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Abstract

There is an increasing role for biological markers (biomarkers) in the understanding and diagnosis of
neurodegenerative disorders. The application of imaging biomarkers specifically for the in vivo investigation of
neurodegenerative disorders has increased substantially over the past decades and continues to provide further
benefits both to the diagnosis and understanding of these diseases. This review forms part of a series of articles
which stem from the University College London/University of Gothenburg course “Biomarkers in neurodegenerative
diseases”. In this review, we focus on neuroimaging, specifically positron emission tomography (PET) and magnetic
resonance imaging (MRI), giving an overview of the current established practices clinically and in research as well as
new techniques being developed. We will also discuss the use of machine learning (ML) techniques within these
fields to provide additional insights to early diagnosis and multimodal analysis.
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Introduction
Neurodegenerative diseases, including Alzheimer’s dis-
ease (AD), are now recognised to start years before
symptoms appear [1]. Studies of the genetically caused
familial AD have proposed a sequence of pathologic
events, starting with build-up and accumulation of
amyloid-β (Aβ), that can now be measured in the brain
(using positron emission tomography (PET) imaging)
and in cerebrospinal fluid (via lumbar puncture) and
ending with cognitive deficits and dementia [2]. These
events appear to start demonstrating abnormalities in a
distinct order, but also overlap temporally.

Specifically considering AD, the National Institute on
Ageing and Alzheimer’s Association (NIA-AA) has de-
veloped the research framework for the diagnosis of AD
[3]. This categorises diagnoses into the AT(N) scale, re-
ferring to Aβ, tau and neurodegeneration. These three
pathologies can all be (spatially and temporally) identi-
fied in vivo with current imaging biomarkers. Further
biomarkers that could be added to contribute to the
ATN categories (as discussed in detail in [3]) could
come from the imaging modalities discussed in this re-
view. Further refinement of diagnostic cut-offs for each
of these imaging-derived biomarkers will then also pro-
vide increases in the sensitivity and specificity for the re-
spective modality.
Neuroimaging has become a standard tool in the clin-

ical work up of individuals suspected of having a neuro-
degenerative disease. The use of various magnetic
resonance imaging (MRI) techniques and the develop-
ment of novel PET ligands have led to the ability to

© The Author(s). 2020 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if
changes were made. The images or other third party material in this article are included in the article's Creative Commons
licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons
licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain
permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the
data made available in this article, unless otherwise stated in a credit line to the data.

* Correspondence: michael.scholl@neuro.gu.se
†Ross W. Paterson and Michael Schöll contributed equally to this work.
1Wallenberg Centre for Molecular and Translational Medicine and the
Department of Psychiatry and Neurochemistry, University of Gothenburg,
Sahlgrenska University Hospital, Gothenburg, Sweden
9Dementia Research Centre, UCL Institute of Neurology, University College
London, London, UK
Full list of author information is available at the end of the article

Young et al. Alzheimer's Research & Therapy           (2020) 12:49 
https://doi.org/10.1186/s13195-020-00612-7

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Apollo

https://core.ac.uk/display/323994137?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://crossmark.crossref.org/dialog/?doi=10.1186/s13195-020-00612-7&domain=pdf
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
mailto:michael.scholl@neuro.gu.se


understand these diseases in vivo like never before. Ac-
cess to these tools has provided access to a plethora of
objective measures which can indicate both the presence
and progression of these diseases. This is useful for pa-
tients in a clinical setting but can also be used for the
targeted recruitment to clinical treatment trials and
tracking of any treatments that are undergoing clinical
trial both in terms of efficacy of treatment but also for
safety monitoring. Neurodegenerative disorders are in-
creasingly requiring the input of multiple disciplines for
both the diagnosis and understanding of these diseases,
and imaging biomarkers have a role to play in the wider
collaborative approach to understanding these diseases
as well.
There have been considerable advances in the portfo-

lio of PET ligands available for use in identifying bio-
markers associated with neurodegeneration, some of
which have progressed to use in the clinic and others
present promising new avenues for understanding these
neurodegenerative diseases. MRI techniques are also be-
ing used to help with both the diagnosis and the devel-
opment of our understanding, with structural MRI still
being the most widely available imaging tool for neuro-
degeneration. This review article will give a brief over-
view of the established and upcoming practices both
within the PET and MRI fields in relation to neurode-
generation as well as how machine learning can be an
aid to these modalities.

Positron Emission Tomography
[18F]FDG PET
[18F]-2-Fluoro-2-deoxy-D-glucose (FDG) was first intro-
duced as a PET tracer for neuroimaging in 1979 [4] and
has since been established as a routine research and clin-
ical biomarker for diagnosing dementia [5]. Glucose is
the brain’s main source of energy. It circulates in the
blood and crosses the blood-brain barrier. When energy
is needed, glucose is phosphorylated as the first step of
energy being made available. FDG is an artificial
analogue of glucose, which mimics glucose’s action until
it is phosphorylated. Phosphorylated FDG gets trapped
in tissue and is not metabolised further. The rate of
FDG trapping is proportional to glucose metabolism.
Rocher et al. showed that regional glucose consumption
is related to synaptic activity [6], and decreased regional
FDG trapping (hypometabolism) is interpreted as a sign
of synaptic and neuronal damage.
Protocols for acquiring FDG images can vary between

sites. After intravenous injection of FDG into a fasting
subject (fasted for ~ 4 h), and waiting a minimum of 30
min to allow FDG to circulate, PET data is acquired,
typically for 10–30min. Absolute glucose metabolism
can be calculated by using an arterial input function
derived from arterial blood, but more commonly the

standardised uptake value (SUV) is calculated using body
mass (kg) and injected dose of FDG (MBq). Regional
SUV ratios (SUVRs) can be generated using a standard
reference region, normally a region unaffected by the
disease process, e.g. the grey matter of the cerebellum in
AD [7].
Clinical application of FDG PET varies between coun-

tries, but regional neocortical hypometabolism is ac-
cepted to be useful to help differentiate dementias even
though regional patterns can overlap [8–10]. In AD,
hypometabolism can appear before visible atrophy [11]
and a symmetrical hypometabolism in the temporoparie-
tal, posterior cingulate and medial temporal cortices is
usually seen. Reported sensitivity and specificity for AD
diagnosis vary from study to study, but in 2015, Smaila-
gic et al. [12] found the sensitivity for conversion from
mild cognitive impairment (MCI) to AD was 76% at 82%
specificity. In frontotemporal dementia, hypometabolic
regions include the frontal and anterior temporal lobes,
cingulate gyri, uncus, insula, basal ganglia and medial
thalamus. The hypometabolism is often asymmetric [13]
with sensitivity of 88% and specificity of 91%. Occipital
hypometabolism occurs in both posterior cortical atro-
phy (an atypical form of AD) and dementia with Lewy
bodies (DLB) [14]: dopamine transporter imaging could
be used to differentiate these dementia types since dopa-
mine transport is decreased in DLB.
While useful, FDG PET has limitations. Decreased up-

take can be caused by a diminished cerebrovascular cir-
culation or by metabolic disorders such as diabetes
rather than decreased synaptic activity [15]. As the scan
involves radiation exposure, it is not recommended to
be repeated more frequently than annually. The PET
process itself (isotope production, radiochemistry, scan)
is expensive compared to MRI, and [18F] has a short
half-life of just under 2 h (110 min), which adds time
pressure to scans. In summary, FDG PET is a useful
biomarker for investigating neuronal injury in dementia.

Amyloid-β PET
The involvement of Aβ in the pathological expression of
AD has been known for over 25 years [16]. This involves
the aggregation of fibrillar Aβ causing the creation of so-
called Aβ plaques in the brain [17]. The current
hypothesis is that plaque accumulation induces multiple
downstream alterations that lead to neurodegeneration
and cognitive decline. Our understanding of these down-
stream alterations has changed over the years and now
includes not only inflammation but synaptic alterations,
functional changes and alterations in tau [18, 19].
Historically, the only way to definitively classify a person
as having AD was through post mortem examination of
their brain tissue for Aβ plaques and neurofibrillary
tangles (NFTs) predominantly consisting of
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hyperphosphorylated tau protein. With the advent of Aβ
PET tracers, it is now possible to have an in vivo, quanti-
fiable measure of a key biomarker of AD, thereby allow-
ing a possible diagnosis much earlier [20]. Aβ in the
brain displays a pattern of deposition that begins in
medial frontal and basal temporal areas, progressing to
include the neocortex, primary sensory-motor areas and
finally the MTL and striatum [21–23].
The first Aβ-specific PET tracer introduced to pro-

vide accurate imaging data of Aβ pathology is Pitts-
burgh compound B (PiB) labelled with C-11 [24, 25].
The compound is derived from thioflavin-T and is
known to have a high affinity to the Aβ plaques. This
has resulted in its widespread use both as a diagnos-
tic tool and as a reference for other Aβ PET tracers
[25]. While [11C]PiB is useful in research settings, its
widespread utility is limited by the short half-life of
C-11 necessitating a local cyclotron and radiochemis-
try. Therefore, the development of an F-18 (110-min
half-life)-based Aβ tracer was required for routine
clinical use as those can be delivered from an off-site
cyclotron. There are currently three F-18-labelled Aβ
PET tracers approved by the FDA and EMA for
clinical use. These are [18F]flutemetamol, [18F]florbe-
tapir and [18F]florbetaben. These tracers have shown
to behave similarly to PiB in head-to-head studies
[26–28], and some have been verified histologically
[29]. Another Aβ-specific tracer, [18F]NAV4694, is
thought to overcome some of the reported shortcom-
ings of the previous-generation tracers, mainly “off-
target” binding [30]. The range of tracers being used,
all with differing uptake characteristics and varying
pharmacokinetics, means that care must be taken
when performing analyses. Each of these tracers will
require their own analysis pipeline with possible dif-
ferences in reference regions [31, 32]. Cut points for
Aβ positivity will also vary between tracers [33]. This
is why there has been an ongoing development to
standardise quantitative Aβ imaging measures using
the “centiloid scale” [34]. Work is now ongoing to
validate centiloid scaling between various tracers and
against other biomarkers [35–37]. Standardisation
such as centiloid scaling has yet to be applied in tau
imaging to a greater extent [38].
As post mortem and in vivo biomarker evidence

closely associate Aβ pathology with AD, Aβ PET
tracers have become standard tools for clinicians to
aid in their diagnosis of patients suspected of having
AD [39]. These tracers also have a key place in AD
research in differentiating diagnostic groups and
tracking disease progression [40]. In addition, these
tracers are readily used for the evaluation of thera-
peutic trial outcomes to examine the effects of drugs
removing brain Aβ [41, 42].

Tau PET
The advent of tau-specific PET tracers has marked the
beginning of a new era with potential applications in dif-
ferential diagnosis and prognosis and serving as a sec-
ondary outcome measure for clinical trials [43]. Tau is
physiologically involved in the stabilisation of microtu-
bules and can present with three or four repeat (3R/4R)
microtubule-binding domains [44, 45]. First-generation
tau PET ligands all seem to bind mixed 3R/4R paired
helical filament (PHF) formations of tau [46–50] and
include [11C]PBB3, a series of “THK” tracers
([18F]THK523, [18F]THK5105 and [18F]THK5351), and
[18F]flortaucipir (formerly [18F]T807 or [18F]AV1451)
[51–53]. As these “first-generation” tracers face chal-
lenges such as off-target binding, novel tau compounds
have been developed, though their relationship with clin-
ical outcome measures has yet to be established in larger
cohorts [54, 55]. Notable “second-generation” tau li-
gands include [18F]RO948, [18F]GTP1, [18F]PI2620,
[18F]PM-PBB3 and [18F]MK6240 [54, 56–60], which
have shown reduced off-target binding with similar on-
target signal response [61, 62]. As currently available tau
PET ligands bind AD-like mixed 3R/4R tau pathology,
the utility of tau PET in pure 3R or 4R tauopathies, such
as progressive supranuclear palsy and corticobasal de-
generation, has shown to be less persuasive [57]. So far,
tau PET studies in clinical settings have mostly been
performed within the field of AD using the [18F]flortau-
cipir tracer (see Fig. 1).
In AD, tau PET imaging studies have demonstrated

that tau deposition seems to follow the staging pattern
revealed by Braak and Braak, suggesting tau spreads
from the entorhinal cortex (Braak I/II) to the inferolat-
eral temporal and medial parietal lobes (Braak III/IV)
and finally the neocortex (Braak V/VI) [63–65]. This
vulnerability of brain regions for tau pathology overlaps
with brain regions underlying the different clinical phe-
notypes in typical and atypical AD dementia and corre-
lates with atrophy and reduced glucose metabolism in
those regions, a relationship that is not found with Aβ
[66, 67]. Tau pathology in Braak I/II is also commonly
observed in cognitively unimpaired controls, which likely
reflects an age-related process of tau accumulation. Also,
in these cognitively unimpaired individuals, tau seems to
be associated with regional atrophy and hypometabo-
lism, as well as to subtle cognitive deficits [68–73]. Fur-
thermore, a recent longitudinal study has shown that
both baseline and change in [18F]flortaucipir are related
to changes in cognition [74]. Hence, both the amount
and distribution of tau PET accurately reflect cognitive
symptoms and deterioration. The clinical utility of tau
PET has recently been demonstrated in a multi-centre
study highlighting the ability of [18F]flortaucipir to dis-
criminate between AD dementia and non-AD

Young et al. Alzheimer's Research & Therapy           (2020) 12:49 Page 3 of 17



neurodegenerative diseases, with highest sensitivity
(96.8%) and specificity (87.9%) using several thresholds
applied to temporal and temporoparietal regions [75].
Furthermore, while tau PET and tau measured in the
cerebrospinal fluid (CSF) performed equally well in sep-
arating prodromal AD from controls, tau PET outper-
formed tau-CSF in discriminating prodromal AD from
AD dementia [76].
Although tau PET imaging shows great potential for

implementation into the clinic, the high regional specifi-
city of tau requires careful selection of regional and
global measures for categorising individuals into tau-
positive or tau-negative as suggested by the NIA-AA re-
search framework. Different cut points for tau-tracer
binding in different brain regions have been suggested,
however, standardisation of such methodological aspects
is needed. Furthermore, although the majority of AD pa-
tients present with both high Aβ and high tau burden,
studies have shown that some AD patients present with
high Aβ and low tau burden [77–79]. Possible explana-
tions such as clinical misdiagnoses (with incidental Aβ
co-pathology) or differences in tau conformations that
might affect tracer binding are to be examined in future
clinical tau PET studies and studies using novel tau PET
ligands. Importantly, although the advent of tau PET
tracers has greatly advanced our knowledge regarding
the close relationship between tau pathology and down-
stream neurodegeneration events linked to cognitive de-
cline, it remains as of yet unknown how Aβ relates to
the development of tau, and how tau relates to the oc-
currence of neurodegeneration. A study by Jacobs and
colleagues indicated that Aβ may facilitate the spread of
tau from the medial temporal lobe to the downstream
posterior cingulate cortex through the parahippocampal

cingulum [80]. Ideally, multimodal longitudinal imaging
studies are needed to elucidate the temporal relation-
ships between pathology biomarkers.

SV2A PET
In AD, Aβ and tau alongside neuroinflammation and
vascular insufficiency lead to irreversible synaptic dys-
function and loss [81] causing the deleterious amnestic
presentation of the disease. Loss of synapses and de-
creased synaptic density (particularly the vulnerable
hippocampus/medial temporal lobe) are likely earlier
events than neurodegeneration and important for drug
targets. Previously, synaptic density changes could only
be studied cross-sectionally from post mortem brain tis-
sue or biopsy [82, 83]. Recently, these changes have been
able to be visualised directly in vivo in humans [84].
PET ligands targeting the synaptic vesicle glycoprotein

2A (SV2A) form a potentially useful and exciting investi-
gative tool to measure synapses [85]. SV2 is a 12 trans-
membrane domain integral protein with three isoforms
(2A, 2B and 2C). SV2A is the most ubiquitous and is
expressed as a transmembrane glycoprotein in
secretory vesicles on presynaptic terminals. It is crit-
ical to synaptic function, particularly Ca2+-dependent
exocytosis [86], and is known to be the binding site
of levetiracetam [87].
[11C]UCB-J is a PET ligand developed to image SV2A

with favourable brain uptake, kinetics and dosimetry
shown in non-human primates [88]. There is a high cor-
relation between in vitro SV2A UCB-J binding and
in vitro synaptophysin density (r2 = 0.90 for GM regions)
pre-clinically [4]. [11C]UCB-J has a high affinity for
SV2A (Ki = 7 nm) and has been successfully displaced by
levetiracetam in vivo in humans, with good dosimetry

Fig. 1 Comparison of [18F]florbetaben and [18F]flortaucipir for three patients. The authors would like to acknowledge Dr. Susan Landau (UC
Berkeley) for her assistance in the creation of this figure. Scale is standardised uptake value ratio (SUVr)
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(4.5 mSv/MBq) [4]. Regional time-activity curves showed
[11C]UCB-J has fast kinetics, was well described by a 1
tissue compartment model (1TC) or a simplified refer-
ence tissue model (SRTM) (reference centrum semi-
ovale) and had a 3–9% mean test-retest variability in VT
across regions [89].
Decreased [11C]UCB-J binding was first shown in a

small disease group with temporal lobe epilepsy and me-
sial temporal sclerosis (n = 3), revealing region-specific
unilateral decreases in the hippocampus [84]. The first
study in MCI/AD using [11C]UCB-J compared Aβ+ pa-
tients (n = 10) with age-matched Aβ− controls and
showed a significant reduction in hippocampal SV2A
binding (41% decrease in BPND) that survived partial vol-
ume correction and correlated significantly with episodic
memory [89]. The decrease in SV2A binding throughout
the neocortex in MCI/AD was modest and not signifi-
cantly different from controls.
Multiple other candidates selective to SV2A have

been developed including [18F]UCB-H, which dis-
plays a comparatively good signal but higher
variability than [11C]UCB-J [90] and a human
dosimetry of 19.7mSv/MBq [91]. The longer [18F] half-

life allows wider use and more time for transit to clinical/
research sites [92].
Much future work involving SV2A imaging in AD re-

mains. Currently, the first published AD study needs
replication with more patients alongside longitudinal in-
vestigation. The relationship of SV2A binding with Aβ/
tau needs to be explored as well as its relationship with
other disease features such as mitochondrial dysfunction,
cellular stress and glial (microglial and astrocyte) reactiv-
ity. A summary of discussed PET imaging can be found
in Table 1.

Magnetic Resonance Imaging
Structural MR imaging
Structural imaging is the imaging workhorse of neurode-
generation, it is the most widely used and accessible, it is
recommended in diagnostic guidelines [101] and it
forms part of most consensus criteria. Structural MRI
(sMRI) has several advantages over computed tomog-
raphy (CT). Its main uses are (a) excluding brain lesions,
(b) determining patterns of atrophy and (c) assessing
vascular burden. Research key aims include improving
early diagnosis and tracking disease progression.

Table 1 Summary table of typical PET tracers for neurodegeneration-related investigations discussed in this article

Example tracers Protocol Analysis Limitations

Glucose
metabolism:
[18F]FDG

• Fasting for ~ 4 h
• Scanning 30 min after injection
• Scan typically for 0–30min

• SUV using weight and injected dose
• SUVR using cerebellar grey matter or pons
as reference regions [7]

• Hypometabolic patterns overlap
between multiple
neurodegenerative diseases [8–10]

• Still not enough evidence to
support routine clinical use in the
prodromal phase [93]

Aβ:
[11C]PiB
[18F]Florbetaben
[18F]Florbetapir
[18F]Flutametamol
[18F]NAV4694

Scan protocols vary between tracers;
however, typically, patients are scanned
40–60min (PiB) or 70–90min (most [18F]-
based tracers) after injection for ~ 20 min.
For EANM clinical guidelines, see
Minoshima et al. [94]

Typical analysis will use SUVR using the
cerebellum or cerebellar grey matter as the
reference region [21, 31, 32]

• [C11]PiB requires an on-site
cyclotron

• Second-generation tracers have cer-
tain off-target binding issues as well
as reduced uptake in the cortex as
compared to PiB [30]

• Latest generation tracers have yet to
be validated in larger cohorts

• Aβ positivity can refer to various
neurodegenerative diseases [95]

Tau:
[18F]THK5351
[18F]THK5317
[18F]THK523
[11C]PBB3
[18F]Flortaucipir
[18F]RO948
[18F]MK6240
[18F]GTP1
[18F]PI2620

Scan protocols vary between tracers;
however, typically, patients are scanned in
the range of 50–90 min after injection for
~ 20min [96]

Most typical analyses will derive SUVR using
the cerebellum, cerebellar grey matter or
inferior cerebellum/cerebellar grey as the
reference region [96].

• Molecular diversity of tauopathies
means no single tau tracer can be
used for all disorders [57]

• First-generation tracers exhibit off-
target binding and subcortical white
matter uptake [96, 97]

• Second-generation ligands have yet
to be evaluated with regard to clin-
ical outcomes in larger cohorts [54,
55, 96]

• Experimental and clinical validation
of tau tracers in general is still
required [98, 99]

SV2A:
[11C]UCB-J
[18F]UCB-H

Scan protocols are yet to be determined in
more studies using SV2A PET tracers

Centrum semi-ovale is most commonly
used as the reference region, despite some
evidence of synaptic changes [100]. Re-
cently, also a cerebellar reference region
has been suggested.

• Requires replication with more
patients alongside longitudinal
investigation [84, 89]

• Association with other disease
features (as described above) needs
to be explored
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Atrophy patterns—signatures of neurodegeneration
Neurodegenerative disorders, to a greater or lesser ex-
tent, show characteristic patterns or signatures of brain
atrophy on T1-weighted images (see Fig. 2) that can be
used to improve differential diagnosis. Table 2 outlines
some of the most common and useful atrophy patterns
for the diagnosis of these diseases. Specific brain signa-
tures have also been described in young onset AD [102,
103] and genetically mediated forms of frontotemporal
dementia [104–106].
It is also important to mention the utility of white

matter hyperintensities (WMH) as these are essen-
tial for the diagnosis of cerebral small vessel disease
(CSVD) [107]. Moreover, the location of micro-
bleeds seen with T2*/SWI sequences can often
bring diagnostic clarity on the underlying path-
ology—microbleeds associated with hypertension are
found in deep brain regions, whereas Aβ-related
microbleeds are more likely cortical [108]. Finally,
diffusion-weighted imaging is the most sensitive
sequence in the diagnosis of sporadic Creutzfeldt-Jakob
disease [109].

Current use of structural MRI in research
Voxel-wise analyses confirm the value of brain atrophy
patterns in pathologically distinct dementias [117–119].
In AD, volume loss appears later than Aβ deposition
and synaptic dysfunction [120], but hippocampal
changes are detected before symptoms [121]. Further-
more, hippocampal volume has been validated and ac-
cepted by regulatory agencies as a biomarker for trials
targeting predementia stages [122]. Longitudinal rates of
atrophy monitor progression and can change the sample
size needed to show treatment effects depending on the
technique and selected anatomical region [123, 124].
Cortical thickness has also been shown to be a marker

of AD, where regionally specific cortical thinning can be
used to detect presymptomatic Aβ-positive individuals but
also can indicate the severity of symptoms [125, 126]. It
has also been shown to be able to differentiate between
neurodegenerative disorders, for example between AD
and FTD [127]. Shape analysis can also be used in
differentiating individuals, studies of hippocampal shape
changes and atrophy have demonstrated differences in
the substructural changes of the hippocampus

Table 2 Atrophy patterns included in the current diagnostic criteria of selected neurodegenerative dementias. Only changes in T1-
weighted MRI sequence are included in the MRI signature column. The MRI signatures described are supportive features for the
diagnosis unless otherwise stated. PPA primary progressive aphasia. FTD frontotemporal dementia

Disease Diagnostic criteria MRI signature

Alzheimer’s disease McKhann et al. [110] Disproportionate atrophy in the medial, basal and lateral temporal lobe and medial parietal
cortex

Posterior cortical atrophy Crutch et al. [111] Predominant occipito-parietal or occipito-temporal atrophya

Logopenic variant PPA Gorno-Tempini et al.
[112]

Predominant left posterior perisylvian or parietal atrophy

Behavioural variant FTD Rascovsky et al. [113] Frontal and/or anterior temporal atrophy

Semantic variant PPA Gorno-Tempini et al.
[112]

Predominant anterior temporal lobe atrophy

Non-fluent variant PPA Gorno-Tempini et al.
[112]

Predominant left posterior fronto-insular atrophy

Dementia with Lewy bodies McKeith et al. [114] Relative preservation of the medial temporal lobe structuresb

Multiple system atrophy Gilman et al. [115] Atrophy of the putamen, middle cerebellar peduncle, pons or cerebellum

Progressive supranuclear
palsy

Höglinger et al. [116] Atrophy predominant in the midbrain relative to pons

aCore neuroimaging feature of the PCA clinico-radiological syndrome; bnon-specific biomarker for DLB, but useful to differentiate from AD

Fig. 2 T1-weighted MRI scans demonstrating characteristic cortical atrophy signature in selected diseases: a typical amnestic Alzheimer’s disease,
b posterior cortical atrophy, c behavioural variant frontotemporal dementia and d semantic dementia
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depending on the type of neurodegenerative disorder
[126, 128]. Shape analysis of brain ventricles has also
shown that markers such as perimeters of the ventricles
can be simple markers extracted from sMRIs to differen-
tiate HC and AD [129].

Future directions of research

High-resolution volumetry of the medial temporal
lobe in AD using 7T MRI High spatial resolution sMRI
now allows for volumetry of hippocampal subfields [130,
131]. Early changes in CA1 have been observed in AD,
with volumetric studies indicating that CA1 atrophy
measures may improve diagnostic accuracy at the MCI
stage (see [120] for a review). Other studies, however,
have found that the subiculum is associated with poorer
cognitive performance and risk of developing dementia
[132] and may serve as an early marker of AD-related at-
rophy [133]. Recent studies of volume, thickness and
shape measurements of extrahippocampal subregions in
the medial temporal lobe have shown that thickness
measurements of the transentorhinal region could differ-
entiate Aβ positive from negative individuals while out-
performing other measures such as CA1 or whole
hippocampal volume [134].

Assessment of iron deposition using in vivo MRI
Novel MRI techniques, such as quantitative susceptibility
mapping (QSM) or the T2* transverse relaxation time,
have shown that iron levels and its rate of accumulation
are heterogeneous in the human brain [135] and corre-
lates with cognitive impairment [136, 137] and slowing
of motor performance [138, 139]. Abnormal iron depos-
ition has been reported in AD [140, 141], Parkinson’s
disease (PD) (for a review see [142]), multiple sclerosis
[143, 144] and additional neurodegenerative disorders
(for a review see [145]). The elevation in cortical iron
deposition in PD is concordant with known alpha-
synuclein pathology [146] and in AD, has been shown to
predict cognitive decline in individuals with Aβ path-
ology [147].
Taken together, in vivo sMRI techniques may have the

potential to improve early and differential diagnosis, aid
stratification of patients into clinical trials and track
disease progression in neurodegenerative disorders.

Functional MRI, ASL, DTI and graph theory
Functional MRI
Neuronal dysfunction and altered connectivity of distinct
brain networks are thought to occur early in the course
of neurodegenerative diseases and can be measured in-
directly with functional magnetic resonance imaging
(fMRI). In AD, several resting-state fMRI studies re-
vealed altered connectivity in the default mode network

[148, 149], ranging from hippocampal coactivation [150]
to potential compensatory increased activation in the
MTL [151]. Studies have also suggested distinct atrophy
patterns within various intrinsic functional networks for
a number of neurodegenerative diseases [152]. Task-
based fMRI studies are less consistent and have often re-
ported increased task activation or reduced deactivation
in hippocampus, frontal and parietal regions in the pres-
ence of AD pathology or in patients with MCI (e.g.
[153–158]). There are also data indicating that an initial
phase of hyperactivation [159] is followed by hypoactiva-
tion with further increasing Aβ burden and disease pro-
gression [160, 161]. Whether task-based fMRI shows
hyper- or hypoactivation likely depends on the specific
fMRI contrast/task, the brain region examined, and the
pathological stage of an individual (for an example see
Fig. 3). While task-based fMRI is a promising future bio-
marker, sensitivity and reliability of different fMRI tasks
within-subject and across cohorts still need to be
established.

Arterial Spin Labelling
Current models of AD suggest that metabolic alterations
occur in the brain before structural changes could be
identified. FDG PET (as discussed earlier) has been a
standard tool for measuring these changes in the past;
however, due to the introduction of tau and Aβ-specific
PET tracers (as discussed previously), there is increased
demand for a biomarker that does not require a second
PET scan. Arterial spin labelling (ASL) has shown to be
a promising replacement for FDG PET; this is due to the
metabolism and perfusion in the brain being very closely
matched [162] and so hypometabolic patterns seen in
FDG PET can be equally seen in ASL images. This fact
coupled with patients already undergoing an MRI scan
means that ASL could serve as a cheaper and faster
alternative which would also reduce the radiation burden
to the patient without sacrificing any diagnostic quality
for both AD and FTD [163, 164]. For both AD and other
neurodegenerative diseases, there is still a requirement
for larger studies to validate this technique [163, 165].

DTI
The brain’s white matter tracts are also sensitive to the
underlying pathology of neurodegenerative disease [166,
167]. Using diffusion tensor imaging (DTI), a variant of
MRI that is sensitive to the mobility of water molecules
in tissue, it is possible to quantify the microstructural
properties of white matter tracts in vivo [168]. In AD,
DTI studies have identified microstructural alterations
(specifically increased absolute diffusivities and reduced
fractional anisotropy) in tracts linking regions affected
early by disease pathology, including the fornix, para-
hippocampal cingulum and corpus callosum [169–171].
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Microstructural variation in these tracts has also been
associated with the accumulation of Aβ and tau in cog-
nitively normal individuals [80, 172], suggesting that
DTI may prove useful as a biomarker for AD. Similarly,
alterations in diffusivity have been described in pre-
symptomatic and early-stage familial frontotemporal
dementia. Individuals suffering from amyotrophic lateral
sclerosis (ALS) were also seen to have increased diffusiv-
ity in the bilateral centrum semi-ovale as well as deep
and parietal white matter [173]. However, common DTI
measures such as fractional anisotropy are influenced by
numerous disease-relevant properties, including myelin-
ation, thereby limiting anatomical specificity [174]. Thus,
while DTI has proven to be useful as a tool for under-
standing neurodegenerative conditions, further research
is needed to establish its utility as a biomarker.

Graph theory
Graph theory is the study of systems of interactive ele-
ments—‘nodes’, and the connections between them—
‘edges’ [175, 176], allowing for representation of brain
networks. Both structural (DTI) and functional connect-
ivity measures (fMRI) can be obtained from brain graphs

[177, 178]. AD research uses graph theory to examine
integration (path length between nodes), segregation
(clustering) and centrality (importance of nodes in a net-
work) [179]. Network topology appears to be disrupted,
with clinical symptoms arising from changes in commu-
nication between anatomically and functionally con-
nected brain areas [179]. AD appears to result in longer
paths between nodes with lower global efficiency [179]
and with less interconnectivity and more segregated
clusters in the default mode network (DMN) [180].
Widespread changes within and outside the DMN are
seen with advanced Aβ accumulation [181]. Inconsistent
findings between AD studies may be due to different
definitions of nodes and edges [182]. Harmonisation is
needed for future work.

Machine learning
Current reviews of ML algorithms applied to neurode-
generative disorders include a systematic review of the
use of ML and neuroimaging in general to assist the
diagnosis of dementia [183, 184] to more methodological
reviews, focusing on feature extraction, different ML ar-
chitectures and validation techniques [185–187]. Three

Fig. 3 Cognitively normal older adults (n = 49) underwent 3-T fMRI while performing a mnemonic discrimination task as well as PET imaging. A
whole-brain multiple regression showed that increased tau burden (mean flortaucipir SUVR from Braak III/IV ROI) was related to increased task
activation during object processing (covarying for age and gender). Tau-related activation increases were seen mainly in hippocampus and
posterior-medial regions. Results are FDR-corrected at the cluster level (pcluster < .05, pvoxel < .001 uncorrected). The scatter plot (lower left) shows
the correlation of regional Flortaucipir SUVR and object activation in posterior-medial regions. See Maass et al. [158] for study details
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longitudinal studies analysed the progression of AD
[188–190] using structural MRI and deep learning (DL)
algorithms such as recurrent neural networks (RNNs)
and variations of long short-term memory networks
(LSTMN). The most common feature in order to study
disease progression is hippocampal volume.

Early diagnosis and progression to MCI/AD
The majority of ML studies are focused on diagnosis or
early detection of AD [191–213]. There has been an in-
creasing effort to try to fully predict AD from MCI or
healthy controls as well as using artificial intelligence
techniques (such as ML or DL) in order to aid clinical
diagnosis. Lately, more importance has been given to
subject memory complaints (SMC) as it could be a pre-
asymptomatic stage of MCI.
There are several longitudinal databases that are help-

ing to develop these kinds of studies such as ADNI,
OASIS or the Rotterdam Study. With this increase of
data, there has been a shift from the use of ML algo-
rithms such as support vector machines (SVMs) and k
nearest neighbours (KNN) to more DL-based studies,
mostly convolutional neural networks (CNNS) [205, 214,
215]. Along with feature selection methods, these
models combine different sMRI cortical and subcortical
volumetric measures to identify disease subtypes [216].
Neural networks (NNs) based on sMRI and cognitive
scores can predict the conversion of MCI to AD

(cMCI) and distinguish between stable MCI and
cMCI [214, 217, 218]. ML classifiers can also differen-
tiate between clinical syndromes of frontotemporal
dementia (FTD) [219]. Longitudinal studies using fea-
ture extraction-based learning techniques provide im-
proved atrophy measures with significantly lower
mean absolute error and volumetric markers such as
the hippocampus, posterior cingulate cortex and
middle temporal gyrus for evaluating disease progression
in AD and MCI [190, 220, 221].

Multimodal machine learning
ML is an optimal approach to combine the findings of
different imaging modalities. NNs based on grey matter
density from MRI and glucose metabolism from PET
yields better results than individual modalities [215, 222,
223]. Structural and connectivity measures from MRI
combined with metabolism rate from PET predict the
conversion of MCI to AD. Deep learning models can
predict cMCI from non-white matter extractions using
PET images combined with MRI images. NNs based on
sMRI or resting-state fMRI, cognitive and functional as-
sessments show enhanced automatic diagnosis of both
AD and MCI [224]. ML techniques can be used to
combine clinical measures with multiple imaging modal-
ities to understand the neuropathological processes of
diseases [225].

Fig. 4 The imaging arm (red) as part of the greater collaborative approach to neurodegeneration [226]
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Conclusion
There is a growing body of evidence that imaging bio-
markers can be useful in the detection and monitoring
of neurodegenerative diseases. Due to the complexity of
many of the diseases being studied as well as a variation
in the results reported, extracting definitive findings re-
mains a challenge. With ongoing and planned trials for
various treatments, it is important to incorporate im-
aging biomarkers into these trials as well as continuing
to improve the diagnostic and prognostic power of these
techniques. On a wider scale, imaging biomarkers have a
part to play in a collaborative approach to neurodegen-
eration (Fig. 4) as understanding and treatment becomes
increasingly multidisciplinary.
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