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1 Normalization methods to illuminate effetcs from different
dimensions of variables

The group lars algorithm introduces one extra parameter to correct the influence
of the difference of the dimensions among different groups of variables. In our case,
such difference is more dramatic.

Recall that the LARS algorithm uses the following equation to find the distance
to move on the direction unit vector with respect to the scalar candidate variable
z:

Cor(r − αu, z)2 = Cor(r − αu, u)2

where u is the unit vector representing the direction of the current iteration. The
iteration number is omitted.

The group LARS from Yuan and Lin (2006) has a similar equation:

||(r − αu)T zj ||22/pj = ||(r − αu)T zi||22/pi

where || · ||2 means the Euclidean norm of the vector; the group of variables zi is
one of the variables selected; bi is the corresponding coefficient; zj is one of the
candidate variables; pi and pj are the dimensions of xi and xj , respectively. The
dimensions pi and pj are used to remove the effect of the difference in dimensions.
Note that the direction vector u here is not unit vector.
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This equation is equivalent to:

(r − αu)T (zjz
T
j )(r − αu)

pj
=

(r − αu)T (ziz
T
i )(r − αu)

pi

(r − αu)T
zjz

T
j

pj
(r − αu) =(r − αu)T

ziz
T
i

pi
(r − αu).

The normalization is on the matrices zjz
T
j and ziz

T
i , as these two matrices are

the only different elements between left and right hand sides of the equation.
For functional candidates, we have

Cor

(
r − αu,

∫
x(t)β(t)dt

)2

/Nf = Cor(r − αu, u)2/Nu; (1)

while for scalar candidates, we have

Cor (r − αu, z)2 /Nz = Cor(r − αp, p)2/Nu. (2)

The parameters Nf , Nz and Nu are constants for normalization.

1.1 For functional candidate variables

We omit the subscript of the variables in the following derivation. In the main
manuscript, we obtained the solution of the modified functional canonical corre-
lation:

correlation: ρ2 =
V T
x,yP

−1
x,xVx,y

Vy
(3)

coefficients for x(t): C̃b =
P−1
x,xVx,y

ρ||y||2
, (4)

coefficients for y: a = 1/sd(y). (5)

After the k-th iteration in the flars algorithm, we have scalar variable rαu instead
of y from Eqn (3). Thus we have:

ρ2 =
V T
xyP

−1
x,xVx,y

Vy
(6)

=
(rαu)TxWK−1WTxT (rαu)

(rαu)T (rαu)
, (7)

where K = Px,x. If we substitute Eqn (7) into left hand side of Eqn (1) and expand
the right hand side of Eqn (1), we can get:

(r − αu)TxWK−1WTxT (r − αu)

(r − αu)T (r − αu)Nf
=

[(r − αu)Tu/(n− 1)]2

(r − αu)T (r − αu)uTu/(n− 1)2Nu

(r − αu)TxWK−1WTxT (r − αu)

(r − αu)T (r − αu)Nf
=

(r − αu)TuuT (r − αu)

(r − αu)T (r − αu)uT pNu

(r − αu)T S̄(r − αu) = (r − αu)T Ū(r − αu).

where S̄ = xWK−1WTxT

Nf
,Ū = u(uTu)−1uT

Nu
; x is the discrete data points of the

functional variable x(t). The estimated α is the solution of the quadratic function:

α2[uT (S̄ − Ū)u]− 2α[rT (S̄ − Ū)u] + [rT (S̄ − Ū)r] = 0 (8)
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1.2 For scalar candidate variables

If we expand both side of Eqn (2):

[(r − αu)T z/(n− 1)]2

(r − αu)T (r − αu)zT z/(n− 1)2Nz
=

[(r − αu)Tu/(n− 1)]2

(r − αu)T (r − αu)uTu/(n− 1)2Nu

(r − αu)T zzT (r − αu)

zT zNz
=

(r − αu)TuuT (r − αu)

uTuNu

(r − αu)T Z̄(r − αu) = (r − αu)T Ū(r − αu).

where Z̄ = z(zT z)−1zT

Nz
. The solution of α is the solution of the quadratic function:

α2[uT (Z̄ − Ū)u]− 2α[rT (X̄ − Ū)u] + [rT (X̄ − Ū)r] = 0 (9)

1.3 Normalization method

The intuitions from Eqn(8) and Eqn(9) are identical. Thus we can unify the for-
mulas for scalar and functional cases. Follow the spirit of the group LARS, we
tested rank, trace and Frobenius norm in the simulation study, and found out
that Frobenius norm is the most stable and best performed one. Thus we use
Frobenius norm as the normalization method in the algorithm.

2 Calculation of the degrees of freedom for fLARS

Here we propose our definition of the degrees of freedom based on the hat matrix.
In the functional LARS algorithm, the residual after iteration k can be written as

r(k+1) = r(k) − α(k)u(k)

where u(k) is the direction vector, calculated by:

u(k) =
Hkr

(k)

sd(Hkr(k))
.

Therefore, the true “hat” matrix at iteration k is :

H∗
k =

Hkα
(k)

sd(Hkr(k))
,

where Hk = XW (WTXTXW + λ1W2 + λ2W
TW )−1WTXT from Eqn (4).

The residual after iteration k becomes:

r(k+1) = (I −H∗
k)r(k).
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Recursively, the fitted value after iteration K with respect to the response variable
is:

ŷ =y − r(K+1)

=y − [
K∏

k=1

(I −H∗
k)]y

=[I −
K∏

k=1

(I −H∗
k)]y,

hence the “hat” matrix H̄K after iteration K is

H̄K = I −
K∏

k=1

(I −H∗
k). (10)

Similar to that in Efron et al. (2003); Barreca et al. (2005) We then define the
degrees of freedom for fLARS as follows:

df∗ = tr

(
Cov(µ̂∗T ,y∗T )

σ2

)

= tr

(
Cov(y∗T H̄T

k ,y
∗T )

σ2

)

= tr

(
H̄ky∗y∗T /(n− 1)

σ2

)

where y∗y∗T /(n − 1) is an n × n matrix. The i, j-th element is Cov(yi, yj). Its
value is σ2 if i = j and 0 otherwise. Hence:

df∗ = tr

(
H̄ky∗y∗T /(n− 1)

σ2

)

= tr

(
H̄kσ

2I

σ2

)
= tr(H̄k). (11)

3 Variables selected in linear regression with mixed functional and
scalar variables using group lasso

We extend the valriable selection algorithm for functinal linear regression proposed
by Gertheiss et al. (2013) to the case where both scalar and functional are in the
regression. This extended version of the algorithm is used in the comparison in
the simulation study. Recall that in the manuscript, the target linear model is a
regression with mixed functional and scalar candidate variables:

yi,d =
J∑

j=1

∫
xi,d,j(t)βj(t)dt+

J+M∑
m=J+1

zi,d,mγm + εi,d, (12)
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The notation used here is the same as those in the manuscript. To simplify the
notation, I will drop the subscripts i and d in the equation. The objective function
of the algorithm is:

G = (y−
J∑

j=1

xjΦ
T b̃Tj /k−

J+M∑
m=J+1

zmγm)2+λ(
J∑

j=1

√
pj(b̃Tj (ΦTΦ+ϕΦ2Φ

T
2 )b̃j)1/2+

J+M∑
m=J+1

||γm||2),

(13)
where xj is the functional variable represented by RDP with dimension k, Φ is
the basis function for functional coefficients, b̃ is the coefficients for the functional
coefficients. The tuning parameter λ is for lasso penalty and ϕ is for roughness
penalty. The difference between our extension and the original version algorithm
is that we included the scalar variables and added corresponding penalty for lasso
variable selection.

The objective function can then be written as:

G =(y −
J∑

j=1

xjΦ
T b̃T /k −

M∑
m=1

zmγm)2 + λ(
J∑

j=1

√
pj(b̃Tj L

TLb̃j)1/2 +
M∑

m=1

||γm||2)

=(y −
J∑

j=1

xjΦ
TL−1Lb̃T /k −

M∑
m=1

zmγm)2 + λ(
J∑

j=1

√
pj(b̃Tj L

TLb̃j)1/2 +
M∑

m=1

||γm||2)

=(y −
J∑

j=1

x∗
j b̃

∗T /k −
M∑

m=1

zmγm)2 + λ(
J∑

j=1

√
pj(b̃∗Tj b̃∗j )1/2 +

M∑
m=1

||γm||2),

where L is from the Cholesky decomposition of the penalty term K = ΦTΦ +
ϕΦ2Φ

T
2 , and

x∗
j = xjΦ

TL−1

b∗
j = Lb̃j .

After such transformation, the we can directly use the group lasso method and
the corresponding code for selection. The Cholesky decomposition requires the
targeting matrix to be positive definite. The penalty term K is not guaranteed to
be so in practice.
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