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1 Introduction

Spacetime symmetries1 beyond the Poincaré group are highly constrained. Under some

reasonable assumptions, Coleman and Mandula [1] proved that the symmetry group of

scattering amplitudes must be a direct product of some internal group and the Poincaré

group. Two prominent ways are known to avoid this no-go result by invalidating its as-

sumptions. The first is to allow some symmetry generators to obey anti-commutation

relations [2]. This leads to supersymmetry and its infinitely rich structure. The second is

to consider theories that do not admit an S-matrix. This is the case for Conformal Field

Theories (CFT’s), which provide us with crucial landmarks in the space of all Quantum

Field Theories. Here, we highlight a third interesting and generic way to avoid the as-

sumptions of the Coleman-Mandula theorem, namely symmetry transformations that do

not map one-particle states into one-particle states. This is generally the case for sponta-

neous symmetry breaking, when symmetry transformations are non-linearly realised. We

find this possibility particularly compelling since many physically interesting systems break

some Poincaré symmetries, e.g. Lorentz boosts in cosmology and condensed matter.

In this paper, we start exploring one of the simplest classes of theories: a single, shift-

symmetric scalar field φ(x), and restrict ourselves to leading order in derivatives i.e. one

derivative per field. This scalar is the Goldstone mode of a spontaneously broken U(1)

symmetry (see e.g. [7] for a top-down discussion). We require the theory to be Poincaré

1By “spacetime symmetries” we denote symmetries that do not commute with the Poincaré group.
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P (X) Symmetries
√

1−X ISO(D, 1)

Xα U(1) o (RD o (SO(d, 1)× R))

XD/2 U(1)× SO(D, 2)

X1/2 R∞ o (U(1) o (RD o (SO(d, 1)× R)))

Table 1. All interacting, Poincaré-invariant, shift-symmetric theories with enhanced symmetry in

D = d + 1 spacetime dimensions, to leading order in derivatives. See the end of section 2.5 for a

discussion of possible tadpoles.

invariant but allow for this symmetry to be spontaneously broken. These theories are also

known as P -of-X theories with the Lagrangian an arbitrary function of X = −∂µφ∂µφ. A

particularly interesting class of these theories is Superfluids where the non-linearly realised

U(1) symmetry is at finite charge density. This occurs on the Lorentz breaking vacuum

〈φ(x)〉 = µt and the resulting theory of fluctuations describes the decoupling limit of

the effective field theory of shift-symmetric, single-clock cosmologies, corresponding to the

subHubble regime.

Superfluids are introduced in section 2 where we classify all possible new symmetries

for superfluids that form a consistent algebra with Poincaré symmetries and the U(1) shift

symmetry. Remarkably, we find that in D 6= 1 spacetime dimensions there are only two

possibilities: the Dirac-Born-Infeld action and Scaling Superfluids where the Lagrangian

is a monomial in X: P (X) = Xα. As summarized2 in table 1, for α = D/2 (Conformal

Superfluid [3, 4]) and α = 1/2 (Cuscuton [5, 6]) the scaling symmetry is enhanced to the

full conformal group and to additional vector and scalar generators (see (2.12), (2.20)),

respectively.

It is perhaps at first surprising to find scaling but not conformal symmetry as is the

case for α 6= D/2, but this is compatible with all results in the literature (e.g. [8–14]) which

rely on linearly realized symmetries. Here the scaling symmetry is non-linearly realised on

the Superfluid phonon which is the scalar fluctuation around the Lorentz violating vacuum.

In addition, the classical scaling symmetry is in general anomalous. Interestingly, Scaling

Superfluids are very restricted theories in which all interactions, with a single derivative

per field, are fixed by the speed of sound.

Importantly, in our analysis we do not assume the existence of a sensible theory of

fluctuations around the Poincaré invariant vacuum 〈φ(x)〉 = const since ultimately we are

interested in Lorentz breaking vacua. For this reason, our results extend those reported

in a classification of scalar EFT’s based on their amplitudes’ soft scaling [15–20]. We find

additional possibilities, namely Scaling (and Conformal) Superfluids, which do not admit

a perturbative S-matrix when the Poincaré symmetries are unbroken. Indeed, they possess

vacua that are either Poincaré invariant or perturbative, but not both. On the other

hand, the classification based on amplitudes (and Lie-algebras [21]) is directly applicable

2In our notation for the semi-direct product o, the normal subgroup N is on the left-hand side, G =

N oH.
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N = 0 N = 1 N = 2

m = 0 Q, I D̂, W

m = 1 Pµ, Vµ Aµ Kµ

m = 2 Mµν

Table 2. This table summarizes all superfluid symmetries organized in powers or xN and the

number m of Lorentz indices (not irreps). Commuting with spacetime translations move us leftward

along a diagonal.

to theories with higher derivatives, while for us that requires a whole new analysis, which

we postpone to future work. In any case, all symmetries which we find, classified in terms

of the number of Lorentz indices of the corresponding generator and the highest power of

the spacetime coordinate appearing in the transformation rule, are collected in table 2.

Two technical caveats of our results are worth mentioning:

1. We consider only symmetry transformations that are a finite order polynomial in

the spacetime coordinate x, as in (2.6). This excludes conformal transformations

in D = 2, which include arbitrary holomorphic coordinate transformations. But

our analysis still holds since we are interested in interacting theories and the only

Conformal Superfluid in D = 2 is the free theory P = X, as we shall see.

2. We derive all possible symmetric Lagrangians, but we do not derive all possible

conserved currents. In particular, we were not able to rule out new conserved currents

for the α = 1/2 Scaling Superfluid beyond those present in table 1. We do, however,

in section 2.4 show that there are no additional conserved currents for the Conformal

Superfluid in D ≥ 3.

One final apology: our derivation will be completely classical. We will only briefly

discuss possible issues that emerge at the quantum level, such as anomalies, in the final

discussion. An extension to scattering amplitudes akin to Coleman and Mandula is in

principle possible and left for future work.

The rest of the paper is organised as follows. In section 2, we classify all possible

Superfluid actions with enhanced symmetry at the classical level. We then study the

Scaling and Conformal Superfluids in more detail in section 3. We study the theories in

terms of fluctuations around the Lorentz breaking background, computing the speed of

sound and leading order interactions. We also compute higher order corrections which

involve more derivatives using the coset construction. We end with a conclusion and

discussion of future work.

2 Symmetric superfluids

Although the fundamental laws of Nature appear to be covariant under spacetime transla-

tions and Lorentz transformations, the World around us is clearly not Poincaré invariant

and so some of these symmetries must be broken spontaneously. Indeed, condensed matter
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systems and cosmology both break Lorentz boosts and should therefore be described in

terms of Goldstone modes and matter fields which non-linearly realise the full Lorentzian

symmetries. The most simple effective field theory (EFT) of this type is that of Superfluid

phonons. This EFT consists of a single gapless Goldstone excitation π and at low energies

the leading order interactions are constructed out of the combination [22, 23]

µπ̇ +
1

2
π̇2 − 1

2
∂iπ∂

iπ . (2.1)

This particular tuning between the three terms is necessary to non-linearly realise boosts.

We can re-write the Superfluid action in terms of a new scalar φ = µt + π. All Poincaré

symmetries are now linearly realised on φ: this makes it clear that the Superfluid is de-

scribing a Lorentz breaking phase in a fundamentally relativistic theory. The leading order

action for the Superfluid in D = 1 + d spacetime dimensions is [22, 23]

S =

∫
dDxP (X) , (2.2)

where X = −∂µφ∂µφ. The Superfluid is defined as a state where the spontaneously broken

U(1) symmetry has finite charge density which in turn requires φ̇ 6= 0. See [24] for more

details.

This action can be derived from the coset construction [25–27] where the full symmetry

group G is ISO(1, d)×U(1) and is broken down to a subgroup consisting of spatial rotations,

spatial translations and a new form of time translations which corresponds to a linear sum

of the original time translations and the U(1) [28, 29]. Indeed the ground state 〈φ(x)〉 = µt

is invariant under t → t + t0, φ → φ − µt0. The Goldstone modes corresponding to the

spontaneously broken Lorentz boosts can be eliminated from the Goldstone EFT by im-

posing inverse Higgs constraints [30], illustrating that for spontaneously broken spacetime

symmetries there can be fewer Goldstone modes than broken generators [31].

For arbitrary P (X) the action (2.2) is invariant under Poincaré symmetries (transla-

tions Pµ and Lorentz transformations Mµν) and the non-linearly realised U(1) symmetry

Q. These symmetries respectively act on φ in the following way3

δPµφ = −∂µφ, δMµνφ = 2x[µ∂ν]φ, δQφ = 1 , (2.3)

and satisfy the non-zero commutation relations

[Mµν , Pσ] = 2ησ[µPν], [Mµν ,M
ρσ] = 4δ

[ρ
[µMν]

σ] , (2.4)

where we anti-symmetrise with weight one. Since the U(1) generator Q only generates a

shift for φ it commutes with translations. We stress that here and throughout this paper

we work with the active form of the transformation rules where the spacetime coordinates

do not transform. This is opposed to the passive form where both the field and coordinates

can transform (see e.g. [32]).

3More generally, we have δGf(φ) = f ′(φ)δGφ for any function f and generator G.
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Our primary goal is to find special choices for P (X) that have new symmetries in

addition to (2.3) while maintaining interactions.4 To keep our results completely general

we allow new transformation rules to be a function of the scalar field, its derivatives and

the spacetime coordinates. A candidate new transformation for φ, which is generated by a

new generator Sµ1,...µm ≡ Sm, takes the form

δSmφ = fµ1,...µm(xµ, φ, ∂µφ, ∂µ∂νφ, . . .) , (2.5)

where Sµ1,...µm is a covariant tensor under Lorentz transformations.

Any new symmetries have to form a consistent algebra with ISO(1, d)×U(1) otherwise

we would not find invariants which are subsets of (2.2). Following [2], we assume the

transformation rule is perturbative around xµ = 0 and we define G(N,m) to be the set of

symmetries SNm with m Lorentz indices and of order xN , i.e. of the explicit form

δSNmφ ≡
N∑
n=0

xµ1 . . . xµnfµ1...µnµn+1...µn+m (2.6)

for some finite integer N and f a local function of φ and its derivatives that is non-

vanishing for n = N . A few comments are in order. First, SNm in general form reducible

representations of the Lorentz group. One could in principle further organize them into

irreducible representations (“spin” in D dimensions) but we don’t find this particularly

useful at this stage and therefore we prefer to keep a more streamlined notation. Second,

the SNm are not necessarily independent from SNm′ with m′ < m. For example, one could

have SNm = ηµνS
N
m−2, which of course does not generate any new conserved current.

Symmetries that are in G(N,m) but not in G(N−1,m) are called symmetries of degree

N . Let’s consider the commutator between translations and SNm ∈ G(N,m), which at the

level of transformation rules reads

[δPµ , δSNm ]φ = δPµ(δSNmφ) + δSNm (∂µφ)

=

N∑
n=0

fµ1...µnµn+1...µn+m∂µ (xµ1 . . . xµn)

≡ δSN−1
m+1

φ, (2.7)

where the partial derivative acts only on the explicit spacetime dependence, i.e. at constant

φ. Notice that the coefficient of xN−1 cannot vanish by the definition of SNm . This tells

us that

[Pµ, S
N
m ] = SN−1

m+1 ∈ G(N − 1,m+ 1) . (2.8)

If SNm is to be a symmetry of the action, there must also be a symmetry SN−1
m+1 , otherwise

the algebra would not close. We therefore find it convenient to classify new symmetries

in terms of their explicit xµ dependence and the number of un-contracted Lorentz indices,

similar to what was done in [34]. We now study symmetries in increasing order of degree

N . In what follows we work in D 6= 1 spacetime dimensions. The special case of D = 1,

corresponding to quantum mechanics, is discussed separately in subsection 2.6.

4There are infinitely many symmetries of the free theory [33].
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2.1 Degree zero

First consider the case N = 0, namely transformations that commute with Pµ[
Pµ, S

0
m

]
= 0 . (2.9)

This includes translations themselves and the scalar’s shift symmetry. These transforma-

tions form a subalgebra since by Jacobi identities[
Pµ,

[
S0
m, S

0
m′
]]

= 0 . (2.10)

By demanding invariance of P (X) we find that the only other possibility is an infinite

number of vector generators S0
1 = Vµ(f), acting as

δVµφ = f(φ)∂µφ , (2.11)

where f(φ) is an arbitrary function of φ. The new commutation relations, in addition

to (2.3), are

[Q,Vµ(f)] = Vµ(f ′) , [Jµν , Vσ] = 2ησ[µVν] , (2.12)

[Vµ(f), Vν(f̃)] = 0 , [Pµ, Vν ] = 0 ,

where f ′ = ∂φf . The invariant action to leading order in derivatives is

S =

∫
dDx
√
X , (2.13)

which is simultaneously invariant under the infinite set of transformations generated by

Vµ(f) for any f(φ). Under the transformations in (2.11), the Lagrangian changes by a

total derivative

δbL = ∂µ

(
bµf
√
X
)
, (2.14)

so the infinitely many conserved currents are

(Jν(f))µ = − f√
X

[∂µφ∂νφ+ δµνX] . (2.15)

These currents are independent for different choices of f and non-vanishing. This theory

has actually additional symmetries of higher degree (see (2.19)), which we discuss in the

next subsection. Surprisingly, this theory nevertheless admits infinitely many solutions.

To see this, notice that φ = cµx
µ is trivially a solution of the equations of motion

X�φ = −∂µφ∂νφ∂µ∂νφ , (2.16)

for any constant four-vector cµ. Then we can apply a symmetry transformation to generate

a new solution

φ(x) = h(cµx
µ) (2.17)
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for any function h. This theory is non-perturbative around the Poincaré invariant vacuum

〈φ(x)〉 = const but it is also problematic around the Lorentz breaking vacuum5 〈φ(x)〉 = µt.

On the other hand, it admits a perturbative regime around more general background

solutions of the form φ(x) = cµx
µ for non-vanishing ci.

The careful reader might have noticed that we did not put an absolute value around

X in the argument of the square root in (2.13). Indeed, at the classical level, which is

relevant for our discussion, the variational principle based on the action in (2.13) can still

be used to derive the classical equations of motion as we have done, even for solutions

with X < 0, for which the action becomes imaginary. At the quantum level instead, an

imaginary action and Hamiltonian would generically lead to violations of unitarity, and it

would be safer to work with
√
|X| instead. Nevertheless, as long as we are interested in

quantizing the theory around a “timelike” background with X̄ > 0 as for example with

〈φ(x)〉 = µt, we don’t expect to see any difference in perturbation theory between X and

|X|. Small fluctuations around X̄ 6= 0 probe the Lagrangian only locally and do not reach

X = 0. Non-perturbative effects might arise from the absolute value, and it would be nice

to investigate if they can be trusted within the validity of the EFT and whether they lead

to some interesting (and consistent) phenomenology. This discussion applies to all other

models discussed in the rest of this paper, including the well-studied DBI Lagrangian which

we will encounter in the next subsection.

2.2 Degree one

We now move onto transformations S1 with N = 1, where δφ is at most linear in x and

takes the schematic form (with implicit Lorentz indices)

δS1φ = f0(φ, ∂φ, . . .) + f1(φ, ∂φ, . . .)x . (2.18)

We know from (2.7) that the commutator between this transformation and a translation is

non-zero and must give back a symmetry S0
m+1. If this degree-zero symmetry S0 is the one

in (2.11), then we will recover the result of the previous section, namely (2.13). So, to find

something new, we impose that the S0 symmetries derived from S1 are translations and

the shift symmetry. However, before doing so let us mention that we found an additional

symmetry of (2.13) which is degree one. Indeed, that action is invariant under the following

symmetry generated by a new scalar generator W :

δWφ = g(φ) +
∂φg(φ)

D − 1
xµ∂µφ (2.19)

where g(φ) is an arbitrary function of φ only. The new non-zero commutators involving

W are

[Pµ,W ] = Vµ, [Vµ,W ] = Vµ. (2.20)

5Indeed, by expanding (2.13) around this solution we see that that the symmetry forces the coefficient

of π̇2 to vanish, see also [35].
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It would be interesting to investigate if there are even more symmetries for this Square Root

theory but since here we are primarily interested in new theories, we leave that analysis

for future work. Clearly this theory deserves further attention.

Now, to find something new we must have

fµ1 = aµ1 − a
µν
2 ∂νφ , (2.21)

where aµ1 and aµν2 are real constants. We also know that the commutator between this

N = 1 transformation and the shift symmetry must give back a symmetry of the theory

and therefore ∂f0/∂φ must also correspond to a shift or a translation. We therefore have

δS1φ = f0 + f1x

= φ+ φ∂µφ+ xµ − xµ∂νφ . (2.22)

Based solely on Lorentz invariance, the parameters a = {a...} of an N = 1 symmetry

transformation can therefore be

a · δS1φ = φ (a3 + aµ4∂µφ) + (aµ1 − a
µν
2 ∂νφ)xµ , (2.23)

i.e. a scalar, a3 and the trace a2 ≡ aµν2 ηµν , a vector, aµ4 and aµ1 , or a traceless, symmetric

rank-2 tensor (aµν2 − ηµνa2/D). The antisymmetric 2-form reduces to a Lorentz transfor-

mation. We considered each case and by demanding invariance of P (X) we found that the

parameter must be a scalar or a vector, so aµν2 ≡ a2η
µν .

For aµ1 = aµ4 = (aµν2 − ηµνa2/D) = 0, the resulting scalar symmetry is recognized

as the generator of scaling transformations and we will denote it by6 D̂. The associated

transformation rule is

δD̂φ = −∆φ− xµ∂µφ , (2.24)

where we have set a2 = 1 without loss of generality and we defined the scaling dimension

∆ of φ by ∆ ≡ −a3. Invariance of the action then reduces it to a monomial in X:

S =

∫
dDxXα , with α =

D

2(1 + ∆)
, (2.25)

for ∆ 6= −1. At this order in derivatives there are no invariant theories with ∆ = −1

because X is scale invariant and it not possible to offset the scaling of dDx.

The non-zero commutation relations for this new algebra are (2.4) plus the new com-

mutators7

[Pµ, D̂] = Pµ , [Q, D̂] = −∆Q. (2.26)

The first of these commutators tells us that D̂ is the generator of dilatations while the

second tells us that Q transforms under dilatations with scaling weight −∆. Although this

symmetry acts linearly on φ, it acts non-linearly on the Superfluid phonon π and as we shall

6The hat is introduced to avoid confusion with the spacetime dimension D.
7Notice that the Jacobi identities are satisfied for this algebra as well as for (2.12).
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see shortly, the symmetry fixes the speed of sound and all π self-interactions in terms of the

single number ∆. We note that different values of ∆ correspond to different algebras and

therefore physically different Superfluid theories. We denote a Superfluid theory described

by this action as a Scaling Superfluid for obvious reasons and will study its properties in

more detail in the following section.

Lastly, we have the case when the degree one symmetry is generated by a vector, which

we denote as Aµ. By definition, one of the four components of aµ1 must be non-vanishing,

otherwise the symmetry would not have degree one. Then by Lorentz invariance the

symmetry should exist also for a Lorentz transformed aµ1 , for which all components are in

general non-vanishing. We can then rescale aµ1 = 1 without loss of generality, such that

the transformation rule is

δAµφ = xµ + a4φ∂µφ. (2.27)

For a4 = 0 the transformation reduces to a Galileon transformation [36] and in this case the

only P (X) invariant is that of the free theory.8 Conversely, for a4 6= 0 we can set a4 = 1 by

a rescaling of the transformation and a field redefinition. Without loss of generality then

the invariant action takes the form9

P =
√

1−X . (2.28)

This is the well known Dirac-Born-Infeld (DBI) action which non-linearly realises the (D+

1)-dimensional Poincaré group. The U(1) symmetry Q then corresponds to translations

in the extra dimension, i.e. Q = PD+1, while the new vector generator Aµ corresponds to

Lorentz transformations involving the extra dimension, i.e. Aµ = Mµ(D+1). The non-zero

commutators are the generalisation of (2.4) to one extra spatial dimension. This theory

requires no further discussion but let us mention that higher derivative corrections were

considered in [38] and the constraints on the EFT of inflation imposed by the symmetry

were considered in [39, 40].

2.3 Degree two

Once commuted with translations, transformations of degree two must give a transforma-

tion of degree one that is also a symmetry. If this is the DBI generator (2.27), the theory

must take the form of the DBI action. But the DBI action has no free parameters to adjust

and, by direct inspection, it is not invariant under any transformation of degree two. We

conclude that the relevant transformations of degree one are Lorentz transformations and

the scaling symmetry (2.24). By applying a similar analysis to above we see that a P (X)

theory which is invariant under an N = 2 transformation must be a subset of (2.25) and

requires α = D/2 i.e. ∆ = −a3 = 0. The new symmetry is generated by a vector Kµ and

is of the form

δKµφ = x2∂µφ− 2xµx
ν∂νφ. (2.29)

8There are of course Galileon invariants, which involve more derivatives than P (X) interactions, and

the leading order ones are Wess-Zumino terms [37].
9Note again that both at the classical level and at the perturbative quantum level away from X = 1 we

do not worry about the solutions that make the action imaginary.
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This symmetry commutes with Q and forms the SO(2, D) conformal algebra with the other

generators, i.e. Kµ is the generator of special conformal transformations. The leading order

invariant is the Conformal Superfluid

S =

∫
dDxXD/2 , (2.30)

which has been studied in e.g. [41–44]. We remind the reader that the non-zero commuta-

tors of the conformal algebra, in addition to (2.4), are

[Mµν ,Kσ] = 2ησ[µKν], [Kµ, D̂] = −Kµ (2.31)

[Pµ, D̂] = Pµ, [Pµ,Kν ] = 2Mµν + 2ηµνD̂.

It is interesting to note that the extension of (2.25) to full conformal symmetries is only

possible when ∆ = 0. Indeed if we take the conformal group and augment it with the

commutator [Q,D] = −∆Q we see that the Jacobi identities are only satisfied when ∆ = 0.

This can also be seen at the level of the transformation rules. For ∆ 6= 0 the transformation

rule (2.29) would need an additional term of the form φxµ but then the commutator [Q,Kµ]

would generate another vector transformation (equation (2.27) with a4 = 0) which is only

a symmetry when (2.2) reduces to a free theory.

It is simple to understand why the Conformal Superfluid is conformally invariant even

though φ is not the dilaton (apart from the fact that the trace of its energy-momentum

tensor vanishes!). Consider the D-dimensional theory of a dilaton ψ which can be con-

structed out of diffeomorphism invariant combinations of the metric gµν = ψ2ηµν and is

a non-linear realisation of SO(2, D). Now if we wish to couple a shift-symmetric scalar

field χ with scaling dimension ∆χ = 0 to the dilaton in such a way that full conformal

symmetries remain intact we again write down diffeomorphism invariant actions using the

gµν metric [45]. So if we wish to couple a matter field χ with a P (X) type action would

we have

Smatter =

∫
dDxψDP (ψ−2ηµν∂µχ∂νχ) , (2.32)

and then it is simple to see that the choice P = XD/2 is the only case where the dilaton

drops out. So we are left with a conformally invariant theory in the absence of the dilaton

and all symmetries of the conformal group act linearly on the matter field χ, or equivalently,

φ. Indeed in the passive form of the transformation rules φ does not transform under

dilatations (since in this case ∆ = 0) or special conformal transformations and therefore its

active transformation rules presented above are solely due to its spacetime dependence. In

any case, let us emphasise that these symmetries do indeed act non-linearly on the phonon

π, as desired.

2.4 Degree three and higher

Since the Conformal Superfluid has no free coupling constants or parameters, it cannot

be constrained further by additional symmetries. However, let us check whether the the-

ory (2.30) already possesses additional higher degree conserved currents. We will prove
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a general theorem that restricts the extensions of the Conformal group in D ≥ 3. In

particular, if special conformal transformations are the only degree two symmetries the

conformal group in D ≥ 3 cannot be extended with any symmetry of degree N = 3 or

higher. The proof relies only on the non-existence of the algebra and is therefore valid

for any Conformal Field Theory obeying the assumption above. For the specific case of

the Conformal Superfluid, any new symmetries must be of degree three or higher since

we have classified all lower degree possibilities. The above theorem then tells us that our

classification of symmetric superfluids is already complete at degree two and we collect all

generators discussed above in table 2.

First consider a degree three transformation (where terms can have at most three

powers of the coordinates) generated by some generator S3
m. We know that the commutator

between translations and S3
m must give back special conformal transformations Kµ since

this is the only degree two generator. We therefore have

[Pµ, S
3
m] = tαµσK

σ + S1
m+1 (2.33)

where α = {α1 . . . αm}, S1
m+1 represents symmetries of degree one and zero (Lorentz,

dilatations, translations, shift symmetry) which won’t play a role in what follows, and tαµσ
is constructed out of Lorentz invariant quantities, namely ηµν and the Levi-Civita symbol

εµ1...µD .

Now consider the Jacobi identity involving two copies of Pµ and one copy of S3
m. Since

[Pµ, Pν ] = 0 there are two contributions which combine into

[P[µ, [Pν], S
3
m]] = tα[ν|σ|[Pµ],K

σ] = 0. (2.34)

From the SO(2, D) conformal algebra we know that

[Pµ,Kν ] = 2Mµν + 2ηµνD̂ (2.35)

and therefore the Jacobi identity requires

tα[ν|σ|(Mµ]
σ + δσµ]D̂) = 0. (2.36)

For the coefficient of D̂ to vanish we require

tα[νµ] = 0 (2.37)

i.e. t is symmetric in its last two indices, however this is not enough to kill the coefficient

of Mµσ. To do so we need to place more constraints on t.

We have

2tα[νσMµ]
σ = tανσMµ

σ − tαµσMν
σ = 0 , (2.38)

which is non-trivial only for µ 6= ν. Let us write out the sum over σ for some fixed values

of µ = µ̄ 6= ν = ν̄:

tαν̄ν̄Mµ̄
ν̄ + tαν̄ρMµ̄

ρ = tαµµ̄Mν̄
µ + tαµ̄σMν̄

σ (2.39)
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for ρ, σ 6= µ̄, ν̄ and where we do not sum over barred indices. Since µ̄ 6= ν̄ and ρ, σ 6= µ̄, ν̄,

the following terms need to cancel separately:

tαν̄ν̄Mµ̄
ν̄ = tαµ̄µ̄Mν̄

µ̄ , (2.40)

tαν̄ρMµ̄
ρ = 0 ⇒ tαν̄ρ = 0 (ρ 6= ν̄, µ̄; D ≥ 3) . (2.41)

It is clear that the second of these constraints does not apply in D = 2 since then it is

not possible to have three distinct indices {ρ, ν̄, µ̄}. These constraints therefore need to be

studied separately in D = 2 and D ≥ 3.

We first start with D ≥ 3 where from (2.41) we know that tαν̄ρ vanishes for every

ν̄ 6= ρ, so we are only left with discussing tαν̄ν̄ . We consider separately the cases with

ν̄ = 0 and ν̄ spatial. For ν̄ = 0 6= µ̄ we notice that Mµ̄
ν̄ = +Mν̄

µ̄ and so from (2.40) we

conclude that

tα00 = tαii , (2.42)

for i a spatial index. For both ν̄ and µ̄ spatial (but different) instead Mµ̄
ν̄ = −Mν̄

µ̄ and so

tαii = −tαjj (2.43)

for any i 6= j with both i and j spatial. This constraint admits a non-trivial solution only

for D = 3, while for D ≥ 4 the only solution is tαii = 0 for any spatial i. Either way, for

any D ≥ 3, the combination of (2.42) and (2.43) imposes tα00 = −tα00 and so tαν̄ν̄ also

vanishes for any ν̄. Since these constraints hold for any µ̄ and ν̄, we have proven that tαµν
vanishes for any value of its indices α, µ and ν and so no symmetry of degree 3 or higher

is allowed in D ≥ 3: its existence is incompatible with Jacobi identities. Notice that in the

proof we did not have to assume anything about how tαµν is constructed.

Now as expected10 D = 2 is special since (2.41) does not apply. Here the only constraint

we get is for µ̄ = 1 and ν̄ = 0, for which M0
1 = M1

0 and so from (2.40)

tα00 = tα11 ⇔ tαµνη
µν = 0 . (2.44)

This condition is not strong enough to kill t since tensors with the above property certainly

exist. To push further, one should further demand that tαµν is built out of Lorentz invariant

tensors, namely the Minkowski metric ηµν and the Levi-Civita symbol εµν . But even this

constraint doesn’t rule out all degree 3 symmetries and in fact, using the notation of [47],

the generators l2 = −z3∂z and l̄2 = −z̄3∂z̄ provide precisely an example of an S3
4 symmetry

in D = 2. However, the only theory which could in principle be invariant under higher

degree symmetries is the Conformal Superfluid, which in D = 2 becomes a free theory. As

we have already mentioned, the free theory is actually invariant under an infinite number

of symmetries in any number of dimensions.

In conclusion, any Conformal Superfluid with self-interactions is not invariant under

any symmetries beyond SO(D, 2)×U(1).

10It is well known that in D = 2 the conformal group can be extended by infinitely many additional

generators [46].
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2.5 Tadpoles and driven superfluids

In the absence of gravity, the shift symmetry allows also for a non-trivial potential

V (φ) = λφ (2.45)

for some coupling constant λ, which shifts by a total derivative (see e.g. [48]). In the ab-

sence of this linear potential, all superfluids admit the Lorentz breaking vacuum solution

〈φ(x)〉 = µt, around which time translations and shifts are non-linearly realised while a

linear combination of the two is linearly realized. This is the prototypical mechanism of

spontaneous symmetry probing discussed in [49], where one can still define a linearly re-

alized modified Hamiltonian and perturbations can be parameterized in such a way that

their Lagrangian is manifestly time-translation invariant. On the other hand, in the pres-

ence of the linear potential, a general homogenous solution for φ(t) is non-linear in t and

perturbations live in a truly time dependent background. As long as we expand around an

exact background solution φ(t), the action for perturbations start quadratic as usual and

the theory can be quantized without any problematic tadpole terms.

Let us check which symmetries are consistent with this term. We need to require that

δφ itself is a total derivative. This is the case for all the vector symmetries in (2.11), the

DBI symmetry (2.27) and the scaling symmetry (2.24) when ∆ = D. Since closure of

the algebra requires ∆ = 0 for the Conformal Superfluid, the tadpole is not permitted in

this case.

2.6 D = 1: quantum mechanics

Before ending this section and studying the Scaling Superfluid in more detail, let us first

briefly discuss the D = 1, quantum mechanical, case which is special.11 In this case,

there are no Lorentz symmetries and therefore no Lorentzian distinction between different

generators with m 6= m′. This allows one, for example, to take linear sums of generators

which in D 6= 1 would live in different Lorentz representations. For example, consider the

DBI symmetry (2.27) and the scaling symmetry (2.24). For all D, there are no theories

which are invariant under both of these transformations simultaneously. However, in D = 1

we can find a linear combination of these two transformations that is a symmetry of a theory

that is not invariant under the individual transformations. In D = 1 these symmetries

respectively act on φ as

δA0φ = −t+ φφ̇, δD̂φ = −∆φ− tφ̇ (2.46)

and on π as

δA0π = (µ2 − 1)t+ µπ + µtπ̇ + ππ̇ (2.47)

δD̂π = −µ(1 + ∆)t−∆π − tπ̇. (2.48)

It is possible to take a linear combination of these two transfomation rules such that the tπ̇

term drops out. One can then find a non-trivial invariant of the resulting symmetry [50].

Any exhaustive classification of symmetries in D = 1 therefore requires further analysis.

11We are thankful to Bernardo Finelli for pointing out to us the special nature of D = 1 and for describing

to us the example discussed here.
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3 Scaling superfluids

Let’s take a closer look at the Scaling Superfluid action

S =

∫
dDxXα , (3.1)

where the symmetries act as follows

δPµφ = −∂µφ (translations) , (3.2)

δJµνφ = 2x[µ∂ν]φ (Lorentz) , (3.3)

δQφ = 1 (shift) , (3.4)

δD̂φ = −∆φ− xµ∂µφ (scaling) , (3.5)

where

∆ =
D

2α
− 1 . (3.6)

The associated Noether currents are

JµQ ≡ −2αXα−1∂µφ , (3.7)

Jµ
D̂
≡ −2αXα−1∂µφ (−∆φ− xν∂νφ) + xµXα (3.8)

Tµν = 2αXα−1∂µφ∂νφ+ gµνX
α . (3.9)

The classical equations of motion

∂µ
(
Xα−1∂µφ

)
= 0 (3.10)

are exactly equivalent to the conservation of the shift-symmetry current ∂µJ
µ
Q = 0. Finally,

for future reference we quote some mass-dimensions

[φ] = MD/(2α)−1 [X] = MD/α (3.11)

[JµQ] = MD−D/(2α) [Jµ
D̂

] = MD−1 (3.12)

[Tµν ] = MD (3.13)

3.1 Scaling without conformal symmetry

It is a general result (see e.g [9, 51, 52]) that the scaling current takes the form

Jµ
D̂

= xνTµν +Kµ , (3.14)

where the virial current Kµ is constructed with just local operators (i.e. no explicit xµ

dependence). Conservation of this current on the solution of the equations of motion

implies

Tµµ = −∂µKµ. (3.15)
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On the other hand, a conformal transformation is defined (in the passive form) by the

change of coordinates δxµ = vµ(x) with

2∂(µvν) =
2

D
ηµν∂ρv

ρ , (3.16)

where ∂µv
ν spans all affine functions of x (linear plus constant). Conformal symmetry

leads to the current

Jµv = vνTµν + ∂ρv
ρK ′µ + ∂ν∂ρv

ρLνµ , (3.17)

with Lνµ also made of local operators and K ′µ being the same as Kµ up to a conserved

current. Conservation of the conformal current on the solution of the equations of motion

implies (by matching order by order in x)

Tµµ = ∂µνL
µν . (3.18)

In this case, one can improve Tµν to some θµν that is traceless θµµ = 0. So a necessary

condition to have scaling but not conformal symmetry is the existence of a current Kµ

that is not conserved ∂µK
µ 6= 0 and is not a total derivative. In scalar theories which are

perturbative around the Poincaré invariant vacuum this cannot happen because the only

dimension D− 1 current one can write is ∂µ(φ)2, which is a total derivative [9]. Let us see

at what happens in our Scaling Superfluid. The scaling current in (3.8) can be re-written as

Jµ
D̂

= xνTµν + ∆αXα−1∂µ (φ)2 (3.19)

= xνTµν − 2∆φJµQ . (3.20)

Since the theory is not perturbative around 〈φ(x)〉 = const, the field φ does not have

dimension (D−2)/2 and one can build a current Kµ of dimension D−1 that is not a total

derivative by multiplying ∂µφ
2 with the appropriate power of X:

Kµ = −2∆φJµQ = ∆αXα−1∂µφ2 . (3.21)

This virial current indeed vanishes for Conformal superfluids, since then ∆ = 0. Because

the virial is not a total derivative, the stress tensor of Scaling Superfluids cannot be im-

proved to become traceless. Indeed

Tµµ = Xα

[
D − D

(1 + ∆)

]
, (3.22)

and, as expected, it vanishes only for ∆ = 0, α = D/2.

3.2 Perturbation theory

Let’s redefine φ to be dimensionless and study the Scaling Superfluid action

S =

∫
dDxµD

(
X

µ2

)α
, (3.23)
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around the homogeneous and isotropic background φ = µt+ π, as relevant for cosmology.

The scale symmetry acts non-linearly on π as

δD̂π = −µt(∆ + 1)−∆π − xµ∂µπ. (3.24)

When ∆ = 0 there are further symmetries, special conformal transformations, which act

on π as

δK0π = (t2 + xixi)(µ+ π̇) + 2txi∂iπ , (3.25)

δKiπ = (xjxj − t2)∂iπ − 2txi(µ+ π̇)− 2xix
i∂jπ. (3.26)

To exhibit the details of the π EFT we expand (3.23) up to quartic order which, after

canonically normalising, yields

S = n

∫
dDx

(
1

2
π̇2 − c2

s

2
∂iπ∂iπ +

g1

µD/2
π̇3 +

g2

µD/2
π̇∂iπ∂iπ +

g3

µD
π̇4

+
g4

µD
π̇2∂iπ∂iπ +

g5

µD
(∂iπ∂iπ)2

)
, (3.27)

where

c2
s =

1 + ∆

d−∆
, n =

1

c2
s

(
1

c2
s

+ 1

)
, (3.28)

and

g1 =
1

6c2
s

(1− c2
s) , g2 = −1

2
(1− c2

s) , (3.29)

g3 =
1

24c4
s

(1− c2
s)(1− 2c2

s) , (3.30)

g4 = − 1

4c2
s

(1− c2
s)(1− 2c2

s) , g5 =
1

8
(1− c2

s) . (3.31)

We note that when the couplings gi are arbitrary the action (3.27) is the general decoupling

limit of the effective field theory of shift symmetric, single clock cosmology to leading order

in derivatives. This flat space limit is valid for energies above the Hubble scale. For the

Scaling Superfluid we see that all couplings for π are fixed in terms of the speed of sound

c2
s which in turn is fixed in terms of ∆ once the spacetime dimension is specified. This is

therefore a very predictive theory of single clock cosmology, on the same footing as the DBI

case [40]. We plan to investigate the cosmology of the Scaling Superfluid in more detail in

future work.

Let us collect the constraints on α to avoid gradient instabilities, superluminality and

ghosts.12 We respectively have

c2
s ≥ 0 ⇒ α >

1

2
(3.32)

c2
s ≤ 1 ⇒ α <

1

2
or α ≥ 1 (3.33)

n > 0 ⇒ α < 0 or α >
1

2
. (3.34)

12See also [53] for a discussion on inflationary EFTs with an imaginary speed of sound (c2s < 0).
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These can be collectively satisfied for

α ≥ 1⇔ −1 < ∆ <
D

2
− 1 (no pathologies) . (3.35)

It is interesting to compute the cutoff of this theory. We can use perturbative unitarity of

the 2-to-2 scattering of π, and find that the strong coupling cutoff Λ, in D = 4, is given

by [54] (
Λ

µ

)4

=
30π(c3

s + c5
s)

(1− c2
s)

2 . (3.36)

Above Λ loop corrections dominate scattering amplitudes and the theory is strongly cou-

pled. As µ→ 0, the strong coupling scale also goes to zero, which matches our expectation

that the Poincaré invariant background does not allow for a perturbative description. One

might want to take the double limit µ → 0 and c2
s → 1 in such a way to keep Λ finite.

Indeed this is possible, but it simply gives the free theory, since α(cs = 1) = 1.13

Finally, let us discuss the Renormalization Group flow of this theory. This (effective)

theory hits strong coupling at the scale Λ and so we cannot say much about its UV fixed

point. But the IR fixed point around 〈φ(x)〉 = µt is under perturbative control. Indeed,

as we decrease energy all interactions in (3.27) become weaker and weaker such that the

theory eventually becomes free and therefore fully conformal in the deep IR. We note that

this behaviour is not guaranteed when Lorentz symmetry is spontaneously broken, see

e.g. [56, 57].

3.3 Higher order operators

We now consider the leading corrections to (3.27) which have more derivatives on π under

the assumption that the symmetries of the classical Lagrangian remain valid at the quantum

level. We plan to investigate possible quantum anomalies in future work. For the Scaling

Superfluid it is simple to compute these corrections: all interactions are fixed by counting

fields and derivatives. However for the Conformal Superfluid it is more complicated since

the interactions must also be invariant under special conformal transformations. So in that

case we turn to the coset construction.

We compute the corrections in terms of φ. Initially consider a correction linear in ∂∂φ

i.e. a correction of the form

F (X)�φ . (3.37)

Note that the only other possible index contraction can be brought to this form by inte-

gration by parts. Now by demanding invariance under (2.24) we require

F (X) = X
D−2−∆
2(1+∆) . (3.38)

13It is also interesting to note that, by computing the 2-to-2 scattering amplitude using the results of [54],

we see that the conditions for stability of the theory (which boil down to α ≥ 1) are stronger than those

imposed by demanding positivity of the amplitude in the forward limit. This was also seen in [55] in

the context of the Conformal Galileon which is a non-linear realisation of the four-dimensional conformal

group. A possible resolution may come from postivity constraints associated with higher point scattering

amplitudes and from non-forward amplitudes.
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More generally if we have a correction which is non-linear in ∂∂φ the symmetry fixes it to

take the schematic form

X
D−2m−∆m

2(1+∆) (∂∂φ)m . (3.39)

The coefficents of these higher derivative corrections are not fixed by the scaling symmetry,

they are therefore free coupling constants which must be fixed by matching to a (partial)

UV completion or by observations. Furthermore, to stay within the regime of validity

of the Scaling Superfluid EFT, these higher order corrections must always be considered

perturbatively, see e.g. [58].

Now for the Conformal Superfluid we use the coset construction to find the lead-

ing order corrections. The relevant symmetry breaking pattern corresponds to the group

SO(D, 2)×U(1), with generators Pµ,Mµν , D̂,Kµ and Q, broken down to a subgroup con-

sisting of spatial rotations Mij , spatial translations P̄i and a new form of time translations

given by P̄0 = P0+µQ. At the level of the algebra this change of basis ensures that there are

inverse Higgs constraints [30] which enable us to eliminate the d Goldstones ηi associated

with the broken boosts since [P̄i,M0j ] ⊃ δijµQ, and the dilaton ψ since [P̄0, D̂] ⊃ µQ. As

is well known, the Lorentzian vector τµ associated with special conformal transformations

Kµ can also be eliminated by an inverse Higgs constraint since [P̄µ,Kµ] ⊃ ηµνD̂. The full

symmetries can therefore by realised on π which is the Goldstone of the spontaneously

broken U(1). For notational convenience we have taken P̄i = Pi. For a discussion on the

conditions which must be met by the algebra such that the necessary inverse Higgs con-

straints exist and more generally for an introduction to the coset construction we refer the

read to [59].

We parametrise the coset element as

Ω = ex
µP̄µeπQeη

iM0ieψD̂eτ
µKµ , (3.40)

which yields the Maurer-Cartan (MC) form

Ω−1∂µΩ = eψΛνµP̄ν + (ωijMij
)µMij + (ωD̂)µD̂ (3.41)

+ (ωiM0i
)µM0i + (ωK0)µK0 + (ωiKi)µKi + (ωQ)µQ ,

where the MC components are given by

(ωijMij
)µ = (1− γ)∂µβ

[iβj]/β2 + 2eψΛ[i
µτ

j] , (3.42)

(ωD̂)µ = (∂µψ + 2eψΛνµτν) , (3.43)

(ωiM0i
)µ = −(γΛij∂µβ

j + 4eψΛ[i
µτ

0]) , (3.44)

(ωK0)µ = ∂µτ
0 + τ0∂µψ + 2eψτ0Λνµτν

− eψτ2Λ0
µ + γτiΛ

i
j∂µβ

j , (3.45)

(ωiKi)µ = ∂µτ
i + τ i∂µψ + 2eψτ iΛνµτν − eψτ2Λiµ

+ γτ0Λij∂µβ
j − 2(1− γ)∂µβ

[iβj]τj/β
2) , (3.46)

(ωQ)µ = ∂µπ + µ(δ0
µ − eψΛ0

µ) . (3.47)
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In arriving at the above, we have made the field redefinition

βi = −ηi tanh
√
η2√

η2
, (3.48)

and defined

Λ =

(
γ −γ~β
−γ~β δij + γ−1

β2 β
iβj

)
, γ =

1√
1− β2

. (3.49)

Note that this is the exact MC form for this symmetry breaking pattern.

We remind the reader that the MC components along P̄µ are interpreted as vielbeins

eµν , so in this case we have eµν = eψΛµν , which enables us to define a metric and invariant

measure

gµν = eρµe
σ
νηρσ,

√
−gdDx. (3.50)

Furthermore, for each Goldstone we have a corresponding covariant derivative. For exam-

ple, the π covariant derivative is given by

∇µπ = (e−1)νµ(ωQ)ν . (3.51)

Invariant theories are then constructed out of the covariant derivatives, with the indices

contracted in an SO(d) invariant manner, integrated over spacetime with the above invari-

ant measure. The MC components along any unbroken generators, so in this case (ωijMij
)µ,

are used to couple matter fields to the Goldstones.

Now as we discussed above, the fields βi, ψ and τµ can be eliminated from the Gold-

stone EFT by inverse Higgs constraints. The relevant inverse Higgs constraints come from

setting ∇iπ = 0, ∇0π = 0 and ∇µψ = 0, respectively. By solving these constraints we find

βi = − ∂iπ

µ+ π̇
, (3.52)

eψ =

√
X

µ
, (3.53)

τµ = −1

2
e−ψΛµ

ν∂νψ . (3.54)

Since det(Λ) = 1, the leading order invariant is therefore

S = q0

∫
dDxµDeψD = q0

∫
dDxXD/2 , (3.55)

as expected. Here and in the following qi are arbitrary, dimensionless coupling constants

which are not fixed by the conformal symmetry. Invariants with more derivatives are

constructed using the covariant derivatives ∇µβi and ∇µτν . First consider the leading

order correction which is of the form (3.37) which, by counting derivatives, must come

from the invariant

q1

∫
dDxµD−1eψD∇iβi. (3.56)
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By computing (3.56) on the inverse Higgs solutions we see that it is actually a total deriva-

tive and therefore there is no invariant of the form (3.37). If an operator of this form is to

exist it must be a Wess-Zumino term (see e.g. [60] for a discussion on Wess-Zumino terms

for Superfluids). However, we have checked explicitly using the transformation rules (2.24)

and (2.29) that there is no correction to the Conformal Superfluid of this type.

We now turn to corrections of the form (3.39) with m = 2, and of course ∆ = 0, which

must come from terms quadratic in ∇β or linear in ∇τ . A priori there are a number of

different contributions and here we do not study these corrections in full generality since

that would also require an analysis of Wess-Zumino terms which is beyond the scope of

this work but an interesting avenue for future work. However, we found that ∇0β
i = 0 on

the inverse Higgs solution and an example of a simple invariant of this type is

q2

∫
dDxµD−2eψD(∇iβi)2 (3.57)

where

µD−2eψD(∇iβi)2 =
(D − 2)2

4
X

D−8
2 (∂µφ∂

µX)2

+X
D−4

2 (�φ)2 + (D − 2)X
D−6

2 �φ∂µφ∂
µX. (3.58)

Perhaps a more simple way to extract these m = 2 invariants is to write down all indepen-

dent derivative contractions which are consistent with the scaling symmetry (2.24) then fix

the relative coefficients by also demanding invariance under (2.29).

4 Conclusions and outlook

In this paper we have provided a full classification of all Superfluid actions (2.2) that display

symmetries in addition to Poincaré and the shift symmetry, to lowest order in derivatives.

Our results are summarised in table 1. There are only two possibilities: the well-known

DBI action and Scaling Superfluids Xα. The Scaling Superfluid has additional conserved

currents for specific choices of α. For α = 1/2 we found the additional symmetries (2.11)

and (2.19) but we haven’t shown whether or not even more exist. The presence of many

conserved currents makes this theory somewhat peculiar and in our opinion merits further

study. For α = D/2 the scale symmetry is accompanied by invariance under special

conformal transformations thereby leading to the Conformal Superfluid (2.30). For D 6= 2

i.e. when this theory is interacting, we have shown that there are no additional symmetries:

would-be higher degree symmetries are never compatible with Jacobi identities. We note

that our results apply to any P (X) theory since in our analysis we do not assume anything

about the vacuum of the theory.

There are many avenues for future research. While Poincaré symmetries are non-

linearly realized on the Superfluid phonons π, their action can be linearized by a field

redefinition φ = µt+ π. It would be interesting to find non-linear realizations of Poincaré

on a single scalar that do not admit this linearization (as happens with additional degrees

of freedom [61]), or prove that they are impossible. It would also be nice to investigate

– 20 –
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the consequences of our results for cosmology, where for example Scaling Superfluids have

already made an appearance (see e.g. [62–65] and references therein). Also, the Scaling

Superfluid could be studied holographically, in analogy to Conformal Superfluids [3, 4].

Finally, one should investigate what symmetries survive at the quantum level. Indeed one

might worry that both the scaling and the conformal symmetries might be anomalous due

to the necessary renormalization procedure, in the same way as for λφ4. This should be

easy to establish by checking the validity of the Ward-Takahashi identities for the scaling

symmetry at one loop.
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