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Abstract

We study the relaxation dynamics of non-equilibrium chirality distributions of charge carriers
in Rashba systems. We �nd that at low temperature inter-Rashba band transitions become
suppressed due to the combined effect of the Rashba momentum split and the chiral spin
texture of a Rashba system. Speci�cally, we show that momentum exchange between carriers
and the phonon bath is effectively absent at temperatures where the momentum of thermal
phonons is less than twice the Rashba momentum. This allows us to identify inter-carrier
scattering as the dominant process by which non-equilibrium chirality distributions relax. We
show that the magnitude of inter-carrier scattering is strongly in�uenced by the opposing spin
structure of the Rashba bands. Finally, we provide an explicit result for the inter-band
relaxation timescale associated with inter-carrier Coulomb scattering. We develop a general
framework and assess its implications for GeTe, a bulk Rashba semiconductor with a strong
Rashba momentum split.
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1. Introduction

The generation and control of electronic non-equilibrium
states is of great importance for both understanding con-
densed matter systems, as well as for the design of new
devices relevant for technological applications. Its feasibility
hinges on a long relaxation timescale of those non-equilibrium
states, which has sparked great interest in the search for
long-lived electronic states in solid-state systems over the
last few decades. For example, the endeavour to replace
semiconductor-based technologies by spintronics devices has
led to major interest in spin relaxation timescales in spin-
polarised systems [1]. Electronic momentum relaxes typi-
cally on timescales on the order of a picosecond, while spin-
relaxation timescales can range up to microseconds at the

1 Author to whom any correspondence should be addressed.

Original content from this work may be used under the terms
of the Creative Commons Attribution 4.0 licence. Any further

distribution of this work must maintain attribution to the author(s) and the title
of the work, journal citation and DOI.

longest [2, 3]. In this manuscript,we study the non-equilibrium
relaxation timescales of yet another property of electronic
charge carriers: chirality.

The chirality of charge carriers can only be de�ned well
in systems that break spatial inversion symmetry, and we will
focus our discussion on systemswith strong Rashba spin–orbit
coupling [4]. Being a combination of both spin and momen-
tum locked together, we will see how, at low temperatures,
the chirality is protected from scattering events that in non-
Rashba materials cause fast relaxation into equilibrium, and
consequently we expect the chirality to exhibit long relaxation
timescales. We will argue that this occurs due to a mismatch of
the thermal phonon and the Rashba energy–momentum scales
at low temperatures. The resulting dominant relaxationmecha-
nism, which is the inter-carrier Coulomb interaction, is further
weakened by the helical spin structure that is induced by the
Rashba coupling.

Rashba systems are a technologically-relevant class of
systems in which spatial inversion symmetry is absent and
strong spin–orbit coupling causes the energy dispersion to be
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non-degenerate in spin. There is, therefore, much interest in
Rashba systems as a potential platform for spintronics [5],
and towards manipulating spin currents using external �elds
[6], and arti�cially-engineered heterostructures [7–11]. Con-
sequently, understanding non-equilibrium dynamics in those
systems is of great relevance.

The focus of this contribution is to study the relaxation of
chirality in Rashba systems in general, howeverwe analyse the
implications of our �ndings in the ferroelectric bulk-Rashba
semiconductor GeTe, which ranks amongst the systems with
the highest observed Rashba coupling and Rashba momentum
split [12]. We take various expressions for a general Rashba
system obtained throughout this work, and evaluate them for
the GeTe system.

This contribution is organised as follows. In section 2, we
provide an introduction to the theoretical framework used,
as well as a general explanation of the non-equilibrium chi-
rality distribution we intend to study. Next in section 3, we
study the relaxation of this state via phonon scattering, and
in section 4 we deal with relaxation through the Coulomb
interaction. Finally, we conclude in section 5. Appendices A
and B provide, respectively, explicit calculations of maximum
allowed non-equilibrium carrier occupations and the inter-
carrier relaxation time constants, while appendix C explains
the role of spin �ips in the context of this work.

2. Theoretical framework

In this section we de�ne the problem that we study, as well as
the framework used to describe it. We introduce the Rashba
model [4], which our analysis will be based on, and heuristi-
cally explain the nature of the long-lived chirality states that
we study.

The breaking of spatial inversion symmetry lifts the spin
degeneracy of a Bloch band, and leads to momentum-
dependent spin mixing within the band. In the following, we
will focus on a two-dimensional Rashba system, which is
described by the Hamiltonian

H =
~
2k2

2m
− αRσ · (rSO × k) (2.1)

where ~ is Planck’s constant, k is the wavevector, m is the
effective mass of carriers, αR is the Rashba parameter, σ
is the Pauli matrix vector, and rSO is the direction of the
spin–orbit coupling along which inversion symmetry is bro-
ken, which we assume to be orthogonal to the 2D system.
The Hamiltonian in equation (2.1) yields the energy dis-
persion ǫ±k = ~

2/2m (k± kR)2 − ER with kR = αRm/~
2 and

ER = ~
2k2R/2m, where the+ (−) superscript refers to the upper

(lower) Rashba band, respectively. The dispersions and the
resulting k-dependent spin alignments on the Fermi surface are
shown in �gure 1(a). The free-electron parabolic dispersions of
the two spin species are mutually shifted apart in momentum
space by the Rashba momentum kR. While the free electron
system has two equal Fermi surfaces with degenerate spin and
the same Fermi momentum, the Rashba system has a chiral
spin texture, and two concentric Fermi surfaces at different
Fermi momenta separated by 2kR.

We will investigate the relaxation of this system in a non-
equilibrium state depicted in �gures 1(b) and (c). These show,
respectively, charge carrier con�gurations in which the Fermi
energy of the upper (lower) Rashba band, ǫ+F (ǫ−F ), is higher
(lower) than in equilibrium, and vice versa. These states are
clearly non-equilibrium states and must equilibrate on a �nite
period of time. In an ordinary electronic system, the relaxation
of a non-equilibrium carrier population back to equilibrium
can be expected to happen on very short timescales, typically
on the order of picoseconds [13]. In this work however,we pro-
vide evidence that the mechanisms relaxing this speci�c non-
equilibrium distribution (i.e., chirality imbalance in strongly-
coupled Rashba systems at low temperature) are suppressed,
which results in much longer relaxation timescales. We note
that such carrier populations could either be realised experi-
mentally by injecting spin-polarised currents or by employing
strong external magnetic �elds (where this claim is further
quanti�ed in section 3), however the focus of this contribu-
tion is not the experimental creation of these non-equilibrium
states but rather a theoretical investigation of their relaxation.

Relaxation requires scattering events that induce transitions
between the Rashba bands. The main process by which car-
riers can transition between bands is scattering off phonons
as these can readily impart very large momentum and affect
large-angle and backscattering effects. In addition to phonon
scattering, momentum can also be imparted via inter-carrier
scattering, and scattering from charged impurities. The present
work discusses two key observations for such processes based
on the energy–momentum conservation for phonons, and the
nature of Coulomb scattering. In a system with strong Rashba
coupling, the value of kR can be much larger than the ther-
mal phonon momentum scale at low temperature T. Fur-
thermore, scattering with charged impurities and inter-carrier
Coulomb scattering is dominated by the transfer of small
momenta, which for inter-band transitions is incompatible
with the Rashba coupling because the spinor overlap vanishes
for transitions with the smallest possible momentum transfer.
These two points are discussed in greater detail in sections 3
and 4.

3. Phonon scattering

Charge carriers can exchange momentum with the solid
either by emitting phonons, or by absorbing or scattering
with thermally-excited phonons. These processes must obey
energy–momentum conservation and therefore we have the
following relations for the initial and �nal momenta, k and
k′ = k+ q, and corresponding energies, ǫk and ǫk′ :

Emission : ǫk = ǫk′ + ~ω−q,
Absorption : ǫk + ~ωq = ǫk′ ,
Scattering : ǫk + ~ωp = ǫk′ + ~ωp−q.

Here ~ωq is the energy of a phonon with momentum q and p

is the momentum of a thermally-excited phonon. We assume
the carrier initially to be in the band with higher Fermi energy
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Figure 1. Equilibrium and non-equilibrium chirality distributions of charge carriers in a Rashba system. Top: energy dispersion with bold
lines representing occupied states. Bottom: chiral spin structure at Fermi surface with arrows showing spin directions. (a) Equilibrium
occupation of the Rashba dispersion. The spin–orbit coupling and lack of inversion symmetry lift spin degeneracy, resulting in two parabolic
dispersions centred symmetrically away from k = 0. Consequently, Rashba systems have two concentric Fermi surfaces with opposite spin
chirality that are separated in momentum space by 2kR. (b) Non-equilibrium occupation of the Rashba dispersion. The Fermi energy ǫ+F (ǫ−F )
of the upper (lower) Rashba band is higher (lower) than in equilibrium. In this example, the number of particles in the upper Rashba band
chosen is 50% higher than in equilibrium. These numbers are quite high, but were chosen for illustrative purposes. Equilibrium is restored
via inter-band transitions, which must involve a spin �ip or a reversal of momentum (labelled 1 and 2, respectively). (c) Vice versa of (b)
with the number of particles in the upper band being 50% less than in equilibrium.

(the inner one in �gure 1(b) and the outer one in �gure 1(c)),
and de�ne∆ǫ = ǫk − ǫk′ to be the energy difference between
initial and �nal states. We now combine energy conservation,
Pauli exclusion, and the phonon dispersion to construct our
argument for the suppression of these relaxation events in the
case where T is low such that,

kBT ≪ ~ω2kR . (3.1)

Absorption: for an inter-band transition, we require that
q > 2kR, however at low T where equation (3.1) holds, such
phonons are not thermally excited, thereby disallowing the
absorption process.
Emission: since for an allowed process q > 2kR, we �nd

~ω2kR 6 ~ω−q = ǫk − ǫk′ = ∆ǫ. Consequently, the Rashba
momentum scale imposes an upper bound on the energy dif-
ference below which inter-band transitions are not allowed:

∆ǫ < ~ω2kR . (3.2)

Therefore, the emission is prohibited as long as the energy dif-
ference ∆ǫ between any occupied state in the Rashba band
with higher Fermi energy and any empty state in the band with
lower Fermi energy obeys above condition. This imposes a
maximum detuning of the Fermi energies below which equi-
libration of the non-equilibrium state depicted in section 2
will be suppressed. We will discuss the relative strengths of
the energy scales of ∆ǫ and ~ω2kR in typical Rashba materi-
als at the end of this section. Because this means that there

are no unoccupied states to scatter into as the outcome of a
phonon emission, one can think of this process as being Pauli-
blocked by the occupied low-lying carrier states. Note that all
thermally-activatedexcitationswill be too small to disobey this
condition as long as equation (3.1) holds.

Assuming an excess occupation in the Rashba bands
of n± = n

eq.
± (1± δ), we �nd that for small δ condition

equation (3.2) is satis�ed when approximately

δ <
1
2

~ω2kR

ǫeq.F + ER
. (3.3)

The derivation of this and the exact expression are reported in
appendix A.
Scattering: depending on the relative angle between q and

p, it is ~cph(q− 2p) 6 ~ωp−q − ~ωp = ∆ǫ 6 ~cphq, where
we have assumed a linear acoustic phonon dispersion with
speed of sound cph and that p < q. Consequently, the modi�ed
condition under which scattering is prohibited becomes

∆ǫ < ~ω2(kR−p). (3.4)

When equation (3.1) holds, it is p ≪ kR, and therefore this
condition is almost equivalent to the one for emission. Also
note that the above only holds for the case where p and q are
antiparallel, hence the likelihood of such an event is already
diminished in the �rst place.

It is easy to see how higher-order processes that are built
up of several absorption and scattering events could eventually
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change the momentumof a carrier suf�ciently to induce a tran-
sition into the other Rashba band while having no strong con-
straints on the energy difference between initial and �nal state.
The contribution to equilibration can however be expected to
be weak, not only because it is a higher-order process, but also
because the phase space for such a process is small (the relative
angles of phonon momenta have to be aligned in a particular
way).

Furthermore, it is worth noting that our argument prohibits
scattering events independently of whether they conserve or
�ip the spin of the charge carrier, as our discussion is purely
based on energy–momentum conservations.

What is the degree to which these effects are present in
physical systems? There are two relevant conditions to check,
namely whether both kBT and ∆ǫ are suf�ciently less than
~ω2kR . Simply speaking, the �rst condition ensures that there
are no thermally-excited phonons to absorb for an inter-band
transition, whereas the second ensures that the energy detun-
ing is not so big that inter-band transitions can be induced
by emission of phonons. For concreteness, we consider GeTe,
a system that is known to have giant Rashba coupling, in
which kR = 0.19 Å–1 [14]. Assuming a typical value of cph =
3× 103ms−1 and T = 1K, we �nd that kBT = 0.09meV ≪
~ω2kR = 2~cphkR = 7.5meV. To understand the implications
of this on the relaxation timescales, note that the likelihood
of such a relaxation event to take place is suppressed expo-
nentially by the a Boltzmann factor of exp(−2~cphkR/kBT) ≈
exp(−87) ≈ 10−38, consequently resulting in effectively a
complete suppression of any such phonon-induced relaxation
events. Furthermore, condition equation (3.3) has to be satis-
�ed, which yields δ < 1.6% for GeTe with doping of ǫeq.F =
ER/2 (i.e. close to but above the nodal crossing point, which
is realistic for Ge-vacancy doping). Thus, the non-equilibrium
state is protected from carrier–phonon relaxation as long as
the population imbalance is not more than a few percent.
Note that this number can change drastically depending on
the Rashba coupling α, the effective mass m, and the speed of
sound c.

Before concluding this section, we use the derived expres-
sion for the Fermi level detuning in appendix A and the upper
limit δ found in this section to determine what magnetic �eld
strength would be required to create carrier distributions with
such chirality imbalances. Using

gµBB = ∆ǫF = 2δ(ǫF + ER) (3.5)

and, using g = 2, δ = 1.6%, ǫF = 0.5ER, we �nd that B ≈
9.4T. The absence of phonon relaxataion and the resulting long
relaxation times will manifest for carrier imbalances created
by magnetic �elds below this value, whereas for larger �elds
the phonon relaxation may no longer be Pauli blockaded.

In summary, we have explained how in a Rashba system
phonon-induced inter-band transitions of charge carriers are
ineffective to relax a detuning of the Fermi level if the detuning
is suf�ciently small and the temperature is low, both compared
to the energy scale ~ω2kR , which is imposed by the Rashba
momentum and the phonon dispersion. We have reasoned that
this occurs because phonons are not available for absorption,

the emission is Pauli blocked, and higher-order scattering will
even for the best possible alignment of phonon momenta have
only a comparatively small effect.

4. Inter-carrier and impurity-carrier Coulomb
scattering

We continue by examining the role of scattering via the
Coulomb interaction between charged carriers, and with
charge localised impurities. In contrast to the phonon scat-
tering case, here both the Rashba split 2kR and the opposing
helical spin structure at the Fermi surfaces (see �gure 1(a))
play a role in the suppression of the transfer of small momenta
(we mention that there are no restrictions on these processes
within a band, but this is irrelevant towards inducing inter-band
transitions).

As indicated in �gures 1(b) and (c), inter-band transitions
can broadly be split up into two types: (1) small-angle scat-
tering events that change the momentum only marginally, but
have to �ip the spin, and (2) large-angle scattering that reverses
the momentum and leaves the spin unchanged. We show that
(1) is strongly suppressed because of the vanishing spinor over-
lap, which leaves processes of type (2) with large momentum
transfer as the dominant mode of relaxation. Coulomb scatter-
ing however is dominated by the transfer of small momenta
q because the Fourier transform of the Coulomb potential is
strong at q ≈ 0, and because (in the case of inter-carrier scat-
tering) energy conservation is always satis�ed when q = 0,
resulting in a logarithmically-divergent phase space. This
incompatibility between the nature of the Coulomb interaction
and the helical spin alignment of the Rashba energy dispersion
is the reason why the Coulomb scattering is also suppressed.
However, we also show in the following that this effect is
much less pronounced than in the phonon case presented in
the previous section.

The entirety of all scattering events includes cases in
between (1) and (2), and the aim of the following analysis is
to account for this. We derive expressions for the relaxation
timescale of carrier–impurity and carrier–carrier scattering,
which allows us to show how the above-mentioned arguments
manifest quantitatively. Furthermore, we explicitly calculate
the timescale for inter-carrier scattering for the case of GeTe.
This section only reports the results, whereas detailed calcula-
tions can be found in appendix B.We note that the calculations
in this section exclude processes involving spin�ips, whose
role we discuss in appendix C.

Our analysis will be based on Boltzmann transport theory,
and we want to study the time dependence of the distribution
function f±k1 , where the + (−) superscript indicates the upper
(lower)Rashba band index.We neglect external �elds and tem-
perature gradients, which allows us to reduce the Boltzmann
equation to

∂ f±k1
∂t

= Ici[ f
±
k1
]+ Icc[ f

±
k1
], (4.1)

where the indices ci and cc refer to the carrier–impurity and
carrier–carrier contributions of the scattering integral, respec-
tively. These are given by
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Ici =
∑

k2

(

wcar−imp
(k2∓)→(k1±) f

∓
k2

[

1− f±k1

]

− wcar−imp
(k1±)→(k2∓) f

±
k1

[

1− f∓k2

])

(4.2)

and

Icc =
∑

k2k3k4

(

wcar−car
(k3k4∓)→(k1k2±) f

∓
k3
f∓k4

[

1− f±k1

] [

1− f±k2

]

− wcar−car
(k1k2±)→(k3k4∓) f

±
k1
f±k2

[

1− f∓k3

] [

1− f∓k4

])

.

(4.3)

We have neglected all terms that conserve the Rashba band
index of each particle or induce an exchange of particles
between the bands, as these will not lead to a decay of the car-
rier imbalance between the two Rashba bands. We will make
up for this by assuming that intra-band scattering events are so
quick that they will relax each individual band into local ther-
mal equilibrium on a timescale that is immediate compared to
the inter-band processes.

We calculate the probability amplitudes w(k3k4∓)→(k1k2±)

using Fermi’s golden rule,

w(k3k4∓)→(k1k2±) =
2π
~

| 〈Ψ�nal|U |Ψinit〉 |2

× δ
(

ǫ±k1 + ǫ±k2 − ǫ∓k3 − ǫ∓k4

)

,

(4.4)

for which we need to obtain the matrix element correspond-
ing to the relevant transition. The matrix element will consist
of two parts: (1) the Fourier transform of the Coulomb poten-
tial, which arises from its expectation value for the incoming
and outgoing plane waves, and (2) the spinor overlap between
initial and �nal states. We shall use the 2D Fourier transform
of the screened 3D Coulomb potential for our calculations
(where the static screening is obtained using theRandomphase
approximation) [15], which reads

Up = Up =
2πe20
p+ kS

(4.5)

with e20 = e2/4πκǫ0, where κ is the effective background lat-
tice dielectric constant and kS is the Thomas–Fermi screen-
ing momentum, and with p = k− k′, where k and k′ are the
incoming and outgoing plane waves. Furthermore, to deter-
mine the spinor overlap, we write each single-particle state as
a superposition of the Pauli matrix σZ eigenstates [16] as

|k,+〉 = 1√
2

(

|k, ↑〉 − ieiθk |k, ↓〉
)

, (4.6)

|k,−〉 = 1√
2

(

−ie−iθk |k, ↑〉+ |k, ↓〉
)

, (4.7)

where θk is de�ned such that k = (kx, ky)T =
|k| (cos θk, sin θk)T. This can then be used to evaluate the
overlap between states from different bands, 〈k′,+|U |k,−〉,
and is equal to

e−
i
2 (θk+θk′ ) sin

(

θk − θk′/2
)

〈k′|U |k〉 . (4.8)

Following a well-known approach by Yafet [17], which
derives an expression for the spin relaxation time from
phonon-assisted spin�ip processes, we start from two Rashba
bands, induce a small imbalance of the chemical potential, and
perturb to �rst order in the detuning to �nd an expression for
the relaxation time constants τ ci and τ cc for carrier–impurity
and carrier–carrier scattering, respectively.

Our calculation yields the following expression for the
relaxation time constant of the carrier–impurity processes.

1
τci

=
1

τci,0

π

4
, (4.9)

where τ−1
ci,0 = 8πmnie40~

3(k0F)
2, ni is the impurity density (per

area) and k0F is the average equilibrium Fermi momentum of
the system. We compare this result to the case where we omit
an essential feature of the Rashba system, namely the heli-
cal alignment of spin eigenstate at the Fermi surface, whose
overlap is given by equation (4.8). This yields

1
τci

=
1
τci,0

k0F
kS
, (4.10)

which is enhanced over the result in equation (4.9) by a factor

of
k0F
kS
. Since typically the Fermimomentum is much larger than

the screeningmomentum scale, we see how the Rashba disper-
sion serves to enhance the screening of the Coulomb interac-

tion. Using standard Lindhard theory, we estimate
k0F
kS

≈ 23.7
for GeTe. This result is worth noting, but equally not too rel-
evant for practical applications, where the carrier–impurity
scattering is mainly in�uenced by the impurity concentra-

tion ni and the suppression by a factor of
k0F
kS

will not be as
big as in the case of electron–phonon scattering described
above.

Furthermore, we derive the following expression for the
carrier–carrier Coulomb scattering relaxation time constant,

1
τcc

=
1

τcc,0

(kBT)2

(µ− ER)2
× ρ

(

ER

µ
,
kBT

µ− ER

)

, (4.11)

with

ρ =
π2

6

(

1− ER

µ

(

1− log

(

ER

µ

))

−
(

1− ER

µ

)

× log

(

π2

6
kBT

µ− ER

))

(4.12)

where τ−1
cc,0 =

(2πe20)
2

2π~
2m
~2
.

This result is of a form similar to the scattering lifetime
of a quasi particle subject to inter-carrier Coulomb interaction
reported by Zheng and Das Sarma [18]. The expression for ρ
contains a logarithmically-divergent part and a constant part,
where the latter occurs due to the regularising effect of the
opposing helical spin structure (which however only affects
one part of the divergent phase space).
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Using T = 100mK, as well as κ = 10, µ− ER = 0.1 eV
and ER

µ ≈ 0.5 (which we assume for 32 nm thick α-GeTe [14,
19, 20]), we �nd

τcc ≈ 1µs. (4.13)

This result is impressive in that the lifetime is signi�-
cantly enhanced over the picosecond lifetime that is commonly
observed in electronic systems [13]. Normally relaxation
timescales on the order of microseconds are only observed for
carrier–phonon processes at low temperature [21]. However,
we also note that the suppression is not of the exponential
form found for the phonon case, and hence not as dramatic.
Furthermore, we note that the chiral alignment of spin eigen-
states on the Fermi surface only serves to suppress one of the
two logarithmic divergences at q = 2kR of the form log(µ−
ER/kBT) and does not affect the same divergence occuring at
q = k+F + k−F . It would be interesting to see if more complex
band structures involvingmore intricate spin alignments could
result in even stronger suppression and even longer relaxation
timescales.

We note that, while our calculation is suf�ciently accurate
to approximate the order of magnitude of the relaxation time
constant, an estimate of the time constants for real materi-
als necessitates the consideration of exact band structures and
possibly dynamic screening and exchange interaction effects.

5. Discussion and conclusions

In conclusion, we have studied the relaxation of chirality
imbalances in Rashba systems, and the relaxation processes
and timescales associated with those states. We have shown
that phonon-mediated inter-band transitions in Rashba systems
are effectively absent whenT is low and the occupationnumber
detuning δ is small. This happens due to an energy–momentum
mismatch between the electronic and phonon dispersion, and
consequently phononsdo not contribute to relaxation of carrier
chirality. We identify the inter-carrier scattering mediated by
the Coulomb interaction as the resulting dominant relaxation
mechanism (in a pure sample) and further analyse it. We �nd
that this is also weakened due to the chiral spin structure at
the Fermi level, and consequently the relaxation time arising
from this is much longer thanwhat is commonly expected from
inter-carrier interaction. We estimate the relaxation timescales
for the inter-carrier scattering for a typical strongly Rashba-
coupled System (GeTe in our example) at low temperatures of
T ≈ 100mK to be on the order of τ ≈ 1µs.

We note that these results mainly rely on the large momen-
tum split that strong Rashba coupling induces between the
Fermi surfaces of the bands of the two carrier species, as
well as on the fact that carriers from different Rashba bands
with lowest momentum separation have orthogonal spin states
(which is always true for systems with a spherical Fermi sur-
face). As such, it is possible to generalise the results from this
study to systems with different energy dispersion, as long as
those two main ingredients are retained.

More generally, a remarkable �nding of our study is that
due to the absence of phonons the dominant mode of inter-
band relaxation is carrier–carrier Coulomb scattering, whereas
commonly this is mediated by phonons.

The non-equilibrium chirality populations we study could
be realised in experiments in a number of ways, such
as through the application of magnetic �elds [26], as
well as by injecting spin-polarised currents that domi-
nantly occupy one of the two Rashba bands, although the
analysis of this is beyond the scope of this manuscript
and requires further work.
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Appendix A. Condition on excess occupation

This appendix section aims to brie�y derive an expression for
the upper bound of the excess occupation δ from the Rashba
band dispersion ǫk and the value of the equilibrium Fermi
energy ǫeq.F .

First, we compute the value of the Fermimomentum for any
given Fermi energy ǫF. We de�ne the free energy dispersion
ǫfk = ~

2k2/2m, and by setting ǫ±F = ǫ±kF and solving for ǫ
f

k±F
we

�nd

ǫf
k±F

= ǫ±F + 2ER ± 2
√

E2
R + ERǫ

±
F . (A1)

The total number of carriers n± is given by

n± =

∫

d2k
(2π)2

Θ
(

ǫF − ǫ±k
)

, (A2)

whereΘ(x) is the Heaviside function. By substituting ǫ = ǫfk,

n± =
m

2π~2

∫ ∞

0
dǫΘ

(

ǫf
k±F

− ǫ

)

=
m

2π~2
ǫf
k±F
. (A3)

We de�ne the reduced carrier density ν± = 2π~2

m
n±, which has

the dimension of energy, such that

ν± = ǫ±F + 2ER ± 2
√

E2
R + ERǫ

±
F . (A4)

This equation can be inverted to yield the Fermi energies ǫ±F
from the carrier density ν±,

ǫ±F = ν± ± 2
√

ERν±. (A5)

Therefore, given occupations ν± = νeq.± (1± δ), we can calcu-
late the Fermi energy difference to be

∆ǫF = ǫ+F − ǫ−F (A6)

= νeq.+ (1+ δ)− νeq.− (1− δ)

+ 2
√
ER

(

√

νeq.+ (1+ δ)+
√

νeq.− (1− δ)

)

(A7)

= 2δ(ǫeq.F + 2ER)− 4
√

E2
R + ǫeq.F ER + 2

√
ER

6
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×
[

√
1+ δ

√

ǫeq.F + 2ER − 2
√

E2
R + ǫeq.F ER

+
√
1− δ

√

ǫF + 2ER + 2
√

E2
R + ǫFER

]

, (A8)

and by expanding
√
1+ δ +

√
1− δ as a series around δ = 0,

we �nd

= 2δ(ǫF + ER)+ 4
√
ER

[

√

ER + ǫeq.F

∞
∑

k=1

(

1/2
2k

)

δ2k

−
√
ER

∞
∑

k=1

(

1/2
2k+ 1

)

δ2k+1

]

. (A9)

When δ is small, the series expansion can be truncated after
the �rst element, which yields the result reported in section 3.

Appendix B. Relaxation time constants

B.1. General considerations

In this appendix, we provide a detailed explanation of our cal-
culations of the Boltzmann transport scattering integrals that
are discussed in section 4 of the main text. We start by provid-
ing some general calculations that hold for carrier–impurity
and carrier–carrier scattering equally and continue by calcu-
lating expressions for the relaxation time constants explicitly
for the two cases.

B.1.1. Boltzmann equation and scattering integrals. We con-
sider the Boltzmann equation,

∂ f±k1
∂t

= Ici

[

f±k1

]

+ Icc

[

f±k1

]

, (B1)

where the indices ci and cc refer to the carrier–impurity and
carrier–carrier contributions of the scattering integral, respec-
tively. These are given by

Ici =
∑

k2

(

wcar−imp
(k2∓)→(k1±) f

∓
k2

[

1− f±k1

]

− wcar−imp
(k1±)→(k2∓) f

±
k1

[

1− f∓k2

])

(B2)

and

Icc =
∑

k2k3k4

(

wcar−car
(k3k4∓)→(k1k2±) f

∓
k3
f∓k4

[

1− f±k1

] [

1− f±k2

]

−wcar−car
(k1k2±)→(k3k4∓) f

±
k1
f±k2

[

1− f∓k3

] [

1− f∓k4

])

.

(B3)

We have neglected all terms that conserve the Rashba band
index of each particle or induce an exchange of particles
between the bands (as the latter will not lead to a decay of
the carrier imbalance between the two Rashba bands). We will
make up for this by assuming that intra-band scattering events

are so quick that they will relax each individual band into local
thermal equilibriumon a timescale that is immediate compared
to the inter-band processes we study. We note that there exist
additional inter-carrier scattering processes that conserve the
Rashba band index of one carrier but not of the other. These
however are (due to considerations based on momentum con-
servation) absent when kR > k+F , and remain weak as long as
kR ≈ k+F , which we assume to be the case and which is the
case for Rashba materials where the Rashba energy scale is
comparable to the Fermi energy.

B.1.2. Defining the chirality density. We de�ne the total par-
ticle density, n = n+ + n−, and the total chirality density,C =
n− − n+ (which is de�ned to be a positive number, as there are
more particles in the lower Rashba band). Using the distribu-
tion function f±k , we can write the densities as n± = 1

V
∑

k1
f±k1 ,

and therefore we can express C and its derivative with respect
to time t as,

C =
1
V
∑

k1

(

f−k1 − f+k1

)

, (B4)

dC
dt

=
1
V
∑

k1

(

∂ f−k1
∂t

−
∂ f+k1
∂t

)

, (B5)

where V is the area of the system.
We insert the carrier–impurity contributionof the scattering

integral in equation (B2) and the carrier–carrier contribution
in equation (B3) into equation (B5). By, in the second term,
renaming k1 7→ k2 and k2 7→ k1 for the carrier–impurity case
and k1, k2 7→ k3, k4 and k3, k4 7→ k1, k2 in the carrier–carrier
case, and then making use of the reversibility of the micro-
scopic processes,

wcar−imp
(k2+)→(k1−) = wcar−imp

(k1−)→(k2+) (B6)

wcar−car
(k3k4+)→(k1k2−) = wcar−car

(k1k2−)→(k3k4+) (B7)

we �nd

dC
dt

∣

∣

∣

∣

ci

=
2
V
∑

k1k2

wcar−imp
(k1−)→(k2+)

(

f+k2 − f−k1

)

. (B8)

dC
dt

∣

∣

∣

∣

cc

=
2
V
∑

k1k2k3k4

wcar−car
(k1k2−)→(k3k4+)

(

f+k3 f
+
k4

[

1− f−k1

]

×
[

1− f−k2

]

− f−k1 f
−
k2

[

1− f+k3

] [

1− f+k4

])

.

(B9)

B.1.3. Inducing a Fermi-level detuning. We use the Rashba
energy dispersion ǫ±k = ~2(k±kR)2

2m − ER (where ER = ~
2k2R/2m

is the Rashba energy) as shown in �gure 1, although we will
shift all energies by ER so that we can neglect the offset and
assume the entire energy dispersion to take positive values.

We assume the equilibrium Fermi momentum k
eq.±
F =

k0F ∓ kR and the equilibrium chemical potential µeq. =
~
2(k0F)

2/2m. A chirality non-equilibrium distribution that
conserves the total density n = n+ + n− is induced by letting

7
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(

k±F
)2

=
(

k
eq.±
F

)2 ∓ (δk)2. By de�ning δµ = ~
2(δk)2/2m, we

can express the non-equilibrium chemical potentials as

µ± = µeq. ∓ 1

1∓
√

ER
µeq.

δµ+ O(δµ2). (B10)

We replace the distribution functions f±k in equations (B4),
(B8), and (B9) by Fermi distributions fµ±(ǫ

±
k ) with chemical

potentialµ±, which can, by using equation (B10), be expanded
to �rst order in δµ as

fµ±(ǫ) = f (ǫ)∓ χ±δµ
∂ f (ǫ)
∂µ

,

[1− fµ±(ǫ)] = [1− f (ǫ)]∓ χ±δµ
∂[1− f (ǫ)]

∂µ
,

where we have de�ned χ± = (1∓
√

ER/µeq.)−1, and f is
the equilibrium Fermi distribution. By using ∂ f

∂µ
= − ∂ f

∂ǫ
=

β f (ǫ) [1− f (ǫ)] and ∂[1− f (ǫ)]
∂µ

= −β f (ǫ) [1− f (ǫ)], we can
rewrite C and dC/dt as

C − Ceq. = +
δµ β

V
∑

k1

Φ0
(

ǫ−k1 , ǫ
+
k1

)

(B11)

dC
dt

∣

∣

∣

∣

ci

= −2 δµ β

V
∑

k1k2

Φ0
(

ǫ−k1 , ǫ
+
k2

)

(B12)

× wcar−imp
(k1−)→(k2+)

dC
dt

∣

∣

∣

∣

cc

= −2 δµ β

V
∑

k1k2k3k4

Φ1
(

ǫ−k1 , ǫ
−
k2
, ǫ+k3 , ǫ

+
k4

)

× wcar−car
(k1k2−)→(k3k4+). (B13)

The zeroth order term in δµ for dC
dt vanishes as

the equilibrium carrier con�guration does not induce any
changes of C. Furthermore, we have introduced Φ0(ǫ1, ǫ2),
and Φ1(ǫ1, ǫ2, ǫ3, ǫ4), which account for all distribution
functions,

Φ0 = χ− f (ǫ1) [1− f (ǫ1)]+ χ+ f (ǫ2) [1− f (ǫ2)] (B14)

Φ1 = f (ǫ3) f (ǫ4) [1− f (ǫ1)] [1− f (ǫ2)]

×
(

χ+ ([1− f (ǫ3)]+ [1− f (ǫ4)])+χ− ( f (ǫ1)+ f (ǫ2))
)

+ f (ǫ1) f (ǫ2) [1− f (ǫ3)] [1− f (ǫ4)]

×
(

χ+ ( f (ǫ3)+ f (ǫ4))+ χ− ([1− f (ǫ1)]+ [1− f (ǫ2)])
)

.

(B15)

The factors of χ±, which account for the difference in den-
sity of states of the two Rashba bands at their respective Fermi
energies, can be approximated as 1, and we will therefore
neglect them in the following.

Using the expressions for C and dC
dt , we want to �nd the

relaxation time constant τ in the following relaxation time
approximation:

dC
dt

= −C − Ceq.

τ
. (B16)

This yields

1
τci

=
2
V
∑

k1k2

Φ0 (ǫ−k1 , ǫ
+
k2

)

× wcar−imp
(k1−)→(k2+)

/

1
V
∑

k1

Φ0 (ǫ−k1
, ǫ+k1
)

,

(B17)

1
τcc

= 2
V
∑

k1k2k3k4

Φ1
(

ǫ−k1 , ǫ
−
k2
, ǫ+k3 , ǫ

+
k4

)

×wcar−car
(k1k2−)→(k3k4+)

/

1
V
∑

k1

Φ0
(

ǫ−k1 , ǫ
+
k1

)

.

(B18)

B.1.4. Fermi’s golden rule. The probability amplitudes in
equations (B17) and (B18) are given by Fermi’s golden rule,

w(k3k4∓)→(k1k2±) =
2π
~

| 〈Ψ�nal|U |Ψinit〉 |2

× δ
(

ǫ±k1 + ǫ±k2 − ǫ∓k3 − ǫ∓k4

)

,

(B19)

where the subscripts init and �n refer to the initial and �nal
states of the transition.We now have to �nd the matrix element
for the respective transitions.

Initial and �nal states are taking the forms
∣

∣Ψci
init

〉

= |k1,−〉 ,
∣

∣Ψci
�n

〉

= |k2,+〉 ,
∣

∣Ψcc
init

〉

= |k1,−〉 |k2,−〉 ,
∣

∣Ψcc
�n

〉

= |k3,+〉 |k4,+〉 .
(B20)

We note that a full treatment of this problemwould envolve an
antisymmetrisation of the two-particle wave-function, which
would result in exchange-interaction terms in the matrix ele-
ment. This however makes the integration that follows further
below intractable. We also do not expect this to have a big
impact onto the end result as exchange interaction only mat-
ters when a process and its exchange process are of similar
strength, which is not true for the parts of the phase space that
contribute dominantly to the scattering.

Each single-particle state can be written as a superposition
of the Pauli matrix σZ eigenstates [16] as follows:

|k,+〉 = 1√
2

(

|k, ↑〉 − ieiθk |k, ↓〉
)

, (B21)

|k,−〉 = 1√
2

(

−ie−iθk |k, ↑〉+ |k, ↓〉
)

. (B22)

Because the component of U in spin space is the identity, its
matrix element, 〈k′,+|U |k,−〉, can be written as

1
2

(

〈k′, ↑|+ ie−iθk′ 〈k′, ↓|
)

U
(

−ie−iθk |k, ↑〉+ |k, ↓〉
)

(B23)

8
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=
1
2

(

−ie−iθk′ + ie−iθk
)

〈k′|U |k〉 (B24)

=
1
2i
e−

i
2 (θk+θk′ )

(

e
i
2 (θk−θk′) − e−

i
2 (θk−θk′)

)

〈k′|U |k〉

(B25)

= e−
i
2 (θk+θk′) sin

(

θk − θk′/2
)

〈k′|U |k〉 . (B26)

We set p = k− k′, and hence 〈k′|U |k〉 = Up/V , where V
is the area of the system andUp is the Fourier transform of the
Coulomb potential [15],

Up = Up =
2πe20
p+ kS

(B27)

with e20 = e2/4πκǫ0, where κ is the effective background lat-
tice dielectric constant and kS is the Thomas–Fermi screening
momentum.

B.2. Impurity scattering

Next, we evaluate the time constant for carrier–impurity scat-
tering, which is easy to compute as carrier–impurity scattering
is a single-particle process that conserves energy.

Following the general considerations from the previous
section, we �nd that wcar−imp

(k1−)→(k2+) is equal to

2π
~V2

sin2
(

θk1 − θk2/2
)

U2
|k1−k2| δ

(

ǫ−k1 − ǫ+k2

)

, (B28)

which we will insert into equation (B17) to obtain an expres-
sion for the time constant. We convert the sums to integrals to
�nd

1
τci

=
4π
~V

∫∫

dk1dk2
(2π)4

Φ0
(

ǫ−k1 , ǫ
+
k2

)

δ
(

ǫ−k1 − ǫ+k2

)

× U2
|k1−k2| sin

2
(

θk1 − θk2/2
)

/∫

dk1
(2π)2

Φ0
(

ǫ−k1 , ǫ
+
k1

)

.

(B29)

We use the variable transformation kidki = 2m
~2

dǫ±i
1
2 (1±

√

ER/ǫi) (for i = 1, 2). Similar to our previous approximation
of assuming χ± ≈ 1, we drop the correction in the brackets,
as this only accounts for a small correction stemming from
the different densities of states of the two Rashba bands. Fur-
thermore, we take the limit T→ 0, in which case Φ0(ǫ1, ǫ2)→
β−1(δ(ǫ1 − µ)+ δ(ǫ2 − µ)), to carry out the integrations over
ǫ1 and ǫ2.

This yields for the denominator
∫

dk1
(2π)2

Φ0
(

ǫ−k1 , ǫ
+
k1

)

=
1
2π

2m
~2

β−1. (B30)

Using this and carrying out the integration over ǫ1 and ǫ2 in the
numerator, the result for timescale can be expressed as

1
τci

=
1

2π~V
2m
~2

∫

dθk1,k2 U
2
|k1−k2| sin

2
(

θk1 − θk2/2
)

,

(B31)

where θk1,k2 is the angle between k1 and k2. By writing
|k1/2| = k

eq.±
F = k0F ∓ kR, we can derive that |k1 − k2|2

= 4(k0F)
2 sin2(θ/2)+ 4k2R cos

2(θ/2) ≈ 4(k0F)
2 sin2(θ/2)+ 4k2R.

Using this, we can write

1
τci

=
1
τci,0

∫ π

0
dθ

sin2
(

θ/2
)



2

√

sin2(θ/2)+

(

kR

k0F

)2

+ kS

k0F





2 , (B32)

where we have also multiplied the result with the number
of impurity sites in the system Ni, and introduced ni = Ni/V
and τ−1

ci,0 = 8πmnie40 / ~
3(k0F)

2. In the last expression, we can
observe that kR appears in a similar way to the screening
momentum kS. Because in strongly Rashba-coupled systems
kR is several orders of magnitude larger than kS, this there-
fore serves to enhance the screening of the Coulomb potential.
More importantly, in the case without Rashba coupling, it is
kR = 0 and the spinor overlap matrix element vanishes, and
therefore

1
τci

=
1

τci,0

∫ π

0
dθ

1
(

2 sin(θ/2)+ kS

k0F

)2 ≈ 1
τci,0

k0F
kS
, (B33)

whereas if instead we retain kR and include the helical spin
structure and use the fact that kS ≪ kR, we instead �nd

1
τci

=
1

τci,0

∫ π

0
dθ

1
4

sin2(θ/2)

sin2(θ/2)+

(

kR

k0F

)2 ≈ 1
τci,0

π

4
. (B34)

This results in an overall suppression factor of ≈ kS/k
0
F. We

use Lindhard theory [13], which gives kS = e2 m
~2

, and using the
effective mass m ≈ 0.02me (me being the electron mass), we
�nd kS/k0F ≈ 23.7, as reported in section 4. While this sup-
pression is not as dramatic as in the phonon-scattering and
inter-carrier cases, we note that to obtain the effective rate
for carrier–impurity scattering, this suppression factor must
be multiplied by a density of impurities. Therefore, in clean,
undoped samples, in which the concentration of unintentional
dopants is negligibly small, we expect this not to be of impor-
tance.

B.3. Inter-carrier scattering

We now continue with examining the carrier–carrier contribu-
tion to relaxation, which is harder and requires signi�cantly
more work.

B.3.1. Inserting Fermi’s golden rule and converting sums to

integrals. Using the result in equations (B26) and (B27), the
matrix element squared, | 〈Ψ�nal|U |Ψinit〉 |2, can be computed
to be

U2
q

V2
sin2

(

θk1,k1+q/2
)

sin2
(

θk2,k2−q/2
)

δk4,k2−q, (B35)

where we have de�ned q = k3 − k1, and where θk1,k1+q

(θk2,k2−q) is the angle between initial wavevector k1 (k2) and

9
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�nal wavevector k1 + q (k2 − q). Using Fermi’s golden rule
in equation (B19), we can insert this into the expression for
the relaxation time constant in equation (B18), and convert the
sums over momentum space to continuous integrals.

1
τcc

=
4π
~

∫∫∫

dk1dk2dq
(2π)6

U2
q Φ

1
(

ǫ−k1 , ǫ
−
k2
, ǫ+k3 , ǫ

+

k4

)

× sin2
(

θk1 ,k1+q/2
)

sin2
(

θk2 ,k2−q/2
)

× δ
(

ǫ−k1 + ǫ−k2 − ǫ+k1+q − ǫ+k2−q

)

/
∫

dk1

(2π)2
Φ

0
(

ǫ+k1 , ǫ
−
k1

)

.

(B36)

B.3.2. Defining variable transformations. What follows is a
series of variable transformations. As in the impurity case, we
use ki dki = 2m

~2
dǫi 12 (1±

√

ER/ǫi) (i = 1, 2), and the denom-
inator again becomes 1

2π
2m
~2

β−1. Next, we follow an approach
by Lawrence and Wilkins [22] to write the integrals over k1
and k2 in terms of the variables ǫ1 = ǫ−k1 , ǫ2 = ǫ−k2 , ǫp = ǫ+k1+q

and ǫp′ = ǫ+k2−q.
First, we �nd an expression for the angle between k1 and

q, which we call θk1,q, as a function of the new variables. It is
ǫ1 = ~

2/2m (k1 − kR)2 and ǫp = ~
2/2m (|k1 + q|+ kR)2, and

by writing (k1 + q)2 = k21 + q2 + 2k1q cos θk1,q we �nd that

cos θk1,q =
|k1 + q|2 − k21 − q2

2k1q
(B37)

= − ǫ1 − ǫp + ǫq + 2
√
ER
(√

ǫp +
√
ǫ1
)

2
√
ǫq
(√

ǫ1 +
√
ER

)

(B38)

and accordingly for the angle θk2,q between k2 and q and vari-
able ǫp′ . Therefore, we �nd the derivative of the angles with
respect ǫp and ǫp′ to be

∂θk1,q
∂ǫp

= −Ω(ǫ1, ǫp, ǫq)

(

1−
√

ER

ǫp

)

, (B39)

∂θk2,q
∂ǫp′

= −Ω(ǫ2, ǫp′ , ǫq)

(

1−
√

ER

ǫp′

)

, (B40)

where Ω(ǫ1, ǫp, ǫq) is de�ned as

1
√

4ǫq
(√

ǫ1 +
√
ER
)2 −

(

ǫ1 − ǫp + ǫq + 2
√
ER(

√
ǫp +

√
ǫ1)
)2
.

(B41)

Using this result, we can �nd the Jacobian determinants for
the transformation from k1 to (ǫ1, ǫp) and k2 to (ǫ2, ǫp′). We
�nd that k1dk1 dθk1,q equals to

dǫ1dǫp
2m
~2

Ω(ǫ1, ǫp, ǫq)

(

1+

√

ER

ǫ1

)

(

1−
√

ER

ǫp

)

, (B42)

and the same expression for k2dk2 dθk2,q under exchange of
ǫ1 7→ ǫ2 and ǫp 7→ ǫp′ . As was done previously,we drop the last

two terms in the brackets as these small corrections account for
the difference in the densities of states. We have included an
extra factor of 2 because the cos is only uniquely de�ned on
the [0, π] interval, and so accounts for only half of the integral
that we want to calculate. The boundaries of the ǫp integral will
be such that the momenta of k1 and q either align or antialign,
and so we �nd

ǫmax /min
p =

~
2

2m
( |k1 ± q|+ kR)2 (B43)

which can be rewritten as

ǫmax
p =

(√
ǫ1 +

√
ǫq + 2

√
ER
)2
,

ǫmin
p =

{

(√
ǫ1 −

√
ǫq + 2

√
ER

)2
, for ǫq < ǫ1

(√
ǫ1 −

√
ǫq
)2
, for ǫq > ǫ1,

(B44)

and the respective result for ǫp′ with ǫ1 7→ ǫ2. Finally, it is
qdq = 1/2(2m/~2)dǫq with ǫq = ~

2q2/2m. The integration
over the remaining free angle results in an additional fac-
tor of 2π. Using this and equation (B42), we can rewrite
equation (B36) as

1
τcc

=
1

2π~

(

2m
~2

)2

β

∫ +∞

−∞
dǫ1

∫ +∞

−∞
dǫ2

∫ ∞

0
dǫq

∫ ǫmax
p

ǫmin
p

dǫp

×
∫ ǫmax

p′

ǫmin
p′

dǫp′U
2
ǫq
Φ1
(

ǫ1, ǫ2, ǫp, ǫp′
)

S
(

ǫ1, ǫp
)

S
(

ǫ2, ǫp′
)

× Ω
(

ǫ1, ǫp, ǫq
)

Ω
(

ǫ2, ǫp′ , ǫq
)

δ
(

ǫ1 + ǫ2 − ǫp − ǫp′
)

,

(B45)

where the transformed Coulomb potential, Uǫq , and spinor
overlapmatrix elements S(ǫ1, ǫp) and S(ǫ2, ǫp′ ) will be provided
in the next section.

B.3.3. Applying variable transformations to integrand. Hav-
ing de�ned those variable transformations and having calcu-
lated their Jacobian determinants, we will proceed by applying
the transformation to the integrand.

The Coulomb potential can easily be rewritten as

Uǫq =

(

2m
~2

)−1/2 2πe20√
ǫq +

√
ǫS
, (B46)

where we have de�ned ǫS = ~
2k2S/2m.

We can relate the angle between k1 and k1 + q (k2 and
k2 − q) to the angle between k1 (k2) and q,

cos
(

θk1,k1+q

)

=
k1 + q cos

(

θk1,q
)

|k1 + q| , (B47)

cos
(

θk2,k2−q

)

=
k2 − q cos

(

θk2,q
)

|k2 − q| , (B48)
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and with sin2(θ/2) = 1/2(1− cos(θ)), we �nd

sin2
(

θk1,k1+q/2
)

=
1
2
|k1 + q| − k1 − q cos

(

θk1,q
)

|k1 + q|
(B49)

(B38)
=

1
4
q2 − (k1 − |k1 + q|)2

k1|k1 + q| , (B50)

sin2
(

θk2,k2−q/2
)

=
1
2
|k2 − q| − k2 + q cos

(

θk2,q
)

|k2 − q|
(B51)

=
1
4
q2 − (k2 − |k2 − q|)2

k2|k2 − q| . (B52)

Therefore, we can de�ne the spinor overlap function
S(ǫ1, ǫp, ǫq) used in equation (B45) as

1
4

ǫq −
(√

ǫ1 −√
ǫp + 2

√
ER

)2

(√
ǫ1 +

√
ER
) (√

ǫp −
√
ER
) . (B53)

B.3.4. Computing the integral. In this section, we will pro-
ceed by computing the integral in equation (B45). This will
yield an expression for the inter-carrier scattering relaxation
timescale τ cc.

We de�ne ǫ∆ = ǫp − ǫ1 and ǫ∆′ = ǫp′ − ǫ2 and write
equation (B45) as

1
τcc

=
β

τcc,0

∫ +∞

−∞
dǫ1

∫ +∞

−∞
dǫ2

∫ ∞

0
dǫq

∫ ǫmax
∆

ǫmin
∆

dǫ∆

×
∫ ǫmax

∆

ǫmin
∆

dǫ∆ u2ǫqΦ
1
(

ǫ1, ǫ2, ǫ1 + ǫ∆, ǫ2 + ǫ∆′
)

× S (ǫ1, ǫ1 + ǫ∆) S
(

ǫ2, ǫ2 + ǫ∆′
)

Ω
(

ǫ1, ǫ1 + ǫ∆, ǫq
)

× Ω
(

ǫ2, ǫ2 + ǫ∆′ , ǫq
)

δ
(

ǫ∆ + ǫ∆′
)

, (B54)

where uǫq = (
√
ǫq +

√
ǫS)−1 and

1
τcc,0

=
(2πe20)

2

2π~
2m
~2

=
1
8π

m

~3

e4

ǫ20 κ
2
. (B55)

The boundaries of the integration over ǫ∆ can be deduced from
equation (B44) and are given by

ǫ
max /min
∆ =

(

2
√
ER ±√

ǫq
)2

+ 2
√
ǫ1
(

2
√
ER ±√

ǫq
)

,

(B56)

for ǫq < ǫ1 and

ǫmax
∆ =

(

2
√
ER +

√
ǫq
)2

+ 2
√
ǫ1
(

2
√
ER +

√
ǫq
)

,

(B57)

ǫmin
∆ = ǫq − 2

√
ǫ1ǫq, (B58)

for ǫq > ǫ1, (and accordingly for ǫ∆′).

In order for the delta function to give a contribution, it must
be ǫmax

∆ + ǫmax
∆′ > 0 and ǫmin

∆ + ǫmin
∆′ < 0. The �rst condition is

trivial, and can be omitted. In the case ǫq < ǫ1, the second
condition requires that

(

2
√
ER −√

ǫq
)2

+
(√

ǫ1 +
√
ǫ2
) (

2
√
ER −√

ǫq
)

< 0.
(B59)

This necessitates that
√
ǫq > 2

√
ER, which is just the obser-

vation that q > 2kR that we discuss in detail in the main text.
Under this condition, the inequality is inverted when dividing
by
(

2
√
ER −√

ǫq
)

, and we �nd

(

2
√
ER −√

ǫq
)

+
(√

ǫ1 +
√
ǫ2
)

> 0, (B60)

which is always true for the case ǫq < ǫ1 that we started with.
In the case of ǫq > ǫ1 (in which case we also assert that
ǫq > ǫ2), the condition ǫmin

∆ + ǫmin
∆′ < 0 requires that

√
ǫq <

√
ǫ1 +

√
ǫ2. (B61)

We can now execute the integration over ǫ∆′ , which
is equivalent to setting ǫ∆′ = −ǫ∆ due to the δ func-
tion. The integration over ǫ∆ will then run from ǫmin =
max

(

ǫmin
∆ ,−ǫmax

∆′
)

to ǫmax = min
(

ǫmax
∆ ,−ǫmin

∆′
)

. To �nd themin

or max, we check whether ǫmin/max
∆

+ ǫ
max /min
∆′ > 0, which in

the case of ǫq < ǫ1 is equivalent to

4ER + ǫq + 2
√
ER
(√

ǫ1 +
√
ǫ2
)

∓√
ǫq
(√

ǫ1 −
√
ǫ2
)

> 0.
(B62)

Because |√ǫ1 −
√
ǫ2| ≈

√
kBT ≪ √

ER <
√
ǫq, this is always

true. Furthermore, in the case ǫq > ǫ1 the above condition is
equivalent to

(

2
√
ER +

√
ǫq
)2

+ ǫq+ 2
√

ǫ2/1ER ∓ 2
√
ǫq
(√

ǫ1 −
√
ǫ2
)

> 0,
(B63)

which is satis�ed again because |√ǫ1 −
√
ǫ2| ≪ √

ǫq.
Therefore, ǫmin = ǫmin

∆ and ǫmax = −ǫmin
∆′ . Using these results,

we can now write

1
τcc

=
β

τcc,0

∫

dǫ1

∫

dǫ2

∫ (√ǫ1+
√
ǫ2)2

4ER

dǫq

∫ ǫmax

ǫmin

dǫ∆ u2ǫq

×Φ
1 (ǫ1, ǫ2, ǫ1 + ǫ∆, ǫ2 − ǫ∆) S (ǫ1, ǫ1 + ǫ∆) S (ǫ2, ǫ2 − ǫ∆)

×Ω
(

ǫ1, ǫ1 + ǫ∆, ǫq
)

Ω
(

ǫ2, ǫ2 − ǫ∆, ǫq
)

. (B64)

So far, all manipulations have been exact. We will continue
with a number of approximations to be able to �nd a closed
expression for the relaxation time. The spinor overlap function
S(ǫ1, ǫ1 + ǫ∆, ǫq) takes the form

1
4
ǫq −

(√
ǫ1 −

√
ǫ1 + ǫ∆ + 2

√
ER

)2

(√
ǫ1 +

√
ER
) (√

ǫ1 + ǫ∆ −√
ER
) . (B65)

ǫ∆ is of order kBT and therefore much smaller than ǫ1 ≈ µ and
ER. We therefore expand the denominator in lowest order in
ǫ∆ and drop its dependence in the numerator, which gives

1
4

√
ǫ1
(

ǫq − 4ER
)

+ 2ǫ∆
√
ER√

ǫ1 (ǫ1 − ER)
. (B66)
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Similarly, we approximate Ω(ǫ1, ǫ1 + ǫ∆, ǫq) (de�ned in
equation (B41)) as

1
√

4ǫq
(√

ǫ1 +
√
ER

)2 −
(

−ǫ∆ + ǫq + 4
√
ǫ1ER

)2
. (B67)

Next, we note that ǫ1 and ǫ2 are approximately equal to µ and
variations around this value are on the order of kBT. We can
therefore neglect these variations and replace ǫ1 and ǫ2 by µ
everywhere except for in the Fermi distributions in Φ1. Con-
sequently, we can perform the integrations over ǫ1 and ǫ2. We
use the following expression for Φ1(ǫ1, ǫ2, ǫ1 + ǫ∆, ǫ2 − ǫ∆),

f (ǫ1 + ǫ∆) f (ǫ2 − ǫ∆) [1− f (ǫ1)] [1− f (ǫ2)]

× ([1− f (ǫ1 + ǫ∆)]+ [1− f (ǫ2 − ǫ∆)]+ f (ǫ1)+ f (ǫ2))

+ f (ǫ1) f (ǫ2) [1− f (ǫ1 + ǫ∆)] [1− f (ǫ2 − ǫ∆)]

× ( f (ǫ1 + ǫ∆)+ f (ǫ2 − ǫ∆)+ [1− f (ǫ1)]+ [1− f (ǫ2)]),

(B68)

where the second term gives the same contribution as the �rst,
as can be seen by renaming ǫ1 + ǫ∆ 7→ ǫ2 and ǫ2 − ǫ∆ 7→ ǫ1.
Finally, a straight-forward integration over ǫ1 and ǫ2 gives,

∫

ǫ1

∫

ǫ2 Φ
1(ǫ1, ǫ2, ǫ1 + ǫ∆, ǫ2 − ǫ∆) =

4 ǫ2∆ eβǫ∆

(eβǫ∆ − 1)2
.

(B69)
This gives

1
τcc

=
(kBT)2

τcc,0

∫ 4µ

4ER

dǫq u2ǫq

∫ ǫmax

−ǫmax

β dǫ∆

× 4(βǫ∆)2eβǫ∆

(eβǫ∆ − 1)2
1
16

µ(ǫq − 4ER)2 − 4ǫ2∆ER

µ(µ− ER)2

× 1
√

4ǫq
(√

µ+
√
ER

)2 −
(

ǫq + 4
√
µER + ǫ∆

)2

× 1
√

4ǫq
(√

µ+
√
ER
)2 −

(

ǫq + 4
√
µER − ǫ∆

)2
.

(B70)

We use the lowest order expansion in ǫ∆ and use the substitu-
tion x = βǫ∆ to �nd

1
τcc

=
1

τcc,0

(kBT)2

(µ− ER)2

∫ 4µ

4ER

dǫq
ǫq − 4ER

ǫq(4µ− ǫq)
γ(βǫmax), (B71)

where we have set ǫS = 0 (because its effect on screening can
be neglected), and where we have de�ned

γ(y) =
1
2

∫ y

0
dx

x2ex

(ex − 1)2
. (B72)

Where ǫmax =
√
ǫq(

√
4µ−√

ǫq) ≫ kBT, we can replace

γ(βǫmax) with γ(∞) = π2

6 . This holds everywhere except for
ǫq close to 4µ, which is the upper limit of the ǫq integral and

Figure 2. Approximation of γ(y) as de�ned in equation (B73).

also where the rest of the integrand is logarithmically diver-
gent (due to the (4µ− ǫq)−1 contribution). We therefore have
to split the ǫq integration up into one part close to ǫq = 4µ and
one part further away from this point. As shown in �gure 2, we
can approximate γ(y) as

γ(y) =











π2

6
, if y >

π2

3
,

y

2
, if y 6

π2

3
.

(B73)

We solve βǫmax =
π2

6 for ǫq to �nd

ǫq = 2µ

(

1− π2

6
kBT

µ
+

√

1− π2

3
kBT

µ

)

(B74)

≈ 4µ

(

1− π2

6
kBT

µ

)

= : ǫ∗q. (B75)

We can therefore write

1
τcc

=

∫ 4µ

4ER

dǫq
ǫq − 4ER

ǫq(4µ− ǫq)
γ(βǫmax) (B76)

=
π2

6

∫ ǫ∗q

4ER

dǫq
ǫq − 4ER

ǫq(4µ− ǫq)
+

1
2

∫ 4µ

ǫ∗q
dǫq

ǫq − 4ER√
ǫq(

√
4µ+

√
ǫq)

,

(B77)

and since ǫ∗q ≈ 4µ we can set ǫq = 4µ in the second integral,
which results in

1
τcc

=
π2

6

[

−ER

µ
log(ǫq)−

(µ− ER) log(4µ− ǫq)
µ

]ǫq=ǫ∗q

ǫq=4ER

+
4µ
2

π2

6
kBT

µ

4µ− 4ER

2
√
µ (

√
4µ+

√
4µ)

(B78)

≈ π2

6

(

1− ER

µ

(

1− log

(

ER

µ

))

−
(

1− ER

µ

)

log

(

π2

6
kBT

µ− ER

))

, (B79)

which we de�ne as ρ
(

ER
µ
, kBT
µ−ER

)

. We can therefore write
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1
τcc

=
1

τcc,0

(kBT)2

(µ− ER)2
× ρ

(

ER

µ
,
kBT

µ− ER

)

. (B80)

Using equation (B55) and κ = 10, we �nd τ cc,0 = 10−11s.
For thin �lms of GeTe with µ− ER = 0.1eV [14, 20] and
ER
µ ≈ 0.5, which gives ρ

(

ER
µ , kBT

µ−ER

)

≈ 10 and therefore

yields τ cc ≈ 1µs at T = 100mK as reported in section 4.

Appendix C. The role of spin flips

While the phonon-mediated transitions are prohibited inde-
pendently of spin due to energy–momentum conservation, we
made explicit use of the anti-alignment of spin eigenstate for
low-q inter-band transitions mediated by the Coulomb inter-
action in section 4 and assumed the absence of spin-�ip pro-
cesses. It is however well known that the spin of a carrier
can be �ipped through various different mechanisms, and it is
therefore worthwhile asking whether any of these can enhance
the inter-band scattering rate and ultimately invalidate the
arguments presented in section 4.

The spin of a carrier can either be �ipped through inter-
action with magnetic impurities, which can be disregarded in
high-purity samples, or alternatively through strong spin–orbit
coupling, which is a crucial ingredient of our work. One may
therefore ask whether the spin–orbit coupling of the Rashba
system can induce spin �ips that will lead to fast inter-band
equilibration.

First we note that it is important not to confuse the spin
relaxation timescale with the likelihood for spin-reversing pro-
cesses to occur. We expect spin relaxation to continue to occur
on very short timescales in our system, as spin is not a con-
served quantity in each individual Rashba band and scatter-
ing events that conserve the chiral index will occur at a high
rate. To relax the non-equilibrium carrier con�guration that
we study, spin-reversing inter-band scattering processes are
required and there is no direct relation between their rate and
the spin relaxation timescale.

Next, we note that while spin–orbit coupling by itself leads
to spin mixing of electronic eigenstates, no spin �ips can occur
without a scattering process that mediates it. We have identi-
�ed all relevant scattering processes for the relaxation of the
depicted non-equilibrium state in section 2, and we would now
have to continue by examining the effect of the spin–orbit
coupling onto those mechanisms.

As explained in section 3, phonon-mediated transi-
tions between the Rashba bands are suppressed due to
energy–momentum conservation completely independently of
the relative spin alignments. If we assume a high-purity sam-
ple and ignore carrier–impurity scattering for the moment,
then inter-carrier scattering is the only way of inducing tran-
sitions between states of opposite chirality. We therefore have
to check how the addition of spin–orbit coupling affects these
transitions.

It is important to understand that the momentum-dependent
spin mixing of the Rashba coupling has already been taken
into account explicitly in our calculations in section 4 when
we included the spinor part of the wavefunctions in the matrix

element. It will therefore only be necessary to probe the effect
of momentum-dependent spin mixing to other Bloch bands,
and not between the two Rashba bands.

Phonon-mediated spin–orbit induced spin �ips can be
described using the language of the Elliot–Yafet mechanism
[23], where the momentum-dependent spin mixing to other
Bloch bands is referred to as the Elliot contribution [24],
and the effect of the phonon-modulated spin–orbit interaction
referred to as the Overhauser contribution [25]. For the inter-
carrier scattering, the Overhauser part is absent, and we will
have to focus on the Elliot contribution only. We will now
show that this vanishes up to �rst order in q. As we explain in
section 4, inter-carrier scattering is dominated by low-q tran-
sitions and therefore incompatible with this q dependence of
the Elliot contribution.

We determine the scattering rate for spin-reversing inter-
band processes by adding the spin mixing to another Bloch
band to the transition matrix element in equation (4.4). This
is done by adding the product of the lattice-periodic part uµk
of the Bloch functions ϕµk(r) = exp(ikr)uµk(r) of initial and
�nal state to the real-space integral in the expectation value.
In momentum space, this results in multiplying the outcome
of the result from section 4 with the Fourier transform of the
product of the initial and �nal uµk,

∫

d2 r exp (iqr) u∗µkuµ′k+q. (C1)

Note that the labels µ and µ′ refer to both the Bloch band index
and the pseudospin index that labels the spin degree of free-
dom. We can expand this integral around q = 0 and examine
the leading-order terms. The zeroth order term is the overlap
of the two wavefunctions with same momentum and opposite
spin index, and is zero as the uµk are orthogonal. The term in
�rst order integrates over the r vector,

iq
∫

d2 r u∗µk r uµ′k+q. (C2)

This term however must vanish because it can only exist in
a system that breaks inversion symmetry2. Therefore, we can
conclude that the lowest-order term in the small-q expansion
is proportional to q2.

This is the main reason why typically phonons are consid-
ered as the main source for spin–orbit induced spin-�ips, as
they are able to provide suf�cient change of momentum to be
compatible with the vanishing of the momentum-dependent
spin mixing for small momentum transfer3. In other words, we
can expect the spin mixing to have a similar effect in inhibiting
inter-carrier transitions as the opposing spin alignments of the
Rashba spin texture had in section 4. This leaves us to conclude
this section by summarising that spin–orbit coupling (Rashba

2Note that we refer to the symmetry within the 2D plane, while obvi-
ously the Rashba interaction breaks the inversion symmetry in the direction
perpendicular to the plane.
3Check reference [23] for a detailed discussion of the low-q expansion of the
Elliot–Yafet mechanism.
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coupling and to other Bloch bands) is ineffective in enabling
inter-band transitions to opposite spin states.
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[5] Žutić I, Fabian J and Sarma S D 2004 Rev. Mod. Phys. 76 323
[6] Nitta J, Akazaki T, Takayanagi H and Enoki T 1997 Phys. Rev.

Lett. 78 1335
[7] Miller J B, Zumbühl D M, Marcus C M, Lyanda-Geller Y B,

Goldhaber-Gordon D, Campman K and Gossard A C 2003
Phys. Rev. Lett. 90 076807
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Döring S, Mussler G, Demarina N, Luysberg M, Bihlmayer
G, Schäpers T, Plucinski L, Blügel S,MorgensternM, Schnei-
der C M and Grützmacher D 2015 Nat. Commun. 6 8816

[9] Nguyen T-A, Backes D, Singh A, Mansell R, Barnes C, Ritchie
D A, Mussler G, Lnius M, Grützmacher D and Narayan V
2016 Sci. Rep. 6 27716

[10] Backes D, Huang D, Mansell R, Lanius M, Kampmeier J,
Ritchie D,Mussler G, Gumbs G, Grützmacher D and Narayan
V 2017 Phys. Rev. B 96 125125

[11] Backes D, Huang D, Mansell R, Lanius M, Kampmeier J,
Ritchie D,Mussler G, Gumbs G, Grützmacher D and Narayan
V 2019 Phys. Rev. B 99 125139

[12] Picozzi S 2014 Frontiers Phys. 2 10
[13] Marder M P 2010 Condensed Matter Physics (New Jersey:

Wiley)
[14] Liebmann M, Rinaldi C, Di Sante D, Kellner J, Pauly C, Wang

RN, Boschker J E, Giussani A, Bertoli S, Cantoni M, Baldrati
L, AsaM, Vobornik I, Panaccione G,Marchenko D, Sánchez-
Barriga J, Rader O, Calarco R, Picozzi S, Bertacco R and
Morgenstern M 2016 Adv. Mater. 28 560

[15] Sarma S D and Hwang E H 2015 Sci. Rep. 5 16655
[16] Smidman M, Salamon M B, Yuan H Q and Agterberg D F 2017

Rep. Prog. Phys. 80 036501
[17] Yafet Y 1963 g factors and spin-lattice relaxation of conduction

electrons Solid State Physics vol 14, ed F Seitz and DTurnbull
(New York: Academic)

[18] Zheng L and Das Sarma S 1996 Phys. Rev. B 53 9964
[19] Tsu R, Howard W and Esaki L 1967 Solid State Commun.

5 167
[20] Narayan V, Nguyen T-A, Mansell R, Ritchie D A and Mussler

G 2016 Phys. Status Solidi 10 253
[21] Karvonen J T and Maasilta I J 2007 Phys. Rev. Lett.

99 145503
[22] Lawrence W E and Wilkins J W 1973 Phys. Rev. B 7 2317
[23] Baral A, Vollmar S, Kaltenborn S and Schneider H C 2016 New

J. Phys. 18 023012
[24] Elliott R J 1954 Phys. Rev. 96 266
[25] Overhauser A W 1953 Phys. Rev. 89 689
[26] Narayan V, Verpoort P C, Dan J R A, Backes D, Ford C J B,

Lanius M, Jalil A R, Schüffelgen P, Mussler G, Conduit G J
and Grützmacher D 2019 Phys. Rev. B 100 024504

14

https://orcid.org/0000-0003-1319-5006
https://orcid.org/0000-0003-1319-5006
https://orcid.org/0000-0003-1319-5006
https://orcid.org/0000-0002-0813-2572
https://orcid.org/0000-0002-0813-2572
https://orcid.org/0000-0002-0813-2572
https://doi.org/10.1126/science.1065389
https://doi.org/10.1126/science.1065389
https://doi.org/10.1016/j.physrep.2010.04.002
https://doi.org/10.1016/j.physrep.2010.04.002
https://doi.org/10.1103/revmodphys.76.323
https://doi.org/10.1103/revmodphys.76.323
https://doi.org/10.1088/1367-2630/17/5/050202
https://doi.org/10.1088/1367-2630/17/5/050202
https://doi.org/10.1103/revmodphys.76.323
https://doi.org/10.1103/revmodphys.76.323
https://doi.org/10.1103/physrevlett.78.1335
https://doi.org/10.1103/physrevlett.78.1335
https://doi.org/10.1103/physrevlett.90.076807
https://doi.org/10.1103/physrevlett.90.076807
https://doi.org/10.1038/ncomms9816
https://doi.org/10.1038/ncomms9816
https://doi.org/10.1038/srep27716
https://doi.org/10.1038/srep27716
https://doi.org/10.1103/physrevb.96.125125
https://doi.org/10.1103/physrevb.96.125125
https://doi.org/10.1103/physrevb.99.125139
https://doi.org/10.1103/physrevb.99.125139
https://doi.org/10.3389/fphy.2014.00010
https://doi.org/10.3389/fphy.2014.00010
https://doi.org/10.1002/adma.201503459
https://doi.org/10.1002/adma.201503459
https://doi.org/10.1038/srep16655
https://doi.org/10.1038/srep16655
https://doi.org/10.1088/1361-6633/80/3/036501
https://doi.org/10.1088/1361-6633/80/3/036501
https://doi.org/10.1103/physrevb.53.9964
https://doi.org/10.1103/physrevb.53.9964
https://doi.org/10.1016/0038-1098(67)90511-x
https://doi.org/10.1016/0038-1098(67)90511-x
https://doi.org/10.1002/pssr.201510430
https://doi.org/10.1002/pssr.201510430
https://doi.org/10.1103/physrevlett.99.145503
https://doi.org/10.1103/physrevlett.99.145503
https://doi.org/10.1103/physrevb.7.2317
https://doi.org/10.1103/physrevb.7.2317
https://doi.org/10.1088/1367-2630/18/2/023012
https://doi.org/10.1088/1367-2630/18/2/023012
https://doi.org/10.1103/physrev.96.266
https://doi.org/10.1103/physrev.96.266
https://doi.org/10.1103/physrev.89.689
https://doi.org/10.1103/physrev.89.689
https://doi.org/10.1103/PhysRevB.100.024504
https://doi.org/10.1103/PhysRevB.100.024504

	Chirality relaxation in low-temperature strongly Rashba-coupled systems
	1.  Introduction
	2.  Theoretical framework
	3.  Phonon scattering
	4.  Inter-carrier and impurity-carrier Coulomb scattering
	5.  Discussion and conclusions
	Acknowledgments
	Appendix A.  Condition on excess occupation
	Appendix B.  Relaxation time constants
	B.1.  General considerations
	B.1.1.  Boltzmann equation and scattering integrals.
	B.1.2.  Defining the chirality density.
	B.1.3.  Inducing a Fermi-level detuning.
	B.1.4.  Fermi's golden rule

	B.2.  Impurity scattering
	B.3.  Inter-carrier scattering
	B.3.1.  Inserting Fermi's golden rule and converting sums to integrals


	Appendix C.  The role of spin flips
	ORCID iDs
	References


