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ABSTRACT 

 

Background. Lymphangioleiomyomatosis (LAM) is a rare multisystem disease almost exclusively 

affecting women which causes loss of lung function, lymphatic abnormalities and 

angiomyolipomas. LAM occurs sporadically and in people with tuberous sclerosis complex (TSC). 

Loss of TSC gene function leads to dysregulated mTOR signalling in the affected cells. As mTOR 

signalling is a major determinant of lipid and nucleotide synthesis, we hypothesised that the serum 

metabolome would be altered in LAM and related to disease severity and activity. 

 

Methods. Ultrahigh Performance Liquid Chromatography-Tandem Mass Spectroscopy was used 

to examine the serum metabolome of 79 closely phenotyped women with LAM, including 29 

receiving treatment with an mTOR inhibitor and 43 healthy control women. 

 

Results. Sphingolipid, fatty acid and phospholipid metabolites were associated with percent 

predicted FEV1 in women with LAM (e.g., behenoyl sphingomyelin adj. p = 8.10 x 10-3). Those with 

higher LAM disease-burden scores had abnormalities in fatty acid, phospholipid and lysolipids. 

Rate of loss of FEV1 was associated with differences in acyl-carnitine, acyl-glycines, acyl-

glutamine, fatty acids, endocanbinoids and sphingolipids (e.g., myristoleoylcarnitine adj. p = 0.07). 

In TSC-LAM, rapamycin affected modules of interrelated metabolites which comprised linoleic acid, 

the tricarboxylic acid cycle, aminoacyl-tRNA biosynthesis, cysteine, methionine, arginine and 

proline metabolism. Metabolomic pathway analysis within modules reiterated the importance of 

glycerophospholipid metabolites (adj. p = 0.047). 

 

Conclusions. Our findings show that women with LAM have multiple abnormalities in lipid 

metabolism. The associations between these metabolites, multiple markers of disease activity and 

their potential biological roles in cell survival and signalling, suggest that lipid species may be both 

disease-relevant biomarkers and potential therapeutic targets for LAM. 
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KEY MESSAGES 

 

What is the key question? 

Lymphangioleiomyomatosis (LAM) and Tuberous sclerosis complex (TSC) are monogenic 

diseases resulting in mTOR activation which we predict would alter the metabolic profile of patients 

and confer metabolic advantages to LAM cells. 

 

What is the bottom line? 

Multiple sphingolipid, fatty acid and phospholipid metabolites were associated with disease 

severity, activity and, in subjects with TSC treatment with mTOR inhibitors: suggesting that lipid 

species may be both disease-relevant biomarkers and potential therapeutic targets for LAM. 

 

Why read on? 

This is the first study to comprehensively evaluate the serum metabolome in LAM and consistent 

with recent studies highlighting the role of mTOR in cellular lipid metabolism suggests deranged 

lipid metabolism is of potential relevance to disease pathogenesis in LAM and also highlights 

previously unrecognised differences between those with sporadic and TSC-LAM. 
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INTRODUCTION 

Lymphangioleiomyomatosis (LAM) is a rare multisystem disease which almost exclusively affects 

women. Sporadic LAM results from sequential somatic mutations of either TSC1, or more 

commonly TSC2. In patients with tuberous sclerosis complex (TSC-LAM), loss of TSC gene 

function occurs due to a germline mutation followed by loss of heterozygosity. The TSC proteins 

are suppressors of the mechanistic target of rapamycin (mTOR). Loss of TSC function in an as yet 

unidentified precursor cell leads to dysregulated mTOR signalling and the emergence of a clone of 

‘LAM cells’ (1). mTOR is a multiprotein cellular signalling node which assimilates inputs from 

growth factors and cellular nutrient status (2). Constitutive mTOR activation leads to unregulated 

cell proliferation, migration, invasion of the lungs and lymphatics and altered metabolism. In the 

lungs, LAM cells and wild type stromal cells form nodules which together result in the formation of 

lung cysts, recurrent pneumothorax and progressive loss of lung function (3). Involvement of the 

axial lymphatics can result in lymphadenopathy, fluid-filled lymphatic masses and chylous 

collections in the abdomen and thorax. LAM cells also are a component of angiomyolipoma, a 

benign tumour affecting around half of the women with LAM (4). Pharmacological suppression of 

mTOR stabilises lung function, reduces lymphatic complications and angiomyolipoma volume in 

the majority of those treated (5,6). 

 

The rate of disease progression is highly variable. Loss of FEV1 is perhaps the best-characterised 

marker of progression with a mean loss of FEV1 around 80-140 ml/year in most populations 

studied (5,7). However, some patients remain stable for many years whilst others have a rapid 

clinical course requiring lung transplantation. LAM cells express oestrogen and progesterone 

receptors and proliferate and metastasise in response to oestrogen in vitro and in vivo (8,9). 

Consistent with this, loss of FEV1 is accelerated by pregnancy and slows after the menopause 

(7,10). 

 

mTOR signalling is a major regulator of lipid synthesis, nucleotide synthesis and glucose 

metabolism. By regulating the transcription factor sterol responsive element binding protein 

(SREBP) both via S6 kinase and through phosphorylation of Lipin1, the expression of genes 

involved in fatty acid and cholesterol biosynthesis are regulated. By increasing glycolytic enzyme 

expression, mTOR complex 1 (mTORC1) supports cellular growth by modulating the balance 

between oxidative phosphorylation and glycolysis, increasing the activity of the pentose phosphate 

pathway. mTORC1 also promotes the synthesis of purine and pyrimidine nucleotides (11,12). 

 

We, therefore, reasoned that women with LAM would have alterations of the serum metabolome, 

due to the metabolic effects of mTOR activation. Moreover, these metabolomic changes would be 
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related to disease severity and activity. To answer these questions, we analysed the serum 

metabolome of a cohort of closely phenotyped women with LAM. 

 

METHODS 

 

SUBJECTS AND CLINICAL DATA 

Women with LAM were recruited from the National Centre for LAM in Nottingham UK. All subjects 

had LAM defined by current ATS/JRS criteria (13). All had a clinical assessment, including drug 

history, clinical screening for TSC, lung function and CT scanning of the chest and abdomen to 

detect angiomyolipoma and lymphatic involvement. Menopausal status was recorded and subjects 

were considered post-menopausal if they had had a bilateral oophorectomy or were over 50 years 

of age and had not had a period for 24 months. None of the subjects were using systemic hormone 

therapy. The study was approved by the East Midlands Research Ethics Committee (13/EM/0264). 

Control subjects were 43 healthy women over the age of 18 with no prior history of lung disease 

from three metabolomic studies (supplementary table 1). The use of control samples was approved 

by Nottingham University Ethics Committee (approval BT A27 08 2009). All subjects gave written 

informed consent. 

 

Tertiles of percent predicted FEV1 and DLCO at the time of assessment were generated with tertile 

1, the highest, and tertile 3, the lowest, values. Lung function decline was calculated as the loss of 

FEV1 (ΔFEV1, ml/yr) in the period preceding blood sampling. Rate of loss of lung function was 

based on a period of observation of greater than 1 year for all subjects. 

 

To stratify the whole-body burden of LAM, a disease burden score between 0 and 3 was used. 

Subjects were assigned one point for each of (i) more severe lung disease defined by an FEV1 or 

DLCO of < 60% predicted, (ii) the presence of an angiomyolipoma at the time of assessment and 

(iii) the presence of lymphatic involvement visible on imaging (lymphadenopathy, cystic lymphatic 

mass or chylous effusion). 

 

SERUM SAMPLES 

Blood was collected in serum separator tubes and processed immediately from subjects without 

fasting. Samples were allowed to clot for 30 minutes at room temperature, centrifuged at 10,000 G 

for 10 minutes and stored in aliquots at −80°C until analysis. Serum VEGF-D was determined 

using Quantikine ELISA DVED00 (R&D Systems, Abingdon, UK). 

 

SERUM METABOLOMICS 
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Serum metabolomics was performed by Metabolon© (Morrisville, NC). Samples were prepared 

using the MicroLab STAR® system (Hamilton Company). Proteins were precipitated with methanol 

and the resulting extracts analysed by two separate reverse phases (RP)/UPLC-MS/MS methods 

with positive ion mode electrospray ionization (ESI), one for analysis by RP/UPLC-MS/MS with 

negative ion mode ESI, and one for analysis by HILIC/UPLC-MS/MS with negative ion mode ESI. 

Controls were analysed with the experimental samples including a pooled matrix sample generated 

from experimental samples, extracted water samples as process blanks and quality control 

standards selected not to interfere with endogenous compounds. Experimental samples were 

randomized across the platform run with quality control samples spaced evenly among the 

injections. 

 

The analysis was performed using Ultrahigh Performance Liquid Chromatography-Tandem Mass 

Spectroscopy (UPLC-MS/MS) using a Waters ACQUITY UPLC and a Thermo Scientific Q-

Exactive high resolution/accurate mass spectrometer interfaced with a heated electrospray 

ionization (HESI-II) source and Orbitrap mass analyser operated at 35,000 mass resolution. 

Sample extracts were dried and reconstituted in appropriate solvents. Reconstitution solvents 

contained a series of standards at fixed concentrations to ensure injection and chromatographic 

consistency. Four methods appropriate for different ion types and compounds were used, for all 

identified species including lipids. Raw data were extracted, peak-identified and quality control 

processed. Compounds were identified by comparison to a library of >3,300 commercially 

available purified standard compounds and recurrent unknown entities using the retention 

time/index, mass to charge ratio and chromatographic data. Further details are provided in the 

supplementary methods. 

 

STATISTICAL AND BIOINFORMATIC ANALYSIS 

Full details of the statistical and bioinformatics analysis are presented in the supplementary 

methods. Briefly, normalisation of case and control metabolite samples was performed following 

the workflow described by Shin et al (14) and Krumsiek et al. (15). Each raw metabolite value was 

rescaled to have median 1 to adjust for variation due to instrument run-day tuning differences. 

Missing values were imputed using the KNN-TN method (16). Differential analysis of serum 

metabolites was performed using Limma (17) controlling for the False Discovery Rate (FDR) (18). 

Differential co-expression network analysis was used to detect significant associations between the 

relative abundance of metabolites in differential networks, or modules, between conditions and 

their significance assessed through permutation tests (19). Annotation of metabolites was 

performed using HMDB 4.0 (20) release 2019-01-16. Finally, metabolomic pathway analysis was 
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performed by using MetaboAnalyst 4.0 (21) with significant differential metabolite modules 

detected in the differential network analysis mapped in KEGG pathways. 

 

RESULTS 

 

THE METABOLOME IN LAM 

Seventy-nine women with LAM were studied. The subjects were typical of other reported series: 

having an average age of approximately 50 years at the time of study and had had LAM for an 

average of 13.5 years (table 1). Two-thirds had angiomyolipoma, a quarter had had pneumothorax 

in the past and their mean serum VEGF-D was 1,250 pg/ml. Fifteen per cent had TSC and a third 

were post-menopausal. Twenty-nine were being treated for LAM with rapamycin at the time of the 

study. Although of similar age and BMI (two-sided Wilcoxon signed-rank test p = 0.29 and p = 0.92, 

respectively), those treated with rapamycin tended to have lower values of FEV1 and DLCO (two-

sided Wilcoxon signed-rank test p = 3.9 x 10-4 and p = 4.63 x 10-6, respectively). Further details of 

women with LAM and are given in supplementary tables 2 and 3. 

 

After compound identification, quantification and data curation, 1,326 serum metabolites were 

identified from 122 individuals. Metabolites spanned a wide range of biochemical classes or super-

pathways including 183 Amino Acid (13.8%), 24 Carbohydrate (1.8%), 21 Cofactors and Vitamins 

(1.6%), 10 Energy (0.8%), 471 Lipid (35.5%), 32 Nucleotide (2.4%), 79 Peptide (6%) and 115 

Xenobiotics (8.7%) and a remaining group of 391 untargeted metabolites (29.5%). A heatmap of 

the log-transformed corrected metabolites levels with colour-coded sidebars that depict the groups 

considered in the analysis is presented in figure 1. Super-pathways are also highlighted and 

metabolites hierarchically clustered. 

 

We examined how individual metabolites varied with the presence or absence of LAM. Using an 

FDR of 10%, there were no differences in the abundance of individual metabolites between women 

with LAM who had not received rapamycin and healthy control women (supplementary table 4). 

Control metabolomic profiles were quite variable. Hierarchical clustering showed that there was no 

segregation between control samples from the current study and companion metabolites studies 

(supplementary figure 1). Variation was lower in women with LAM and differences in the metabolic 

profile were observed when women with LAM were stratified according to menopausal status, lung 

function, disease burden and disease activity (table 2). 

 

ASSOCIATION OF METABOLIC CHANGES WITH DISEASE SEVERITY AND ACTIVITY 
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To test the hypothesis that dysregulation of the metabolome was related to disease severity and 

activity, individuals with LAM were stratified according to the severity of their lung disease, the 

whole-body burden of LAM and rate of loss of FEV1. As we suspected that mTOR inhibition would 

affect the metabolome, we restricted this analysis to the 50 subjects who had not received 

rapamycin. Subjects were grouped into tertiles of FEV1 and DLCO (tertile 1 highest values, tertile 3 

lowest, see supplementary table 3). Comparing tertiles 1 and 2 applying a 10% FDR, reductions 

were seen in sphingolipids (behenoyl sphingomyelin (adj. p = 8.10 x 10-3), lignoceroyl 

sphingomyelin (adj. p = 8.10 x 10-3), lactosyl-N-behenoyl-sphingosine (adj. p = 3.06 x 10-2), 

tricosanoyl sphingomyelin (adj. p = 6.23 x 10-2) and palmitoyl dihydrosphingomyelin (adj. p = 9.75 x 

10-2)), fatty acids (eicosenoylcarnitine (adj. p = 8.68 x 10-2)), phospholipids (1-palmityl-2-stearoyl-

GPC (adj. p = 8.10 x 10-3)) and pantothenate (adj. pantothenate (adj. p =9.75 x 10-2)), see 

supplementary figure 2. Full details are presented in supplementary table 5. There were no 

significant associations between metabolites and DLCO (table 2). 

 

To examine the relationship between the metabolome and the whole body burden of LAM, we then 

stratified subjects by a score that reflected the presence of disease in the lungs, lymphatic tissue 

and angiomyolipomas (score 0 lowest disease burden, score 3 highest disease burden, see 

supplementary table 3). Those with the highest disease-burden score had abnormalities in four 

fatty acid, four phospholipid and one lysolipid metabolite (supplementary table 5). Stearoylcholine, 

lineloylcholine, palmitoylcholine, oleylcholine, docosahexaenoylcholine, arachadonycholine, 

eicosapentaenoylcholine, dihomo-linolenoyl-choline and 2-stearoyl-GPI (18:0) differed in 

abundance across levels of disease burden, tending to be lower in more extensive disease (figure 

2 and supplementary figure 3). Although the same pathways were associated with both lung 

function and disease burden, the individual metabolites within these pathways differed 

(supplementary table 5). 

 

Rate of loss of FEV1 was used as a measure of disease activity. Subjects were divided into tertiles, 

with 1 being the lowest (best) rate of FEV1 loss. Changes in abundance of 22 metabolites, at an 

FDR of 10% were observed between those with the lowest ΔFEV1 in tertile 1 and those with the 

fastest ΔFEV1 in tertile 3 (figure 3). Again, metabolites associated with ΔFEV1 were almost all lipid-

based comprising eight acyl-carnitine, one acyl-glycine, one acyl-glutamine, five fatty acid, three 

endocanbinoid and two sphingolipids (table 3 and supplementary table 5). 

 

METABOLIC CHANGES POST-MENOPAUSE 

Several studies have reported that the mean rate of loss in FEV1 is slower in post-menopausal 

than pre-menopausal women with LAM (7,10). We, therefore, compared the metabolome of the 33 
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pre- and 17 post-menopausal women who had not been treated with rapamycin. In post-

menopausal women, as expected, 18 sex steroid metabolites were altered (supplementary table 4 

and supplementary figure 5). Metabolomic pathway analysis identified that menopausal status was 

associated with significant enrichment of the steroid hormone biosynthesis pathway 

(supplementary figure 6). Also, 14 acyl-carnitine, one acyl-glycine, one acyl-glutamine 12 

phospholipids, five fatty acids, five diacylglycerols and two secondary bile acid metabolites were 

altered (supplementary table 4). 

 

EFFECT OF RAPAMYCIN ON THE SERUM METABOLOME 

Women with sporadic LAM treated with rapamycin had similar metabolomic profiles to those not 

treated with rapamycin. In contrast, in those with TSC-LAM, rapamycin affected a network of 

interrelated metabolites whose significance was assessed by empirical p-value < 0.1. Although no 

individual metabolites significantly differed in abundance (supplementary figure 4), changes in 

related groups of metabolites were identified as differential co-expression networks or ‘modules’. 

The modules, arbitrarily described by colours, are described in detail in supplementary table 6. 

These modules were not detected if a co-expression network analysis was performed separately 

on TSC-LAM samples with and without rapamycin treatment (supplementary figure 7). The 

relationship between modules, suggests these metabolites are either interdependent or affected in 

a similar manner by mTOR inhibition (figure 4). Individual modules (blue, tan and magenta) were 

also significantly negatively associated with FEV1, while FEV1, a measure of disease activity, was 

significantly positively correlated with the blue module. These associations were not seen in 

subjects treated with rapamycin (figure 5B), suggesting they are downstream of mTORC1.  

Metabolomic pathway analysis of the individual modules again shows a significant contribution 

from glycerophospholipid metabolites that are altered by treatment with rapamycin (figure 5A). 

 

DISCUSSION 

This study is the first to comprehensively examine the serum metabolome in a large cohort of 

women with LAM. Sphingolipid and fatty acid metabolism were associated with the severity of lung 

disease, total body burden of LAM and disease activity defined by the rate of loss of FEV1. 

Comparison of mTOR inhibitor treated and untreated women showed changes in metabolite 

networks incorporating glycerophospholipid metabolites in subjects with TSC-LAM but not sporadic 

LAM. These findings are likely to reflect the altered metabolism of the LAM cell with metabolites 

related to disease activity and severity. 

 

We observed that FEV1, a measure of airflow limitation, was related to sphingolipid and fatty acid 

metabolism, although this was not a simple relationship with the greatest abnormalities seen in 
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those with moderate impairment (tertile 2). Airflow limitation in LAM is thought to be due to loss of 

elastic recoil resulting from parenchymal destruction and these metabolomic alterations may reflect 

the amount of parenchymal involvement. However, as we observed that the same metabolomic 

pathways were also related to the rate of loss of FEV1, a measure of disease activity, it is also 

possible that FEV1 tertile 2 contained those with the most active disease, both in terms of disease 

progression and mTOR driven metabolic changes. Subjects with better-preserved FEV1 (tertile 1) 

may have less active disease and those with the most advanced disease (tertile 3) may have 

reached a ‘burned out’, less metabolically active stage. This idea is supported by the strong linear 

association between acyl-carnitine fatty acid and sphingolipid metabolism with the rate of FEV1 

loss, suggesting changes in the lipidome are associated with both disease extent and activity. 

 

We reasoned that at least some of the metabolic changes observed would be related to the 

number of LAM cells in the body. The disease’s clinical phenotype, and hence LAM cell burden, is 

variable with some having extensive lymphatic involvement or large angiomyolipomas and others 

having only lung disease. It is not currently possible to accurately determine the ‘whole-body 

burden’ of LAM cells, particularly as some organ involvement is likely to be sub-clinical (22). We 

therefore, used a simple score comprising mild or more advanced lung disease, the presence of 

angiomyolipoma and lymphatic involvement visible by clinical imaging. As we predicted, this 

‘disease burden’ score was associated with the degree of metabolic abnormality in acyl-choline 

fatty acid metabolism and phospholipids. 

 

The observations that LAM is one of the most female-specific diseases described, that rate of loss 

of FEV1 is lower in postmenopausal women (7,10), can be exacerbated by pregnancy (23,24) and 

occurs earlier in those exposed to oestrogen containing contraceptives (25), suggest that LAM is 

likely to be oestrogen driven and we had expected the metabolome to reflect increased disease 

activity in pre-menopausal women. As expected, there were widespread changes in sex steroid 

metabolism between pre- and post-menopausal women with LAM. We also observed changes in 

phospholipid and acyl-carnitine fatty acid metabolism. Whilst it is tempting to speculate this change 

is related to reduced disease activity as a result of lower oestrogen levels, the menopause in 

healthy women is also associated with changes in acyl-carnitine, fatty acid and 

lysophosphatidylcholine metabolism (26) and we are unable to relate the changes observed here 

to a specific set of processes. 

 

The molecular defect in the TSC proteins and the impressive reduction in lung function decline 

during mTOR inhibitor therapy suggests that mTOR activation is the key driver of LAM and TSC 

(1,5). In our study, the metabolic abnormalities associated with disease extent and activity are 
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almost exclusively comprised of lipids, particularly sphingolipids, phospholipids and acyl-carnitine 

fatty acids, reflecting metabolic processes downstream of mTOR. As an investigation in a 

monogenic disease characterised by mTOR dysregulation; our study provides a translational 

link between basic mTOR biology and disease. The changes observed represent a metabolic 

signature of increased fatty acid synthesis and uptake which is also a characteristic of cancer cells 

(27,28). Glycerophospholipid and sphingolipid metabolites are also associated with airflow 

obstruction in patients with COPD, whilst mTOR can be activated to some degree in COPD it is 

also possible these changes are a response to tissue damage (29). mTORC1 and 2 stimulate 

expression and processing of SREBP1 and suppress its negative regulator LIPIN1. SREBP1 is 

a transcription factor responsible for the expression of the fatty acid synthases, ATP citrate 

lyase, fatty acid synthase, acetyl-CoA carboxylase 1 and stearoyl-CoA desaturase. In addition, 

mTORC1 further stabilises these gene transcripts to enhance fatty acid synthesis and enhances 

fatty acid uptake via CD38. Lipidomic profiling of TSC2 null murine fibroblasts has similarly 

shown an increase in multiple lipid species including phosphatidylcholine, 

lysophosphatidylcholines, phospholipids, sphingomyelins and acylglycerols (30). Inhibition of 

mTOR signalling with rapamycin in TSC2 null murine fibroblasts did not suppress the 

overproduction of most lipid species, whereas downregulation of SREBP1 did, perhaps as 

SREBP1 is known to be only partially rapamycin sensitive (31). These observations are 

consistent with our findings showing that serum lipid abnormalities were only affected by 

rapamycin therapy in subjects with TSC where although groups of metabolites, or modules, 

were altered by rapamycin therapy, only glycerophospholids were clearly differently abundant in 

those receiving rapamycin. Also consistent with mTOR activity governing the metabolome in 

LAM was the observation that the associations between metabolite networks with lung function 

and disease activity were not seen in subjects who were being treated with rapamycin. 

 

The LAM cell, analogous to a cancer cell, is likely to use altered lipid metabolism to support cell 

membrane synthesis: as constituents of membrane lipid rafts, saturated and monounsaturated 

phospholipids, potentially protect cancer cells from oxidative damage by reducing lipid peroxidation 

(32). As second messengers, lipids, including sphingosine 1-phosphate, promote cell 

proliferation and migration and in turn feedback to activate mTOR signalling (28). Depletion of 

SREBP1 and 2 reduces monounsaturated fatty acids, resulting in mitochondrial dysfunction, the 

accumulation of reactive oxygen species and endoplasmic reticulum stress (33). Inhibitors of 

various lipid synthetic enzymes are currently in clinical trials for cancer and may also have 

therapeutic potential in conjunction with mTOR inhibitors for LAM and TSC. 
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The metabolomic platform used identifies metabolites based upon a combination of three 

MS/MS criteria referenced against library data of over 3,300 purified standards. Whilst no 

targeted assays are performed the approach has been extensively applied and validated (34). 

We were surprised to observe that after statistical corrections, healthy women and those with 

LAM did not have different metabolic profiles. The healthy control samples were variable, with 

no apparent clustering dependent upon the source of the control sample. In addition, within 

women with LAM, significant metabolic changes in response to rapamycin were only observed 

in patients with TSC-LAM. Whilst TSC and sporadic LAM have the same underlying molecular 

abnormality (35), those with TSC-LAM may have larger changes in lipid metabolism, due to 

other TSC related tumours and perhaps widespread haplo-insufficiency for TSC. 

 

LAM is a rare disease with a variable clinical phenotype and despite this being the largest 

metabolic analysis in LAM to date, the relatively small sample size reduces the statistical power to 

detect differential metabolites which may account for some of the unexpected results we have 

observed: in particular between healthy women and those with LAM not treated with rapamycin. 

Possible approaches would be to define a more liberal level of significance or FDR although this 

may increase false positive observations. Alternatively, pooling ‘similar’ metabolites (36), such as 

those that belong to the same KEGG pathway, could increase power. 

 

In conclusion, we have performed the largest comprehensive metabolomic study in women with 

LAM to date and have demonstrated multiple abnormalities in lipid metabolism, particularly, 

sphingo- and phospho-lipids, and the fatty acids acyl-carnitine, acyl-choline and acyl-glycine. 

These changes are poorly responsive to rapamycin, the only proven effective therapy for LAM and 

are likely to contribute to LAM cell growth, survival and resulting lung damage. The associations 

between these metabolites, multiple markers of disease activity and their potential roles in cell 

survival and signalling, suggest that lipid species may be both disease-relevant biomarkers and 

potential therapeutic targets. 
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TABLES 

 

Table 1. Patient characteristics. 

 

 All subjects 
No rapamycin 

treatment 

Rapamycin 

treated 

Sample size 79 50 29 

Age (yrs) 49.6 (11.1) 50.6 (10.9) 48.0 (11.5) 

BMI (kg/m2) 25.6 (6.1) 25.6 (6.2) 25.5 (6.1) 

Disease duration (yrs) 13.5 (11.0) 13.9 (11.1) 12.8 (11.0) 

Post menopause (%) 33 22 11 

Phenotype 

TSC (%) 15 14 17 

Angiomyolipoma (%) 65 72 52 

Lymphatic involvement (%) 18 16 21 

Pneumothorax (%) 25 30 17 

Serum VEGF-D (pg/ml) 1,250 (1,201) 1,287 (1,165) 1,182 (1,284) 

Lung function 

FEV1 (% predicted)  62 (21) 69 (21) 50 (17) 

DLCO (% predicted)  55 (16) 60 (16) 43 (11) 

pre-treatment ΔFEV1 (ml/yr) -77 (168) -54 (91) -113 (241) 

 

Group means (standard deviation) of subjects stratified by treatment with rapamycin. BMI = Body 

mass index; TSC = tuberous sclerosis complex; VEGF-D = vascular endothelial growth factor-D; 

FEV1 = forced expiratory volume in one second (ml); DLCO = diffusing capacity of the lung for 

carbon monoxide (ml/min/kPa); ΔFEV1 = annual decline in forced expiratory volume (ml/yr). 
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Table 2. Number of differential metabolites identified. 

 

Groups 

Age covariate removed Age covariate not removed 

< 0.10% 
FDR 

< 0.10% FDR & 
|log2 FC| > 0.4 

< 0.10% 
FDR 

< 0.10% FDR & 
|log2 FC| > 0.4 

LAM untreated vs healthy women 0 0 - - 

LAM pre-menopause untreated vs 
LAM post-menopause untreated 

- - 68 40 

mTOR inhibition     

TSC-LAM untreated vs TSC-LAM 
rapamycin treated 

0 0 - - 

Sporadic LAM untreated vs 
sporadic LAM rapamycin treated 

0 0 - - 

TSC-LAM untreated vs sporadic 
LAM untreated 

1 0 - - 

TSC-LAM rapamycin treated vs 
sporadic LAM rapamycin treated 

9 2 - - 

FEV1     

T1 vs T2  11 0 - - 

T2 vs T3  0 0 - - 

T1 vs T3  0 0 - - 

T1 vs T2 & T3 0 0 - - 

DLCO     

T1 vs T2  0 0 - - 

T2 vs T3  0 0 - - 

T1 vs T3  0 0 - - 

T1 vs T2 & T3 0 0 - - 

Disease burden     

S0 vs S1 1 0 - - 

S1 vs S2 0 0 - - 

S2 vs S3 32 20 - - 

S0 vs S1, S2 & S3 10 9 - - 

Disease activity     

ΔFEV1 T1 vs T2  0 0 - - 

ΔFEV1 T2 vs T3  3 2 - - 

ΔFEV1 T1 vs T3  22 2 - - 

ΔFEV1 T1 vs T2 & T3 3 0 - - 

 

Number of differential metabolites at 10% FDR threshold and at 10% FDR threshold with |log2 Fold 

Change (FC)| > 0.4 after removing the effect of sex, BMI, ethnicity, study covariate (only in ‘LAM 
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untreated vs healthy women’ contrast) and experimental run day and excluding metabolites of 

unknown identity and the ‘Xenobiotics’ super-pathway. TSC = tuberous sclerosis complex; VEGF-

D = vascular endothelial growth factor-D (pg/ml); FEV1 = forced expiratory volume in one second 

(ml); ΔFEV1 = annual decline in forced expiratory volume (ml/yr). OBD = overall disease burden 

score; T = tertile, 1 highest, 3 lowest. For group definitions, see supplementary table 3. Full results 

are presented in supplementary tables 4 and 5. 
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Table 3. Lipid mediators associated with rate of loss of FEV1. 

 

Biochemical name Sub-pathway 
ΔFEV1 T1 vs T2 ΔFEV1 T2 vs T3 ΔFEV1 T1 vs T3 ΔFEV1 T1 vs T2 & T3 

FC Adj. p FC Adj. p FC Adj. p FC Adj. P 

myristoleoylcarnitine (C14:1)* Acyl carnitine -0.107 0.998 -0.338 0.165 -0.445 0.070 -0.377 0.812 

laurylcarnitine (C12) Acyl carnitine -0.149 0.998 -0.266 0.256 -0.415 0.070 -0.376 0.812 

palmitoleoylcarnitine (C16:1)* Acyl carnitine -0.068 0.998 -0.243 0.160 -0.311 0.070 -0.253 0.812 

oleoyl ethanolamide Endocanbinoid -0.022 0.998 -0.191 0.154 -0.213 0.070 -0.152 0.859 

N-palmitoylglycine Acyl glycine -0.017 0.998 -0.164 0.154 -0.182 0.070 -0.107 0.859 

palmitoyl ethanolamide Endocanbinoid -0.019 0.998 -0.151 0.154 -0.170 0.070 -0.103 0.859 

sphingomyelin (d18:2/24:1, d18:1/24:2)* Sphingolipid 0.018 0.998 -0.153 0.047 -0.135 0.070 -0.080 0.859 

ximenoylcarnitine (C26:1)* Acyl carnitine -0.148 0.968 -0.056 0.705 -0.204 0.073 -0.294 0.039 

adrenate (22:4n6) Fatty acid -0.036 0.998 -0.295 0.160 -0.331 0.078 -0.229 0.859 

dihomolinoleate (20:2n6) Fatty acid -0.028 0.998 -0.293 0.160 -0.321 0.078 -0.220 0.859 

docosapentaenoate (n6 DPA; 22:5n6) Fatty acid -0.006 0.998 -0.246 0.154 -0.252 0.078 -0.192 0.859 

dihomolinolenate (20:3n3 or 3n6) Fatty acid -0.024 0.998 -0.177 0.160 -0.201 0.078 -0.153 0.859 

oleoylcarnitine (C18) Acyl carnitine -0.076 0.998 -0.101 0.371 -0.176 0.078 -0.178 0.751 

sphingomyelin (d18:1/24:1, d18:2/24:0)* Sphingolipid -0.034 0.998 -0.068 0.275 -0.102 0.078 -0.094 0.858 

allantoin Purine 0.190 0.263 -0.011 0.943 0.179 0.078 0.308 0.006 

hexanoylglutamine Acyl glutamine -0.056 0.998 -0.328 0.175 -0.384 0.082 -0.226 0.859 

suberoylcarnitine (C8-DC) Acyl carnitine -0.038 0.998 -0.323 0.160 -0.361 0.082 -0.206 0.859 

docosadienoate (22:2n6) Fatty acid -0.028 0.998 -0.245 0.160 -0.272 0.082 -0.173 0.859 

linoleoyl ethanolamide Endocanbinoid -0.031 0.998 -0.165 0.175 -0.196 0.082 -0.142 0.859 

palmitoylcarnitine (C16) Acyl carnitine -0.062 0.998 -0.092 0.371 -0.154 0.085 -0.133 0.859 

gamma-glutamylalanine 
Gamma-glutamyl 
amino acid 

0.071 0.998 0.106 0.371 0.178 0.085 0.121 0.859 

eicosenoylcarnitine (C20:1)* Acyl carnitine -0.097 0.998 -0.068 0.565 -0.164 0.097 -0.179 0.751 
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Lipid mediators associated with rate of change of FEV1 (ΔFEV1) (ml/yr) at 10% FDR. Metabolites are ranked by significance and -log2 Fold 

Change comparing the largest difference, Tertile 1 (T1, lowest (best) ΔFEV1) with T3 (greatest (worst) ΔFEV1). Adj. p = adjusted p-value, FC = -

log2 Fold Change. Red and blue cells indicate metabolites that are significantly different between conditions at 10% FDR with |log2 FC| > 0.4 

and metabolites significant at 10% FDR with |log2 FC| < 0.4, respectively. *Compounds identified without confirmation by a standard. Volcano 

plot of ΔFEV1 T1 vs T3 is shown in figure 3. Full results are presented in supplementary table 5. 
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FIGURE LEGENDS 

 

Figure 1. Heatmap of log-transformed metabolite levels after correcting for confounding 

factors. Hierarchically clustered metabolites (horizontal) stratified by super-pathway and 

participants of the study (vertical) stratified by healthy controls and women with LAM pre- and post-

menopause with and without rapamycin treatment (greyscale colour code); patients with TSC-LAM 

and sporadic LAM with and without rapamycin treatment (red scale); FEV1 = forced expiratory 

volume in one second (ml) (blue scale); DLCO = diffusing capacity of the lung for carbon monoxide 

(ml/min/kPa) (green scale); overall disease burden (orange scale); disease activity based on 

ΔFEV1 = annual decline in forced expiratory volume (ml/yr); T = tertile, 1 highest, 3 lowest. S = 

score, 0 lowest, 3 highest. For group definitions, see supplementary table 3. 

 

Figure 2. Volcano plot of fatty acids and phospholipids across overall disease burden. 

Significantly different metabolites at 10% False Discovery Rate (FDR) (y-axis) with |log2 Fold 

Change (FC)| > 0.4 (x-axis) in patients not treated with rapamycin between overall disease burden 

score S0 (lowest, n = 8) and scores S1 (n = 17), S2 (n = 23) and S3 (highest, n = 2) (for group 

definitions, see supplementary table 3). Red, blue, green and grey dots indicate metabolites that 

are significantly different between conditions at 10% FDR with |log2 FC| > 0.4, metabolites 

significant at 10% FDR with |log2 FC| < 0.4, non-significant at 10% FDR with |log2 FC| > 0.4 and 

overall NS = non-significant, respectively. *Compounds identified without confirmation by a 

standard. Full results are presented in supplementary table 5. 

 

Figure 3. Volcano plot of metabolic changes in patients with rate loss of FEV
1
. Significantly 

different metabolites at 10% False Discovery Rate (FDR) (y-axis) with |log
2
 Fold Change (FC)| > 

0.4 (x-axis) in patients not treated with rapamycin with ΔFEV1
1
 T1 (n = 13) and ΔFEV

1
 T3 (n = 12) 

(for group definitions, see supplementary table 3). Red, blue and grey dots indicate metabolites 

that are significantly different between conditions at 10% FDR with |log
2
 FC| > 0.4, metabolites 

significant at 10% FDR with |log
2
 FC| < 0.4 and overall NS = non-significant, respectively. 

*Compounds identified without confirmation by a standard. Full results are provided in 

supplementary table 5. 

 

Figure 4. Differential co-expression network analysis after mTOR inhibitor treatment. (A) 

Dendrogram showing clustering of differential co-expressed metabolites (modules) based on TSC-

LAM samples without (n = 5) and with (n = 7) mTOR inhibitor treatment (for group definitions, see 

supplementary table 3). Top bar: metabolites with |log2 FC| > 0.4 (green); bottom colour bar: 
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colours identify 15 modules generated by unsupervised hierarchical clustering. (B) Comparative 

correlation heat map (red corresponds to positive correlations, blue to negative correlations). The 

upper diagonal matrix shows the correlation between pairs of metabolites in the TSC-LAM 

rapamycin group while the lower diagonal matrix shows the correlation between pairs of 

metabolites in the TSC-LAM untreated group. Modules are identified in the heatmap by colour-

coded squares and on the top by a colour bar. (C) Significance of the identified differential co-

expressed metabolites and covariation between modules (empirical p-values inside each modules 

pair). Modules are identified on the top by a colour bar with number of metabolites in each module. 

 

Figure 5. Pathway analysis of modules affected by mTOR inhibition. Differential co-expressed 

metabolites (modules) pathway analysis and correlation with clinical phenotypes in the TSC-LAM 

samples without (n = 5) and with (n = 7) rapamycin treatment (for group definitions, see 

supplementary table 3). (A) Scatterplots depicting -log10 p-values of the metabolomic pathway 

analysis (y-axis) and impact values from topology pathway analysis (x-axis). For each significant 

module (empirical p-value < 0.1) with at least one significant pathway, metabolomic pathways 

detected at 10% Holm–Bonferroni correction are highlighted (full results are presented in 

supplementary table 6). Modules are identified by the colour bar, dot sizes are proportional to the 

number of altered metabolites within the pathway. (B) Table of correlations and p-values for 

studying the relationships between modules ‘eigen-metabolites’ (rows) and selected clinical traits 

(columns) in TSC-LAM samples without (left) and with (right) rapamycin treatment. Significant 

Spearman correlations at 10% nominal level of significance and corresponding p-values are 

reported inside the tables. 
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SAMPLE PROCESSING AND ANALYSIS 

All samples were maintained at -80oC until processed. Quality control recovery standards were 

added prior to extraction for QC purposes. Samples were prepared using the MicroLab STAR® 

system (Hamilton Company). Proteins were precipitated with methanol by shaking for 2 minutes 

followed by centrifugation. The resulting extract was divided into five fractions: two for analysis by 

two separate reverse phase (RP)/UPLC-MS/MS methods with positive ion mode electrospray 

ionization (ESI), one for analysis by RP/UPLC-MS/MS with negative ion mode ESI, one for 

analysis by HILIC/UPLC-MS/MS with negative ion mode ESI, and one backup. The organic 

solvent was removed using a TurboVap® (Zymark). Sample extracts were stored overnight under 

nitrogen before preparation for analysis. Controls analysed with the experimental samples 

comprised a pooled matrix sample generated by taking a small volume of each experimental 

sample as a technical replicate throughout the data set, extracted water samples as process 

blanks and various QC standards selected not to interfere with the endogenous compounds were 

spiked into every analysed sample, allowed instrument performance monitoring and aided 

chromatographic alignment. Instrument variability was determined by calculating the median 

relative standard deviation (RSD) for the standards that were added to each sample prior to 

injection into the mass spectrometers. Overall process variability was determined by calculating 

the median RSD for all endogenous metabolites present in all pooled matrix samples. 

Experimental samples were randomized across the platform run with QC samples spaced evenly 

among the injections. 

 

ULTRAHIGH PERFORMANCE LIQUID CHROMATOGRAPHY-TANDEM MASS 

SPECTROSCOPY (UPLC-MS/MS) 

All methods utilized a Waters ACQUITY ultra-performance liquid chromatography (UPLC) and a 

Thermo Scientific Q-Exactive high resolution/accurate mass spectrometer interfaced with a 

heated electrospray ionization (HESI-II) source and Orbitrap mass analyser operated at 35,000 

mass resolution. Sample extracts were dried and reconstituted in solvents compatible with each 

of the four methods. Reconstitution solvents contained a series of standards at fixed 

concentrations to ensure injection and chromatographic consistency. 

1. Using acidic positive ion conditions, chromatographically optimized for more hydrophilic 

compounds. Extracts were gradient eluted from a C18 column (Waters UPLC BEH C18-

2.1x100 mm, 1.7 µm) using water and methanol, containing 0.05% perfluoropentanoic acid 

(PFPA) and 0.1% formic acid (FA). 

2. Using acidic positive ion conditions, optimised for more hydrophobic compounds at a higher 

organic content. 
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3. Using basic negative ion optimised conditions on a separate C18 column. The basic 

extracts were gradient eluted using methanol and water, with 6.5mM Ammonium 

Bicarbonate at pH 8. 

4. Via negative ionization following elution from a HILIC column (Waters UPLC BEH Amide 

2.1x150 mm, 1.7 µm) using a water/acetonitrile with 10mM Ammonium Formate, pH 10.8 

gradient. The MS analysis alternated between MS and data-dependent MSn scans using 

dynamic exclusion. The scan range varied slighted between methods but covered 70-1000 

m/z. 

 

DATA EXTRACTION AND COMPOUND IDENTIFICATION 

Raw data were extracted, peak-identified and QC processed at Metabolon© as described 

previously (1). The platform and compound identification algorithm uses biochemical 

identifications based on three criteria: 1) the retention index within a narrow RI window of the 

proposed identification, 2) mass match to the library +/- 10 ppm, and MS/MS forward and reverse 

scores between experimental data and standards. The MS/MS scores are based on a 

comparison of ions present in the experimental spectrum to those present in the library spectrum.  

The combined use of all three data points is used to distinguish and differentiate compounds. 

Over 3300 purified standards are registered in LIMS for analysis for determination of their 

identity. 

 

CONTROL GROUP 

To increase study power, 21 control samples from the current study were merged with female 

controls from two companion metabolites studies available from the NIHR BioResource Rare 

Diseases, University of Cambridge, resulting in 43 controls subjects. All were healthy women 

over the age of 18 with no prior history of lung disease (supplementary table 1). 

 

LAM GROUP 

The LAM subjects comprised 79 women recruited from the National Centre for LAM in 

Nottingham UK between 2011 and 2018. All subj 

ects had LAM defined by current ATS/JRS criteria (2). Subjects had a clinical assessment, 

comprising CT of the chest, abdomen and pelvis, screening for TSC, full lung function. At follow 

up visits, lung function FEV1 and DLCO were measured. The study was approved by the East 

Midlands Research Ethics Committee (13/EM/0264) and all participants gave written informed 

consent. 

Prospective change in FEV1 was calculated by the regression slope of all FEV1 values (ΔFEV1) 

and expressed as change in ml/year. Only subjects with greater than one year of observations 

were included for calculation of ΔFEV1. 
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Serum VEGF-D was determined using Quantikine ELISA DVED00, (R&D Systems, Abingdon, 

UK). 

For exploratory analyses, subjects were categorised into those with mild and more severe 

disease based upon lung function and disease activity defined by ΔFEV1. Subjects were also 

segregated by menopausal status and treatment with rapamycin. 

 

DATA PRE-PROCESSING 

Normalisation and imputation of case and control samples serum metabolites were performed 

following the workflow presented in (1) and (3). Relevant normalisation (N) steps can be 

summarised as follows: (N.1) Untargeted metabolites and metabolites belonging to ‘Xenobiotics’ 

biochemical class were removed from the analysis, reducing the number of targeted metabolites 

to 820; (N.2) After checking the proportion of missing values across samples and metabolites, no 

metabolites were removed. (N.3) Each metabolite raw value was rescaled to have median 1 to 

adjust for variation due to instrument run-day tuning differences; (N.4) A log transformation with 

base 10 was applied to all the metabolites; (N.4) After transformation, data points lying more than 

4 standard deviations from the mean of each metabolite concentration were excluded. For the 

imputation (I) of missing values, we employed the KNN-TN method of (4) which consists of the 

following steps: (I.1) Estimation of the detection level (DL) of the machine to be the minimum 

observed value for the whole dataset; (I.2) Maximum Likelihood Estimation (MLE) of μm and σm, 

assuming that each metabolite m (m = 1,…,820) follows a left-truncated (on the DL) Gaussian 

distribution with mean μm and standard deviation σm; (I.3) Standardisation of each metabolite 

using the MLEs of μm and σm; (I.4) For each metabolite m with a missing value in sample i, 

detection of its K = 10 closest metabolites (which have an observed value for their ith sample) 

using the k-nearest neighbours algorithm; (I.5) Imputation of the missing value with a weighted 

average of the K values found in (I.4). The weights are functions of the Pearson correlations 

between the metabolite with missing values and its K closest metabolites; (I.6) Transformation of 

each metabolite back to the original scale as it was before step (I.3). 

 

DIFFERENTIAL ANALYSIS 

Differential analysis of 820 targeted serum metabolites was performed by using Limma (5) after 

correcting for BMI, ethnicity and run day (recording which samples were run on which days 

relative to each other) using a linear mixed model (6) with study and run day as crossed random 

effects. We also corrected for age when the hypothesis to test did require the assessment of its 

effect on the metabolites’ levels, and ‘study’ covariate as a third crossed random effect when we 

tested differences between LAM women not treated with rapamycin and healthy controls (since 

we added two extra control groups from the companion metabolites studies). Significant 

differential metabolites were declared at 10% FDR (7). 
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DIFFERENTIAL NETWORK ANALYSIS 

Based on the WGCNA package (8), Differential Network Analysis (9) allows the detection of 

differential networks (modules) between conditions. Relevant steps of this method include: (S.1) 

Build correlation matrix C within each condition. We used robust Spearman's rank correlation 

coefficient to calculate the correlation between any pair of metabolites in each condition. (S.2) 

Compute matrix of adjacent (powered correlation) differences. The soft-threshold power 

parameter β is chosen such that it is the lowest power for which the scale-free topology R2 fit 

between the degree of connectivity k and the proportion of metabolites that have connectivity k 

exceeds 0.85. In the real data analysis, this automatic procedure leads to estimated value of β 

ranging between 5 and 7. (S.3) Derive the Topological Overlap Measure (TOM distance) based 

on the dissimilarity matrix T in order to identify metabolites that share the same metabolites’ 

neighbours in the graph obtained from the matrix of adjacency differences (S.2); (S.4) 

Hierarchical clustering of dissimilarity matrix T based on TOM distance allows partitioning the 

metabolites into modules that share similar metabolites’ neighbours. Thresholding of hierarchical 

clustering is obtained by using the Dynamic Tree Cut R package (10). (S.5) The permutation-

based procedure is employed to assess the statistical significance of the modules detected in 

(S.4), with the number of permutations = 1,000. The permutation consists in shuffling 

observations between conditions and, for a given partition obtained in (S.4), the empirical p-value 

is obtained by calculating how many time the observed average powered correlation difference in 

a module is greater than the one obtained by shuffling the observations. Finally, (S.5) for each 

identified module, principal component analysis is performed and the first eigenvalue (‘eigen-

metabolites’) is correlated (Spearman correlation) with selected clinical traits. 

 

BIOINFORMATIC ANALYSIS 

Metabolomic pathway analysis was performed by using MetaboAnalyst 4.0 (11) with both 

significant differential metabolites and metabolites modules detected in the differential network 

analysis mapped in KEGG pathways. Given the lack of pathways annotation for a large fraction of 

metabolites, significant metabolomic pathways were declared at a conservative 10% Holm–

Bonferroni correction. Finally, topology pathway analysis was performed by selecting the relative-

betweenness centrality measure (ranging between 0 and 1) which quantifies the importance of a 

subgroup of metabolites in a given metabolomic pathway. 
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Supplementary table 1. Demographics of control subjects. 

 

Group Sample size 
Age 
(yrs) 

Description 

G1* 21 35.4 (11.7) 
Healthy individuals University of 

Nottingham 

G2* 13 48 (15) 
Healthy individuals from 

companion metabolites study 

G3* 9 46 (8) 
Healthy individuals from 

companion metabolites study 

 

*Control group is G1+G2+G3, n = 43. Standard deviation in brackets. 

  



S3 
 

Supplementary table 2. Stratification of women with LAM by age, BMI and disease duration. 

 

Group Sample size 
Age 
(yrs) 

BMI 
Disease duration 

(yrs) 

TSC-LAM 

untreated 
7 41.1 (9.8) 23.7 (3.2) 10.4 (9.7) 

TSC-LAM 
rapamycin treated 

5 40.8 (8.3) 26.8 (3.9) 6.4 (3.8) 

Sporadic LAM 

untreated 
43 52.1 (10.3) 26.0 (6.5) 14.4 (11.3) 

Sporadic LAM 
rapamycin treated 

24 49.5 (11.6) 25.2 (6.5) 14.1 (11.6) 

FEV1 T1  16 51.8 (10.9) 24.3 (5.2) 9.6 (10.8) 

FEV1 T2  17 46.3 (8.7) 27.0 (7.3) 11.4 (7.6) 

FEV1 T3  17 53.7 (12.0) 25.4 (5.9) 20.3 (12.0) 

DLCO T1  16 51.6 (11.9) 25.7 (6.2) 11.4 (9.7) 

DLCO T2  17 48.1 (10.2) 24.4 (4.3) 14.3 (9.9) 

DLCO T3  17 52.2 (10.6) 26.7 (7.7) 15.8 (13.5) 

OBD S0 8 53.1 (11.4) 25.8 (6.9) 13.2 (14.3) 

OBD S1 17 46.9 (10.1) 24.4 (4.0) 9.3 (6.6) 

OBD S2 23 51.9 (11.0) 26.6 (7.3) 16.4 (11.4) 

OBD S3 2 56.0 (14.1) 23.8 (7.1) 25.5 (17.0) 

ΔFEV1 T1 13 52.0 (13.1) 25.9 (7.0) 15.6 (11.1) 

ΔFEV1 T2 12 55.6 (9.0) 26.0 (5.7) 17.2 (11.1) 

ΔFEV1 T3 12 47.1 (9.5) 24.5 (5.0) 14.0 (11.9) 

 

TSC = tuberous sclerosis complex; sporadic LAM = patients with LAM not associated with TSC; 

FEV1 = forced expiratory volume in one second (ml); DLCO = diffusing capacity of the lung for carbon 

monoxide (ml/min/kPa); ODB = overall disease burden score; ΔFEV1 = annual decline in forced 

expiratory volume (ml/yr); T = tertile, 1 highest, 3 lowest; S = score, 0 lowest, 3 highest. Boxes 

inside the table indicate the characteristic used to stratify the patients. Standard deviation in 

brackets. 
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Supplementary table 3. Characterisation of women with LAM stratified by age and disease 

characteristics. 

 

Group 
TSC 

(%) 

AML 

(%) 

Lymph 
(%) 

PTX 

(%) 

VEGF-D 
(pg/ml) 

FEV1 
(% pr.) 

DLCO 
(% pr.) 

ΔFEV1 
(ml/yr) 

TSC-LAM 
untreated 

100 86 0 29 1,021 72 61 5 

TSC-LAM 
rapamycin treated 

100 100 20 20 2,159 50 47 -19 

Sporadic LAM 
untreated 

0 70 19 30 1,332 68 60 -61 

Sporadic LAM 
rapamycin treated 

0 42 21 17 961 50 42 -131 

FEV1 T1  19 62 19 12 1,085 92 72 -32 

FEV1 T2  12 65 12 41 1,598 69 59 -102 

FEV1 T3  12 88 18 35 1,186 46 50 -31 

DLCO T1  19 62 25 25 865 81 76 -40 

DLCO T2  18 76 12 35 1,472 68 62 -43 

DLCO T3  6 76 12 29 1,513 57 44 -84 

OBD S0 0 50 25 12 634 93 74 -60 

OBD S1 18 47 6 29 1,282 76 65 -67 

OBD S2 17 96 13 35 1,549 57 52 -52 

OBD S3 0 100 100 50 943 52 60 24 

ΔFEV1 T1 23 85 15 23 1,529 66 59 15 

ΔFEV1 T3 0 100 8 50 1,231 62 62 -50 

ΔFEV1 T3 8 50 25 25 1,291 74 62 -132 

 

TSC = tuberous sclerosis complex; AML = angiomyolipoma; PTX = Pneumothorax; % = percentage 

of group with this characteristic; % pr. = percentage of predicted value; FEV1 = forced expiratory 

volume in one second (ml); DLCO = diffusing capacity of the lung for carbon monoxide (ml/min/kPa); 

ODB = overall disease burden; ΔFEV1 = annual decline in forced expiratory volume (ml/yr); T = 

tertile, 1 highest, 3 lowest; S = score, 0 highest, 3 lowest. Boxes inside the table indicate the 

characteristic used to stratify the patients. 



Supplementary figure 1. Hierarchical clustering of healthy controls based on log-

transformed metabolites levels after correcting for confounding effects. Bi-clustering plot of

the controls groups (horizontal) and metabolites levels (vertical) stratified by super-pathway.

Control group G1 (n = 21), G2 (n = 13) and G3 (n = 9) (for controls groups definition, see

supplementary table 1) are colour coded in dark grey, grey and light grey, respectively.



Supplementary figure 2. Volcano plot of metabolomic changes in patients with decrease of

forced expiratory volume. Significantly different metabolites at 10% False Discovery Rate (FDR)

(y-axis) with |log2 Fold Change (FC)| < 0.4 (x-axis) between FEV1 T1 (n = 16) and T2 (n = 17) both

not treated with rapamycin (for group definitions, see supplementary table 3). Blue and grey dots

indicate metabolites that are significantly different between conditions at 10% FDR with |log2 FC| <

0.4 and overall NS = non-significant, respectively. Full results are provided in supplementary table

5.



Supplementary figure 3. Volcano plot of fatty acids and phospholipids across overall

disease burden. Significantly different metabolites at 10% False Discovery Rate (FDR) (y-axis)

with |log2 Fold Change (FC)| > 0.4 (x-axis) in patients not treated with rapamycin between overall

disease burden score (A) S2 (n = 23) and S3 (highest, n = 2) and (B) S0 (n = 8) and S3 (highest, n

= 2) (for group definitions, see supplementary table 3). Red, blue, green and grey dots indicate

metabolites that are significantly different between conditions at 10% FDR with |log2 FC| > 0.4,

metabolites significant at 10% FDR with |log2 FC| < 0.4, non-significant at 10% FDR with |log2 FC|

> 0.4 and overall NS = non-significant, respectively. *Compounds identified without confirmation by

a standard. Full results are presented in supplementary table 5.
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Supplementary figure 4. Volcano plot of mTOR inhibition on the TSC-LAM. Differential

metabolites at 10% False Discovery Rate (FDR) (y-axis) with |log2 Fold Change (FC)| > 0.4 (x-

axis) between TSC-LAM without (n = 7) and with (n = 5) mTOR inhibitor treatment. Green and grey

dots indicate metabolites that are non-significant at 10% FDR with |log2 FC| > 0.4 and overall NS =

non-significant, respectively. Full results are presented in supplementary table 5.



Supplementary figure 5. Volcano plot of metabolomic changes in post-menopause.

Significantly different metabolites at 10% False Discovery Rate (FDR) (y-axis) with |log2 Fold

Change (FC)| > 0.4 (x-axis) between pre- (n = 33) and post-menopause (n = 17) women with LAM

not treated with rapamycin. Red, blue, green and grey dots indicate metabolites that are

significantly different between conditions at 10% FDR with |log2 FC| > 0.4, metabolites significant

at 10% FDR with |log2 FC| < 0.4, non-significant at 10% FDR with |log2 FC| > 0.4 and overall NS =

non-significant, respectively. All downregulated metabolites, but ‘chiro-inositol’ belongs to the

‘steroid’ sub-pathway. *Compounds identified without confirmation by a standard. Full results are

provided in supplementary table 4.



Supplementary figure 6. Metabolomic pathway analysis of differential metabolites in the

post-menopause analysis (see supplementary table 4). (A) Scatterplot depicting -log10 p-values

of the metabolomic pathway analysis (y-axis) and impact values from topology pathway analysis

(x-axis). metabolomic pathway detected at 10% Holm–Bonferroni correction is highlighted. (B)

Steroid hormone biosynthesis KEGG pathway. Red boxes indicate significant differential

metabolites present in the KEGG pathway.
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Supplementary figure 7. Co-expression network analysis performed separately on TSC-

LAM samples treated and not treated with rapamycin. Dendrogram showing clustering of co-

expressed metabolites (modules) for TSC-LAM samples not treated with rapamycin (n = 5) (for

group definitions, see supplementary table 3). Top colour bar: colours identify 12 modules

generated by unsupervised hierarchical clustering based on untreated TSC-LAM samples; middle

colour bar: colours identify 16 modules generated by unsupervised hierarchical clustering based

on TSC-LAM samples with rapamycin treatment (n = 7) and rearranged based on untreated TSC-

LAM modules ordering; bottom colour bar: colours identify 11 modules generated by differential

co-expression analysis and rearranged based on untreated TSC-LAM modules ordering.
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Supplementary figure 8. Metabolomic pathways analysis of the differential co-expression

networks (modules) based on TSC-LAM samples with and without rapamycin treatment. For

each significant module (empirical p-value < 0.1), metabolomic KEGG pathways detected at 10%

Holm–Bonferroni correction are plotted (see supplementary table 6). Modules are identified on the

top by a colour bar. Within each metabolomic pathway, red boxes indicate metabolites present in

the module and in the KEGG pathway.
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