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Abstract

We study theoretically a driven dissipative one-dimensional XXZ spin−1/2 chain with dipole

coupling and a tunable strength of the Ising and XY interaction. Within a mean-�eld

approximation, we �nd a rich phase diagram with uniform, spin density wave,

antiferromagnetic and oscillatory phases, as well as regions of phase bistability. We study the

phase diagram of small quantum systems using exact diagonalisation, and compare the results

to the mean-�eld theory. We �nd that while expectation values only capture the uniform

phases of the mean-�eld theory, �uctuations about these expectation values give signatures of

spatially non-uniform phases and bistabilities. We �nd these signatures for all ratios of the

Ising to XY interaction, showing that they appear to be general features of spin−1/2 systems.

Keywords: open quantum systems, phase diagrams, dipole interactions, cold atoms, cold

polar molecules, optical bistability

(Some �gures may appear in colour only in the online journal)

1. Introduction

The study of quantum systems driven far from equilibrium

has attracted much interest over the last few years. Although

not as well understood as their equilibrium counterparts,

non-equilibrium phenomena are in fact rather prevalent, as

any experiment has some form of interaction with an envi-

ronment, which will induce dissipative processes. Whereas

these processes could be viewed as a nuisance, recent stud-

ies have shown that the interplay between an external drive

and dissipation can produce exotic non-equilibrium phases

such as spin density waves (SDW), antiferromagnetic phases

(AFM), persistent long-time oscillations (OSC) and phase

bistabilities within spin−1/2 systems [1–6] and higher spin

systems [7]. Therefore, understanding the long-time steady

state phases that can occur in open quantum systems is an

intense area of current research.

3 Author to whom any correspondence should be addressed.

Original content from this work may be used under the terms

of the Creative Commons Attribution 4.0 licence. Any further

distribution of this work must maintain attribution to the author(s) and the title

of the work, journal citation and DOI.

In order to capture the steady state phases in a macro-

scopically large system, it is common to employ a mean-

�eld approximation, where spatial correlations between sites

are ignored. While the use of the mean-�eld approxima-

tion is well understood in equilibrium phenomena, an open

question that still remains is the validity of the mean-�eld

approximation for dissipative systems. For thermal gases in

three-dimensions, one expects the mean-�eld approximation

to become valid as quantum �uctuations become negligible

[8, 9]. However, for cold systems and/or systems in reduced

dimensions, where quantum �uctuations are more important,

this is not necessarily the case. There have already been many

studies into the true phases and transitions for the driven dissi-

pative spin systems. These have involved exact diagonalisation

and quantumMonte Carlo wavefunction approaches for small

system sizes [10–13], or incorporating the use of Keldysh

methods [14], cluster mean-�eld [15–18], Gutzwiller Monte

Carlo approaches [19], corner-space renormalisation [20] or

variational approaches [21] and matrix product and tensor

network methods [22–27] to study larger systems. These stud-

ies have shown that �rst order transitions in the mean-�eld
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approximation can become second order when quantum �uc-

tuations are included, and that bistabilities can be lost. They

have also shown that the emergence of certain phases, such as

AFM or long-time oscillations may not occur in low dimen-

sional spin–1/2 systems.

Despite the disagreements between mean-�eld and exact

numerics of quantum systems, the mean-�eld approximation

can still serve as an indicator of features that emerge in the full

quantum system. For example, it has been shown that regions

of mean-�eld bistability for the Ising model correspond to long

spatial correlations in the full quantummodel [28]. Also, while

bistability has not been observed in �nite-sized quantum spin

systems, the bistable nature of the mean-�eld solutions is evi-

dent in quantum trajectories of the system [4, 10, 12, 13] and

also results in a decrease in the spectral gap of the Liouvillian

[4]. Therefore, it is interesting to ask how general these fea-

tures are when comparing quantum results to those within the

mean-�eld approximation, and if there are other consequences

of the mean-�eld results for the full quantum dynamics.

In this paper,we study a driven-dissipativeXXZmodelwith

a tunable dipole-coupled XY and Ising interaction as a func-

tion of detuning and external drive strength. The tunable XY

and Ising interaction connects the Ising model in reference [3]

and the XYmodel in reference [4]. By calculating the nonequi-

librium phase diagram at mean-�eld level, we �nd how the

phases evolve as we move away from these two limits, �nding

the emergence of SDW, antiferromagnetism, temporal oscilla-

tions and bistabilities.We then analyse small quantum systems

and carry out an in-depth comparison to our mean-�eld phase

diagram. We �nd features in observables of the full quan-

tum model which relate to mean-�eld bistabilities and spatial

phases. The tunable Ising to XY interaction allows us to track

these signatureswith changes in the interaction, and shows that

the quantum results are general features of spin models, and

that the mean-�eld approximation still gives useful results in

describing the full quantum dynamics.

The rest of this paper is organised as follows. In section 2,

we describe the model, then in section 3, we derive the mean-

�eld phase diagram. In section 4 we look at the full quantum

model and then discuss the results and draw conclusions in

section 5.

2. Model

The system consists of a large number, N, of atoms or polar

molecules in a one-dimensional (1D) array. Two internal

dipolar energy levels, |g〉 and |e〉, are isolated and the transition
between them driven by an external drive detuned from reso-

nance. The system can then bemodelled as a spin−1/2 system,

interacting via dipole–dipole interactions with a Rabi drive

and detuning. The two-level transition also has a �nite lifetime,

comparable to the time scales of interaction, which results

in decay from the excited state. Under the Born and Markov

approximations, the dynamics of the system are described by

the following master equation (~ = 1)

dρ̂(t)

dt
= −i

[

Ĥ, ρ̂(t)
]

+
Γ

2

N
∑

i

[

2σ̂−
i ρ̂(t)σ̂

+

i −
{

σ̂+

i σ̂
−
i , ρ̂(t)

}]

,

(1)

Figure 1. A schematic of a 1D array of atoms or polar molecules
under an external drive. The electric �eld, shown by the green arrow,
is oriented at an angle Θ to the z axis and controls the orientation of
the dipoles. The lattice spacing is denoted by a.

where the spin operators are de�ned as σ̂zi = |ei〉〈ei| − |gi〉〈gi|,
σ̂−
i = |gi〉〈ei| and σ̂+

i = |ei〉〈gi|, with |ei〉 and |gi〉 being the

excited and ground states of the two-level system, respectively,

on site i. The decay constant, Γ, is controlled by optical pump-

ing [2], where the two level system is off-resonantly dressed by

a third energy level. The effective decay constant of the two-

level transition is then a combination of the decay rate of the

original two-level system and the decay rate of the third energy

level. This allows us to tune the decay independently from the

interaction between the two-level systems. The Hamiltonian is

given by

Ĥ =
Ω

2

N
∑

i

σ̂xi −
∆

2

N
∑

i

σ̂zi +

N
∑

i 6= j

J

4R3
i j

×
[

cos ασ̂zi σ̂
z
j + sin α

(

σ̂yi σ̂
y
j + σ̂xi σ̂

x
j

)]

, (2)

whereRij = |ri − rj|, with ri being the position vector of a two-
level system at site i, and σ̂xi = |ei〉〈gi|+ |gi〉〈ei| and σ̂yi =
i|gi〉〈ei| − i|ei〉〈gi|. The detuning is given by ∆ = ωd − ωeg,
with ωd being the drive frequency and ωeg the two-level tran-

sition frequency, and the drive strength is given by the Rabi

coupling Ω. We note that the power law coupling is moti-

vated by experiment but is not crucial for the results presented

here, i.e. a nearest-neighbour coupling would also work. The

dipole–dipole interaction is given by J = J0a3(1− 3 sin2Θ)

where a is the lattice spacing (see �gure 1) and the parameter

J0 is given by J0 = |d|2/4πǫ0a3.
The angle Θ is the orientation of the dipoles, and can be

tuned by application of a dc electric �eld. The parameter α
relates the relative strength of the Ising and XY dipole inter-

actions and can take values between −π to π. However, we
only focus on the range 0 6 α < π as values below zero sim-

ply correspond to a change in the sign of J. Tuning the value of
α depends on the choice of internal states and external �elds,

with cosα being related to the difference in dipole moments of

the groundstate and excited state, and sinα being related to the

transition dipole moment between the groundstate and excited

state [29, 30].

For the remainder of the paper, we work with Θ = π/2.
Other values of Θ will result in a sign change and scaling of

the interaction in 1D, but will not lead to signi�cant changes in

the types of phases that appear in our system, only in the size of

the regions as a function of∆ and Ω. Also, we will only study

0 6 α < π, as the values –π 6 α < 0 will result in the same
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phases as for 0 6 α < π but with the phase diagram re�ected

about ∆ = 0 due to the sign change in the interaction term.

Therefore, it is suf�cient to consider the range 0 6 α < π and

Θ = π/2 to cover all phases that can occur in the 1D system.

Finally, we choose a value of J0a3/Γ = 5 for the rest of this

paper. We should �nd similar results for other nearby values

of J0a3/Γ, but expect that for J0a3/Γ ≪ 1, we will only �nd

spatially uniform phases in the system as the spins become

effectively decoupled.

In order to �nd the long-time steady state of equation (1),

we make a Gutzwiller mean-�eld approximationwhich results

in taking ρ̂(t) = ⊗ρ̂i(t), where ρ̂i(t) is a density matrix on site

i, and we effectively ignore correlations between spins. Then,
by taking the trace of equation (1) over all the sites except a

given site j, we obtain the equations of motion as

dSxj
dt

= −ΓSxj −∆Syj + 2 sin α

N
∑

i(6= j)

J

R3
i j

SzjS
y
i

− 2 cos α

N
∑

i(6= j)

J

R3
i j

SziS
y
j,

dSyj
dt

= −ΓSyj − ΩSzj +∆Sxj − 2 sin α

N
∑

i(6= j)

J

R3
i j

SzjS
x
i

+ 2 cos α

N
∑

i(6= j)

J

R3
i j

SziS
x
j ,

dSzj
dt

= −Γ

(

Szj +
1

2

)

+ΩSyj − 2 sin α

N
∑

i(6= j)

J

R3
i j

(Syi S
x
j − SyjS

x
i ),

(3)

where Sβj =
1
2
Tr{σ̂β

j ρ̂(t)} are the spin expectation values. The
Rabi term in the Hamiltonian, equation (2), drives transitions

between the excited and ground state of the two-level systems,

causing the spins to try to align along the Sx axis, resulting

in driving of the Sz and Sy spin components in equation (3).

Likewise, the detuning term in equation (2) shifts the energy

of the two-level system, which drives the Sy and Sx spin com-

ponents as the spins try to align along the Sz axis. To �nd the

steady state solutions, we solve the dynamics of the non-linear

equation (3) by evolving them into the long-time limit.

3. Mean-field phase diagram

We compute the mean-�eld phase diagram by �nding the

steady states of equation (3). To do this, we �rst employ a

bipartite sublattice ansatz where we reduce the system to two

independent sites repeating periodically throughout the lattice.

This allows us to �nd the uniformand antiferromagnetic steady

state solutions steady states of equation (3) without having

to evolve the equations in time. Depending on the parame-

ters, there can be up to three uniform solutions and three sets

of antiferromagnetic solutions. To determine the �nal phases

that exist in the system, we perform linear stability analysis

of the resultant solutions to �uctuations with wave vectors

ka = πm/N, where N is the number of sites on the lattice and

m is an integer in the range 0 6 m 6 N. In cases where the

wave vector of instability is not equal to 0 or π, we expect spin
density wave solutions to form and for the bipartite sublattice

ansatz to fail. To con�rm the sublattice ansatz results are cor-

rect, we solve the full dynamics of equation (3) by evolving the

equations in time until the long-time limit (up to tΓ = 200)

for a system size of N = 100 with periodic boundary condi-

tions. Simulating the full dynamics also allows us to �nd the

resultant phases in regimes where the sublattice ansatz breaks

down. For our dynamical simulations, as an initial condition,

we use either (Sx , Sy, Sz) = (0, 0,−1/2) or, if examining phase

instability, the steady state that becomes unstable.

In �gure 2, we show a collection of phase diagrams as a

function of ∆ and Ω for select values of α in the range 0 6

α < π. We �nd our phase diagrams forα = 0 andα = π/2 are
similar to those for a nearest-neighbour Ising and XY model

studied in references [3] and [4], respectively, indicating that

the power-law nature of the dipole interactions has little in�u-

ence over the steady states. The phase diagrams for other α
values show how these phases change as we move away from

the Ising and XY model limits. For all, or almost all, α val-

ues, we can see some general features that occur. Speci�cally,

we can classify four key phases that emerge in the system.

Firstly, for all α, there are the spatially uniform phases, which

are shown by the white regions in the phase diagrams. At low

Rabi drive, the uniform phase has a high spin magnitude and

the spins close to the state with Sz ≈ −1/2. We de�ne this

uniform phase as the U1 phase. At high drive, the spatially

uniform phase has a decreasing spin magnitude, with Sz ≈ 0

and with Sx/y → 0 for increasing Rabi drive, where the steady

state density matrix of the system becomes proportional to the

identity matrix [10]. We denote this as the U2 phase. Both

uniform phases occur for any spin half system even without

interactions as they are just general solutions to the optical

Bloch equations. For α = π/4, we have a Heisenberg Hamil-

tonian which conserves total spin and results in only uniform

phases. For all α, the U1 phase smoothly crosses over into the

U2 phase for most parameter ranges. However, for α 6= π/4,
when the drive and detuning are comparable to the interaction

strength (J/Γ = −5), regimes of bistability between the U1

and U2 exist, which lead to sharp transitions between the two

phases. Which phase the system ends up in within this region

depends on the initial conditions. These regions of bistability

are denoted by the dark blue regions in the phase diagram.

It is also the case that when the drive and detuning are com-

parable to the interactions, for all α 6= π/4, the uniformphases

can become unstable to �uctuations, breaking translational

invariance and giving rise to non-trivial phases. In the red

regions, the uniform phase becomes unstable to �uctuations

with a wavevector of ka = π and a stable set of antiferromag-

netic solutions exist. This results in the emergence of a canted

AFM solution, with the nature of the AFM phases depending

on the α value. The spin components for the AFM solutions

have large deviations between the Sz components on alter-

nate sites when 0 < α < π/4, and large deviations on alternate
sites for both the Sx and Sz components when 3π/4 < α <
π. However, when the XY interaction dominates, the AFM

3
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Figure 2. Phase diagrams as a function of Rabi coupling and detuning, for values of 0 6 α < π for a system with J/Γ = −5. We �nd the
emergence of four key phases: uniform phases, spin density wave phases, antiferromagnetic phases and oscillatory phases. We also �nd
examples of where these phases can be bistable with one another which means both phases can coexist within the corresponding parameter
regime, and which phase the system ends up in depends on the initial conditions. These regions are denoted with double labelling e.g.
AFM/U1.

Figure 3. Examples of connected correlators for the quantum

system with J/Γ = −5. (a) The 〈Ŝz1Ŝ
z
2〉c connected correlator for

α = 0. The connected correlator becomes negative for
nearest-neighbour sites when in the mean-�eld AFM region. The
insets (b) and (c) show examples of how the connected correlator
varies across sites for the orange and blue circle, respectively. We
see that in both cases, long-range order is lost, but the changes of
sign are as expected.

solution has the strongest deviation in the Sy components

between alternate sites. As well as instabilities to ka = π, the
uniform phases can become unstable to ka < π which results

in the emergence of a spin density wave (SDW) phase. In the

SDW phase, shown by the green regions, the spin orienta-

tion varies periodically through the lattice with a period set

by the instability wavevector, ka. We �nd that there are no

SDW instabilities for α = 0. Therefore, it seems that SDW

instabilities are related to presence of the XY interaction. The

�nal key phase to emerge are persistent long-time oscillations,

denoted byOSC, where the effects of the drive and interactions

Figure 4. Examples of connected correlators for the quantum

system with J/Γ = −5. (a) The 〈Ŝy1Ŝ
y
2〉c connected correlator for

α = π/2. Again, the connected correlator changes sign between
nearest-neighbours when in the mean-�eld AFM region. The insets
(b) and (c) show examples of how the connected correlator varies
across sites for the orange and blue squares, respectively.

dominate over the effects from dissipation. We �nd that all

the oscillations emerge from the instability of the AFM phase,

which undergoes a Hopf bifurcation, and inherit an AFM

nature. The oscillations occur in the pink regions of the phase

diagrams.

In several regions of the phase diagrams, multiple solu-

tions to equation (3) coexist, which can lead to bistabilities.

In the yellow regions, a stable uniform solution and stable

set of AFM solutions exist, which results in AFM/U1 bista-

bility. Similarly, in the light yellow regions, there is an OSC

phase which is also bistable to the U1 phase. We do �nd

that there are cases where the oscillations become unstable

4
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Figure 5. Index of dispersion (IoD) of the total number of excitations,
∑N

i (Ŝ
z
i + 1̂/2) for a system with J/Γ = −5. We see there is an

increase in the IOD in regions of bistability, before it drops quickly to 1/2 when entering the region of the U2 phase. The black contours
show the regions of our mean-�eld phase diagram where bistability occurs.

and so only the uniform phase exists, which we have not

marked in our phase diagram. In the light blue regions, both

the U1 phase and U2 phase exist, but one becomes unsta-

ble to �uctuations. When simulating the dynamics in these

regions, we �nd there is predominantly only one stable uni-

form solution, but also small regions of phase bistability

between a SDW and uniform phase, which are not marked

on the phase diagram. Similarly, in the orange regions, there

exists both a uniform phase and an antiferromagnetic phase,

but the uniform phase is unstable. We �nd when simulat-

ing the dynamics in this region that a spatial mixture of

AFM and uniform phase appears in which regions of AFM

phase are disrupted by a few sites of uniform phase. The

degree of disruption to the AFM phase depends on the initial

conditions.

4. Quantum phase diagram

Having now calculated the phase diagram at mean-�eld level,

we now examine how it compares to the phase diagram of

the full quantum system. To do this, we look at the steady

state of small quantum systems with N = 8 spins and periodic

boundary conditions. Despite the small system size, some dis-

tinct features emerge for the quantum system that re�ect the

mean-�eld phases.

We �rst examine the spin expectation values on each

site for a direct comparison to the mean-�eld results. We

�nd that for the quantum system, the expectation values

on each site are uniform, with no spatial variation, for

all values of detuning and drive. This is expected as the

system is translationally invariant and spontaneous sym-

metry cannot be broken in �nite-sized quantum systems.

Therefore, the quantum expectation values must remain uni-

form. However, non-uniform phases will emerge within the

mean-�eld approximation, as the wave vectors that cause

instability of the uniform phases, such as ka = π, are

permitted. If we compare the quantum expectation values

to the mean-�eld expectation values from our phase dia-

grams in the regions where stable uniform phases exist,

we �nd there is good agreement when the magnitude of

the Rabi drive and detuning are large, for all α. The

difference between the expectation values becomes larger in

regions where there is U1/U2 bistability. This is because we

�nd no bistability in small quantum systems, but a smooth

crossover between the U1 and U2 phases. Therefore the quan-

tum expectation values will eventually differ from either

choice of the U1 or U2 mean-�eld solution. For α = π/4, we
�nd the quantum and mean-�eld expectation values are equal

to one another for all detuning and Rabi drive, which is due to

the Heisenberg symmetry.

Although the expectation values only show a single uniform

phase, the connected correlators between sites give insight

into spatial structure of the �uctuations about the expecta-

tion values and possible emergence of non-uniform phases in

large systems. In �gure 3(a), we plot the connected correlator,

〈Ŝzi Ŝ
z
j〉c = 〈Ŝzi Ŝ

z
j〉 − 〈Ŝzi 〉〈Ŝ

z
j〉, between a site i and its nearest-

neighbour for α = 0. We �nd that the connected correlator

changes sign between nearest-neighbour sites in the region

where AFM solutions exist in the mean-�eld, but maintains

the same sign when in the uniform region. Figures 3(b) and (c)

show examples of how the connected correlator varies across

the lattice sites for a choice of ∆ and Ω in the AFM region

and in the uniform region, shown by the orange and blue cir-

cles, respectively. Both connected correlators lose long-range

order quickly, but maintain an alternating sign in the AFM

region, while being persistently positive in the uniform region.

We also plot the 〈Ŝyi Ŝ
y
j〉c connected correlator for α = π/2 in

5
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Figure 6. Scaling of the IoD with system sizes N = 3 to N = 8. The
values of ∆/Γ and Ω/Γ used for each α value are listed by the side
of the �gure, and J/Γ = −5. (a) Scaling of the IoD for the point
where the maximum IoD value at N = 8 occurs for each α except
α = π/4 where the IoD 6 1. In all cases, the maximum of the IoD
occurs near or within the bistable region of mean-�eld theory. We
can see a clear trend that as we scale the data with N, there is a
non-zero intercept at the in�nite lattice limit, which agrees with the
semi-classical behaviour of the IoD given in equation (5). (b)
Scaling of the IoD for a point well outside the bistability region. The
intercept now drops to zero, which again agrees with the
semi-classical behaviour of the IoD.

�gure 4, �nding again a loss of long-range order, but sign

changes between nearest-neighbour sites in the region where

AFM solutions exist in the mean-�eld phase diagram. The

connected correlator plots for α = 0 and α = π/2 are simi-

lar to those in references [3] and [4], respectively. For both

�gures 3 and 4, the choice of connected correlator is based

on the spin component with the strongest deviation from the

spatially uniform phase in the mean-�eld analysis.

We �nd the behaviour of the quantum model that is best

described by the mean-�eld theory is found when studying

the quantum dynamics in the regions of mean-�eld phase

bistability. In regions of bistability, many studies [4, 10, 12]

have found examples of bimodality in the expectation value

distributions when using quantum Monte Carlo wavefunc-

tion methods. This bimodality arises when there are two sta-

ble mean-�eld solutions where, in the mean-�eld limit, each

steady state behaves as if the minimum of a double well

potential. In the absence of �uctuations, the system will sit in

either steady state inde�nitely. However, in the full quantum

system, �uctuations induce transitions between these steady

states, giving a single expectation value, but leaving a double

well structure in the expectation value distributions. Bistabil-

ity brings the greatest change in Sz values between the two

mean-�eld phases, and so we study the total number of excita-

tions,
∑N

i (Ŝ
z
i + 1̂/2). In the quantum system, the expectation

value of the total excitations will take an average of the two

mean-�eld phases, and so it is not possible to detect bimodal-

ity in the underlying distribution by looking at the expectation

values alone. However, bimodal behaviour in a distribution can

instead be observed by studying the index of dispersion (IoD)

of
∑N

i (Ŝ
z
i + 1̂/2), which is given by

IoD =

∑N
i, j

(

〈Ŝzi Ŝ
z
j〉 − 〈Ŝzi 〉〈Ŝ

z
j〉
)

∑N
i

(

〈Ŝzi 〉+ 1/2
) , (4)

and is a measure of a distribution’s variance normalised by its

mean. In the limit of zero Rabi drive, when 〈Ŝzi 〉 = −1/2, we
have IoD = 1, whereas in the limit of high Rabi drive, when

〈Ŝzi 〉 ≈ 0, we have IoD = 1/2. Between these two limits, the

IoD will either decrease or, when there is a bimodality in the

distribution, increase above unity. In �gure 5, we plot the IoD

as a function of ∆ and Ω. We can see from �gure 5 that there

are regions of enhanced �uctuations, which agree well with

the bistability region for all α values, suggesting that the large

peak in the IoD is indeed due to the double well structure of

the mean-�eld solution appearing in the quantum steady state.

Large peaks in the IoDwere found for a nearest-neighbourXY

model in reference [4], similar to our α = π/2 case, but our

results show that this IoD peak is in fact a general feature of

spin systems.

We now analyse further how well the IoD behaviour is

captured by �uctuations about two mean-�eld solutions. We

assume that the system �uctuates between two steady states,

with probability P1 to occupy the mean-�eld uniform state

with a spin z component Sz1, and a probability P2 = 1− P1 to

occupy the mean-�eld uniform state with a spin z component

of Sz2. In this situation, the IoD is given by

IoDCl =
NP1P2(S

z
1 − Sz2)

2

P1S
z
1 + P2S

z
2 + 1/2

−
P1(S

z
1)

2 + P2(S
z
2)

2 − 1/4

P1S
z
1 + P2S

z
2 + 1/2

.

(5)

Outside the regime of bistability, we have P2 = 0, so the

classical IoD reduces to IoDCl = 1/2− Sz1, where we recover
IoDCl = 1 and IoDCl = 1/2 corresponding to the low and

high drive limiting cases, respectively. However, inside the

bistability regime, the IoD should scale with the system size.

Therefore, a signature that the quantum model exhibits tun-

nelling between two mean-�eld bistable solutions would be

for IoD/N to remain non-zero in the thermodynamic limit.

Our mean-�eld phase diagram shows that uniform bistability

occurs between theU1 phasewith S
z ≈ −1/2 and theU2 phase

with Sz ≈ 0. If, as an example, we assume P1 ≈ P2, this gives

an IoD intercept of limN→∞ IoD/N = 0.25. However, it is pos-
sible that the probabilities to reside in either mean-�eld state

will not be equal.

In �gure 6(a), we plot IoD/N vs 1/N for the point where

the IoD is largest for N = 8, which lies inside the bistability

region, for each α. In �gure 6(b), we plot a point outside the

bistability region. We can clearly see how there is a non-zero

intercept for the scaling inside the bistability region, whereas

the intercept drops to zero outside this region for each α. In

6
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Figure 7. Plot of the linear �t intercept of IoD/N vs 1/N at each point of the phase diagram for a system with J/Γ = −5. Near and within
the region of bistability, the intercept takes on a positive value, whereas it is typically zero elsewhere, although does become negative in
places. For α = π/4, the intercept is always 0 as there is no bistability. The occurrence of a positive �nite value within the bistable region
and zero value outside is expected from the semiclassical behaviour of the IoD given in equation (5). The red (light) and blue (dark) circles
indicate the points shown in �gures 6(a) and (b), respectively.

Figure 8. Real part of the spectral gap of the Liouvillian for a system with J/Γ = −5. We see that this is minimal within the regime of
bistability for all α. The scaling of the spectral gap with system size is shown in �gure 9.

�gure 7, we apply the same linear scaling to each point in the

phase diagram and plot the intercept. We �nd that the inter-

cept takes positive non-zero values near and inside the region

of bistability, but is typically zero elsewhere. The largest val-

ues of the intercept in the quantum model are typically of the

order of the value ∼0.25 expected from mean-�eld theory.

There are also regions where the intercept becomes negative,

which occur towards the edge or just outside the bistability

region, which indicate a breakdown of the linear scaling at

largeN as the IoD should always be positive. Overall, the pres-

ence of a positive �nite value of IoD/N inside the bistable

region indicates that the �uctuations in the quantum system

are well described by �uctuations between two bistable mean-

�eld solutions. For these system sizes, the �uctuations remain

well-described by the mean-�eld theory, showing no evidence

of vanishing in the thermodynamic limit. Eventually, for very

large systems, described by the �eld theoretical method with

local �uctuations [14], we expect that the IoD/N will tend to

7



J. Phys. B: At. Mol. Opt. Phys. 53 (2020) 135302 C D Parmee and N R Cooper

zero except, perhaps, if there is a critical point at which the

density matrix jumps discontinuously [31].

Bistability should also have consequences for the spectral

gap of the Liouvillian. The master equation, equation (1), can

be written as dρ̂(t)/dt = Lρ̂(t), where L is the Liouvillian

superoperator that determines the evolution of the system. By

expanding the densitymatrix in eigenvectors of the Liouvillian

superoperator, we can write a generic quantum state as

ρ̂(t) = exp(Lt)ρ̂(0)

= ρ̂ss +

4N−1
∑

i=1

Tr{L̂iρ̂(0)}R̂ie
λit, (6)

where L̂i and R̂i are the left and right eigenvectors of L,
respectively, with complex eigenvalues, λi. The eigenvalues

of the Liouvillian come in complex-conjugate pairs due to

the Hermitian nature of the density matrix, with a negative

real part corresponding to the decay of the eigenvalues and

the imaginary part corresponding to coherences. We order

the eigenvalues, λi, by the increasing magnitude of their real

part. There is always at least one zero eigenvalue of the

Liouvillian matrix (λ0 = 0) corresponding to the steady state

of the system, which we have extracted from the sum in

equation (6) and denoted the eigenvector as ρ̂ss ≡ R̂0. Note

that ρ̂ss has unit trace and the remaining eigenvectors, R̂i, are
traceless.

In systems with bistability, the spectral gap (i.e. the eigen-

value with smallest real part) should close so that the sys-

tem has two steady states. For small quantum systems, the

gap will remain non-zero [32]. It has also been shown that

for large quantum systems, similar to the above model for

α = π/2, the closing of the gap should not to occur for three

dimensions [14]. In essence, the non-zero spectral gap in these

cases indicates that the quantum system can exhibit tunneling

between the two mean-�eld minima, precluding bistability at

times longer than the inverse spectral gap. Still, in view of the

above results showing that the �uctuations in the quantum sys-

tem are strongly affected by the mean-�eld bistability (with an

IoD/N that is qualitatively described by a bistable mean-�eld

theory even for large N), we would expect the region of mean-

�eld bistability should also be re�ected in the spectral gap. In

�gure 8, we plot the real part of the spectral gap [33] for the

system with N = 6 spins. We see there is indeed a reduction in

the gap size in the bistability region compared to elsewhere in

the phase diagram.

Employing �nite-size scaling, we examine how the real

part of the spectral gap changes with increasing N. Figure 9

shows how the spectral gap changes forN = 3 toN = 7 for the

same parameters used to examine the IoD in �gure 6. For the

parameters inside themean-�eld bistability region,we �nd that

the spectral gap decreases with larger system size, although

there are large �uctuations in this behaviour for α = π/2 and

α = 5π/8 which are likely �nite-size effects. It appears that

for all α, the gap will eventually saturate at higher system

size rather than close. For the parameters outside the mean-

�eld bistability region, the spectral gap only has small changes

Figure 9. Scaling of the spectral with system size for systems of
size N = 3 to N = 7. The values of ∆/Γ and Ω/Γ used for each α
value are listed by the side of the �gure, and J/Γ = −5. (a) Scaling
of the spectral gap for the coordinates inside the mean-�eld
bistability region examined �gure 6(a). We can see that the gap
minimum decreases for all α as N increases. For all α, we �nd that
the minimum gap always lies within the region of mean-�eld
bistability for N > 3 and that our �nite-sized scaling indicates the
gap may saturate in the in�nite lattice limit. (b) Scaling of the
spectral gap for coordinates outside the mean-�eld bistability region
examined in �gure 6(b). We see there is little change to the spectral
gap, and in all cases, the gap remains below the natural linewidth,
Γ/2, showing no tendency to decrease.

with increasing system size. For all α, the gap shows no ten-

dency to decrease and remains below the natural linewidth,

Γ/2. Overall, we �nd the largest decrease in spectral gap lies

within the regions of uniform bistability, with little change in

the gap outside this region. These results indicate that the gap

does not close for large systems—i.e. there is no true bista-

bility at long times—but do show that the mean-�eld results

indicate regions in which the full quantum dynamics show a

slow down on the approach to the steady state. As discussed

above, these arrested dynamics are associated with a scaling

of the IoD/N that appears to saturate at large N. While one

cannot conclude that such a scaling will continue to in�nite N,
these results indicate that the mean-�eld results have signif-

icant in�uence in determining the behaviour of the quantum

system for the accessible system sizes. There is the possibility

that a critical pointwhere the gap eventually closeswill emerge

somewherewithin the bistability region, leading to a �rst order

transition [31]. Our results for gap scaling at other points in

the bistability region show no evidence of this for N = 3 to

N = 6. However, this could be because we are restricted to

small system sizes and the gap may close for large enough

systems.

To measure the spectral gap in experiment, one could look

at two-time correlators, whose decay depends speci�cally on

the spectral gap in the long-time limit. For two operators, Â
and B̂, the two-time correlator is given by [34]

8
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Figure 10. Difference between the real part of the spectral gap and the real part of the next eigenvalue in the spectrum for a system with
J/Γ = −5. We see for a dominant Ising interaction, there is an increase in separation which indicates the spectral gap could be measured
from the decay of the two-time correlator. For an XY dominated interaction, the difference between the real part of the eigenvalues is much
smaller and so measuring the gap from the two-time correlator will be harder.

〈Â(t + τ )B̂(t)〉 = Tr
{

Âe(τ+t−t)LB̂ρ̂(t)
}

= Tr
{

B̂ρ̂(t)
}

Tr
{

Âρ̂ss
}

+

4N−1
∑

i=1

eλiτ

× Tr
{

L̂iB̂ρ̂(t)
}

Tr
{

ÂR̂i
}

, (7)

where we have inserted the density matrix expansion given

in equation (6). If we allow t→∞ so we study the two-time

correlator in the steady state, then equation (7) simpli�es to

lim
t→∞

〈Â(t + τ )B̂(t)〉 = Tr
{

Âρ̂ss
}

Tr
{

B̂ρ̂ss
}

+

4N−1
∑

i=1

Tr
{

L̂iB̂ρ̂ss
}

Tr
{

ÂR̂i
}

eλiτ

≈ Tr
{

Âρ̂ss
}

Tr
{

B̂ρ̂ss
}

+ Tr
{

L̂1B̂ρ̂ss
}

Tr
{

ÂR̂1

}

eλ1τ , (8)

where in the last line we have assumed that τ is large and that

the spectral gap,λ1, is well separated from the rest of the Liou-

villian spectrum. This shows how the two-time correlator will

decay exponentially with a decay time set by the spectral gap.

Therefore, if the spectral gap does decrease in a given param-

eter regime, we should �nd that any two-time correlator will

have a much longer temporal decay than in regions where the

spectral gap is large. In �gure 10, we plot the difference in real

part of the �rst and second eigenvalues of the Liouvillian to

see if the spectral gap is well separated from the spectral bulk.

We �nd for a dominant Ising interaction, there is a separation

inside the bistable regime, so measuring the gap from the con-

nected correlator decay should be possible. For a dominantXY

interaction, the gap from the bulk is quite small and therefore

measuring the gap from the two-time correlator will be harder.

5. Discussion and conclusions

We have studied the mean-�eld phase diagram of an driven-

dissipative XXZ model with a tunable XY and Ising interac-

tion, �nding that the interplay between drive and dissipation

leads to four key types of non-equilibriumphases. Speci�cally,

we �nd uniform phases, AFM phases, SDW phases and OSC

phases, as well as bistabilities between these phases, and have

studied how these phases change with the tuning of the Ising

to XY interaction. Such a system could be readily studied with

Rydberg atoms [35], trapped ions [36] or polar molecules [29,

37], where dissipation can be controllably inducedwith optical

pumping [2].

Our in-depth study of the full quantum system for a small

number of spins shows that the expectation values of the

small quantum system agree well with the mean-�eld uniform

phases at strong Rabi drive and detuning, but do not agree as

well when the drive and detuning are comparable to the inter-

action strength. The biggest difference between the mean-�eld

and quantum results is the small quantum system does not

exhibit any bistabilities, OSC, AFM or SDW phases. The fact

that only uniform phases occur for the small quantum system

is expected as the system is translationally invariant and sym-

metry cannot be spontaneously broken for �nite sized systems

without a closing of the spectral gap of the Liouvillian. This

closing of the spectral gap does occur within the mean-�eld

approximation, which is why we obtain non-uniform phases

9
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there. However, for the quantum system, analysis of connected

correlators shows how �uctuations about the expectation val-

ues give signatures of the non-spatially uniform mean-�eld

phases and indicate the possibility that �uctuations could pro-

duce non-spatially uniform phases for large enough quantum

systems. The strongest signatures of the mean-�eld can be

found when looking at the behaviour of the quantum dynam-

ics in regions of mean-�eld bistability, where study of the IoD

of excitations shows enhanced �uctuations due to tunnelling

between two mean-�eld states. Finally, we have shown a good

agreement between the bistability region and a decrease in the

real part of the spectral gap in the Liouvillian, which should

be observable by a increase in the decay times of two-time

correlators. The decrease in spectral gap and enhanced �uc-

tuations could also lead to observable metastable behaviour

between the two mean-�eld states even for �nite-sized

systems.

We have found that our results forα = 0 andα = π/2 agree
with similar studies with nearest-neighbour interactions [3, 4],

both at the mean-�eld and quantum level, indicating that the

1/r3 power-law nature of the interactions have little effect on

the resultant phases. Given this and the fact that our system is

1D, modelling the system with DMRG [38] to achieve larger

system sizes should be possible. It would be interesting to see

if larger systems show evidence of breaking of spatial unifor-

mity we have seen in our mean-�eld analysis. While we do

not expect true long-range order, the mean-�eld theory could

still be apparent in local correlations. As we have explained,

true bistability is not found in the quantum model, as evi-

denced by a spectral gap that shows evidence of saturation

at the largest N that we have studied. Still this gap is much

suppressed compared to regions outside of the bistability, indi-

cating a slow-down of the dynamics that is closely correlated

with the regime of mean-�eld bistability. Also, we have shown

that, even for the largest systems, the IoD scales linearly with

system size within the region of bistability and has IoD/N tak-

ing a non-zero value in the largeN limit. This is consistent with

the existence of a quantum state that is formed by �uctuations

between two mean-�eld states, even for this one-dimensional

model. It would, of course, be interesting to extend these stud-

ies to see how the results evolve for even larger systems, for

example, causing IoD/N to tend to zero, except possibly at a

critical point where the gap closes. Looking at how the IoD and

spectral gap behaves in higher dimensionalities would also be

interesting as the mean-�eld is expected to becomemore valid

with increasing coordination number.
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[9] Šibalić N, Wade C G, Adams C S, Weatherill K J and Pohl T

2016 Phys. Rev. A 94 011401(R)
[10] Olmos B, Yu D and Lesanovsky I 2014 Phys. Rev. A 89 023616
[11] Rota R, Minganti F, Biella A and Ciuti C 2018 New J. Phys. 20

045003
[12] Lee T E, Häffner H and Cross M C 2012 Phys. Rev. Lett. 108

023602
[13] Ates C, Olmos B, Garrahan J P and Lesanovsky I 2012 Phys.

Rev. A 85 043620
[14] Maghrebi M F and Gorshkov A V 2016 Phys. Rev. B 93 014307
[15] Jin J, Biella A, Viyuela O, Mazza L, Keeling J, Fazio R and

Rossini D 2016 Phys. Rev. X 6 031011
[16] Jin J, Biella A, Viyuela O, Ciuti C, Fazio R and Rossini D 2018

Phys. Rev. B 98 241108(R)
[17] Owen E T, Jin J, Rossini D, Fazio R and Hartmann M J 2018

New J. Phys. 20 045004
[18] Biella A, Jin J, Viyuela O, Ciuti C, Fazio R and Rossini D 2018

Phys. Rev. B 97 035103
[19] Huybrechts D and Wouters M 2019 Phys. Rev. A 99 043841
[20] Rota R, Storme F, Bartolo N, Fazio R and Ciuti C 2017 Phys.

Rev. B 95 134431
[21] Weimer H 2015 Phys. Rev. Lett. 114 040402
[22] Cui J, Cirac J I and Bañuls M C 2015 Phys. Rev. Lett. 114

220601
[23] Mascarenhas E, Flayac H and Savona V 2015 Phys. Rev. A 92

022116
[24] Mendoza-Arenas J J, Clark S R, Felicetti S, Romero G, Solano

E, Angelakis D G and Jaksch D 2016 Phys. Rev. A 93

023821
[25] Joshi C, Nissen F and Keeling J 2013 Phys. Rev. A 88 063835
[26] Kshetrimayum A, Weimer H and Orús R 2017 Nat. Commun. 8

1291
[27] Höning M, Muth D, Petrosyan D and Fleischhauer M 2013

Phys. Rev. A 87 023401
[28] Hu A, Lee T E and Clark C W 2013 Phys. Rev. A 88 053627
[29] Gorshkov A V, Manmana S R, Chen G, Demler E, Lukin M D

and Rey A M 2011 Phys. Rev. A 84 033619
[30] Peter D 2015 Quantum states with topological properties via

dipolar interactions PhD Thesis University of Stuttgart
[31] Vicentini F, Minganti F, Rota R, Orso G and Ciuti C 2018

Phys. Rev. A 97 013853
[32] Schirmer S G and Wang X 2010 Phys. Rev. A 81 062306
[33] Navarrete-Benlloch C 2015 arXiv:1504.05266
[34] Breuer H-P and Petruccione F 2007 The Theory of Open

Quantum Systems (Oxford: Oxford University Press)
[35] Glaetzle A W, Dalmonte M, Nath R, Gross C, Bloch I and

Zoller P 2015 Phys. Rev. Lett. 114 173002

10

https://orcid.org/0000-0002-8514-3785
https://orcid.org/0000-0002-8514-3785
https://orcid.org/0000-0002-8514-3785
https://doi.org/10.1103/physreva.91.051601
https://doi.org/10.1103/physreva.91.051601
https://doi.org/10.1103/physrevlett.110.257204
https://doi.org/10.1103/physrevlett.110.257204
https://doi.org/10.1103/physreva.84.031402
https://doi.org/10.1103/physreva.84.031402
https://doi.org/10.1103/physreva.94.033801
https://doi.org/10.1103/physreva.94.033801
https://doi.org/10.1103/physreva.92.063407
https://doi.org/10.1103/physreva.92.063407
https://doi.org/10.1103/physreva.97.053616
https://doi.org/10.1103/physreva.97.053616
https://doi.org/10.1103/physreva.85.065401
https://doi.org/10.1103/physreva.85.065401
https://doi.org/10.1103/physrevlett.111.113901
https://doi.org/10.1103/physrevlett.111.113901
https://doi.org/10.1103/physreva.94.011401
https://doi.org/10.1103/physreva.94.011401
https://doi.org/10.1103/physreva.89.023616
https://doi.org/10.1103/physreva.89.023616
https://doi.org/10.1088/1367-2630/aab703
https://doi.org/10.1088/1367-2630/aab703
https://doi.org/10.1103/physrevlett.108.023602
https://doi.org/10.1103/physrevlett.108.023602
https://doi.org/10.1103/physreva.85.043620
https://doi.org/10.1103/physreva.85.043620
https://doi.org/10.1103/physrevb.93.014307
https://doi.org/10.1103/physrevb.93.014307
https://doi.org/10.1103/physrevx.6.031011
https://doi.org/10.1103/physrevx.6.031011
https://doi.org/10.1103/physrevb.98.241108
https://doi.org/10.1103/physrevb.98.241108
https://doi.org/10.1088/1367-2630/aab7d3
https://doi.org/10.1088/1367-2630/aab7d3
https://doi.org/10.1103/physrevb.97.035103
https://doi.org/10.1103/physrevb.97.035103
https://doi.org/10.1103/physreva.99.043841
https://doi.org/10.1103/physreva.99.043841
https://doi.org/10.1103/physrevb.95.134431
https://doi.org/10.1103/physrevb.95.134431
https://doi.org/10.1103/physrevlett.114.040402
https://doi.org/10.1103/physrevlett.114.040402
https://doi.org/10.1103/physrevlett.114.220601
https://doi.org/10.1103/physrevlett.114.220601
https://doi.org/10.1103/physreva.92.022116
https://doi.org/10.1103/physreva.92.022116
https://doi.org/10.1103/physreva.93.023821
https://doi.org/10.1103/physreva.93.023821
https://doi.org/10.1103/physreva.88.063835
https://doi.org/10.1103/physreva.88.063835
https://doi.org/10.1038/s41467-017-01511-6
https://doi.org/10.1038/s41467-017-01511-6
https://doi.org/10.1103/physreva.87.023401
https://doi.org/10.1103/physreva.87.023401
https://doi.org/10.1103/physreva.88.053627
https://doi.org/10.1103/physreva.88.053627
https://doi.org/10.1103/physreva.84.033619
https://doi.org/10.1103/physreva.84.033619
https://doi.org/10.1103/physreva.97.013853
https://doi.org/10.1103/physreva.97.013853
https://doi.org/10.1103/physreva.81.062306
https://doi.org/10.1103/physreva.81.062306
https://arxiv.org/abs/1504.05266
https://doi.org/10.1103/physrevlett.114.173002
https://doi.org/10.1103/physrevlett.114.173002


J. Phys. B: At. Mol. Opt. Phys. 53 (2020) 135302 C D Parmee and N R Cooper

[36] Britton J W, Sawyer B C, Keith A C, Wang C-C J, Freericks J
K, Uys H, Biercuk M J and Bollinger J J 2012 Nature 484
489

[37] Wall M L, Hazzard K R A and Rey A M 2015 Mesoscale vol
80309 (Singapore: World Scienti�c) pp 3–37

[38] Schollwöck U 2005 Rev. Mod. Phys. 77 259

11

https://doi.org/10.1038/nature10981
https://doi.org/10.1038/nature10981
https://doi.org/10.1103/revmodphys.77.259
https://doi.org/10.1103/revmodphys.77.259

	Steady states of a driven dissipative dipolar XXZ chain
	1.  Introduction
	2.  Model
	3.  Mean-field phase diagram
	4.  Quantum phase diagram
	5.  Discussion and conclusions
	6.  Notes
	Acknowledgments
	ORCID iDs
	References


