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Abstract Using a data sample corresponding to an inte-
grated luminosity of 2.0 fb−1, collected by the LHCb exper-
iment, the production of the ηc(1S) state in proton–proton
collisions at a centre-of-mass energy of

√
s = 13 TeV is stud-

ied in the rapidity range 2.0 < y < 4.5 and in the transverse
momentum range 6.5 < pT < 14.0 GeV. The cross-section
for prompt production of ηc(1S) mesons relative to that of
the J/ψ meson is measured using the pp decay mode and
is found to be σηc(1S)/σJ/ψ = 1.69 ± 0.15 ± 0.10 ± 0.18.
The quoted uncertainties are, in order, statistical, sys-
tematic and due to uncertainties on the branching frac-
tions of the J/ψ → pp and ηc → pp decays. The
prompt ηc(1S) production cross-section is determined to
be σηc(1S) = 1.26 ± 0.11 ± 0.08 ± 0.14µb, where the last
uncertainty includes that on the J/ψ meson cross-section.
The ratio of the branching fractions of b-hadron decays to the
ηc(1S) and J/ψ states is measured to be
Bb→ηc X/Bb→J/ψ X = 0.48 ± 0.03 ± 0.03 ± 0.05, where the
last uncertainty is due to those on the branching fractions
of the J/ψ → pp and ηc → pp decays. The difference
between the J/ψ and ηc(1S) masses is also determined to
be 113.0 ± 0.7 ± 0.1 MeV, which is the most precise single
measurement of this quantity to date.

1 Introduction

Nonrelativistic quantum chromodynamics (NRQCD) [1] is a
powerful framework to describe the production from initial
parton scattering (hadroproduction) of charmonium states
with quantum numbers J PC = 1−−, for instance the J/ψ
meson, over a wide range of transverse momentum, pT, and
rapidity, y. Nevertheless, it remains a challenge to provide
a comprehensive theoretical description of measurements of
the prompt production, comprising the hadroproduction and
feed-down from excited resonant states, and the polarisation
of J/ψ mesons at the Tevatron [2] and the LHC [3–17] col-
lision energies over the entire pT range.

∗e-mail: andrii.usachov@cern.ch (corresponding author)

A factorisation approach together with a heavy-quark spin
symmetry assumption allows the simultaneous treatment of
J/ψ and ηc(1S) (the ground-level charmonium state with
J PC = 0−+ quantum numbers)1 production observables by
imposing relations between their long-distance matrix ele-
ments (LDME) [1]. The LHCb collaboration measured the
prompt ηc production cross-section in proton–proton colli-
sions at centre-of-mass energies of

√
s = 7 and 8 TeV [18]

to be below the predictions based on J/ψ prompt produc-
tion data [19–23], which motivated several groups to revisit
the theoretical approach [24–26,28–31]. A study of the ηc
prompt production at

√
s = 13 TeV provides a further impor-

tant test for theories predicting the J/ψ and ηc hadroproduc-
tion cross-sections and the J/ψ polarisation [32].

The LHCb collaboration has also measured the branch-
ing fractions of inclusive b-hadron decays to ηc [18] and to
χc0, χc1 and χc2 mesons [33]. At the LHC, the b-hadron
sample comprises a mixture of B+, B0, B0

s , B+
c mesons and

b baryons.2 A simultaneous study of the hadroproduction
and production in inclusive b-hadron decays of the charmo-
nium states with linked LDMEs provides a unique test of
basic NRQCD assumptions [34]. Only marginal consistency
was found between measurements and theoretical predictions
at next-to-leading-order [21,35] for both prompt production
and production in b-hadron decays for the ηc and J/ψ states.

Using a sample of B+ → ppK+ decays, the LHCb col-
laboration has recently measured [36] the mass difference of
the J/ψ and ηc states, �MJ/ψ ,ηc to be 2.8 standard devia-
tions smaller than the world-average value [37]. A dataset of
b-hadron decays to the ηc meson can be analysed to measure
the �MJ/ψ ,ηc with improved precision.

This paper reports measurements of the ηc prompt produc-
tion cross-section and branching fraction of b-hadron inclu-
sive decays to the ηc meson. A dedicated selection of ηc
mesons produced in b-hadron decays is developed to per-

1 The ηc(1S) meson is denoted as ηc throughout the rest of this paper.
2 Charge conjugation is implied throughout the paper.
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form the most precise measurement of the �MJ/ψ ,ηc . Both
J/ψ and ηc mesons are reconstructed via their decays to pp.

2 The LHCb detector and data sample

The LHCb detector [38,39] is a single-arm forward spec-
trometer covering the pseudorapidity range 2 < η < 5,
designed for the study of particles containing b or c quarks.
The detector includes a high-precision tracking system con-
sisting of a silicon-strip vertex detector surrounding the pp
interaction region, a large-area silicon-strip detector located
upstream of a dipole magnet with a bending power of about
4 Tm, and three stations of silicon-strip detectors and straw
drift tubes placed downstream of the magnet. The track-
ing system provides a measurement of the momentum, p,
of charged particles with a relative uncertainty that varies
from 0.5% at low momentum to 1.0% at 200 GeV.3 The
minimum distance of a track to a pp collision vertex (PV),
the impact parameter (IP), is measured with a resolution
of (15 + 29/pT)µm, where pT is given in GeV. Different
types of charged hadrons are distinguished using information
from two ring-imaging Cherenkov (RICH) detectors. Pho-
tons, electrons and hadrons are identified by a calorimeter
system consisting of scintillating-pad and preshower detec-
tors, an electromagnetic and a hadronic calorimeter. Muons
are identified by a system composed of alternating layers of
iron and multiwire proportional chambers. The online event
selection is performed by a trigger, which consists of a hard-
ware stage, based on information from the calorimeter and
muon systems, followed by a software stage, which applies
a full event reconstruction.

The analysis is based on pp collision data recorded by
the LHCb experiment in 2015 and 2016 at a centre-of-mass
energy of 13 TeV, corresponding to an integrated luminosity
of 2.0 fb−1. Events enriched in signal decays are selected
by the hardware trigger based on the presence of a sin-
gle deposit of high transverse energy in the calorimeter.
The trigger also specifically rejects high-multiplicity events,
which produce excessive random combinations of tracks
(combinatorial background). The subsequent software trig-
ger selects charged particles with a good track-fit quality and
pT > 2 GeV. Proton candidates are identified using infor-
mation from the RICH and tracking detectors. Pairs of oppo-
sitely charged proton candidates are required to form a good
quality vertex and to have pT > 6.5 GeV. The selection fol-
lows that of Ref. [18]. The signal selection of both prompt
charmonia and charmonia from b-hadron decays is largely
performed at the trigger level.

For the measurement of the ηc mass, a low-background
data sample enriched in b→ ηcX decays is used. This sam-

3 Natural units are used throughout the paper.

ple is obtained using a software-trigger selection based on
a multivariate algorithm that requires the presence of two,
three or four charged tracks that form a common vertex and
are inconsistent with originating from a PV [40,41]. Pre-
cise mass measurements require a momentum-scale calibra-
tion. The absolute scale is determined using B+ → J/ψ K+
decays with known particle masses as input [37]. Decays of
J/ψ → μ+μ− are used to cross-calibrate a relative momen-
tum scale between different data-taking periods [42]. The
final calibration is checked with a variety of reconstructed
quarkonia, B+ and K 0

S meson decays. No residual momen-
tum bias is observed within the experimental resolution.

Samples of simulated events are used to model the effects
of the detector acceptance and the imposed selection require-
ments. In the simulation, pp collisions are generated using
Pythia [43,44] with a specific LHCb configuration [45].
Decays of hadronic particles are described by EvtGen [46],
in which final-state radiation is generated usingPhotos [47].
The interaction of the generated particles with the detec-
tor material, and its response, are implemented using the
Geant4 toolkit [48,49] as described in Ref. [50]. A sim-
ulated sample of J/ψ → ppπ0 decays is used to study
the corresponding background contribution. The ηc and J/ψ
decays are generated with uniform phase-space density, and
the prompt J/ψ mesons are generated without polarisation.
Inclusive b-hadron decays are modelled using a combination
of many exclusive final states based on measurements from
the B factories, Tevatron and LHC experiments [46].

3 Analysis technique

In this analysis, ηc production is studied in a fiducial region
of 6.5 < pT < 14.0 GeV and 2.0 < y < 4.5. The measure-
ment of the differential production cross-section is performed
as a function of the transverse momentum relative to that of
the J/ψ meson [6,37]. Both the ηc and the J/ψ mesons are
reconstructed in the pp final state. The measured ratio is
determined as

σ
prompt (b)
ηc

σ
prompt (b)
J/ψ

= N prompt (b)
ηc

N prompt (b)
J/ψ

× εJ/ψ

εηc

× BJ/ψ→pp

Bηc→pp
, (1)

where σ
prompt
ηc is the ηc prompt production cross-section

and σ b
ηc

is the production cross-section in inclusive b-

hadron decays; N prompt
ηc and Nb

ηc
are the signal yields of

ηc mesons produced promptly and in b-hadron decays,
respectively. Similar definitions apply for the J/ψ yields
and cross-sections. The

εJ/ψ
εηc

is the ratio of total effi-
ciencies to trigger, reconstruct and select J/ψ → pp
and ηc → pp decays, which is found to be the same,
within uncertainties, for prompt and b-decay charmonia. The
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ratio of branching fractions of b-hadron inclusive decays

to ηc and to J/ψ mesons,
Bb→ηc X
Bb→J/ψ X

= σ b
ηc

σ b
J/ψ

, is defined

in the same way as for prompt production. The values
of the branching fractions of the ηc and J/ψ decays to
pp, Bηc→pp = (1.50 ± 0.16) × 10−3 and BJ/ψ→pp =
(2.120 ± 0.029) × 10−3, correspond to the current world-
average values [37]. While the branching fraction of b-
hadron inclusive decays to J/ψ meson, Bb→J/ψ X = (1.16 ±
0.10) × 10−3, was measured at LEP [37], this analy-
sis assumes the same value for the b-hadron mixture at
LHC.

Since the masses of the ηc and J/ψ states and kine-
matic distributions in J/ψ → pp and ηc → pp decays
are similar, they have similar reconstruction, trigger and
selection efficiencies. Using simulation, the efficiency ratio
of the J/ψ → pp and ηc → pp modes is determined
to be εJ/ψ /εηc = 1.00 ± 0.02, where the uncertainty
is due to the size of the simulation samples. The effi-
ciency ratio is also obtained in bins of pT, with negligi-
ble deviation from unity observed. Prompt J/ψ mesons
are assumed to be unpolarised. A systematic uncertainty
is further assigned related to possible non-zero polarisa-
tion.

In the baseline analysis, promptly produced charmo-
nium candidates are distinguished from those originat-
ing from b-hadron decays using the pseudo-proper decay
time

tz = �z · Mpp

pz
, (2)

where �z is the distance along the beam axis between the
PV with the smallest IP significance of the charmonium can-
didate and the charmonium decay vertex; Mpp is the recon-
structed charmonium mass; and pz is the projection of its
momentum along the beam axis. A prompt-enriched sam-
ple is selected with candidates satisfying tz < 80 fs, while
a b-hadron-enriched sample is selected with tz > 80 fs and
an additional requirement that both proton tracks are sig-
nificantly displaced from any PV. These two samples have a
small percentage of wrongly classified candidates. The prob-
ability of such cross-feed is estimated using simulation and
is used to derive corrected yields. The cross-feed correction
on the yield ratio ranges from 1.1 to 2.7% in the prompt-
enriched sample and 0.7 to 1.2% in the b-hadron-enriched
sample, depending on the charmonium pT.

A cross-check of the results, reported in Appendix A, uses
an alternative approach analysing the tz distribution of the
selected candidates. The results are in good agreement with
the baseline analysis.

4 Fit to the invariant mass

A binned fit to the pp invariant mass of the prompt-enriched
and b-hadron-enriched data samples is performed simulta-
neously in each bin of charmonium pT in order to extract
the J/ψ signal yield and the ηc-to-J/ψ yield ratio. For the
ηc state, the signal shape is modelled by a relativistic Breit–
Wigner function convolved with the sum of two Gaussian
functions, while the signal shape of the J/ψ state is mod-
elled by the sum of two Gaussian functions. In the study
of the ηc production, the mass values MJ/ψ and �MJ/ψ , ηc

are constrained within uncertainties in each pT bin to the
values obtained from a fit to the entire data sample, where
they are found to be consistent with the known values [37].
The mass resolutions of charmonium from b-hadron decays
and from prompt production are assumed to be the same,
as confirmed by simulation. The ratio between the widths
of the resolution functions for the J/ψ and ηc mesons is
fixed from simulation. The only resolution parameter left
free to vary in the fit is the width of the narrower Gaussian in
the ηc model. A small pT-dependence of resolution param-
eters is seen in the simulation and is accounted for in the
fit. The natural width of the ηc meson is fixed to its known
value [37]. The combinatorial background is parametrised
using an exponential multiplied by a second-order poly-
nomial. A partially reconstructed background of proton–
antiproton pairs from the decays of higher mass charmo-
nium states could exhibit structures in the pp invariant mass
spectrum. The only contribution relevant for this analysis is
that from J/ψ → ppπ0 decays, where the π0 meson is not
reconstructed. This background produces a broad, non peak-
ing, contribution to the pp invariant mass below the known
ηc mass. In this region, the ppπ0 background is described
by a square-root shape,

√
MT − Mpp, below the phase-space

limit, MT . The yield of this contribution is related to that of
the decay J/ψ → pp by means of the ratio of branching
fractions BJ/ψ→ppπ0/BJ/ψ→pp = 0.56 ± 0.04 [37] and the
ratio of efficiencies εJ/ψ→ppπ0/εJ/ψ→pp = 0.062 ± 0.002
for considered pp invariant mass window.

The pp invariant mass of selected candidates is shown in
Fig. 1. Projections of the simultaneous fit result integrated
over the entire pT range are overlaid. In general, the fit pro-
vides a good description of all Mpp distributions. The char-
monium yields in bins of pT and for the entire data sample
are summarised in Table 1. These yields are corrected to take
into account the cross-feed probabilities.

5 Systematic uncertainties

The systematic uncertainties on the ηc production corre-
sponding to the signal and background descriptions in the
invariant-mass fit are estimated using alternative fit mod-
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Fig. 1 Invariant-mass distribution of the pp candidates for (top left)
prompt-enriched and (top right) b-hadron-enriched samples in the entire
pT range, 6.5 < pT < 14.0 GeV. The solid blue lines represent the
total fit result. The dashed magenta and dotted red lines show the sig-

nal and background components, respectively. Signal distributions with
the background components from the fit subtracted are shown on the
bottom plots for the two samples

Table 1 Yield of J/ψ mesons
and the ηc-to-J/ψ yield ratio for
prompt and b-hadron decay
production, corrected for the
cross-feed, in bins of transverse
momentum

pT range [GeV] N prompt
J/ψ Nb

J/ψ
Nprompt

ηc

Nprompt
J/ψ

Nb
ηc

Nb
J/ψ

6.5–8.0 21600 ± 1800 5080 ± 140 0.98 ± 0.22 0.26 ± 0.04

8.0–10.0 26500 ± 1700 7930 ± 170 1.12 ± 0.18 0.40 ± 0.03

10.0–12.0 15100 ± 1100 5240 ± 130 1.24 ± 0.19 0.30 ± 0.04

12.0–14.0 5700 ± 700 2830 ± 100 2.24 ± 0.44 0.35 ± 0.05

6.5–14.0 69000 ± 2800 21040 ± 270 1.18 ± 0.10 0.33 ± 0.02

els. Each uncertainty is estimated in pT bins as a differ-
ence between the baseline fit result and the alternative fit
result. Generally, bin-to-bin variations of uncorrelated sys-
tematic uncertainties addressed in this paragraph are small
compared to the statistical uncertainties. These variations are
parametrised using a linear pT dependence to reduce statis-
tical fluctuations. The uncertainty related to a potential pT

dependence of the resolution ratio is evaluated by modelling
it using a linear function with the slope constrained by sim-
ulation. This systematic effect is relevant for the differential
cross-section measurement. The uncertainty corresponding
to the combinatorial background description is estimated by
using an alternative model using a third-order polynomial
function. The uncertainty associated to the J/ψ → ppπ0

background contribution is estimated by varying the effi-
ciency ratio εJ/ψ→ppπ0/εJ/ψ→pp and the branching fraction
ratio BJ/ψ→pp/BJ/ψ→ppπ0 [37] within their uncertainties.

The systematic uncertainty associated with the cross-feed
probability is estimated by varying the efficiency of the sepa-

ration requirements. Separation efficiencies are found to be in
good agreement between data and simulation within uncer-
tainties. The uncertainty related to the ratio of ηc and J/ψ
efficiencies is estimated by varying its value by the uncer-
tainty corresponding to the simulation sample sizes.

A potential effect due to the invariant-mass resolution
modelling is evaluated considering, as an alternative model,
the sum of two Crystal Ball functions [51] with symmetric
tails on both sides of the peak. The uncertainty on the ηc nat-
ural width is accounted for by the difference in relative yields
when using the world average value of 31.9 ± 0.7 MeV [37]
and the value, 34.0 ± 1.9 ± 1.3 MeV, recently measured by
LHCb collaboration [36]. Since this uncertainty is correlated
among pT bins, the relative systematic uncertainty obtained
from the pT-integrated data sample is taken as an estimate of
the relative systematic uncertainty in each bin. This uncer-
tainty is also correlated between pT bins. Possible nonzero
polarisation of prompt J/ψ mesons affects their reconstruc-
tion efficiency. The J/ψ polarisation has not been measured
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at
√
s =13 TeV, although several experiments have measured

small polarisation values at lower energy [13,15,16]. The
associated systematic uncertainty is estimated by weight-
ing the prompt J/ψ simulation sample assuming polarisation
parameter values λθ = ±0.1 [52] in the pp collision frame.
This uncertainty is correlated among pT bins.

Systematic uncertainties on the relative cross-sections of
the ηc production for prompt and b-hadron decays are given
in Tables 2 and 3. The total systematic uncertainty is cal-
culated as the quadratic sum of the individual sources. The
dominant source of uncorrelated systematic uncertainty for
the production of ηc meson for both prompt and from b-
hadron decays is related to the combinatorial background
description. The dominant sources of correlated systematic
uncertainty for prompt production are related to the knowl-
edge of the ηc natural width and the invariant-mass resolution
model. The uncertainty on the knowledge of the ηc natural
width is the dominant source of correlated systematic uncer-
tainty for b-hadron decay production. Systematic uncertain-
ties are in general smaller than the corresponding statistical
uncertainties.

Uncertainties on the branching fractions of the J/ψ →
pp and ηc → pp decays are considered separately. They
are correlated among pT bins and amount to about 10%.
When deriving the absolute ηc production cross-section, the
uncertainty on the J/ψ production cross-section [6] is also
taken into account.

6 Results and discussion on the ηc production

Using Eq. 1 and the corrected yields from Table 1, the relative
prompt production cross-section in the chosen fiducial region
is measured to be

(
σ

prompt
ηc /σ

prompt
J/ψ

)6.5<pT<14.0 GeV, 2.0<y<4.5

13 TeV

= 1.69 ± 0.15 ± 0.10 ± 0.18.

Here and hereinafter, the quoted uncertainties are statistical,
systematic and systematic due to uncertainties on the branch-
ing fractions BJ/ψ→pp and Bηc→pp, respectively. Using the
corresponding cross-section value of 0.749±0.005±0.028±
0.037µb for prompt J/ψ production [6], the prompt ηc pro-
duction cross-section in the chosen fiducial region is derived
to be

(
σ

prompt
ηc

)6.5<pT<14.0 GeV, 2.0<y<4.5

13 TeV

= 1.26 ± 0.11 ± 0.08 ± 0.14µb,

where the last uncertainty includes in addition the uncertainty
on the J/ψ production cross-section measurement. This is

the first measurement of prompt ηc production cross-section
in proton–proton collisions at

√
s =13 TeV, and it supports the

conclusions of Ref. [18] that suggests an enhanced ηc produc-
tion compared to that of the J/ψ meson. This measurement is
in good agreement with the colour-singlet model prediction
of 1.56+0.83

−0.49
+0.38
−0.17 µb [32]. This result leaves limited room for

a potential colour-octet contribution, and confirms the theo-
retical analyses [20–23] following the ηc production studies
at

√
s = 7 and 8 TeV [18].

Using the LHCb measurements of prompt ηc production
at the centre-of-mass energies

√
s = 7 and 8 TeV [18], the

prompt ηc production cross-section dependence on the LHC
energy is shown in Fig. 2. The J/ψ production cross-section
from Ref. [6] is also shown for reference. While the individual
cross-sections grow with centre-of-mass energy, no evolution
of the cross-section ratio is observed.

The relative ηc inclusive branching fraction from b-hadron
decays is measured to be

Bb→ηc X/Bb→J/ψ X = 0.48 ± 0.03 ± 0.03 ± 0.05,

which combined with Bb→J/ψ X = 1.16 ± 0.10% [37] gives

Bb→ηc X = (5.51 ± 0.32 ± 0.29 ± 0.77) × 10−3.

The last uncertainty includes the uncertainty on Bb→J/ψ X .
This result is the most precise measurement of the inclusive
b→ ηcX branching fraction to date and is in good agreement
with the previous LHCb measurement from Ref. [18]. The
measurement is limited by the knowledge of the branching
fractions Bηc→pp and Bb→J/ψ X .

Numerical results of the measurements of pT-differential
ηc production are given in Appendix B. The relative ηc to J/ψ
pT-differential cross-sections for prompt and b-hadron decay
production are compatible to those measured at

√
s = 7 and

8 TeV [18] and are shown in Fig. 3. This is the first pT-
differential cross-section measurement of ηc prompt pro-
duction at

√
s = 13 TeV. The pT dependence of the prompt

cross-section ratio is found to be linear with a slope of
0.22 ± 0.11 GeV−1. While the integrated cross-section is
in good agreement with the colour-singlet model predic-
tion [32], a hint of a difference between the J/ψ and ηc
slopes motivates the extension of the measurement to larger
pT values. A larger measured slope with respect to the pre-
diction from Ref. [32] would indicate a possible colour-octet
contribution.

The absolute ηc and J/ψ differential production cross-
sections are shown in Fig. 4. The exponential slopes for the
ηc and J/ψ prompt differential cross-sections are determined
from the fit to data points to be 0.41±0.07 GeV−1 and 0.57±
0.01 GeV−1, respectively.
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Table 2 Relative uncertainties
(in %) on the ratio of prompt
cross-sections σ

prompt
ηc /σ

prompt
J/ψ .

Uncertainties on Bηc→pp and
BJ/ψ→pp are considered
separately and given in the text

pT range [GeV]
6.5–8.0 8.0–10.0 10.0–12.0 12.0–14.0 6.5–14.0

Stat. unc. 22.7 16.1 16.9 18.3 8.8

pT dependence of resolution 0.4 0.4 0.4 0.4 0.2

Comb. bkg. description 2.1 3.3 4.6 6.0 2.0

Contribution from J/ψ → ppπ0 0.2 0.2 0.3 0.3 < 0.1

Cross-feed 1.9 1.1 1.2 1.4 0.9

Efficiency ratio 2.0 2.0 2.0 2.0 2.0

Total uncorrelated syst. unc. 3.5 4.0 5.2 6.5 3.0

Mass resolution model 2.7 2.7 2.7 2.7 2.7

Variation of �ηc 4.8 4.8 4.8 4.8 4.8

J/ψ polarisation 2.1 1.8 1.6 1.6 1.8

Total correlated syst. unc. 5.8 5.7 5.7 5.7 5.7

Total systematic uncertainty 6.8 7.0 7.7 8.6 6.4

Table 3 Relative uncertainties
(in %) on the ratio of
cross-sections for production in
inclusive b-hadron decays
σ b

ηc
/σ b

J/ψ . Uncertainties on
Bηc→pp and BJ/ψ→pp are
considered separately and given
in the text

pT range [GeV]
6.5–8.0 8.0–10.0 10.0–12.0 12.0–14.0 6.5–14.0

Stat. unc. 15.4 8.2 12.8 13.4 5.8

pT dependence of resolution 0.2 0.2 0.2 0.2 0.1

Comb. bkg. description 2.5 3.5 4.7 5.8 2.3

Contribution from J/ψ → ppπ0 0.7 0.5 0.3 0.1 0.2

Cross-feed 1.4 1.3 1.7 1.0 0.8

Efficiency ratio 2.0 2.0 2.0 2.0 2.0

Total uncorrelated syst. unc. 3.6 4.3 5.4 6.2 3.2

Mass resolution model 3.1 3.1 3.1 3.1 3.1

Variation of �ηc 3.6 3.6 3.6 3.6 3.6

Total correlated syst. unc. 4.8 4.8 4.8 4.8 4.8

Total systematic uncertainty 6.0 6.4 7.2 7.8 5.8
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Fig. 2 The prompt ηc production cross-section as a function of centre-
of-mass energy. (Left) Relative ηc prompt production cross-section.
(Right) Absolute ηc (black rectangles) and J/ψ (blue circles) prompt

production cross-sections. The error bars show uncertainties due to sta-
tistical, systematic, and to the ηc → pp and J/ψ → pp branching
fractions and J/ψ production cross-section
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fractions and J/ψ production cross-section. For the prompt production
cross-sections, the results of fits with an exponential function are over-
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7 Measurement of the J/ψJ/ψJ/ψ –ηcηcηc mass difference

While the prompt ηc production measurement requires strin-
gent selection criteria at the trigger level to compete with the
challenging background conditions, charmonia produced in
b-hadron decays are reconstructed in an environment with a
controlled background level and are more suitable for a mass
measurement. For this reason, a looser selection is applied
for the entire data sample to measure the ηc mass relative to
the well-known J/ψ mass.

Proton and antiproton candidates are required to have good
track-fit quality, to be incompatible with originating from any
PV, and to have a transverse momentum greater than 1.0 GeV.
The proton–antiproton system is required to have a vertex
with a good fit quality, a large significance, χ2

FD > 81, of the
distance between this vertex and any PV, and to have a trans-
verse momentum greater than 5.5 GeV. The contamination
of the selected sample from J/ψ and ηc prompt production
is estimated to be below 0.1%.

The mass difference �MJ/ψ , ηc is extracted from an
extended maximum-likelihood fit to the Mpp distribution.
The fit provides a good description of the pp invariant-mass
distribution (Fig. 5) yielding

�MJ/ψ , ηc = 113.0 ± 0.7 ± 0.1 MeV,

where the uncertainties are statistical and systematic.
The majority of the sources of systematic uncertainty

are common to the production measurement. The system-
atic uncertainty related to the momentum-scale calibration
is estimated by comparing the fit result with and without
the calibration applied. The total systematic uncertainty is
calculated as the quadratic sum of the individual contribu-
tions (Table 4). The dominant source of systematic uncer-
tainty is related to the resolution model and its pT depen-
dence.

As a cross-check, the invariant-mass fit is performed
simultaneously in seven bins of charmonium transverse
momentum to take into account a possible dependence
of the resolution on charmonium pT. The value obtained
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Table 4 Systematic uncertainties on the measurement of the J/ψ –ηc
mass difference

�MJ/ψ , ηc [ MeV ]
Statistical uncertainty 0.67

Mass resolution model 0.08

Variation of resolution ratio 0.01

Variation of �ηc 0.04

Comb. bkg. description 0.03

Contribution from J/ψ → ppπ0 < 0.01

Momentum scale 0.05

Total systematic uncertainty 0.11

Total uncertainty 0.68

for the mass difference is consistent with the baseline
result.

This measurement is currently statistically limited and can
be improved with larger data samples. It represents the most
precise measurement from a single experiment to date. The
result is in good agreement with the PDG value [37], the
recent BES III result [53], the latest BaBar measurement [54]
and LHCb measurements [18,33,36].

8 Summary

Using data corresponding to an integrated luminosity of
2.0 fb−1, the prompt ηc production cross-section at a centre-
of-mass energy of

√
s = 13 TeV is measured for the first

time. The ratio of the prompt production rates of the ηc and
J/ψ states in the fiducial region 6.5 < pT < 14.0 GeV and
2.0 < y < 4.5 is measured to be

(
σ

prompt
ηc /σ

prompt
J/ψ

)6.5<pT<14.0 GeV, 2.0<y<4.5

13 TeV

= 1.69 ± 0.15 ± 0.10 ± 0.18,

where the quoted uncertainties are, in order, statistical, sys-
tematic and systematic due to uncertainties on the branching
fractions, BJ/ψ→pp and Bηc→pp.

Using the prompt J/ψ production cross-section measure-
ment at

√
s = 13 TeV [6], the prompt ηc production cross-

section in the chosen fiducial region is derived to be

(
σ

prompt
ηc

)6.5<pT<14.0 GeV, 2.0<y<4.5

13 TeV

= 1.26 ± 0.11 ± 0.08 ± 0.14µb,

where the last uncertainty includes in addition the uncertainty
of the J/ψ production cross-section measurement. The result
is in good agreement with the colour-singlet model predic-
tion [32]. Contrary to NRQCD expectations, a steeper pT

dependence of the J/ψ cross-section compared to that of the
ηc is preferred.

The relative ηc inclusive branching fraction from b-hadron
decays is measured to be

Bb→ηc X/Bb→J/ψ X = 0.48 ± 0.03 ± 0.03 ± 0.05.

UsingBb→J/ψ X [37] the absoluteηc inclusive branching frac-
tion is obtained to be

Bb→ηc X = (5.51 ± 0.32 ± 0.29 ± 0.77) × 10−3,

where the last uncertainty includes in addition the uncertainty
onBb→J/ψ X . This result is consistent with the previous LHCb
measurement [18]. Compatible results are obtained with an
alternative analysis technique.

The J/ψ –ηc mass difference is measured using an
enlarged data sample of b→ ηcX decays. The measurement,

�MJ/ψ , ηc = 113.0 ± 0.7 ± 0.1 MeV,

is compatible with both the result of Refs. [36] and [37]. It
is the most precise ηc mass determination to date.
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Appendices

A Alternative analysis based on tz distributions

A cross-check of the results is performed using an alter-
native approach via a two-step procedure. Signal yields in
bins of pT and tz are obtained from a simultaneous fit to
the corresponding pp invariant mass distributions of can-
didates in the bin. Prompt and b-decay charmonium con-
tributions are then determined using a simultaneous χ2 fit
to the resulting tz distributions in pT bins, similarly to
Ref. [6].

Projections of the simultaneous fit for the entire pT-range
are shown in Fig. 6 for illustration purposes.

In the alternative analysis discussed in this appendix,
the pp invariant-mass fit is performed simultaneously in

28 two-dimensional bins of pT and tz with the model
described in Sect. 4. This model is modified to correct for
systematic mass shifts as a function of tz . The corrections
are derived from simulation, where the same behaviour is
observed.4

The mass fits result in four tz distributions, each corre-
sponding to a pT bin. Promptly produced charmonium is
distinguished from that produced in b-hadron decays by per-
forming a simultaneous χ2 fit to the four tz distributions.
This fit method does not use the bin centre for the value of
tz , but rather the average value of the fit function in the bin.
The model to describe the tz distribution comprises contri-
butions due to prompt charmonia, due to charmonia from
b-hadron decays and a contribution due to candidates with a
wrongly associated PV. The prompt charmonium component
is parametrised with a function to account only for resolu-
tion, while the component related to charmonia produced
in inclusive b-hadron decays is parametrised by an expo-
nential decay function convolved with the same resolution
function. The exponential slope of the decay function, τb, is
allowed to vary over pT according to simulation. The res-
olution is described by the sum of two Gaussian functions,
with the width of the narrow Gaussian component a free
fit parameter and the other parameters fixed from the sim-
ulation. The pT dependence of the resolution, as obtained
from simulation, is taken into account in the tz-fit to data.
The contribution due to candidates associated to a wrong PV
are described in the same way as in Ref. [6]. Results of the
simultaneous fit to tz for the entire pT range are shown in
Fig. 7. In addition to the sources of systematic uncertainty
discussed in Sect. 5 for the baseline analysis, contributions
from the signal description in the fit to tz and from corrections
of the invariant-mass peak positions in tz bins are consid-
ered. This approach is free from the systematic uncertainty
associated with the cross-feed effect. The dominant sources
of systematic uncertainties are the same as for the baseline
analysis.

The relative differential cross-sections of ηc production
obtained with this approach are shown in Fig. 8, where they
are compared with those from the baseline approach. The
two measurements are strongly correlated. The difference
between the results obtained with the two techniques varies
in pT bins between factors of 0.5 and 1.5 of the estimated
uncorrelated uncertainty.

4 This effect cancels in the method described in Sect. 4, which integrates
over all values of tz .
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Fig. 8 Relative ηc to J/ψ
differential production
cross-sections for (left) prompt
production and (right)
production in b-hadron inclusive
decays obtained using the
alternative technique (points)
and the baseline technique (red
boxes). The uncertainties shown
are statistical, systematic, and
the uncertainty due to the
ηc → pp and J/ψ → pp
branching fractions
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B Tables of pT -differential ηc production cross-sections

B.1 Prompt production of ηc mesons

The results on relative pT-differential ηc prompt produc-
tion are shown in Table 5. Here and in the following tables,
the first uncertainty is statistical, the second is the uncor-
related systematic uncertainty, the third is the systematic
uncertainty that is correlated among pT bins, and the last
one is related to the BJ/ψ→pp and Bηc→pp branching frac-
tions. The results on pT-differential ηc prompt production
cross-section are shown in Table 6. Here, the last uncer-
tainty includes the uncertainty on the J/ψ production cross-
section.

Table 5 Relative pT-differential ηc prompt production cross-section

pT [ GeV ] dσ
prompt
ηc /dσ

prompt
J/ψ

6.5–8.0 1.53 ± 0.35 ± 0.05 ± 0.09 ± 0.19

8.0–10.0 1.74 ± 0.28 ± 0.07 ± 0.10 ± 0.22

10.0–12.0 1.93 ± 0.33 ± 0.10 ± 0.11 ± 0.24

12.0–14.0 3.48 ± 0.64 ± 0.23 ± 0.20 ± 0.43

Table 6 Differential ηc prompt production cross-section

pT [ GeV ] dσ
prompt
ηc /dpT [ nb/ GeV]

6.5–8.0 488 ± 111 ± 17 ± 28 ± 64

8.0–10.0 157 ± 25 ± 6 ± 9 ± 22

10.0–12.0 63 ± 11 ± 3 ± 4 ± 9

12.0–14.0 44 ± 8 ± 3 ± 3 ± 6

B.2 Production of ηc mesons from b-hadron decays

The results on relative pT-differential ηc production in inclu-
sive b-hadron decays are shown in Table 7. The results on
pT-differential ηc production cross-section in inclusive b-
hadron decays are shown in Table 8. As above, the last uncer-
tainty includes the uncertainty on the J/ψ production cross-
section.
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Table 7 Relative pT-differential ηc production cross-section in inclu-
sive b-hadron decays

pT [ GeV ] dσ b
ηc

/dσ b
J/ψ

6.5–8.0 0.41 ± 0.06 ± 0.01 ± 0.02 ± 0.05

8.0–10.0 0.61 ± 0.05 ± 0.03 ± 0.03 ± 0.08

10.0–12.0 0.45 ± 0.06 ± 0.02 ± 0.02 ± 0.06

12.0–14.0 0.54 ± 0.07 ± 0.03 ± 0.02 ± 0.07

Table 8 The pT-differential ηc production cross-section in inclusive
b-hadron decays

pT [ GeV ] dσ b
ηc

/dpT [ nb/ GeV]
6.5–8.0 27.2 ± 4.2 ± 1.0 ± 1.3 ± 3.7

8.0-10.0 18.8 ± 1.5 ± 0.8 ± 0.9 ± 2.6

10.0-12.0 6.6 ± 0.8 ± 0.3 ± 0.3 ± 0.9

12.0-14.0 3.8 ± 0.5 ± 0.2 ± 0.2 ± 0.6
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