists in the bistable range extending to current values for which

xm ∈ M . The transition xm ∈ Fl corresponds to a folded saddle-node. Beyond this xm ∈ M

is a node of the reduced dynamics while xf is a saddle. In this case the analysis is easily
adapted from section 4.4, substituting the stable manifold of xm with the one of xf (now a
folded saddle), and using Πf (xf ) in place of x2 = Πf (x1). Figure 4.7 shows the corresponding
geometric construction. A classical example where this scenario occurs is the Hodgkin-Huxley
model with the reversal potential of potassium increased. This situation of bistability has been
studied in the early work [82]. Its planar reduction leads to the transcritical model [32]. Also
in this case the boundary of bistability is a singular homoclinic trajectory. This trajectory,
however, has to go through the folded singularity xf to reach xm on the unstable branch Sr.

Both cases discussed so far assume that xm and xh collide in a fold on Sr. Yet another
scenario corresponds to this fold occurring on S−

a , after xh crosses Fl. Also this crossing
leads to a folded saddle-node, after which xh ∈ S−

a can perturb to a stable fixed point. Local
analysis around folded saddle-node shows the possibility of Hopf bifurcations [62], which
are indeed found numerically. After this the system presents two stable fixed points. The
relevant part of the reduced dynamics in this case is shown in figure 4.7: the stable manifold
of xm acts as separatrix between the basins of attraction of the two stable fixed points, while
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Figure 4.7 Alternative scenarios that can lead to bistability. Top: geometric construction
when a folded saddle (xf ) takes the place of xm. Bottom: bistability between two fixed points
(xl and xh).

the one of xf (a folded saddle) separates initial conditions that reach a jump point on Fl

from those that remain on the critical manifold.
The examples above suggest that many possible variants for transitions between monosta-

bility and bistability are possible. We also note that many of the geometric constructions used
in [29, 31, 79] have an analogue in the current geometric setting. For example, changing the
relative position of rest state and limit cycle leads to oscillations in which spikes undershoot
compared to rest, contrary to the case shown in figure 4.1. This flexibility is interesting in
connection with the themes of the next chapter, which focuses more on how a single structure
can generate multiple patterns.

4.6 Connections with phase portrait analysis

This last section of the chapter aims at clarifying the connection between the proposed three-
dimensional model and the two published slow-fast phase portraits of rest-spike bistability.

The first phase portrait goes back to the seminal work of Hindmarsh and Rose [44, 45]. In
one of the earliest attempts to model slow spiking and bursting, Hindmarsh and Rose proposed
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to modify the FitzHugh-Nagumo model with a recovery variable that has a nonmonotonic
activation function. Geometrically, this situation corresponds to a degenerate case of the
planar pictures described in section 4.3 and section 4.4, in which all essential elements are
contained on a line. As a result, the main elements of the three-dimensional dynamics can
be captured by constraining it to a plane, resulting in a simplified two-dimensional model
of rest-spike bistability. This is characterised by the classical N-shaped critical manifold,
as shown in figure 4.8. The price paid for this simplification is that the flexibility of the
two-dimensional slow dynamics described in section 4.5 is lost. For instance, bistability is
only possible if xl lies outside the strip delimited by Pl and Fl, ruling out patterns in which
the voltage of the resting state is between maximum and minimum of the spike.

Figure 4.8 Bistable slow-fast phase portraits as reduction of a larger dimensional model. Left:
critical manifolds obtained as the intersection of a higher-dimensional one ( ) with a
surface (gray). Right: corresponding phase plane with the critical manifold obtained ( )
and a possible nullcline for the slow variable ( ) that completes the dynamics. Top:
Hindmarsh-Rose model can be obtained constraining the dynamics to a plane, the critical
manifold in the phase plane is the classical N-shaped one, but presents nontrivial dynamics
leading to rest-spike bistability. Bottom: the transcritical model obtained constraining the
dynamics to a surface. The transcritical bifurcation is obtained when this surface is tangent
to a line of folds at a point. This bifurcation is responsible for a singular homoclinic trajectory
in the planar reduction.
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The second rest-spike bistable phase portrait is the transcritical model of [29]. This model
was obtained as a two-dimensional reduction of a conductance-based model that adds a slow
calcium current to the Hodgkin-Huxley model [19]. The analysis of [29] rests on the presence
of a transcritical bifurcation of the critical manifold. This bifurcation also directly relates to
the mixed role of the slow variable as a source of both positive and negative feedback in the
slow time-scale.

The transcritical bifurcation of the planar model [29] and the three-dimensional geometry
of the present chapter can be connected considering how the planar reduction was obtained.
Referring to our model (4.1) for simplicity, a planar reduction is obtained imposing an
algebraic constraint between n and p, which can be interpreted as a path n(s), p(s) [82].
After obtaining a dynamic equation for s from a combination of ṅ and ṗ, the reduced system
is

(4.17)
εv̇ = i− iion(v, n(s), p(s))
ṡ = g(v, s)

which is a slow-fast planar model. Its critical manifold is given by

(4.18) i = iion(v, n(s), p(s))

It corresponds to the intersection of the critical manifold of the larger system with the surface

(4.19) n = n(s) p = p(s)

A transcritical bifurcation is obtained when

(4.20)

iion = i

∂iion

∂v
= 0

∂

∂s
(iion(v, n(s), p(s))) = ∂iion

∂n

dn

ds
+ ∂iion

∂p

dp

ds
= 0

Geometrically these equations correspond to points on lines of folds of the critical manifold
at which the two surfaces are tangent, as shown in figure 4.8. Indeed, vectors (δv, δp, δn)
tangent to the critical manifold at a point verify

(4.21) ∂iion

∂v
δv + ∂iion

∂p
δp + ∂iion

∂p
δp = 0



4.7 Conclusions 57

For the surface (4.19), being parametrised by s and v, its tangent space is generated by the
two vectors

(4.22) v1 =


1

0

0

 v2 =


0
dp
ds

dn
ds


At a point verifying (4.20) the two vectors (4.22) verify (4.21). Similar geometric constructions
lead to the presence of a transcritical bifurcation when reducing the Hodgkin-Huxley model
with increased potassium reversal potential, as well as when reducing the same model
augmented with a calcium current, as done in [29].

An equivalent interpretation of how the transcritical bifurcation arises is that the path
(n(s), p(s)) defining the surface (4.19) is tangent to the line of folds

(4.23) i = iion(v, n, p) ∂iion

∂v
(v, n, p) = 0

projected onto the n-p plane. This is the simplest example of how singularities can be
generated from elementary catastrophes, the core idea in the path formulation of singularity
theory [33, Ch.3 §12]. This is particularly interesting in view of [30], where singularity
theory is used to obtain a global description of the critical manifolds of slow-fast planar
systems relevant to neuronal dynamics. Two singularities play a prominent role: hysteresis, in
connection with spiking, and winged cusp, for rest-spike bistability. Both these singularities
can be realised as paths in the unfolding of the cusp catastrophe [33]. Interestingly, this
bifurcation is often found in the fast subsystem of neuronal models (an early example
being [104]), and it is typically related to the appearance and disappearance of bistability.
For example, decreasing the sodium conductance in the Hodgkin-Huxley model leads to the
appearance of this bifurcation and the same is achieved by reducing gm in (4.1). The presence
of this type of bifurcation in these models suggests that those singularities can arise from
model reduction similarly to what happens in the transcritical case.

4.7 Conclusions

This chapter studied a simplified slow-fast model of neuronal activity that exhibits rest-spike
bistability. The simplest physiological models of excitability include a fast-activating inward
current and a slowly-activating outward current. This model adds a slowly-activating inward
current to this basic motif. We think of this model as a core structure for the generation of
multistability in more general and realistic conductance-based models. We speculate that
similar results are possible using a slowly-inactivating outward current, which would have
the same functional role of a slow positive feedback.
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The geometry of this three-dimensional model was analysed using geometric singular
perturbation theory. This geometry is rather simple, with the slow dynamics taking place
on a classical N-shaped critical manifold. A saddle point on it plays a key role. Its
stable manifold acts as separatrix, while its unstable manifold determines whether multiple
attractors are present. Moreover, the same geometric picture captures different types of
bistability, suggesting a common framework to study different phenomena important to
neuronal dynamics.

The geometric picture studied in the present chapter is a starting point to analyse more
complex patterns such as bursting. Often, this is qualitatively described as an oscillation
between the two attractors of a rest-spike bistable system. Its generation interconnecting two
subsystems builds on the picture developed in this chapter and it is the topic of the next one.



Appendix

4.A Persistence of a homoclinic trajectory

This appendix shows that under the assumption of transversality, the intersection of stable
and unstable manifolds that leads to a singular homoclinic trajectory persists for ε > 0. This
is done using the setting of [92] and in particular their results on maps defined by the flow
of (4.1). We recast these results in the notation of section 4.4 and refer to the original work
for details.

As in section 4.4, iH is the value of i at which a singular homoclinic trajectory exists. We
consider the reduced dynamics for this value of i, and fix a point xu on the unstable manifold
of xm between xm and Fl. Similarly, we fix a point xs on the stable manifold between Pl

and xm.
After a local change of coordinates we can find two neighbourhoods of these points, Ns

and Nu, such that the critical manifold C0 corresponds to the plane v = 0. The intersections
of these neighbourhoods with the planes n = ns and n = nu determine two surfaces Σs

and Σu. Rotating n and p if necessary, we can assume that Σu ∩ C0 intersects the unstable
manifold of xm transversally (in C0) and only at xu, and similarly for Σs ∩ C0. For fixed δ we
let Nδ = (iH − δ, iH + δ) and consider Σs × Nδ and Σu × Nδ. If δ is small enough, stable
and unstable manifolds of xm(i) intersect transversally these extended neighbourhoods (in
the critical manifold extend to include i). In the following we assume that Ns, Nu, Nδ are
shrunk whenever necessary.

In section 4.3, we have characterized the stable manifold of xm for small ε > 0, this is
composed of a line on Cε and the fibres based on it. In the limit ε → 0, the singular stable
manifold intersect Σs transversally along one of these fibres. Thus if ε and δ are small enough
the same will be true for the stable manifold of xm(i) for fixed i and ε. Moreover, since at
ε = 0, i = iH this intersection is a line of constant p, we can find a parametrization of it that
has the form p = ps(v, i, ε). Similarly, the intersection of Σu with the unstable manifold of
xm(i, ε) defines two functions vu(i, ε) and pu(i, ε).

Notice that in this section we use v and p to parametrize the two slices Σs and Σu, so that
v preserves its nature of fast variable. This differs from the use of v and p to parametrize the
critical manifold as done in section 4.3 and section 4.4.
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We can now use the same construction of [92] to obtain a map Π : Σu → Σs corresponding
to the action of the flow. This has the form

(4.24) Π
(
v

p

)
=
(
R(v, p, i, ε)
G(v, p, i, ε)

)

The function R is exponentially small in ε (|R| + ∥∇R∥ < exp(−c/ε)) and in particular
verifies

(4.25) R(v, p, i, 0) = 0

G has the form

(4.26) G = G0(p) + O(ε ln(ε))

where G0 : Σu ∩ C0 → Σs ∩ C0 is the map defined by the singular flow. Smooth dependence
on i follows from standard results.

The only difference between this map and the Poincaré map defined in [92] is that we
consider two different sections Σs and Σu rather than one.

Applying this map to (vu, pu) we obtain the intersection of the unstable manifold of xm

with Σs

(4.27) Π
(
vu

pu

)
=
(
R(vu, pu, i, ε)
G(vu, pu, i, ε)

)

In this setting an intersection of stable and unstable manifolds corresponds to a solutions of

(4.28) G(vu, pu, i, ε) = ps(R(vu, pu, i, ε), i, ε)

where vu = vu(i, ε) and pu = pu(i, ε). Thus, we can define

(4.29) Pu(i, ε) = G(vu, pu, i, ε) Ps(i, ε) = ps(R(vu, pu, i, ε), i, ε)

and a homoclinic trajectory corresponds to Pu − Ps = 0.
At ε = 0

(4.30)
Pu(i, 0) = G0(pu(i, 0))
Ps(i, 0) = ps(R(0, pu(i, 0), i, 0), i, 0) = ps(0, i, 0)

and the existence of the singular homoclinic trajectory at i = iH means that

(4.31) Pu(iH , 0) = G0(pu(iH , 0)) = ps(0, iH , 0) = Ps(iH , 0)
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Assuming that

(4.32) ∂Pu

∂i
(iH , 0) − ∂Ps

∂i
(iH , 0) ̸= 0

an application of the implicit function theorem∗ guarantees the existence of a continuous
functions iH(ε) such that Pu(iH(ε), ε) = Ps(iH(ε), ε).

At ε = 0, Pu(i, 0) is the intersection of the singular unstable manifold (after two jumps)
with Σs ∩ C0, while Ps(i, 0) corresponds to the intersection of the stable manifold of the
reduced flow and Σs ∩ C0. Condition (4.32) corresponds to transversality of the intersection
between the manifolds p = Ps(i, 0) and p = Pu(i, 0) in the extended neighbourhood Σs ×Nδ.
Since the invariant manifolds of xm(i) can be obtained applying the singular flow to these two
sections, we see that condition (4.32) is equivalent to transversality of the intersection between
the invariant manifolds of xm(i) on the critical manifold (where the unstable manifold has
been continued past two jumps using the singular flow).

4.B Parameters

The analysis in sections 4.3 and 4.4 uses the following numerical values for the parameters
of (4.1)

(4.33)

vl = −.8, gl = 2
gm = 4.4, am = −.19, bm = .18
gn = 8.0, an = −.16, bn = .29
gp = 2.0, ap = −.5, bp = .3

τ = 1.5

Parameters related to m, n and leak are approximated from those in [21] for the Morris-Lecar
model in the case Hopf, after normalizing v between -1 and 1. Other parameters have been
chosen to obtain the desired bistability.

∗We need a relaxed version of the implicit function theorem since the dependence on ε is not smooth but
only continuous, this is proven in [65].





Chapter 5

Bursting from interconnection

This chapter studies how bursting is generated by interconnecting two subsystems. Compared
to other treatments of bursting here we want to highlight how the same structure can generate
different bursting patterns. This fits well with the observation of the previous chapter that
different rest-spike bistable diagrams can be obtained in the same geometric setting, and in
turn using the same underlying structure.

Starting from the interconnection of a fast excitable system and a slower van der Pol-like
oscillator, the focus is on how the two limits of the van der Pol oscillator lead to two different
bursting patterns: square wave and parabolic. This complements the observation of the
previous chapter on different rest-spike bistable diagrams, as well as other works on the
transition between bursting and tonic spiking.

5.1 Introduction

Since the early day of neurophysiology several preparations showed a pattern consisting of
packets of high-frequency spikes (bursts) followed by a period of relative inactivity. Bursting
corresponds to the repetition of this pattern. Examples of bursting neurons can be found in
the book [51, Ch.9] and the article [100].

In parallel with the experimental observations, a large number of researchers have
developed and analysed mathematical models of bursting, ranging from high-dimensional
multi-compartment conductance-based models [93] to minimalistic integrate-and-fire models [6,
87, 98]. Starting with the seminal works of Rinzel [80, 81], the main theoretical tool used in
the analysis and classification of bursting is dissection of slow-fast models: The system is
divided in two parts, a fast subsystem that can generate both active and rest states, and a
slow one that modulates between the two. Based on this idea bursting systems started to be
classified according to the bifurcations of the fast subsystem, eventually leading to the work
of Izhikevich [49], who lists 16 possible types assuming a two-dimensional fast dynamics and
120 if this constraint is removed.
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A difficulty with this approach is how to relate different types of bursters to experimental
preparations, to the elements that are found in neurons, to the underlying biology. It is
revealing in this sense to look at the first three open problems listed in the scholarpedia page
about bursting [50]:

• The complete classification of all electrophysiological types of bursters is still missing.

• There is no methodology of how to distinguish different topological types experimentally.

• The relationship between electrophysiology of a cell and the topological type of its bursting
is not worked out.

They all illustrate the difficulty of linking a mathematical theory of bursting to the biophysics
of different experimental preparations. These questions go hand in hand with the problem
of relating the components of a circuit to its external behaviour. They acquire increasing
importance as we attempt to study how neuronal circuits, and even single neurons, can be
robustly modulated. This is becoming always more important, as we accumulate evidence that
neuronal systems can robustly change their state in response to external and internal stimuli,
despite the presence of animal to animal variability, degenerate dynamics and homeostatic
processes [66]. We believe that to address these questions it is necessary to move from the
static classification of different bifurcation diagrams towards a more unifying view, in which
the same elementary components generate different patterns modulating their parameters.

The present chapter tries to make a further step in this direction, continuing the line of
work initiated in [19, 29, 30, 79]. In those works the elements found in many biological systems
are abstracted to build simplified models or design circuits that can be easily modulated
between different states. The generation of action potentials requires two key processes, a
fast autocatalytic one which depolarises the cell (positive feedback), and a slower one that
repolarises it (negative feedback). Those works use a repetition of this basic motif on a slower
time-scale to generate bursting. A natural consequence of this structure is an easy way to
transition between bursting and spiking: The latter is obtained reducing the influence of the
slow positive feedback process.

Following these ideas naturally leads to models that have at least three distinct time-scales
and four different variables, one for each functional role. However, the models in previous
studies use only three variables, generating slow positive and negative feedback with a
one-dimensional dynamics. This chapter continues the work initiated in the previous one,
separating these two roles in two distinct dynamic variables. This is done proposing a model
that has these four roles separated in four variables spanning three time-scales. Relaying
on this slow-fast structure it is possible to analyse how different types of bursting can be
generated by the resulting system.

In doing this we abandon the common three-variable structure used in most studies of
bursting. Indeed, our model has a structure similar to the four-dimensional model of parabolic
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bursting analysed by Rinzel and Lee [83]. Parabolic bursting is characterised by a spiking
frequency that is low at the beginning and the end of the burst and higher in the middle
part, resembling a parabola. At the core of its description there is the idea that bursting is
obtained by the interaction of two subsystems. A fast one that generates action potentials
in the presence of appropriate inputs and a slower one that generates oscillations driving
the alternation of active and rest phases. As the generation of spikes uses fast positive and
slow negative feedback, these same two elements, with slower dynamics, are used to generate
slow waves. Thus, we can ultimately think of bursting as arising from the interaction of two
oscillatory systems sharing a similar structure.

The main focus of this chapter will be on showing how this same interconnection can
naturally generate another common pattern of spiking frequency, starting higher and decreas-
ing monotonically, as typically observed in so-called square-wave bursters. Interestingly, a
similar transition was already observed by Rinzel and Lee: They obtained parabolic bursting
starting from a model that shows a monotonic decrease of frequency during the burst, the
one developed by Plant [74] for the neuron R-15 in the abdominal ganglion of the sea slug
Aplysia Californica∗.

The model of parabolic bursting in [83] uses a single compartment, with the two subsystems
corresponding to two pairs of different currents: sodium and potassium for the fast oscillation,
calcium and calcium-driven potassium for the slow oscillation. We can also think of the two
subsystems as corresponding to two spatially distinct compartments of the same neuron. This
structure is not uncommon in multi-compartment neuronal models. One classical example is
the model of Pinsky and Rinzel [73] obtained as a reduction of the 19-compartment model
proposed by Traub [94] for pyramidal cells of guinea pigs. Another example is the more recent
model developed by Soto-Treviño and coworkers [88] to simulate neurons in the stomatogastric
ganglion of lobsters. In both cases two compartments are used to model a single neuron. One
compartment generates the action potential, the other is characterised by slower currents and
generates slower waves. The former compartment is naturally identified with the standard
motif of excitability, while the other contains its slower replication identified by [29, 30].

Further examples of two-compartment models exist in the context of conductance-based
models. One example is the “ghostbursting” model of Doiron and co-workers [17]. Also that
model suggests that different compartments can be associated to different time-scales: The
ratio between conductances of fast and slow currents is much lower in the compartment
modelling dendrites. However, the four elements discussed above cannot be readily found
and the bursting dynamics is fairly different, suggesting that another mechanism underlies
bursting generation in that model.

In the following we aim at capturing the essential elements present in the model developed
by Pinsky and Rinzel, and the one by Soto-Treviño et al., favoring simplicity over verisimilitude.

∗As a side note, experiments on this preparations show a parabolic type of bursting [86].
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In this spirit, we only use two elements to obtain the basic motif, leading to a four-variable
model. Moreover, we use piecewise-linear systems that admit an easy analytic treatment and
are characterised by simple dynamics. The resulting model is piecewise-linear and has three
distinct time-scales, a structure similar to the one studied in [23], where the authors focus on
the appearance of mixed-mode-oscillations. To obtain this pattern that work considers the
interconnection of two excitable subsystems in cascade. In contrast, in the model we analyse
the two subsystems are in feedback, as it is common in multi-compartment models.

5.2 Structure and elements of the interconnection

The core interconnection studied in this chapter is illustrated in figure 5.1.
The first system (I) is a variation of the piecewise-linear version of the classical FitzHugh-

Nagumo model (also known as McKean model [68])

(5.1)
εv̇1 = −k1v1 + a1 Z(v1) − w1 + u1

ẇ1 = g1 Z(k0(v1 − v0)) − w1

where Zis a piecewise-linear sigmoid-like function

(5.2) Z(x) =


0 if x ≤ 0
x if 0 ≥ x ≤ 1
1 if x ≥ 1

The second equation models the dynamics of the so-called recovery variable. The dynamics is
linear in the McKean model but we find it convenient to use a nonlinear expression reminiscent
of the kinetics of a gating variable. For the other system (II) we use a piecewise-linear version

Slow
Wave

Fast
Spike

Slow
Wave

Fast
Spike

Figure 5.1 Interconnection used to generate bursting. The two systems in isolation correspond
to a fast spiking one and a slower oscillatory one. When interconnected the slow waves drive
bursts of action potentials.
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of the van der Pol oscillator

(5.3)
v̇2 = λ(−k2v2 + a2 Z(v2) − w2 + u2)
ẇ2 = δ(g2v2 − ū2)

In both cases the term Z(vi) represents a positive feedback process while wi corresponds to
negative feedback.

Both systems contain small parameters (ε in (5.1) and δ in (5.3)) meant to represent the
different time-scales present in neuronal models. These will be used to obtain singular limits
of the equations. The additional parameter λ that appears in system II allows us to vary
the time-scale of v2, making it as fast as w1 (λ ≈ 1) or markedly slower (λ ≈ δ), leading to
different pattern of bursting in the interconnected system. In terms of system II this passage
corresponds to changing the waveform between the two limit of a relaxation oscillator and a
harmonic one. In fact, the ratio λ/δ roughly corresponds to the parameter µ in the original
van der Pol equation

(5.4) v̈ + µ(v2 − 1)v̇ + v = ū

Given this structure we think of v2 as a voltage, with the desirable side-effect of suggesting
a physical implementation for the system, even though it cannot be identified with the voltage
of a compartment in a neuronal model.

Following these ideas and interpretation the natural input to system II would be a current,
represented by u2 in (5.3). However, also using the classical input to the van der Pol oscillator
(ū2 in (5.3)) is worth considering, since it leads to an interconnection that is simpler to
analyse. Considering both possibilities leads to two interconnections, corresponding to two
sets of constraints between the variables. The use of u2 is modelled by

(5.5)
u1 = d1(v2 − v1) + i1

u2 = d2(v1 − v2)
ū2 = vb

while using ū2 corresponds to

(5.6)
u1 = d1(v2 − v1) + i1

u2 = 0
ū2 = d2(v1 − v2) + vb

This second case has a distinct advantage when λ ≈ 1 and system II is a relaxation oscillator.
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In both cases it is convenient to incorporate d1v1 and d2v2 in the linear term of the
corresponding dynamics. Doing this (5.5) becomes

(5.7)
u1 = d1v2 + i1

u2 = d2v1

ū2 = vb

while (5.6) becomes

(5.8)
u1 = d1v2 + i1

u2 = 0
ū2 = d2v1 + vb

Thus, in both cases the coupling corresponds to a feedback interconnection of (5.1) and (5.3),
with appropriate parameters and inputs.

Following these remarks the general form of the interconnected system is

(5.9)

εv̇1 = −k1v1 + a1 Z(v1) − w1 + d1v2 + i1

ẇ1 = g1 Z(k(v1 − v0)) − w1

v̇2 = λ(−k2v2 + a2 Z(v2) − w2 + u2)
ẇ2 = δ(g2v2 − ū2)

To keep these equations more compact it is convenient to introduce the functions

(5.10)
ϕi(vi) = kivi − ai Z(vi)

w∞(v1) = g1 Z(k0(v1 − v0))

so that (5.9) becomes

(5.11)

εv̇1 = −ϕ1(v1) − w1 + d1v2 + i1

ẇ1 = w∞(v1) − w1

v̇2 = λ(−ϕ2(v2) − w2 + u2)
ẇ2 = δ(g2v2 − ū2)

Our objective in the remainder of the chapter is to use ideas similar to those in the
previous one to understand how bursting is generated in the singular limit. Although we do
not enter into the details of how trajectories persist outside of the singular limit, we remark
that the piecewise-linear case makes the passage in principle easier. As noted in [76] in each
zone of linearity the general theory can be specialised by requiring a linear slow manifold,
making it unique. Explicit formulae to compute an approximation of these linear manifolds
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are available in [59, Ch.2]. Moreover, persistence of singular trajectories involving both fast
and slow parts, as a relaxation oscillation, is simplified in the present setting since there is
no need for a local study around folds∗.

In the following we try to keep the analysis general, but often impose relations between
parameters that allow a simplified treatment. The figures shown are obtained using the
values reported in appendix 5.A.

5.3 Fast system

The fastest singular limit of (5.11) is obtained for ε = 0 after the change of time t = ετ . In
this limit only the first equation of system I (5.1) remains, making the dynamics independent
from the value of λ. Slower variables can be grouped together in j = u1 − w1; using it the
dynamics reduces to

(5.12) v̇1 = j − ϕ1(v1)

which is a piecewise-linear version of the usual fast limit of excitable systems. Depending
on the two parameters of ϕ1, k1 and a1, this system can be monostable or admit a zone of
bistability. The latter case is the one we are interested in. It is realised when a1 > k1, which
will always be assumed in the following.

Fixed points of (5.12) corresponds to solutions of j = ϕ1(v1). If k1 − a1 < j < 0 there
are three solutions to this equation, two are stable fixed points, the other is unstable and

1− a1

k1

0 1 a1

k1

k1 −a1

0

v1

j

Figure 5.2 Dynamics of the fast system; the piecewise-linear curve j = ϕ1(v1) corresponds
to fixed points, the linear branch in 0 < v1 < 1 corresponds to unstable ones, the other two
branches are stable.

∗This is mainly due to the fact that all critical manifolds in this chapter are normally hyperbolic everywhere.
As shown in other studies [76], this limits the types of canards found in piecewise-linear systems similar to
the ones studied in this chapter. Using the piecewise-linear framework, it is still possible to recover the same
richness found in the smooth case introducing additional zones of linearity in the system [13, 84]. Since we
are not directly interested in canard trajectories these cases are not considered in this chapter.
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separates the basins of attraction of the two attractive fixed points. If j is outside the interval
[k1 − a1, 0] only one stable fixed point is present. At the two boundary values j = k1 − a1

and j = 0 there are two fixed points, one lies on a switching surface and is half stable and
half unstable, the other is stable. If j = 0 the stable fixed point is at v1 = a1/k1 > 1, while
for j = k1 − a1 it is at v1 = 1 − a1/k1 < 0. Figure 5.2 summarises this dynamics.

5.4 Slow system

As in the previous chapter, we can analyse the system referring almost exclusively to the
slow limit obtained for ε = 0 in (5.11)

(5.13)

0 = −ϕ1(v1) − w1 + d1v2 + i1

ẇ1 = w∞(v1) − w1

v̇2 = λ(−ϕ2(v2) − w2 + u2)
ẇ2 = δ(g2v2 − ū2)

This system is constrained to the critical manifold

(5.14) φ(x) := ϕ1(v1) + w1 − d1v2 = i1

As usual, it corresponds to fixed points of the fast limit (5.12) studied in the previous section.
The critical manifold can be divided in branches according to the nature of the corresponding
fixed points. We will call S±

a the two branches of attractive fixed points, with S+
a being the

one verifying v1 > 1. Sr will stand for the repelling branch. These branches meet along the
switching hyperplanes v1 = 0 and v1 = 1. Points on these hyperplanes play the same role of
folds in smooth models.

We can now follow the same approach of the previous chapter. Deriving the constraint
leads to an equivalent form of (5.13)

(5.15)

∂ϕ1(v1)
∂v1

v̇1 = d1v̇2 − ẇ1

ẇ1 = w∞(v1) − w1

v̇2 = λ(−ϕ2(v2) − w2 + u2)
ẇ2 = δ(g2v2 − ū2)

In this case the derivative of ϕ1 is not defined along the switching hyperplanes v1 = 0 and
v1 = 1, making (5.15) a discontinuous system. Following the smooth case one could multiply
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the vector field by ∂ϕ1
∂v1

obtaining

(5.16)

v̇1 = d1v̇2 − ẇ1

ẇ1 = ∂ϕ1(v1)
∂v1

(w∞(v1) − w1)

v̇2 = ∂ϕ1(v1)
∂v1

λ(−ϕ2(v2) − w2 + u2)

ẇ2 = ∂ϕ1(v1)
∂v1

δ(g2v2 − ū2)

This changes the direction of trajectories on the repelling branch Sr but recovers existence
and uniqueness of solutions almost everywhere (assuming Filippov’s notion of solutions [24]).
This is easily seen considering that on both sides of a switching hyperplane, which is parallel
to v1 = 0, both vector fields point towards the same side (since v̇1 is now continuous), so
that the only possibility is crossing the hyperplane. The only exception are points at which

(5.17) v̇1 = d1v̇2 − ẇ1 = 0

At points verifying this condition the vector field is tangent to the critical manifold. As in
the smooth case these points are singular limits of canards [76]. They also appear at the
boundary between zones in which the vector field points in opposite directions with respect
to the switching hyperplane.

Excluding these points, reversing trajectories on Sr has the effect that only solutions in
forward or backward time are possible for initial conditions on the switching surfaces v1 = 0
and v1 = 1∗. Jump points are those for which only solutions in backward time are possible.
At them, singular trajectories leave the critical manifold and follow a fast fibre, arriving to
a point on the opposite branch, as shown in figure 5.2. Points at which only solutions in
forward time are possible correspond to points at which singular trajectories enter the slow
manifold. From the viewpoint of the slow dynamics they are less interesting, since trajectories
are repelled from them. The boundary between these two cases is formed by points that
verify (5.17).

In the following it will be convenient to use directly (5.15), keeping in mind how singular
solutions evolve once they reach a switching hyperplane. It is worth pointing out that (5.15)
does not correspond to a unique singular limit as (5.13); trajectories of (5.15) are confined to
level sets of

(5.18) φ(x) = ϕ1(v1) + w1 − d1v2

and only when the dynamics is restricted to φ(x) = i1 equivalence with (5.13) is obtained.

∗There is also the possibility of sliding motion but this does not seem to be relevant for the original
problem.
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One aspect of the dynamics that is easily seen from (5.15) is that if w∞(v1) is constant
on the stable branches S±

a then the set w1 = w∞ is attractive and invariant. This is the
case if v0 and k0 in (5.10) verify v0 ≥ 0 and k0(1 − v0) ≥ 1. Since these conditions are not
unrealistic and simplify the analysis they will be assumed in the following.

Fixing one of the branches of the critical manifold, any of the variable v1, w1 or v2 can be
chosen and eliminated through the constraint φ(x) = i1. As in the previous chapter, keeping
v1 as a variable allows the constraint to be solved globally. The easiest variable to eliminate
is w1. Doing so has the additional advantage that switching hyperplanes remain parallel to
the axes, since v1, v2 and w2 are used as coordinates. The resulting system is

(5.19)

∂ϕ1(v1)
∂v1

v̇1 = d1v̇2 − ẇ1

= −w∞(v1) + w1 + d1λ(−ϕ2(v2) − w2 + u2)
= −w∞(v1) − ϕ1(v1) + d1v2 + i1 + d1λ(−ϕ2(v2) − w2 + u2)

v̇2 = λ(−ϕ2(v2) − w2 + u2)
ẇ2 = δ(g2v2 − ū2)

In these coordinates w1 = d1v2 − ϕ1(v1) + i1, and since w1 = w∞ is invariant on the two
branches S±

a , this expression gives an invariant set of (5.19) in v1 ̸∈ (0, 1).
There is a further relation that can be imposed between parameters to simplify the

analysis. Comparing ϕ1(v1) = k1v1 − a1 Z(v1) with w∞(v1) = g1 Z(k0(v1 − v0)) one notices
that both Zfunctions are constant on stable branches. Choosing these constants equal, i.e.
a1 = g1, makes them cancel out, leading to the same systems on both branches. This reduces
the number of linear systems that need to be considered, making the overall dynamics more
symmetric.

It is useful to introduce few more functions to rewrite (5.19). In the case λ ≈ 1 these are
analogous to slow i-v curves as used in [79]

(5.20)
φ1(v1) = w∞(v1) + ϕ1(v1) − i1

φ2(v2, w2) = ϕ2(v2) + w2

Using these functions (5.19) can be rewritten in the compact form

(5.21)

∂ϕ1(v1)
∂v1

v̇1 = d1v2 − φ1(v1) + d1λ(u2 − φ2(v2))

v̇2 = λ(u2 − φ2(v2, w2))
ẇ2 = δ(g2v2 − ū2)



5.5 Parabolic bursting 73

Using the relations imposed on v0, k0, a1 and g1, this reduces on stable branches to

(5.22)
k1v̇1 = d1v2 − k1v1 + i1 + d1λ(u2 − φ2(v2, w2))
v̇2 = λ(u2 − φ2(v2, w2))
ẇ2 = δ(g2v2 − ū2)

For this system d1v2 − k1v1 = i1 is an invariant set. Indeed, defining ξ = v1 − d1
k1
v2 (which is

very close to being w1) we have that

(5.23) ξ̇ = i1
k1

− ξ

On stable branches the two systems (5.21) and (5.22) are equivalent, and singular
trajectories can be constructed looking at either. The only exceptions are those trajectories
that pass through canards points. Since in the current setting these are exceptional trajectories,
one can focus on (5.22) with appropriate reset conditions when the hyperplanes v1 = 0 and
v1 = 1 are reached.

5.5 Parabolic bursting

The simplest case to analyse corresponds to λ = δ. In this case the dynamics of v2 is slower
than that of w1 and on the same time-scale of that of w2, making the waveform of system
II in isolation nearly harmonic. The type of behaviour obtained is similar, in structure and
waveforms, to parabolic bursting as described in [83]. In this case (5.22) becomes

(5.24)
k1v̇1 = d1v2 − k1v1 + i1 + d1δ(u2 − φ2(v2, w2))
v̇2 = δ(u2 − φ2(v2, w2))
ẇ2 = δ(g2v2 − ū2)

which is again a slow-fast system. Since there is no need to refer explicitly to the fast system
analysed in section 5.3, in the following fast and slow systems will refer to the two singular
limits of (5.24). In the case λ = δ, both inputs to system II (u2 and ū2) can be analysed in a
similar way. Thus, we will consider the case that is more relevant for neuronal dynamics:
u2 = d2v1 and ū2 = vb.

5.5.1 Fast system

The fast system is obtained from (5.24) in the limit δ = 0. This leads to the one dimensional
system

(5.25) k1v̇1 = d1v2 + i1 − k1v1
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Figure 5.3 Dynamics of the fast system (5.25); the blue continuous line corresponds to
d1v2 = φ1(v1), the dashed continuation corresponds to pseudo fixed points in v2 > −i1/d1
(v̄1).

which has a fixed point at

(5.26) v̄1 = d1v2 + i1
k1

If this fixed point is on one of the two stable branches then it is attractive. This is not
possible if

(5.27) 0 < v̄1 < 1 ⇔ − i1
d1

< v2 <
k1 − i1
d1

In this case we call v̄1 a pseudo fixed point, since in part of the state space the dynamics
behaves as if it were there, but it is not a fixed point of the whole system. Indeed, when (5.27)
is verified the dynamics tends towards v̄1 until it reaches one of the switching hyperplanes,
at which point it jumps to the other branch. Repeating this process between the two stable
branches generates a (singular) limit cycle corresponding to continuous spiking, as shown in
figure 5.3. Assuming v2 > − i1

d1
and starting at v1 = 1 − a1

k1
< 0 the trajectory goes towards

v̄1 ∈ [0, 1]. Once it reaches v1 = 0 it jumps on the other branch at v1 = a1
k1
> 1, at which

point v1 starts decreasing (always going towards v̄1), until it arrives to v1 = 1. When this
happens the trajectory jumps on the initial branch at v1 = 1 − a1

k1
and the cycle repeats.

Thanks to the simplicity of the system, the period of one spike can be computed explicitly
(at least in the singular limit ε = 0). This corresponds to the sum of the times the trajectory
spends on each branch.

To compute it, we rewrite the fast system (5.25) using v̄1

(5.28) v̇1 = v̄1 − v1
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Its solution with initial condition vi is

(5.29) v1(t) = v̄1 + (vi − v̄1)e−t

and the time it takes to reach vf is

(5.30) T = log
(
vi − v̄1
vf − v̄1

)

This expression is valid if vi > vf > v̄1 or vi < vf < v̄1. This is the case for

(5.31)
v−

i = 1 − a1
k1

< 0 = v−
f (S−

a )

v+
i = a1

k1
> 1 = v+

f (S+
a )

These values correspond to the initial and final point of the periodic trajectory on each
branch. The time a trajectory spends on a branch is obtained substituting these values
in (5.30), leading to

(5.32)

T+ = log
(
k1v̄1 + a1 − k1

k1v̄1

)
= log

(
1 + a1 − k1

d1v2 + i1

)
T− = log

(
a1 − k1v̄1
k1(1 − v̄1)

)
= log

(
a1 − d1v2 − i1
k1 − d1v2 − i1

)
Ts = T+ + T−

The argument of the logarithm in (5.30) is easily seen to be monotonic in v̄1 since

(5.33) d

du

(
vi − u

vf − u

)
= vi − vf

(vf − u)2

In particular, T is monotonically increasing if vi > vf , while it is monotonically decreasing
if vf > vi. In both cases, it tends to infinity as v̄1 → vf (from the appropriate side). Since
v+

i > v+
f the time spent on T+ increases as v̄1 increases, while T− decreases as v̄1 increases.

The total time Ts is the sum of these two terms. When v̄1 is close to v−
f (v2 close to − i1

d1
) the

term T− dominates the sum, so that Ts is initially decreasing. Similarly, when v2 is close to
k1−i1

d1
the period tends to increase. The frequency 1/Ts for values of the parameters reported

in appendix 5.A is shown in figure 5.4.

5.5.2 Slow system

For each value of the slow variables v2 and w2 the fast system (5.25) has a unique steady
state, which can be a fixed point or a limit cycle. Thus, we can define a slow system, at least
formally, considering the average effect of the fast variable v1 on the slow variables v2 and
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Figure 5.4 Spiking frequency as a function of v2.

w2 when v1 is at steady state. In the case of fixed points this corresponds to setting v1 at
the value it takes at the fixed point. In correspondence of limit cycles, instead, we take the
average of the dynamics of the slow variables over the limit cycle. In the latter case, since v1

enters linearly in the equations for the slow variables, it is enough to compute the average of
the trajectory over one cycle and substitute it in the equations.

Referring to (5.28), the integral of the trajectory between two points can be computed as

(5.34)

∫ T

0
v1(t) dt =

∫ vf

vi

v

v̄1 − v
dv

=
∫ vf

vi

v̄1
v̄1 − v

− 1 dv

= v̄1 log
(
vi − v̄1
vf − v̄1

)
+ vi − vf

= v̄1T + (vi − vf )

where the last passage uses the expression for T in (5.30). Since v+
i − v+

f = v−
f − v−

i , the
average over a cycle simplifies to

(5.35) 1
Ts

∫ Ts

0
v1(t) dt = 1

T+ + T− (v̄1T
+ + v+

i − v+
f + v̄1T

− + v−
i − v−

f ) = v̄1

Thus, in this case, the average of v1 corresponds to the pseudo fixed point v̄1.
In conclusion, the slow system is obtained substituting v̄1 for v1 in the equations for the

slow variables. The resulting system has the same structure of system II in isolation, with
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Figure 5.5 Slow wave in the averaged system. Left v2, right v̄1. Approximations of trajectories
of the full system can be obtained substituting spikes when 0 < v̄1 < 1.

only the coefficient of v2 different

(5.36)

v̇2 = d2v̄1 − φ2(v2, w2)

= d2
i1
k1

+ d1d2
k1

v2 − φ2(v2, w2)

= (d1d2
k1

− k2)v2 + a2 Z(v2) − w2 + d2
i1
k1

ẇ2 = g2v2 − vb

Thus, it is possible to use our understanding of a van der Pol oscillator to analyse it. In
particular, oscillations are possible only if a2 > k2 − d1d2

k1 , while if this quantity is negative
the slow system (5.36) relaxes to a fixed point. A periodic motion obtained in the former
case is shown in figure 5.5.

An approximation of the trajectories of the full system is obtained substituting spikes
whenever v2 is such that the corresponding attractor is a limit cycle. A simple graphical
way to do this is to consider the trajectory of v̄1 and substitute spikes whenever 0 < v̄1 < 1.
The result is an approximation of the trajectory of v1. Although a rigorous justification of
this procedure is beyond the scope of this work, results on averaging in singularly perturbed
systems [75, 103] and numerical results suggest that this approach is effective. Thanks
to this approximation it is also possible to understand how the frequency varies during a
burst. Indeed, the burst starts and terminates when v̄1 passes by the boundary value v̄1 = 0.
Comparing figures 5.4 and 5.5 we see that the frequency of spiking increases and decreases
with v2, leading to the frequency variation typical of parabolic bursting, as shown in figure 5.6.

The construction above gives a natural way to understand the influence of different
parameters on the behaviour of the system. The parameter i1 is particularly interesting
because it tends to have a very definite effect. Comparing how it enters in (5.26), (5.27)
and (5.36) one notices that its effect on the slow dynamics is only a translation of w2. At
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Figure 5.6 Bursting in (5.9) for λ = δ; the two traces corresponds to different values of i1,
increasing it increases the duty cycle without altering other characteristics of the waveform.

the same time it controls the boundary value of v2 at which the fast system starts spiking,
equivalently, it translates v̄1 as a function of v2. Thus, it can be used to control the duty
cycle of the burst without altering other aspects of the waveform, as shown in figure 5.6. This
simplicity comes at the price of a partial lost of similarity to neuronal systems. Indeed, a
system similar to the FitzHugh-Nagumo model would be a more realistic choice for system II
with a similar level of complexity. This would lead to a different slow system (5.36), with the
dynamics of w2 depending on w2 itself. If this were the case, increasing i1 would eventually
lead to a fixed point in the slow system that could correspond to continuous spiking.

The role of other parameters can be understood in similar ways, although not all of them
have such a definite effect. However, most parameters enter in only one of the two singular
limits (5.25) and (5.36), making it easier to understand their influence. For instance, referring
to (5.36), it is easily seen that a2 can control if the slow system oscillates or relaxes to a
stable fixed points, which, in turn, controls if the interconnection spikes or bursts.

5.6 Square-wave bursting

In this section we consider how system (5.11) can generate square-wave bursting. This pattern
is obtained using δ ≪ λ ≈ 1, which corresponds to the dynamics of v2 being similar, in terms
of time-scales, to the one of w1. In this case the dynamics of w2 is slower than that of v2,
making system II a relaxation oscillator.

The dynamics on stable branches of the critical manifolds is given by

(5.37)
k1v̇1 = d1v2 − k1v1 + i1 + d1(u2 − φ2(v2, w2))
v̇2 = u2 − φ2(v2, w2)
ẇ2 = δ(g2v2 − ū2)
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In this configuration there is a clear advantage in using u2 = 0 and ū2 = d2v1 + vb. This leads
to the fast limit being a cascade interconnection, with system II driving system I (in this
section fast and slow systems refer to the two singular limits of (5.37)). This simplification
comes at the price of a possible loss of similarity with neuronal models. However, the case of
diffusive coupling leads to qualitatively similar dynamics, although it does not allow a similar
analytic treatment.

5.6.1 Fast system as a cascade

In the simpler case u2 = 0 the equations reduce to

(5.38)
k1v̇1 = d1v2 − k1v1 + i1 + d1(u2 − φ2(v2, w2))
v̇2 = −φ2(v2, w2)
ẇ2 = δ(g2v2 − d2v1 − vb)

As in the previous section we analyse in sequence the two singular limits.

Fast sytsem

The fast limit of (5.38) is

(5.39)
k1v̇1 = d1v2 − k1v1 + i1 − d1φ2(v2, w2)
v̇2 = −φ2(v2, w2) = −ϕ2(v2) − w2

The dynamics of v2 is one dimensional. Its behaviour is the usual one found in the fast
limit of excitable systems, for example the one studied in section 5.3. If a2 in (5.10) is large
enough ϕ2 is N-shaped. In this case, depending on w2, the system can have one, two or three
fixed points.

Fixing v2 at a steady-state value v̄2, the equation for v1 becomes

(5.40) k1v̇1 = d1v̄2 − k1v1 + i1

This is the same as (5.25) studied in section 5.5.1. As in that case, v̄1 = (d1v̄2 + i1)/k1 defines
a fixed point. This cannot be reached if it lies on the unstable branch Sr

(5.41) 0 < v̄1 < 1 ⇔ − i1
d1

< v̄2 <
k1 − i1
d1

in which case the corresponding steady state is a limit cycle.
The complete two-dimensional dynamics is obtained combining these two and can be

represented on the v1-v2 plane as in figure 5.7. When the dynamics of v2 is monostable it
converges to a fixed value. In this case v1 converges to the corresponding attractor, leading
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Figure 5.7 Bistability in the fast system on S±
a induced by driving system I with the fast

part of system II. The blue continuous line is d2v1 = φ1(v1), the blue dashed line is the
invariant line d1v2 − k1v1 = i1 (the two lines coincide on S−

a ). Orange points correspond to
(pseudo) fixed points; red trajectories correspond to unstable fixed points of system II and
form separatrices in state space.

to a unique steady state for the fast system (5.39). When the dynamics of v2 is bistable
the three fixed points correspond to three steady states. The unstable fixed point leads to
a separatrix in state space. The other two fixed points generate two attractors of the fast
system (5.39).

Figure 5.7 shows the different possible combinations of limit cycles and fixed points for
steady states of (5.39). They can all be obtained varying i1 and w2. The effect of these two
parameters is easily understood referring to figure 5.7. The equation

(5.42) w2 = −ϕ2(v̄2)
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shows that w2 determines the values v̄2; these correspond to the horizontal lines on which
(pseudo) fixed points lie. The applied current i1 translates the line

(5.43) d1v2 − k1v1 = i1

The intersection of this line with v2 = v̄2 determines the value of v̄1. Finally, the position of
these fixed points determines the type of attractor.

The relation between v̄1 and these two parameters can also be obtained directly composing
steady states:

(5.44) w2 = −ϕ2(v̄2) = −ϕ2

(
k1v̄1 − i1

d1

)
Assuming ϕ2 N-shaped, then once again we see that the value of w2 determines the number
of fixed points of v2, v̄2, which in turn determine the values v̄1 that verify (5.44). Given
this structure, boundaries of bistability can be computed looking only at the dynamics of v2.
They correspond to parameter values at which v2 has a half-stable fixed point on v2 = 0 or
v2 = 1.

For periodic solutions it is possible to compute the frequency of spiking. This computation
follows the same lines of what done in the previous section, with a relation to v̄2 similar to the
one in figure 5.4. A useful observation in the present setting is that along stable branches of
steady states the relation between v̄2 and w2 is monotonically decreasing. Thus, the relation
between spiking frequency and the only slow variable w2 is inverted compared to the one
between frequency and v̄2. In particular, if the family of stable periodic solutions arrives to
v̄2 = −i1/d1, near this value increasing w2 decreases the spiking frequency.

Slow system

Contrary to the case of section 5.5, it is not possible to define a global slow system in this
case because of the presence of mulitstability. However, restricting our attention to only
one branch of solutions, it is possible to understand the effect of the slow dynamics. This
follows the same reasoning of the previous section: We consider the average effect of the fast
variables v1 and v2 on the dynamics of the only slow variable w2.
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On a family of fixed points this amounts to assume that all fast variables are at their
steady-state value, leading to the constrained system

(5.45)

w2 = −ϕ2

(
k1v̄1 − i1

d1

)
ẇ2 = g2v̄2 − d2v̄1 − vb

= g2
k1v̄1 − i1

d1
− d2v̄1 − vb

= g2k1 − d1d2
d1

v̄1 − (vb + g2
i1
d1

)

= g2k1 − d1d2
d1

(v̄1 − d1vb + g2i1
g2k1 − d1d2

)

This is a one-dimensional system whose behaviour is determined by the value of d1vb+g2i1
g2k1−d1d2

. If
this quantity is chosen so that ẇ2 is never zero along the whole branch of fixed points, then
the slow dynamics will just drift in a monotonic fashion.

Along a family of limit cycles we proceed as in the previous section, averaging fast
variables. The same reasoning of section 5.5 leads to the conclusion that also along family
of periodic solutions the slow drift can be quantified using (5.45). As already remarked
attempting a rigorous justification of this averaging procedure is beyond the scope of this
work, although other results [75, 103] and numerical simulations support its validity.

Comparing (5.45) with (5.37) reveals that this is the same slow system one would obtain
from (5.37) ignoring reset conditions. As in the previous case this is a consequence of the
specific structure of the system and choice of parameters, as well as the symmetry of the
dynamics on the two stable branches. Thanks to these simplifications the slow drift along a
family of solution can be easily quantified.

Combining slow dynamics and the characterisation of steady states (5.44) it is possible to
understand the dynamics (5.38). In particular, if ϕ2 is N-shaped the fast system (5.39) has
two stable branches of steady states. Correspondingly, the slow dynamics (5.45) resembles
the one of a relaxation oscillator, and if appropriate parameters are chosen it can lead to
bursting.

The most relevant case is the one summarised in figure 5.8, in which the line v̄1 = 0
intersects the the unstable branch of the fast-system steady states, corresponding to the
line (5.44). In this case one family of attractors is composed of fixed points, while the other
corresponds to limit cycles.

We want to choose vb so that the only fixed point of the slow system (5.45) is on the
unstable branch of steady states. From (5.44), the unstable branch of steady state corresponds
to the condition

(5.46) 0 < k1v̄1 − i1
d1

< 1 ⇔ i1
k1

< v̄1 <
d1 + i1
k1
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The only fixed point of the slow system is given by (5.45)

(5.47) v̄1 = d1vb + g2i1
g2k1 − d1d2

Using these two conditions allows us to choose vb as desired.
Assuming further that∗

(5.48) g2k1 − d1d2 > 0

we see that the slow dynamics (5.45) is such that w2 decreases along the family of stable
fixed points (v̄1 < d1vb+g2i1

g2k1−d1d2
) while it increases along the family of stable limit cycles

(v̄1 >
d1vb+g2i1
g2k1−d1d2

). Referring to figure 5.8 this shows that on each family the slow dynamics
drifts towards the end of the branch.

The last points that would require further attention are the transition at the end of
these two branches. Avoiding a detailed study of these transitions, it is intuitively clear
what happens: Trajectories near these points behave like the analogous case in a standard
relaxation oscillator, they are dominated by the fast dynamics (5.39) and quickly reach the
other branch of attractors.

To summarise, a trajectory of (5.38) is quickly attracted by one of the two branches of
stable steady states; it follow it until the end, at which point the trajectory jumps towards
the opposite branch. Repeating this process generates a periodic motion corresponding to
bursting.

i1
k1

0 d1+i1
k1v̄1

w2

0 75

1 − a1
k1

0

a1
k1

t

v1

Figure 5.8 Bursting in (5.9) for λ = 1. Left: steady-state characteristic (5.44), points in
v̄1 < 0 correspond fixed points, those in v̄1 > 0 correspond limit cycles; the three zones of
linearity correspond to different stability properties with points on lines of negative slope
being stable attractors. Right: time course of v1.

∗This condition is automatic if we consider the original interconnection (5.6).
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Along the branch of limit cycles the dynamics of w2 is monotonically increasing, leading
to a decrease in spiking frequency during the burst, the same pattern observed in square
wave bursting. Indeed, the dynamics just described is not too different from the description
of square wave bursting in other models, for example [30]. An example waveform is shown in
figure 5.8.

5.6.2 Diffusive coupling

Using u2 rather than ū2 as input to system II is equivalent to diffusive coupling between the
two systems as in multi-compartment neuronal models. Using it the dynamics (5.37) becomes

(5.49)

∂ϕ1(v1)
∂v1

v̇1 = d1v2 − φ1(v1) + d1(d2v1 − φ2(v2, w2))

v̇2 = d2v1 − φ2(v2, w2)
ẇ2 = δ(g2v2 − vb)

On stable branches it reduces to

(5.50)
k1v̇1 = d1v2 − k1v1 + i1 + d1(d2v1 − φ2(v2, w2))
v̇2 = d2v1 − φ2(v2, w2)
ẇ2 = δ(g2v2 − vb)

Letting δ go to zero in this system yields the fast limit

(5.51)
k1v̇1 = d1v2 − k1v1 + i1 + d1(d2v1 − φ2(v2, w2))
v̇2 = d2v1 − φ2(v2, w2)

Which can be studied with ideas similar to the ones of the previous section and the previous
chapter, which rest on isolating invariant zones on the v1-v2 plane.

Fixed points of (5.51) can be studied graphically, as shown in figure 5.9, since they
correspond to intersections of the two lines

(5.52)
d1v2 = φ1(v1)
d2v1 = φ2(v2, w2)

On the stable branches S±
a the first equation reduces to the equation for the invariant line

k1v1 − d1v2 = i1.
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1− a1
k1

0 1 a1
k1

0

1

v1

v2

Figure 5.9 Fixed points of the fast system (5.51) as intersection of the steady-state curves (5.52).
The blue curve, d1v2 = φ1(v1), is translated (vertically) by i1, while the orange curve,
d2v1 = φ2(v2, w2), is translated (horizontally) by w2; the dashed blue line is the continuation
of the invariant line k1v1 − d1v2 = i1, its intersection with d2v1 = φ2(v2, w2) determines
pseudo fixed points of the linear systems on stable branches.

Stability properties of the fixed points are best understood using ξ = v1 − d1
k1
v2 in place

of v1, since the corresponding system is triangular

(5.53)
k1ξ̇ = i1 − k1ξ

v̇2 = d2ξ + d1d2
k1

v2 − ϕ2(v2) − w2

Its eigenvalues can be easily computed. One of them is always -1, reflecting the presence of
the attractive invariant line ξ = i1/k1. The other one is d1d2−κk1

k1
where κ is the coefficient of

v2 in ϕ2, which depends on v2 itself since the function is piecewise-linear. Considering that
d2 > 0 we have for the sign of the second eigenvalue

(5.54) d1d2 − κk1
k1

⋛ 0 ⇔ d1
k1

⋛
κ

d2

This corresponds to a condition on the slope of the two lines k1v1 −d1v2 = i1 and φ2(v2, w2) =
d2v1 at the point they intersect. For example, in figure 5.9, of the two fixed points on S−

a the
one in v2 < 0 is stable while the other is unstable.

Having understood the structure of (pseudo) fixed points, the next step is to understand
the structure of steady states, which can include limit cycles. A natural approach is to follow
the same path of the previous section and the previous chapter, and determine a separatrix
that divides two invariant zones. Attempting this leads to transcendental equations that
do not seem to admit an easy analytic treatment. However, numerical experiments reveal a
structure similar to the one of the previous case and the one treated in the previous chapter.
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For a range of values of w2 the fast system (5.51) is bistable and different combinations
of fixed points and limit cycles are possible. This bistability corresponds to an N-shaped
steady-state characteristic with respect to the slow variable w2, as in figure 5.8. Once this is
established the analysis continues as before, leading to bursting as a relaxation oscillation
between a branch of fixed points and a branch of limit cycles.

5.7 Tonic spiking

Finally, a short comment on how tonic spiking can be generated in the coupled system (5.11).
Based on the analysis of the previous sections, it can be obtained if the slow dynamics evolves
towards a spiking limit cycle. In the same spirit of [30, 79], this can be achieved varying the
coefficient associated with the source of slow positive feedback: a2. In terms of the dynamics
of system II this corresponds to reducing the action of the active component in a van der Pol
oscillator, leading to a system with a unique fixed point.

In the case λ = δ this corresponds to an averaged system (5.36) which has only one
family of stable fixed points. Choosing vb so that the slow dynamics has a fixed point with
v̄1 between 0 and 1 achieves the desired effect. The frequency of the corresponding attractor
can be approximated using the computation of the period in section 5.5.

In the case λ = 1 changing a2 leads to a monotonic ϕ2 and consequently to a fast system
on S±

a that is not bistable. In this case it is possible to identify a unique stable steady state
for each value of w2, obtaining a global averaged system. Setting up this system so that it
tends to a fixed point that corresponds to spiking achieves the desired behaviour.

5.8 Conclusion

The purpose of this chapter was to show how the interconnection of two systems, with different
time-scales but similar structures, permits the generation of different types of bursting whose
properties can be modulated. We think of this interconnection as the analogue of the one
studied in chapter 3 in the context of resonant systems. In that sense this chapter is the
counterpart of that one in the context of excitable systems. Here we aimed to study how the
simplest excitable systems can be interconnected to obtain bursting, and how parameters in
each of them influence the dynamics of the interconnection.

In both chapters we used techniques which are typical of the corresponding field, at times
enriching them with external influences. Results of this chapter in particualar highlight
possibilities for further progress in this context. Our use of averaging was mostly empirical,
its effectiveness calls for a more thorough analysis of this procedure. A critical point we have
ignored is that the families of limit cycles we considered do not necessarily have bounded
period, but can terminate in a homoclinic trajectory. Another question related to this
procedure is the computation of the number of spikes in a burst. The fact that we could
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understand duty cycle of the burst and frequency variation of the spikes suggests that also
the number of spikes in a burst could be approximated with similar methods.

In terms of neuronal dynamics, a key message of this chapter is that both parabolic
and square-wave bursting, two patterns usually studied in isolation, can be generated by a
common structure. These results naturally complements the ones of the previous chapter
about the possibility of obtaining multiple types of rest-spike bistable bifurcation diagrams
and the works on the transition between bursting and tonic spiking mentioned in the last
section. Taken together we think of all these efforts as a way to build a unified view of
neuronal activity, in which different patterns are generated modulating a unique structure.
This is a natural starting point to study neuromodulation in single neurons and a step towards
understanding how modulation affects networks.





Appendix

5.A Parameter values

Throughout the chapter all figures were obtained using the following parameters

(5.55)
k1 = 1 a1 = 1.5 d1 = .3
g1 = 1.5 k0 = 2 v0 = .5

k2 = .75 a2 = 1 d2 = .3 g2 = 1

In all simulations ϵ = 1e− 2, in section 5.5 δ = λ = 1e− 1 while in section 5.6 δ = 5e− 2
(λ = 1). The change in δ was used to keep the period of bursting similar in the two sections.
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Chapter 6

Conclusions

The purpose of this thesis was to study two basic interconnections that arise in the analysis
and design of physical systems characterised by resonant or excitable behaviour. The
Duffing oscillator is the canonical model of nonlinear resonance. The interconnection of
two of these oscillators was studied in chapter 3, in the context of vibration absorption.
The archetype mathematical model of excitability is the FitzHugh-Nagumo model, also
known as the Bonhoeffer-van der Pol model. Chapter 5 studied how to generate bursting
interconnecting two such models. We see those two interconnections as the starting point
of any interconnection theory of oscillatory systems and more generally non-equilibrium
systems.

In chapter 3, the main focus was the analysis of detached resonance curves: families
of solutions isolated from a main one. In contrast to earlier numerically-based parametric
studies, the use of singularity theory identifies an organising centre for the appearance of
these solutions. Their algebraic characterisation in terms of isolas, simple bifurcations and
asymmetric cusps can be further studied quantitatively using numerical techniques. Thanks
to this it was possible to characterise the appearance of this adverse dynamics with respect
to all design parameters, a first step towards an improved design of the absorber.

A natural continuation of this work consists in using the characterisations of singularity
theory to obtain constructive principles that can be exploited during design. A development
in this direction is presented in the follow-up work [36], not included in this dissertation.
This work studied the appearance of detached resonance curves in one-degree-of-freedom
systems using their characterisation through singularity theory. After the analytical study
of these solutions, it is noted how they can be related directly to the damping element:
They correspond to amplitudes that are maxima, minima and zero crossings of an averaged
version of the damping. While that observation was made a posteriori in that study, it can
also be derived combining averaging and singularity theory, as shown in appendix 6.A. This
gives a first illustration of how further efforts starting from singularity theory can lead to
constructive principles for the design of nonlinear resonances.
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Chapters 4 and 5 studied how to generate bursting from the interconnection of two
subsystems. The first step was studying rest-spike bistability in chapter 4, augmenting
the classical motif of excitability with a source of slow positive feedback. The analysis of
the resulting model was largely reduced to phase-plane analysis, allowing the study of this
bistability from a geometric viewpoint. Building upon this study, chapter 5 analysed the
interconnection of two piecewise-linear systems, one fast and excitable, the other slower
and similar to a van der Pol oscillator. This interconnection naturally generates bursting.
The primary objective of the chapter was to show how different patterns of activity, usually
studied in isolation, can all be generated by the same interconnection.

In building these systems our main drive came from ideas connected to positive and
negative feedback in different time-scales. A natural challenge is to leverage these concepts
to arrive to quantitative methods that would allow us to deal with more realistic models of
neuronal activity, often characterised by a large number of ion channels. While some attempts
in this direction have been made [18], we still lack a methodology to study quantitatively how
different patterns of activity are influenced by the different currents present in large models.

An important topic that emerges from this thesis is the interconnection of excitable and
resonant systems. This is a context in which ideas from the different chapters of this thesis
could be combined. To develop this topic, it is natural to start from applications that can
furnish concrete examples and at the same time would benefit from a deeper understanding
of this mixed interconnection.

Neuro-motor control and robotics are natural application areas, especially in the context
of locomotion. The interaction of mechanical elements with the neuronal circuits that control
them is of interest in biology and an inspiration in robotics. This interaction naturally calls
for an interconnection theory between resonance and excitability. Such a theory would also
furnish an architecture to implement control algorithms based on impulses and resonance,
two concepts often used when design legged robots.

The auditory systems is another source of applications to study interconnections of the
two classes of systems considered in this thesis. The interplay between mechanical and
electrical phenomena observed in the cochlea [77, Ch.13] makes it a perfect ground to study
the interaction between frequency responses and excitable behaviours.

Overall, resonance and excitability account for a variety of oscillatory phenomena en-
countered in engineering applications. Our hope is that this thesis will contribute to asses
the value of an interconnection approach to both analysis and design of these applications,
opening the way to a systems and control theory of non-equilibrium dynamics.



Appendix

6.A Detached resonance curves
in one-degree-of-freedom systems

This appendix shows how the relation between damping and DRCs noticed in [36] can be
formally derived using averaging and singularity theory. The result does not improve on
the developments of [36] but it illustrates how singularity theory can lead to constructive
principles.

We consider a weakly-nonlinear one-degree-of-freedom system (in Hamiltonian form)

q̇ = ∂H

∂p

ṗ = −∂H

∂q
− ε (F (q, p)p− 2f cos(ϕ))

ϕ̇ = 1 + εβ

(6.1)

where H = 1
2(q2 + p2) + εH1(q) is the energy. Passing to action-angle coordinates

(6.2)

I = 1
2(q2 + p2), θ = atan

(
p

q

)
q =

√
2I cos(θ), p =

√
2I sin(θ)

ψ = θ + ϕ

R(I, θ) = F
(√

2I cos(θ),
√

2I sin(θ)
)√

2I sin(θ)

and averaging the resulting equations [85] leads to

İ = −ε
√

2I(G1(I) − f sin(ψ))

ψ̇ = ε

(
β − ∂H̄1

∂I
− 1√

2I
(G2(I) − f cos(ψ))

)
ϕ̇ = 1 + εβ

(6.3)

Each term in (6.3) is an average:
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i) Conservative terms

(6.4) 1
2π

∫ 2π

0

∂H1
∂I

(I, ψ − ϕ) dϕ = 1
2π

∂

∂I

∫ 2π

0
H1d θ = ∂H̄1

∂I

where H̄1 is the average of H1 with respect to θ.

ii) Dissipative terms

1
2π

∫ 2π

0
sin(ψ − ϕ)R(I, ψ − ϕ) dϕ = 1

2π

∫ 2π

0
sin(θ)R(I, θ) dθ =: G1(I)

1
2π

∫ 2π

0
cos(ψ − ϕ)R(I, ψ − ϕ) dϕ = 1

2π

∫ 2π

0
cos(θ)R(I, θ) dθ =: G2(I)

(6.5)

iii) Forcing terms

1
2π

∫ 2π

0
2f cos(ϕ) sin(ψ − ϕ) dϕ = f sin(ψ)

1
2π

∫ 2π

0
2f cos(ϕ) cos(ψ − ϕ) dϕ = f cos(ψ)

(6.6)

Periodic solutions correspond to fixed points of (6.3)

G1(I) = f sin(ψ)

G2(I) +
√

2I
(
∂H̄1
∂I

− β

)
= f cos(ψ)

(6.7)

Squaring and summing we remove dependence from ψ and obtain

(6.8) g(I, β, f) = G1(I)2 +
(
G2(I) +

√
2I
(
∂H̄1
∂I

− β

))2

− f2 = 0

Imposing the conditions for isola/simple bifurcation we get

∂g

∂β
= −2

(
G2(I) +

√
2I
(
∂H̄1
∂I

− β

))√
2I = 0

∂g

∂I
= 2G1(I)dG1(I)

dI
+ 2

(
G2(I) +

√
2I
(
∂H̄1
∂I

− β

))
(...) = 0

(6.9)

The term (...) has been omitted as it does not influence the result: Solving the first equation
gives

(6.10) β = ∂H̄1
∂I

+ G2(I)√
2I
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and leaves for the second one

(6.11) G1(I)dG1(I)
dI

= 0

This equation contains part of the geometrical interpretation obtained through energy balance
in [36], indeed G1(I) corresponds to the averaged damping in that work and we have that
isolas and simple bifurcations correspond to zeros and stationary points of G1(I).

To differentiate between isola and simple bifurcation we need to compute the determinant
of the Hessian matrix obtained from (6.8). The computation in the general case can be
carried out with a computer algebra system (in this case Sympy [69]). Despite the length
of the full expressions, the determinant of the Hessian evaluated at β = ∂H̄

∂I + G2(I)√
2I

has a
surprisingly simple expression:

(6.12) det(d2g) = 8I
((

dG1(I)
dI

)2
+G1(I)d

2G1(I)
dI2

)

Recall that if det(d2g) > 0 the singularity is an isola, while det(d2g) < 0 corresponds to
simple bifurcations. Since I > 0, assuming det(d2g) ̸= 0 (singularity is not more degenerate
than isola or simple bifurcation) we obtain the following:

• If the singularity is due to zero crossing (G1 = 0) then det(d2g) > 0 and we always
have isolas.

• If the singularity is due to a stationary point (dG1/dI = 0) and the averaged damping
is positive then a maximum (d2G1/dI2 < 0) corresponds to a simple bifurcation and
minimum (d2G1/dI2 > 0) to an isola.

• If the singularity is due to a stationary point (dG1/dI = 0) and the averaged damping
is negative the situation is the opposite than the previous point.

This characterisation slightly generalises the geometrical interpretation of DRCs presented
in [36]. It also illustrates how starting from the descriptive characterisation of a phenomenon
through singularity theory it is possible to arrive to constructive principles for the generation
of that phenomenon.
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