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Abstract
In phenotype prediction the physical characteristics of an organism are predicted from knowl-
edge of its genotype and environment. Such studies, often called genome-wide association
studies, are of the highest societal importance, as they are of central importance to medicine,
crop-breeding, etc. We investigated three phenotype prediction problems: one simple and
clean (yeast), and the other two complex and real-world (rice and wheat). We compared stan-
dard machine learning methods; elastic net, ridge regression, lasso regression, random forest,
gradient boosting machines (GBM), and support vector machines (SVM), with two state-
of-the-art classical statistical genetics methods; genomic BLUP and a two-step sequential
method based on linear regression. Additionally, using the clean yeast data, we investigated
how performance varied with the complexity of the biological mechanism, the amount of
observational noise, the number of examples, the amount of missing data, and the use of dif-
ferent data representations. We found that for almost all the phenotypes considered, standard
machine learning methods outperformed the methods from classical statistical genetics. On
the yeast problem, the most successful method was GBM, followed by lasso regression, and
the two statistical genetics methods; with greater mechanistic complexity GBM was best,
while in simpler cases lasso was superior. In the wheat and rice studies the best two meth-
ods were SVM and BLUP. The most robust method in the presence of noise, missing data,
etc. was random forests. The classical statistical genetics method of genomic BLUP was
found to perform well on problems where there was population structure. This suggests that
standard machine learning methods need to be refined to include population structure infor-
mation when this is present. We conclude that the application of machine learning methods
to phenotype prediction problems holds great promise, but that determining which methods
is likely to perform well on any given problem is elusive and non-trivial.
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1 Introduction and background

1.1 Predicting phenotype

The phenotype (physical character) of an organism is the result of interactions between
the organism’s complement of genes (its genotype) (Wei et al. 2014; Mackay 2014) and
its environment. A central problem of genetics is to predict an organism’s phenotype from
knowledge of its genotype and environment. This problem is now of the highest societal
importance. For example, human disease is a phenotype, and understanding its relation to
genotype and environment is a central problem in medicine (Stranger et al. 2011; Lee et al.
2011), see for example the studies in schizophrenia (Schizophrenia Working Group of the
Psychiatric Genomics Consortium 2014), obesity (Locke et al. 2015), etc. Similarly, crop
yield and drought resistance are phenotypes, and if we are going to be able to continue to
feed the world’s growing population, it is essential to better predict crop phenotypes from
knowledge of their genotypes and environment (Buckler et al. 2009; Jannink et al. 2010;
Hayes and Goddard 2010; Brachi et al. 2011; Desta and Ortiz 2014). For such reasons, the
problem of predicting phenotype has recently (2016) been listed by the US National Science
Foundation as one of its six key ‘Research Frontiers’: ‘understanding the rules of life’.

Our ability to predict phenotype is being revolutionised by advances in DNA sequencing
technology. These advances have enabled, for the first time, an organism’s genotype to be
extensively characterised—typically via thousands of genetic markers. The cost of sequenc-
ing is decreasing rapidly, which means that it is now often low enough that in a single
investigation many organisms (hundreds/thousands) may be genotyped, which opens up the
possibility of using statistics/machine learning to learn predictive relationships between an
organism’s genotype, environment, and phenotype. Such studies are often called genome-
wide association studies (GWAS).

The traditional focus of most GWAS has been on the discovery of genetic markers (nor-
mally only a small number) that are ‘associated’ (i.e., correlated) with a phenotype. However,
rather than being true causal mutations, called quantitative trait loci (QTL), these markers
are usually correlated to QTLs and serve as proxies. Such single-nucleotide polymorphisms
(SNPs) and QTLs are usually in linkage disequilibrium (LD), i.e. within a given population,
their alleles are correlated more than would be expected by chance. In GWAS, focusing on a
small number of genes has significant biological limitations, as most biological phenotypes
result from the interaction of multiple genes and the environment; and the focus on associa-
tion rather than prediction has statistical limitations, as it makes the objective evaluation of
the utility of results difficult.

The current trend is therefore towards amore direct and operational approach to phenotype
prediction problems: learn a predictive function that, from the input of an organism’s genotype
and environment, predicts its phenotype (see, for example, Yang et al. 2010; Bloom et al.
2013; Desta and Ortiz 2014; Shigemizu et al. 2014). Special purpose statistical genetics
methods have been developed for this task (see, for example, Lynch and Walsh 1998; Bloom
et al. 2013; Desta and Ortiz 2014). Predictive phenotype problems are also clearly well suited
for standard machine learning methods.

In this paper, we compare for phenotype prediction a state-of-the-art classical statistical
genetics method and a mixed-model approach BLUP (used extensively in genomic selection
applications) with standard machine learning methods. We investigate how these methods
perform on three very different types of phenotype prediction problem, one from yeast Sac-
charomyces cerevisiae (Bloom et al. 2013), the other two from wheat Triticum aestivum L.
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(Poland et al. 2012) and rice Oryza sativa (Alexandrov et al. 2015). We also compare how
performance varies with the complexity of the biological mechanism, the amount of obser-
vational noise, the number of examples, the amount of missing data, and the use of different
data representations.

1.2 Phenotype prediction data

Genomic data has a specific structure that strongly influences the application of machine
learning methods. We therefore first briefly describe this structure using standard machine
learning terminology—rather than the terminology of statistical genetics which may confuse
the uninitiated.

Representing genotype. The complete genotype of an organism consists of the linear
arrangement of its genes on chromosomes, together with the sequences of all the genes and
intergenic regions. Genotype information is normally represented in phenotype prediction
problems as ‘markers’, these are discrete attributes that signify that a particular stretch of
DNA varies between organisms. Usually, these variations are mutations at a single position
(base pair) in a DNA sequence called SNPs. As organisms of the same species mostly share
the sameDNA sequences, this representation is reasonably concise, but as genomes are large,
many thousands of markers are typically needed to characterise an organism’s genome. (It
should be noted that this propositional marker representation is sub-optimal, as it ignores a
substantial amount of information: the biological context of the markers involved, the linear
ordering of the markers, etc.) In this paper, we utilise this marker representation as it is
standard, and it simplifies the application of standard statistical/machine learning methods.

In phenotype prediction problems, it is preferable for all the organisms (examples) to
have their genotypes fully sequenced, as this provides the maximum amount of information.
However, this is not possible in many problems, either because of technical reasons or cost.
In such cases, the genotypes are not fully characterised. In this paper we investigate two
problems (yeast and rice) where all the organisms are fully sequenced, and another (wheat)
where only a subset of markers is known, and the organism’s genome has not yet been
sequenced because of its complexity.

Environment. Prediction of phenotype is easier if the environment is controlled. However,
this is difficult or impossible to do in many cases, for example, in studies involving humans
many aspects of the environment are unknown, in outdoor crop studies the weather cannot
be controlled, etc. In this paper, we investigate one problem (yeast) where the environment
is fully controlled (well-defined laboratory conditions), and another two (wheat and rice)
where the environment is partially controlled.

Measuring phenotype. Due to the continuing steep fall in DNA sequencing costs in many
phenotype prediction problems, the most expensive step is the observation of an organism’s
phenotype. This means that in many scenarios the number of attributes is greater than the
number of examples. Furthermore, it has also led to new genetic methodologies based on
phenotype prediction, an example of which is genomic selection (Meuwissen et al. 2001;
Heffner et al. 2009). In this paper, we investigate one problem (yeast) where the observation
of phenotype (growth) is cheap as it involves laboratory automation equipment, and another
(wheat and rice) where it is expensive and time-consuming—it takes many months for a
harvest.

Causation of phenotype. The number of genetic mutations involved in causing a pheno-
type can vary greatly between phenotypes. For example, the phenotype of pea colour (yellow
or green), that was classically studied by Gregor Mendel, is caused by variations (polymor-
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phisms) in a single gene (stay-green) (Armstead et al. 2007). Therefore, given knowledge
of markers in stay-green, one can usually very accurately predict pea colour. In contrast, the
phenotype of human height (classically studied by Sir Francis Galton in the original ‘regres-
sion’ problem) involves a large number of genes and environmental effects—the central-limit
theorem thereby explains why human height is roughly normally distributed when controlled
for sex and geographical population (Wood et al. 2014).

An important feature of genetic data is that the examples (organisms) are formedbymeiosis
(sex),where parents shuffle their genomeswhen forming offspring. Themechanisms involved
inmeiosis are complicated, but, the result is that each of the child cell’s chromosomes consists
of a random patchwork of linear sections taken from the two parents (Fig. 1a). This means
that if two markers are close together on an organism’s DNA, then the associated mutations
(allele types) are likely to be inherited together. Consequently, attributes (markers) can be
highly correlated (linkage disequilibrium). It also means that all the markers in each of these
linear sections are identical to that of one parent so that the variety of children that are likely
to be formed is constrained.

Due to meiosis populations of organisms typically have complex ancestral (pedigree)
interrelationships. These interrelationships take the form of a directed acyclic graph (DAG),
with meiosis events being the nodes. However, in many phenotype prediction problems, the
structure of the DAG is unknown. (Note that the DAG imposes a natural metric between
examples (organisms) based on genetic changes resulting from meiosis.) Much of classical
statistical genetics research has focused on dealing with population structure. For example,
the BLUP (best linear unbiased prediction) method encodes genetic similarities between
pairs of individuals in a genomic similarity matrix (GSM) (Meuwissen et al. 2001; Speed
and Balding 2014).

Many organisms havemultiple genomes in each cell. Humans have single copies (haploid)
in their sex cells (sperm/eggs), but otherwise have two copies (diploid), one from their
father and the other from their mother. This complicates phenotype prediction as it is not
clear how the genomes interact to cause phenotype. This complication is related to multi-
instance learning problems (Ray and Page 2001). In this paper, we investigate one problem
(yeast) where the observed organisms are haploid, i.e., there is no complication with multiple
genomes. Rice is diploid, with two paired sets of genomes, while wheat is hexaploid with
three pairs of paired genomes.

1.3 Types of phenotype prediction problem

The simplest formof phenotypepredictionproblem is the casewhen apair of parent organisms
breed to produce a large set of offspring. In such cases the offspring can reasonably be assumed
to be randomly generated from a given distribution: indeed the analogywith randomly dealing
hands of cards is close and commonly used in genetics (Hogben 1946). This type of phenotype
prediction problem is closely connected to practical phenotype prediction problems, for
example: which embryo to select?

To investigate this type of problem, we utilised a large phenotype prediction study in
yeast (Bloom et al. 2013). In this study there are a large number of examples, the complete
genomes of the organisms are known, the organisms are haploid, a large number of different
environments were investigated under controlled laboratory conditions, and the phenotype of
growth was accurately measured. Taken together, these features give a phenotype predictions
dataset that is as clean and complete as it is currently possible to get. Moreover, the uniform
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laboratory conditions under which the yeast was grown ensured that there were no (or nearly
no) confounding environmental factors.

We chose as a second, and comparative, phenotype prediction problem—the real-world
problem of predicting phenotype in crops: wheat (Poland et al. 2012) and rice (Alexandrov
et al. 2015). This type of phenotype prediction problem is typical of genomic selection prob-
lems in organisms, in which genome-widemolecular markers are used to predict the breeding
utility of individuals or breeding lines prior to phenotyping. The wheat dataset we investi-
gated comes from a study involving 254 varieties (breeding lines) of wheat (Poland et al.
2012). These varieties were derived through six generations of meiosis (crosses) from a set of
ancestor varieties. Experimental design methods were used to control the environment, and
different irrigation techniques investigated. This dataset is more complex and difficult to pre-
dict than the yeast one for a number of reasons: the complete genotypes of the organisms are
not known (only the markers, indeed wheat has still not been fully sequenced), the organisms
are hexaploid, the organisms come from different parents (although there is some knowledge
of the relationships between parents), there are fewer examples, and the environment is not
fully controlled.

The rice dataset comes from the 3000 rice genomes project (Alexandrov et al. 2015).
Like the wheat dataset, this problem also involves the selection of individuals that will serve
as parents for the next generation of progeny using genomic predictions. The phenotype
data is from different years of screening without replication. However, the values do not
show significant variation due to environmental differences, as the data is part of a routine
characterization of genetic resources performed by the International Rice Genebank at the
International Rice Research Institute.

1.4 Classical statistical-genetics methods for predicting phenotype

Themost common classical statistical genetics approach to the analysis of genotype, environ-
ment and phenotype data has been to use univariate and bivariate statistical methods (Lynch
andWalsh 1998; Westfall et al. 2002; Marchini et al. 2005). These typically test each marker
(or pairs of markers) for association with a phenotype individually and independently of
the other markers. The focus on such approaches seems to have been because of a desire to
understand, and possibly control, mechanisms that causes phenotype, through identification
of the markers involved. This is reasonable, but the assumption of independence does not
reflect the complex causal relationships involved in phenotype formation (e.g., it ignores
systems biology), and it is prone to missing markers with small effects.

The emphasis on univariate and bivariate correlations also raises the problem of multiple
testing and is hindered by typical p-value limitations, such as dependence on sample size,
minor allele frequency, and difficulty to determine a meaningful threshold for the study. The
multiple testing problem may be classically addressed by using false discovery rate (FDR)
(Benjamini and Hochberg 1995) instead of the conventional p-values or the Bonferroni
correction. One of the more recent approaches is to use Bayes factors instead of p-values
(Wakefield 2007), thus taking prior belief of association into account. The problem of the
interdependence of hypotheses in multiple testing (that is, possible interactions between
markers) has been addressed for example by using hidden Markov models (Sun and Tony
Cai 2009) and graphical models (Liu et al. 2012). In statistical genetics, arguments based
on multiple testing are often used to claim that it is not possible to identify complicated
interactions between markers in datasets that are not very large (Gauderman 2002; Wang and
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Zhao 2003). These arguments are incorrect as they would imply that multivariate learning is
generally very difficult, which is not the case.

The emphasis in classical statistical genetics on univariate and bivariate methods research
has also led to efforts to reduce the dimensionality of GWASproblems. This, for example, can
be done by grouping markers in haplotypes—specific arrangements of alleles from a parent
(Clark 2004). This enables the simultaneous testing of associations between a phenotype and
several markers in a target region. However, identifying meaningful haplotypes is in itself a
non-trivial task (Meng et al. 2003; Lin and Altman 2004).

The recent change of focus from association to prediction cuts through most of the prob-
lems of the significance of associations: the validity of a multivariate relationship between
markers is demonstrated by success of predictions on test data. The utility of using test data
is appreciated in statistical genetics (Lynch and Walsh 1998; Bloom et al. 2013; Desta and
Ortiz 2014; Shigemizu et al. 2014) but should perhaps be stressed more. In addition, the
importance of considering all the markers simultaneously has now been widely recognised,
e.g. de los Campos et al. (2013), with various multivariate linear models gaining popularity.
Amongst them are genomic BLUP (Meuwissen et al. 2001; VanRaden 2008) (a mixed-model
related to ridge regression with a pre-specified penalty parameter) and other penalised regres-
sion methods (Gianola et al. 2006; De Los Campos et al. 2009; Li and Sillanpää 2012) and
Bayesian techniques (Meuwissen et al. 2001; De Los Campos et al. 2009; Habier et al. 2011;
Guan and Stephens 2011; Zhou et al. 2013). An important extension of BLUP proposed by
Speed and Balding (2014) relaxes the assumption of constant variance for SNP effects. Many
improved and efficient linear mixed model (LMM) algorithms have also been introduced in
recent years (Kang et al. 2008; Zhang et al. 2010; Lippert et al. 2011; Loh et al. 2015; Lee and
van der Werf 2016), some of which are capable of dealing with several correlated phenotypic
traits (Korte et al. 2012; Zhou and Stephens 2014; Casale et al. 2015) (see also Widmer et al.
2014 and references therein). The attractiveness of these linear techniques lies in the fact
that they take population structure and genetic relatedness into account (Price et al. 2010).
However, most of these techniques have difficulty accounting for interactions.

1.5 The applicability of machine learningmethods

Standard off-the-shelf machine learning methods (Dudoit et al. 2002; Ziegler et al. 2007;
Szymczak et al. 2009; Ogutu et al. 2011, 2012; Pirooznia et al. 2012; Mittag et al. 2012;
Okser et al. 2014; Leung et al. 2016; Cherlin et al. 2018) present an attractive alternative
to classical statistical genetics methods. These methods are easy to use, are freely available
in a variety of implementations, and intrinsically multivariate. In addition, machine learning
methods are available that perform attribute selection, e.g., lasso and regression trees, and
there are also machine learning methods available that can identify complex interactions
between attributes (e.g., random forest, gradient boosting machines, neural nets), not simply
bivariate ones. In a typical GWAS set-up, there is the p � n problem, where the number
of attributes (p) greatly exceeds the number of sample points (n), and this is a problem
for classical multivariate regression. This is less of a technical problem for some machine
learning methods, but of course, basic information-theoretic results imply that the underlying
signal needs to be strong enough for machine learning methods to work.

One important difference between traditional statistical genetic methods and standard
machine learning methods is that the machine learning methods do not require assumptions
to be made about the genetic mechanism underlying a trait in question, e.g., additivity of
effects, the number and size of interactions, depth of interactions, etc. This is both a strength
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and a weakness. The lack of need for these assumption simplifies the use of the methods.
However, if this information is known then it should be used to aid prediction (Jaynes 2003).
It should be noted that standard machine learning methods are not assumption-free. All
learning methods require some inductive bias (Mitchell 1997). However, the assumptions
of standard machine learning methods are more general than those of traditional statistical
genetic methods.

We note that attribute selection is a potentially harder problem than prediction. In par-
ticular, markers found by GWAS (by whatever technique) to be associated to a particular
trait are associated with that trait—they are not necessarily causal but are rather in linkage
disequilibrium with the true causal QTL(s). Finding causal genetic variants is the subject
of statistical fine-mapping (Schaid et al. 2018) and is beyond the scope of this paper. More
generally, the ultimate goal is to build Systems Biology models of biological systems that
faithfully reflect the underlying biology, and which can be used for mechanistic predictions.
In this work, we concentrate on finding good machine learning predictive models and make
no pretense of learning causal mechanistic models.

2 Materials andmethods

2.1 Experimental data

The yeast dataset was derived from a study of 1008 haploid yeast strains derived from a cross
(meiosis) between a laboratory and a wine strain of the yeast Saccharomyces cerevisiae.
The parent strains differed by 0.5% at the sequence level. The genotypes of the parents and
children were determined by sequencing (Fig. 1). The raw sequence data was transformed
into 11,623 Boolean markers: coded to be ‘1’ if the sequence variation came from the wine
strain (RM) parent and ‘0’ if it came from the laboratory strain (BY) parent.

The environment of the yeast strains was modified in 46 different ways (Table 1): the
basic chemicals used for growth were varied (e.g., galactose, maltose), minerals added (e.g.,
copper, magnesium chloride), herbicides added (paraquat), etc.

Yeast population growth (growth is the most basic of all phenotypes) was measured under
these different conditions. As the data was generated by high-throughput robotics there are
many missing values; there are, for example, only 599 readings available for sorbitol. Most
traits, however, haveupwards of 900 readings, somewith two replications (whichweaverage).
All the growth measurements are normalised to have a mean of 0 and a variance of 1.0.

Using this yeast study, we investigate different aspects of applying machine learning
to phenotype prediction data by starting with as clean data as possible, and then gradually
artificially degrading it to make it resemble different practical phenotype prediction problems
in animals and plants. A complementary motivation for using such clean and complete data
is that with improved technology applied phenotype prediction problems will increasingly
resemble this clean, comprehensive form.

The wheat dataset comes from a genomic selection study in wheat involving 254 breeding
lines (samples) with genotypes represented by 33,516 SNP markers coded as {−1, 0, 1} to
correspond to the aa, aA and AA alleles, respectively (Poland et al. 2012). Missing values
were imputed with heterozygotes aA (the original paper found little difference between four
different imputation methods, one of which was imputing with heterozygotes). The wheat
lines were evaluated in plots for four phenotypic traits with three replicates (which were
averaged): yield (drought), yield (irrigated), thousand kernel weight (TKW) and days to
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Fig. 1 aMarkers’ expression for aRM×BYyeast strain [segregantA01-01 (Bloomet al. 2013)] plotted against
their position (mega base pairs) on the genome. Each tick represents a marker, bands represent chromosomes.
1/0 marker values correspond to RM/BY parent, respectively. b Proportion of markers coming from the RM
parent plotted against markers position (mega base pairs) on the genome. White and grey bands separate the
16 chromosomes

heading (number of days before a grass plant shows flowers or seed heads in spring; DTH).
Phenotypic values were once again normalised.

For the rice data, the Core SNP subset of 3000 Rice Genomes version 0.4 from SNP-
SEEK (Mansueto et al. 2016)was used. The genotypes for the samples in the dataset originally
contained 996,009 SNPmarkers. However, a subset of 101,595markerswas used in this study
to reduce computational complexity. These markers were selected by linkage disequilibrium
in Plink (Purcell et al. 2007), using the –indep-pairwise command with a window of
50 SNPs, a step size of 5, and r2 value of 0.02. The markers were coded in the same way as
in the wheat dataset, and missing values were imputed using column means as is common
in the rice literature (Spindel et al. 2015). We note that this imputation method effectively
results in some information exchange between training and test portions of the data but in
practice this should not have a significant effect on results. Indeed, it has been shown that
mean imputation is sufficient in cases where less than 20% of the data for each marker is
missing (Rutkoski et al. 2013), which is the case for our dataset. Twelve phenotypic traits
were considered: culm diameter, culm length, culm number, grain length, grain width, grain
weight, days to heading, ligule length, leaf length, leaf width, panicle length, and seedling
height. Due to missing phenotype data, each trait has its own set of samples, with the number
of samples ranging from 1877 to 2265.

In statistical/machine learning terms: each of the different genotype/phenotype combina-
tions represents a different regression problem. The yeast strains/wheat/rice samples are the
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Fig. 2 Comparison of performance of elastic net on yeast, wheat and rice datasets for varying values of the α

parameter for each trait with α on the x-axis and cvR2 on the y-axis

examples, the markers in the examples are the attributes, and the growth of the strains (for
yeast) and agronomic traits evaluated (for wheat and rice) are variables to be predicted.

3 Learningmethods

3.1 Standard statistical andmachine learningmethods

We investigated several variants of penalised linear regression: elastic net (Zou and Hastie
2005), ridge regression (Hoerl and Kennard 1970), and lasso regression (Tibshirani 1996).
The rationale for choosing these methods is that they most closely resemble the multivariate
approaches used in classical statistical genetics. In genomic applications, we expect a lot of
highly correlated variables (SNPs in LD). Ridge regression tends to shrink coefficients of
highly correlated attributes towards each other,while lasso regression chooses between highly
correlated strong variables, albeit in an ad hoc fashion. Neither approach is ideal, although
lasso’s ability to produce a sparse solution can be a useful feature. The advantage of both
these methods is the simplicity of the resulting linear model. We also investigated an array
of models that interpolate between ridge and lasso regression through use of an elastic net
penalty. We considered 11 values of the elastic net penalty α evenly spaced between 0 (ridge)
and 1 (lasso) with the value of the overall penalty parameter λ chosen by cross-validation
(CV) separately for each value of α (see Fig. 2).

We also investigated the tree methods of random forests (Breiman 2001) and gradient
boosting machines (GBM) (Friedman 2001). The rationale for the use of these is that they
are known to work robustly, and have an inbuilt way of assessing the importance of attributes.
Both of thesemethodswork by combining amultitude of individual regression trees. Hence at
an individual tree level, any interactions between attributes should be accounted for. However,
uncovering these interactions is not easy, and is an area of ongoing research (see e.g. Wright
et al. 2016; Li et al. 2016; Lampa et al. 2014). Additionally, unlike the abovementioned linear
methods, RF, and especially GBM, can require careful tuning for optimal performance. For
random forests, we used 700 iterations for yeast and wheat and 1000 iterations for rice
(chosen to be enough for convergence) of fully-grown trees with the recommended values of
p/3 (where p is the number of attributes) for the number of splitting variables considered at
each node, and 5 examples as the minimum node size. For GBM we tuned two parameters
via internal train/test split inside each fold: interaction depth and shrinkage. We investigated
interaction depths of 1, 2 and 3 and shrinkage of 0.001, 0.01 and 0.1 (in our experience
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Fig. 3 Tuning, training and testing the five ML methods within the cross-validation framework (note that the
above diagram is for the tenfold CV performed on the yeast dataset; for fivefold CV performed on the wheat
dataset training and test folds above should be 80% and 20%, respectively)

the default shrinkage parameter of 0.001 lead to too slow of a convergence), resulting in a
two-dimensional parameter grid. We used 1000 trees, which was enough for convergence for
all traits. The optimal number of iterations for predictions was determined via an assessment
on an internal validation set within each cross-validation fold. Finally, we used the default
value of 0.5 as the subsampling rate.

Finally, we investigated support vector machines (SVM) (Cortes and Vapnik 1995). SVM
methods have been gaining popularity in phenotype prediction problem recently. However,
experience has shown that they need extensive tuning (which is unfortunately extremely
time-consuming) to perform well (Hsu et al. 2008). We used ε-insensitive regression with
Gaussian kernel and tuned the model via internal testing within each cross-validation fold
over a fine grid (on the logarithmic scale) of three parameters: ε, cost parameter C and γ

(equal to 1/(2σ 2), where σ 2 is the Gaussian variance).
For yeast (tenfold CV) and wheat datasets (fivefold CV), during each CV iteration param-

eter tuning is performed within the training fold comprising 90% (or 80%) of the data. For
GBM and SVM, we tune and validate parameters on the 70% and 30% of the training fold,
respectively. For lasso, tuning of λ is done through tenfold CV within the training fold. We
then use the whole training fold to fit the final model using optimal parameters. Finally, we
use this model to predict the held out 10% (or 20%) of the data (test fold): this is our CV-
prediction for this iteration. We thus accumulate CV predictions over the 10 CV iterations to
be used later to assess each model’s performance (see Fig. 3).

All analysis was performed in R (R Core Team 2018) using the following packages:
glmnet for elastic net, randomForest for random forest, gbm for gradient boosting and
kernlab for support vector machines. The caret package was used for tuning GBM and
SVM.

3.2 Classical statistical genetics

To compare the machine learning methods with state-of-the-art classical genetics prediction
methods we re-implemented the prediction method described in the original yeast Nature
paper (Bloom et al. 2013), and applied the genomic BLUP model. The ‘Bloom’ method
has two steps. In the first, additive attributes are identified for each trait in a four-stage
iterative procedure, where at each stage only markers with LOD significance at 5% false
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discovery rate (identified via permutation tests) are kept and added to a linear model; residu-
als from this model are then used to identify more attributes in the next iteration. In the
second step, the genome is scanned for pairwise marker interactions involving markers
with significant additive effect from the previous step by considering likelihood ratio of
a model with an interaction term to a model without such a term. We reapplied the first
step of the analysis to the yeast dataset using the same folds we used for cross-validation
for our ML methods. Additionally, we altered the CV procedure reported in the Nature
paper (Bloom et al. 2013) as it was incorrect (the authors incorrectly identified QTLs
on the training fold, but both fitted the model and obtained predictions on the test fold,
which unfortunately overestimates the obtained R2 values, one of the pitfalls described by
Wray et al. (2013)). We selected attributes and constructed the models only using the data
in a training fold, with predictions obtained by applying the resulting model to the test
fold.

The genomic BLUP model is a linear mixed-model similar to ridge regression but with a
fixed, biologically meaningful penalty parameter. BLUP takes relatedness of the individuals
in the study into account via a genetic relatedness matrix computed from the genotypic
matrix. The reason for choosing this method is that it (and its various extensions) is a very
popular approach in genomic selection, and was the method applied in the original wheat
paper (Poland et al. 2012).We used theR implementation in the rrBLUP package (Endelman
2011).

3.3 Evaluation

The performance of all models was assessed using tenfold and fivefold cross-validation,
for yeast and wheat, respectively and a train/test split for rice. Cross-validated predictions
were collected across the folds and then used to calculate R2 (informally—proportion of
variance explained by the model) in the usual manner (we call this measure cross-validated
R2—cvR2). The wheat dataset was small enough to repeat the CV procedure several times:
we accumulated cvR2 across 10 runs on different fold selections and reported the average
values. Formally, cvR2is defined as:

cvR2 = 1 −
∑

i (ỹi − ȳ)2
∑

i (yi − ȳ)2
,

where (y1, . . . , yn) is the vector of outputs, (ỹ1, . . . , ỹn) is the vector of cross-validated
predictions (see Fig. 3), and ȳ is the sample mean of outputs.

For rice, models were trained on 70% of the data and performance assessed on the remain-
ing 30%.

Next, we used the Friedman test to check whether performance rankings of various meth-
ods were significantly different from each other. For each dataset, the Friedman test proceeds
by first ranking performances of the methods separately for each trait. Average rank across
all traits is then calculated for each method and a null-hypothesis that all the average ranks
are equal, i.e. that all the methods are equivalent, is formally tested (see Demšar (2006)).
Finally, a post-hoc Nemenyi test was applied to assess differences between individual pairs
of methods.
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4 Results

4.1 Overall comparison of methods

Tables 1, 2 and 3 summarise the cvR2 and R2 values for the standard statistical/machine
learningmethods, theBloomGWASmethod andBLUPfor yeast,wheat and rice, respectively.
The elastic net results are represented by the extremes, lasso, and ridge, as predictive accuracy
appears to be a monotonic function of the elastic net penalty parameter α for all the datasets
(see Fig. 2). Moreover, elastic net tends to side with the strongest method (lasso for yeast and
ridge for wheat and rice). This might bring justification for just using the α = 0.5 mixture
parameter (as is done in some literature, e.g. Gamazon et al. (2015); Cherlin et al. (2018)) or
simply trying the two extremes instead of the comprehensive tuning of α.

The yeast results show that there is at least one standard machine learning approach that
outperforms Bloom and BLUP on all but 6 and 5 traits, respectively. In addition, the mean
advantage of the Bloom (BLUP) method on these 6 (5) traits is marginal: 1.8% (0.4%),
with a maximum of 4.1% (1.5%), whilst the mean advantage of the standard machine learn-
ing techniques is 5.0% (5.5%), with a maximum of 14.2% (27.5%)—for SVM (GBM) on
tunicamycin (maltose). (N.B. we did not re-run the second stage of the Bloom’s procedure,
mining for pairwise marker interactions, but used the paper’s original results, so the actual
cvR2 results for traits with interactions for Bloom’s method should be slightly lower than
in Table 1). Across the machine learning methods, the best performing method was GBM,
which performed best in 26 problems. For 6 problems each lasso and the method of Bloom
won. BLUP and SVM showed the best results for 5 and 3 traits, respectively. SVM on the
whole across traits performed very similarly to BLUP but required time-consuming tuning.

At p-value of 2.2 × 10−16, the Friedman test indicates a highly significant difference
between performances of various methods. Furthermore, pairwise post-hoc Nemenyi tests
indicate that GBM is significantly different from Bloom and BLUP methods, at p-values of
3.4 × 10−8 and 9.3 × 10−5, respectively.

The results for the wheat dataset paint quite a different picture: SVM performs the best
for all traits (albeit with a marginal advantage for 3 out of 4 traits), followed closely by
genomic BLUP. Both of the tree methods underperform compared to SVM and BLUP. The
weakest method overall is lasso. The Friedman test returns a p-value of 0.0015. The only
two significant pairwise comparisons are lasso/BLUP and lasso/SVM (p-values of 0.03 and
0.002, respectively), so there is no significant difference between the two closest performing
methods, SVM and BLUP.

On the rice dataset, SVM performs best for 6 of the 12 traits, genomic BLUP outperforms
all other methods on 4 of the 12, and on a trait each, lasso and ridge perform best (see Table 3).
As with the wheat dataset, the tree methods are also outperformed by BLUP and SVM, and
the weakest method overall is also lasso. We hypothesise that BLUP’s ability to take genetic
relatedness of the individuals into account gives it an advantage over the other two penalized
regressions and also the two tree models. Once again, the Friedman test is significant with
a p-value of 1.54 × 10−5, and BLUP and SVM, the two best performing methods, differ
significantly from the three ML methods of GBM, RF and lasso in pairwise comparisons.

The rest of this section is devoted to studying the performance of the five ML methods
and BLUP on the yeast dataset in greater detail. As noted above, this form of a dataset is
arguably the cleanest and simplest possible.
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Table 1 cvR2 for the five ML methods, BLUP and for the QTL mining approach of Bloom et al. applied to
the yeast dataset. The best performance for each trait is in boldface. The average ranks for computation of the
Friedman test are on the bottom line

Trait/method Bloom et al Lasso Ridge BLUP GBM RF SVM

Cadmium chloride 0.780 0.779 0.445 0.556 0.797 0.786 0.565

Caffeine 0.197 0.203 0.171 0.229 0.250 0.236 0.234

Calcium chloride 0.198 0.255 0.240 0.268 0.261 0.205 0.261

Cisplatin 0.297 0.319 0.253 0.290 0.338 0.275 0.272

Cobalt chloride 0.431 0.455 0.431 0.457 0.460 0.398 0.448

Congo red 0.460 0.504 0.469 0.500 0.500 0.398 0.487

Copper 0.405 0.345 0.284 0.331 0.456 0.406 0.338

Cycloheximide 0.466 0.498 0.480 0.516 0.513 0.444 0.529

Diamide 0.417 0.479 0.468 0.498 0.460 0.318 0.486

E6_Berbamine 0.380 0.403 0.372 0.399 0.412 0.281 0.390

Ethanol 0.486 0.495 0.434 0.460 0.518 0.475 0.455

Formamide 0.310 0.238 0.179 0.232 0.350 0.298 0.240

Galactose 0.201 0.183 0.171 0.211 0.235 0.219 0.217

Hydrogen peroxide 0.362 0.377 0.308 0.365 0.385 0.355 0.399

Hydroquinone 0.135 0.201 0.173 0.225 0.212 0.191 0.188

Hydroxyurea 0.232 0.303 0.266 0.303 0.336 0.243 0.320

Indoleacetic acid 0.480 0.302 0.239 0.301 0.476 0.458 0.310

Lactate 0.523 0.568 0.522 0.552 0.561 0.510 0.557

Lactose 0.536 0.567 0.532 0.562 0.582 0.530 0.565

Lithium chloride 0.642 0.704 0.635 0.670 0.711 0.538 0.680

Magnesium chloride 0.278 0.229 0.196 0.250 0.266 0.255 0.267

Magnesium sulfate 0.519 0.369 0.326 0.360 0.492 0.434 0.378

Maltose 0.780 0.620 0.488 0.534 0.809 0.806 0.522

Mannose 0.230 0.202 0.162 0.210 0.255 0.234 0.215

Menadione 0.388 0.412 0.375 0.407 0.432 0.396 0.402

Neomycin 0.556 0.614 0.580 0.609 0.600 0.487 0.597

Paraquat 0.388 0.496 0.447 0.474 0.488 0.298 0.479

Raffinose 0.317 0.357 0.341 0.371 0.383 0.368 0.364

SDS 0.348 0.411 0.345 0.386 0.393 0.337 0.383

Sorbitol 0.424 0.369 0.296 0.333 0.379 0.383 0.318

Trehalose 0.489 0.500 0.463 0.487 0.515 0.472 0.477

Tunicamycin 0.492 0.605 0.586 0.618 0.618 0.385 0.634

x4-Hydroxybenzaldehyde 0.442 0.411 0.325 0.365 0.471 0.404 0.355

x4NQO 0.604 0.612 0.487 0.538 0.636 0.559 0.542

x5-Fluorocytosine 0.354 0.386 0.321 0.354 0.397 0.334 0.373

x5-Fluorouracil 0.503 0.552 0.512 0.545 0.536 0.454 0.546

x6-Azauracil 0.258 0.298 0.270 0.308 0.315 0.289 0.279

Xylose 0.475 0.468 0.431 0.465 0.516 0.484 0.460

YNB 0.508 0.541 0.481 0.519 0.543 0.411 0.525

YNB:ph3 0.151 0.18 0.144 0.195 0.194 0.153 0.166

YNB:ph8 0.295 0.345 0.315 0.356 0.354 0.267 0.334
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Table 1 continued

Trait/method Bloom et al Lasso Ridge BLUP GBM RF SVM

YPD 0.533 0.546 0.480 0.515 0.556 0.469 0.524

YPD:15C 0.432 0.383 0.311 0.345 0.427 0.424 0.333

YPD:37C 0.711 0.653 0.576 0.606 0.691 0.686 0.603

YPD:4C 0.406 0.430 0.396 0.418 0.485 0.405 0.421

Zeocin 0.465 0.469 0.450 0.482 0.495 0.360 0.475

Average rank 4.37 3.14 6.27 3.74 1.66 4.96 3.86

Table 2 cvR2 for the five ML methods and for BLUP across 10 resampling runs applied to the wheat dataset.
The best performance for each trait is in boldface. The average ranks for computation of the Friedman test are
on the bottom line

Trait/method Lasso Ridge BLUP GBM RF SVM

Yield (drought) 0.023 0.060 0.217 0.051 0.172 0.219

Yield (irrigated) 0.084 0.162 0.253 0.132 0.184 0.258

TKW 0.172 0.240 0.277 0.218 0.242 0.304

DTH 0.292 0.325 0.381 0.325 0.358 0.394

Average rank 6.00 4.12 2.00 4.88 3.00 1.00

Table 3 R2 for the fiveMLmethods and forBLUPusing a train-test split for the rice data. The best performance
for each trait is in boldface. The average ranks for computation of the Friedman test are on the bottom line

Trait/method Lasso Ridge BLUP GBM RF SVM

Culm diameter 0.142 0.191 0.190 0.145 0.163 0.182

Culm length 0.529 0.567 0.568 0.559 0.539 0.516

Culm number 0.205 0.232 0.233 0.188 0.222 0.247

Grain length 0.387 0.375 0.381 0.371 0.361 0.383

Grain width 0.474 0.508 0.511 0.466 0.435 0.500

Grain weight 0.309 0.379 0.380 0.327 0.350 0.387

Days to heading 0.677 0.693 0.698 0.669 0.657 0.636

Ligule length 0.351 0.382 0.376 0.372 0.367 0.390

Leaf length 0.335 0.406 0.405 0.407 0.388 0.414

Leaf width 0.371 0.409 0.406 0.388 0.384 0.416

Panicle length 0.352 0.399 0.399 0.383 0.388 0.416

Seedling height 0.188 0.224 0.226 0.184 0.188 0.202

Average rank 4.88 2.38 2.12 4.50 4.71 2.42

4.2 Investigating the importance of mechanistic complexity

The number of relevant attributes (markers, environmental factors), and the complexity of
their interactions have an important impact on the ability to predict phenotype. We inves-
tigated how the mechanistic complexity of a phenotype impacted on the prediction results
for the different prediction methods applied to the yeast dataset. Without a full mechanistic
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Fig. 4 Non-zero attributes selected by lasso regression in training sample plotted against variance explained
in the test sample (yeast)

explanation for the cause of a phenotype, it is impossible to know the number of relevant
attributes. However, in our yeast phenotype prediction data, which has no interacting envi-
ronmental attributes, a reasonable proxy for the number of relevant attributes is the number
of non-zero attributes selected by lasso regression (Fig. 4). This approach is not without
caveats, as lasso might struggle with many small effects and, as previously mentioned, the
choice between several highly correlated attributes is somewhat arbitrary.

To investigate the relationship between the number of markers chosen by the lasso and
variance explained by the models we split the data into test (30%) and training (70%) sets,
counted the number of non-zero parameters in the model fitted to the training set, and com-
pared it to the model’s performance on the test set. We observed that the environments with
a higher proportion of variance explained tend to have a higher number of associated non-
zero attributes. Notable exceptions to this are the three (cadmium chloride, YPD-37C, and
maltose) in the top-left part of the graph, which has an unusually high R2, but only a handful
of associated non-zero attributes (only 6 markers for cadmium chloride). Notably, all three
environments have a distinctive bimodal distribution that probably indicates that they are
affected only by a few mutations.

We also wished to investigate how the complexity of the interactions of the attributes
(in genetics the interaction of genes is termed ‘epistasis’, whilst interaction between alle-
les of the same gene is called ‘dominance’) affected relative performances of the models.
Figure 5 shows pairwise plots of relative performances of the seven approaches with red cir-
cles corresponding to those traits for which Bloom identified pairs of interacting attributes,
and blue triangles corresponding to those for which no interacting attributes were found.
We observed that lasso outperforms or matches (difference of less than 0.5%) Bloom’s
method on those traits where no interactions were detected. This is true for all 22 such
traits. Furthermore, we observed that the lasso on the whole also slightly outperforms GBM
for some traits, and considerably outperforms random forest for the traits with no inter-
actions. For traits with identified interactions gradient boosting machines seem to show
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Fig. 5 cvR2 for tenfold cross-validation for different ML models, genomic BLUP and method of Bloom
et al. applied to the yeast data. Red circles and blue triangles correspond to traits with interactions and no
interactions (as identified by Bloom et al.), respectively

the best performance relative to results of Bloom and random forest; the former outper-
forms GBM for only 6 traits out of 46. Random forest seems to underperform compared
to GBM and lasso, and it beats Bloom for only 14 traits with an average advantage of
1.9%.

Finally, we noted optimal tuning parameters chosen for GBM in each CV fold for each
trait. Scrutinising optimal tuning parameters might help us understand what makes a par-
ticular model suitable for a particular regression problem. In particular, we recorded tree
interaction depth most frequently chosen across the 10 cross-validation folds (if two depths
had equal frequency we took the smallest). Overall 1, 3 and 7 splits (corresponding to
stumps, two- and three-way interaction trees, respectively) were chosen for 9, 18 and 19
traits, correspondingly. Looking closer, we noted that traits for which Bloom did not iden-
tify interacting attributes favoured stumps and shallow trees, while those with 2 or more
interactions favoured deeper trees (7 splits)—in fact, 7 splits were identified as the optimal
tree depth for all traits with more than two interactions. We conclude that optimal GBM
tree depth might help draw conclusions about the structure and complexity of the underlying
data.
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Fig. 6 a Performance of ML and statistical methods under varying degrees of added class noise. The ratio
of variance explained using noisy phenotype versus original data is plotted against proportion of noisy data
added. The thick lines represent average value across all traits. b Comparison of methods on the absolute scale

4.3 Investigating the importance of noise in themeasured phenotype

There is a great deal of noise in many real-world phenotype prediction problems. By noise,
wemean both that the experimental conditions are not completely controlled, and the inherent
stochastic nature of complex biological systems. Much of the factors affecting experimental
conditions are environmental (e.g., soil andweather differences for crop phenotypes, different
lifestyles in medical phenotypes), and this cannot be investigated using the yeast dataset.
However, in many phenotype prediction problems, there is also a significant amount of class
noise. To investigate the importance of such class noise, we randomly added or subtracted
twice the standard deviation to a random subset of growth phenotype. We sequentially added
noise to 5%, 10%, 20%, 30%, 40%, 50%, 75% and 90% of the phenotypic data for each trait
and assessed performances of the statistical/machine learning methods on a test set (with
training-testing split of 70%–30%). We repeated the procedure 10 times, each time selecting
a different random subset of the data to add noise to. Figure 6a plots the ratio of variance
explained using noisy phenotype versus original data versus proportion of noisy data added,
averaged over the 10 runs. The results show a monotonic deterioration in accuracy with
random forests performing the best, followed by GBM, BLUP, SVM, and lasso, with ridge
regression trailing behind substantially. At about 20% of noisy data, RF starts to outperform
GBM in terms of average R2 (see Fig. 6b).

The algorithm underlying GBM is based on recursively explaining residuals of a model
fit at the previous step, which might explain why it fares worse than RF under noise addition.
For all the methods and traits, there seem to be very rapid deterioration in accuracy even for
relatively small noise contamination (less than 10% of the data).
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Fig. 7 a Plots of the ratio of variance explained using a reduced marker set versus variance explained using
the full marker set versus proportion of markers deleted for the five ML methods and BLUP. The thick lines
represent average value across all traits. b Comparison of methods on the absolute scale

4.4 Investigating the importance of number of genotypic attributes

Another common form of noise in phenotype prediction studies is an insufficient number
of markers to cover all sequence variations in the genome. This means that a genome is
not fully represented, and other unobserved markers are present. To investigate this problem
we sequentially deleted random 10%, 25%, 50%, 60%, 70%, 80%, 90%, 95% and 99% of
the markers, and compared the performances of the five ML methods and BLUP on a test
set (again with a training-testing split of 70%–30%). Figure 7a plots the ratio of variance
explained using a reduced marker set versus variance explained using the full marker set
versus proportion of markers deleted. Again these are average values over 10 runs with
different random nested subsets of markers selected in each run. The statistical/machine
learning methods, with the exception of ridge regression, lose minimal accuracy up until
only 20% of the attributes remain, then undergo a rapid decline in accuracy after that. GBM
and SVM seem to benefit from a reduced marker set for certain traits. BLUP’s performance
is very consistent across the traits and seems to be affected by marker deletion the least.
Absolute performance across all traits of different methods relative to each other remains
unchanged for all levels of marker deletion (see Fig. 7b).

The relative insensitivity tomarker deletion acrossmost traits andmethods is not surprising
given high linkage disequilibrium (correlation) between SNPs in the dataset (see Fig. 1a),
which indicates high redundancy ofmarkers. Indeed, we show in the next section that removal
of correlated attributes hardly affects predictive performance of most methods for most traits.
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The steepest dropping line in plots for lasso, ridge, GBM, and RF corresponds to cadmium
chloride; this is most likely because only a handful of important markers are likely to be
governing the trait (see Fig. 4).

4.5 Investigating the importance of data representation

For each yeast strain, the marker data enabled us to recover the genomic structure formed by
meiosis. We observed blocks of adjacent markers taking the same value, 1 or 0 (Fig. 1a). As
yeast has been fully sequenced and annotated (Cherry et al. 2012), we also know where the
markers are relative to the open reading frames (ORFs), continuous stretches of the genome
which can potentially code for a protein or a peptide,—‘genes’. Knowledge of this structure
can be used to reduce the number of attributes with minimal loss of information. We then
investigated two ways of doing this. In the first, we generated a new attribute for each gene
(in which there are one or more markers) and assigned it a value of 1 if the majority of
markers sitting in it had a value 1, and 0 otherwise. In practice, we found that markers within
each gene usually took on the same value for all but a handful of examples. Partially and
fully overlapping genes were treated as separate. Markers within intergenic regions between
adjacent genes were fused in a similar manner. Combining the gene and intergenic fused
markers produced an alternative attribute set of 6064 binary markers.

The second way we investigated the fusing of blocks of markers was to group markers
in genes and their flanking regions. To do this, we divided the genome into regions, each
of which contained one gene together with half of the two regions between it and the two
neighbouring genes. Partially overlapping genes were treated separately, but genes contained
entirely within another gene were ignored. Markers lying within gene regions formed in this
manner were fused according to the dominant value within this gene. This produced an
alternative set of 4383 binary attributes.

We observed that the performance of the two alternative sets of genotypic attributes
matched that of the full attribute set with the mean pairwise difference between any two
attribute sets performance for each of the five ML methods, apart from ridge, not exceed-
ing 0.5%. Ridge regression’s accuracy for some traits suffers considerably (e.g., cadmium
chloride 5%, maltose 5–12%) when the reduced attribute sets were used. This indicates that
most of the markers in blocks are in fact redundant as far as RF, GBM, SVM, and lasso are
concerned.

4.6 Investigating the importance of number of examples

In phenotype prediction studies, there is often a shortage of data as it is expensive to collect.
Traditionally obtaining the genotype data was most expensive, but increasingly data cost is
being dominated by observation of the phenotype—with the cost of observing genotypes
decreasing at super-exponential rate. To investigate the role of the number of examples, we
successively deleted 10%, 25%, 50%, 60%, 70%, 80% and 85% of all sample points and
assessed performance of the six statistical/ML models (again on a test set with a train-test
split of 70%–30% and 10 resampling runs). Figure 8a plots the ratio of variance explained
using reduced dataset versus original data versus proportion of data deleted. Figure 8b plots
average performance over all traits for each method. The plots show that RF performed the
most robustly. We note that by the time 50% of data is removed, RF is outperforming lasso,
BLUP, and SVM, and at the 80%mark it starts outperforming GBM (in absolute terms across
traits, see Fig. 8b). The original number of samples for each trait (which varied from 599 to
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(b) Comparison of methods

Fig. 8 a Performance ofMLmethods and BLUP under sample points deletion. The ratio of variance explained
using reduced dataset versus original is plotted against the proportion of data deleted. Thick lines represent
average value across all traits. b Comparison of methods on the absolute scale

1007) did not seem to systematically affect the rate performance deterioration.We notice that
there is more variation across the traits in response to sample point deletion, as compared to
the addition of class noise and attribute deletion, where behaviour across the traits is more
uniform (see Figs. 6, 7).

4.7 Multi-task learning: learning across traits

Rather than regarding the yeast dataset as 46 separate regression problems with 1008 sample
points in each, in the spirit of multi-task learning one might consider it as a single large
regression problem with 46×1008 observations (in practice less due to missing values). One
would then hope that a predictive model will learn to differentiate between different traits,
giving accurate predictions regardless of the environments. Moreover, letting a model learn
from several traits simultaneously might enhance predictive accuracy for individual traits
through drawing additional information from other (possibly related) traits. It is possible to
consider this set-up also as a form of transfer learning (Caruana 1997; Evgeniou and Pontil
2004; Ando and Tong 2005). Most of the 46 traits are only weakly correlated (Pearson’s cor-
relation) but there are several clusters of phenotypes with much higher pairwise correlations.
Hence, on top of considering a regression problem unifying all 46 traits, we also chose two
smaller subsets of related traits with various levels of pairwise correlations:

(a) Lactate, lactose, sorbitol, and xylose: four sugar-related phenotypes with relatively high
pairwise correlations (0.6–0.8).

(b) Lactate, lactose, sorbitol, xylose, ethanol, and raffinose: six sugar-related phenotypes
with medium to high pairwise correlations (0.42–0.8).
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Fig. 9 RF prediction accuracy (R2 on a test set) for individual traits when trained on group (a) (blue bars),
group (b) (orange bars) and all of the 46 traits (green bars) compared to reference results (grey bars), when
both learning and prediction was performed on individual traits

Grouping these traits makes sense given yeast biology: xylose, sorbitol, lactose, and raf-
finose are all sugars, and plausible environments for yeast to grow in; ethanol is a product of
yeast sugar fermentation; while lactate participates in yeast metabolic process. Hence, it is
not surprising that the six traits enjoy moderate to high pairwise correlations.

Combining several phenotype prediction problems into one results in each individual
(yeast sample) having several entries in the input matrix and output vector—one for each
trait. Additionally, we introduced an extra attribute, a categorical variable indicating which
trait each sample corresponds to. We applied GBM and RF to this grouping approach. We
show only random forest results, as GBM considerably underperformed compared to RF, and
we did not apply SVMdue to it being too computationally extensive for such a large problem.
The performance was assessed by evaluation on a test set (30% of the data), which was an
aggregation of test sets of individual traits used throughout the paper; this made comparing
the new results to reference results obtained by training on separate traits easier.

We assessed the performance of RF on the two groups of traits above as well as on the
group comprising all 46 traits. The threemodels were assessed for overall prediction accuracy
as well as for prediction accuracy for each trait. We compared the latter values to reference
fits, models trained and tested on each trait separately. Figure 9 below shows the results. One
can see that 3 out of 4 traits that belong to both groups (a) and (b) (lactate, sorbitol, xylose)
benefited greatly from grouped learning (blue and orange bars) whilst predictive accuracy
for the two additional traits in group (b) (ethanol and raffinose) are substantially lower than
reference. Moreover, adding these two traits reduced predictive accuracy for 3 out 4 of the
original traits in group (a) (orange bars). Overall accuracy across all traits was 61% for group
(a) and 52% for group (b).

For any pair of traits in groups (a) and (b), the RF model trained on one of the traits has at
least one of its top (as assessed by permutation OOB permutation tests) markers highly (or
perfectly) correlated with one of the markers highlighted as important by RF model trained
on the second trait. Likewise, RF models trained on groups (a) and (b) highlight highly (or
perfectly) correlated markers. Models trained on combined traits, therefore, benefit from
larger datasets to learn common genetic variants affecting these phenotypes.

For the fullmulti-task set-up using all 46 traits (green bars in Fig. 9), the overall accuracy of
all traits was just 20%.On average, predictive accuracy for individual traits for thismodel was
22% lower than reference results (models trained and tested just on one trait). The accuracy
for cadmium chloride, for example, dropped to just 0.4%. There were however 7 traits that
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benefited from grouped learning. Curiously, these included lactate, sorbitol, and xylose along
with two other sugars trehalose and galactose (with an improvement of 5–10%). However,
the accuracies for lactate, sorbitol, and xylose were still lower than when these traits were
considered as part of groups (a) and (b). It, therefore, seems that while combining multiple
traits into a single regression problem indiscriminately might not, on the whole, improve
overall or individual trait prediction accuracy, grouping carefully chosen traits with high
pairwise correlation (perhaps advised by the organism’s biology) can be advantageous.

5 Discussion

We have demonstrated the utility of the application of machine learning methods on three
phenotype prediction problems. The results obtained compared favourably to those obtained
from state-of-the-art classical statistical genetics methods.

The yeast problem investigated has the simplest form of phenotype prediction problem.
The data is also as clean and complete as is currently possible, and this enabled us to gradually
degrade the data in variousways to better understand the factors involved in prediction success
and to make it resemble other types of phenotype prediction problem. In the original clean
yeast data, GBM performed best, with lasso regression and the method of Bloom et al. joint
second best.

The wheat and rice problems are typical of crop genome selection problems. For these
datasets, SVM andBLUPwere the best performingmethods.We hypothesise that the success
of BLUP is related to the population structure in these problems. Despite this success, BLUP
does not optimally use population structure. Therefore, there is room to develop newmachine
learning methods that better use prior knowledge of population structure.

We investigated the role of the number of interactions between attributes. For the yeast
dataset traits with no interactions, lasso proved to be the preferable method. We observed
that GBMwas the best method with traits with interacting attributes. In particular, traits with
more than 2 interactions benefited deeper GBM trees. This is consistent with what would be
expected by theory.

Out of the three types of noise we investigated, class noise seems to be by far the most
damaging to the prediction accuracy of all themethods. This suggests that in collecting exper-
imental data, greatest care should be taken in correctly recording class type. Of the machine
learning methods, ridge regression’s performance deteriorated the most under various forms
of noise, while random forest was the most robust method.

An important observation inferred from applying the variety of classical and machine
learning methods to three such different datasets, and to the modified yeast data, is that
no method performs universally well. This is arguably a manifestation of the ‘no free lunch
theorem’ ofWolpert andMacready (1997), which, simply speaking, asserts that no algorithm
will perform better than any other when their performance is averaged over all possible
problems.

Despite the no free lunch theorem, lessons can be learnt about which type of machine
learning method suits what type of problem. GBM is shown to work very well on the clean
yeast dataset. Here the lack of noise seems to suit the iterative fitting approach, which does
not seem as robust as it could be in the presence of noise. RF is the most robust method in
the presence of noise. This may be due to the bagging of prediction models, and it is possible
that bagging could help other non-stable machine learning methods—though at the cost of
additional computational overhead. SVM works well in both the real-world crop genetic
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problems. More work is required to identify which features of SVM are responsible for this
success. More generally, determining which method performs better on which problem is a
non-trivial problem and is the subject of meta-learning (e.g. Olier et al. (2018)).

One important form of phenotype prediction problem that we have not studied is human
disease associations studies. These problems typically differ from the problems investigated
here in several ways: there exists complex but unknown population structure, the environment
of the examples is poorly controlled, and the phenotype investigated is a disease thatmay have
a partly understoodmechanism. Compared to the problems investigated here these properties
make such problems in some ways easier, and some ways harder. We hypothesise that just
as for the yeast, wheat, and rice datasets, the performance of off-the-shelf machine learning
methods will compare favourably to those obtained from state-of-the-art classical statistical
genetics methods.

There are a number of ways that machine learning methods could be developed for phe-
notype prediction problems. As mentioned in the introduction, the use of markers to describe
genotypes is inefficient as it ignores their linear ordering, the type of sequence change, etc.
One way to capture this information would be to use a relational representation (Getoor and
Taskar 2007). Themarker representation also ignores all the prior biological knowledge that is
available about the genes involved. For a gene, there may be known tens/hundreds/thousands
of facts. This knowledge is highly relevant to determining whether a gene is mechanistically
involved, but is often ignored by both machine learning and classical statistical genetics
methods. To include this knowledge in prediction, a good approach would perhaps be to
use a hybrid relational/propositional approach that uses relational data mining to identify
useful attributes (King et al. 2001). A relational approach could also explicitly include prior
background knowledge about the population structure of the examples.

For some GWAS problems the goal is to produce new organisms with desired properties,
and an example of this is plant breeding where the goal is to produce plants with increased
crop yield, resistance to drought, etc. This suggests an application of active learning. But
this would require the development of new active learning methods that take into account the
specific way (meiosis) that new examples (organisms) are produced.

To conclude, there is relatively little communication between the machine learning and
statistical genetics communities. This is unfortunate. Statistical genetics suffers from lack
of access to new developments in machine learning, and machine learning suffers from a
source of technically interesting, and societally important problems. We, therefore, hope that
this paper will help bridge the differences between the communities and encourage machine
learning research on phenotype prediction problems.

The original yeast data can be found at http://genomics-pubs.princeton.edu/YeastCross_
BYxRM/, wheat data at https://dl.sciencesocieties.org/publications/tpg/abstracts/5/3/103,
and rice data at http://snp-seek.irri.org/_download.zul. Custom R code used to analyse the
datasets can be found at: https://github.com/stas-g/grinberg-et-al-evaluation-of-ML-code.
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