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Overview

Multi-Omics Factor Analysis (MOFA) is a statistical framework aimed at disentangling the sources of
variation across data modalities (i.e. a multi-omics dataset).
In this new study we improve the first model formulation (introduced in [2]) with the aim of performing
integrative analysis of large-scale datasets across multiple data modalities (views) and across multiple
conditions or studies (groups). In this appendix we provide a brief introduction to the original MOFA
model, followed by a detailed description of the key model innovations.

Mathematical notation

– Matrices are denoted with bold capital letters: W
– Vectors are denoted with bold non-capital letters: w. If the vector comes from a matrix, we

will use a single index to indicate the row that it comes from. If two indices are used, the first
one corresponds to the row and the second one to the column. The symbol ’:’ denotes the entire
row/column. For instance, wi refers to the ith row from the W matrix, whereas w:,j refers to the
jth column.

– Scalars are denoted with non-bold and non-capital letters: w. If the scalar comes from a 1-
dimensional array (a vector), a single subscript will indicate its position in the vector. If the
scalar comes from a 2-dimensional array, two indices will be shown at the bottom: the first one
corresponding to the row and the second one to the column. For instance, wi,j refers to the value
from the ith row and the jth column of the matrix W, and wi to the ith value of the vector w.
In some cases, higher dimensional arrays (tensors) are used, and the use of multiple indices follows
the same rationality.

– 0k is a zero vector of length K.
– Ik is the identity matrix with rank K.
– Eq[x] denotes the expectation of x under the distribution q. When the expectations are taken with

respect to the same distribution many times, we will avoid cluttered notation and we will instead
use 〈x〉.

– N (x |µ, σ): x follows a univariate normal distribution with mean µ and variance σ.
– G (x | a, b): x follows a gamma distribution with shape and rate parameters a and b.
– Beta (x | a, b): x follows a beta distribution with shape and rate parameters a and b.
– Ber(x, θ): x follows a Bernoulli distribution with parameter θ.
– 10: Dirac delta function centered at 0.
– Tr(X): Trace of the matrix X
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1 Multi-Omics Factor Analysis v1

This section is reproduced from [2] with some modifications.

Factor analysis models are a probabilistic modelling approach which aim to reduce the dimensionality
of a (big) dataset to generate a compressed and denoised representation of the data that is easier to
interpret and visualise. Formally, given a dataset Y ∈ RN×D of N samples and D features, the aim
is to explain the dependencies between the observed features by means of a small set of K unobserved
(or latent) variables, called factors. The factors capture the global sources of variation in the dataset.
Intuitively, this is similar to Principal Component Analysis.
MOFA is a multi-view generalisation of traditional Factor Analysis to M input matrices (or views)
Ym ∈ RN×Dm . Each view consists of non-overlapping features that often represent different assays.
However, there is flexibility in the definition of views, depending on the hypothesis of the user. As we
demonstrate in the manuscript, one can formulate multi-view problems even from unimodal data. For
example, if one has DNA methylation data, one could define as a single view the matrix with all genome-
wide CpG measurements, but one could also split this matrix into different views, either by chromosome
or by genomic context (i.e. promoters, enhancers, etc.). This formulation could enable the detection of
patterns that are shared or specific to different genomic contexts.

Formally, in MOFA, the input data is factorised using the master equation of latent variable models:

Ym = ZWmT + εm, (1)

where Z ∈ RN×K is a matrix that contains the factor values and Wm ∈ RDm×K are a set of M matrices
that define the weights that relate the high-dimensional space to the low-dimensional latent representa-
tion. εm ∈ RDm captures the residuals, or the noise.

The structure of the MOFA 1.0 model is depicted in the following figure:
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Figure 1: MOFA 1.0 overview. (a) The model takes M data matrices as input (Y1, · · · ,YM ), one or
more from each data modality, with co-occurrent samples but features that are not necessarily related
and can differ in numbers. MOFA decomposes these matrices into a matrix of factors (Z) and M weight
matrices, one for each data modality (W1, · · · ,WM ). White cells in the weight matrices correspond
to zeros, i.e. inactive features, whereas the cross symbol denotes missing values. (b) The fitted MOFA
model can be queried for different downstream analyses, including a variance decomposition to assess
the proportion of variance explained by each factor in each data modality.

By default, residuals are assumed to be normally distributed and heteroskedastic:

p(εmd ) = N (εmd | 0, 1/τmd ) . (2)
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Which results into the following likelihood:

p(Y|W,Z,T) =

M∏
m=1

Dm∏
d=1

N∏
n=1

N
(
ymnd | zTnwm

d , 1/τ
m
d

)
, (3)

Non-Gaussian noise models are available by replacing the prior distributions from Gaussian to other
distributions, such as Bernoulli (for binary data) or Poisson (for count data). The mathematical details
can be found in [2]. For simplicity, unless otherwise stated, we will always assume Gaussian noise.

1.1 Interpretation of the factors

Factors capture the global sources of variability in the data. They are analogous to the principal com-
ponents in Principal Component Analysis (PCA). Mathematically, each factor ordinates cells along a
one-dimensional axis centered at zero. Samples with different signs manifest opposite phenotypes along
the inferred axis of variation, with higher absolute value indicating a stronger effect.
For example, assume that the k-th factor captures the variability associated with cell cycle. We could
expect cells in Mitosis to be at one side of the factor axis (irrespective of the sign, only the relative
positioning being of importance), whereas cells in G1 phase are expected to be at the other end of the
factor axis. Cells with intermediate phenotype, or with no clear phenotype (i.e. no cell cycle genes
profiled), are expected to be located around zero (because of the zero-mean prior distribution).

1.2 Interpretation of the weights

The weights provide a score for each feature on each factor, and are interpreted in a similar way as the
factors. Genes with no association with the factor are expected to have values close to zero, whereas
genes with strong association with the factor are expected to have large absolute values. The sign of the
weight indicates the direction of the effect: a positive weight indicates that the feature has higher levels
in the cells with positive factor values, and vice-versa.
Following the cell cycle example from above, genes that are upregulated in the M phase are expected
to have large positive weights, whereas genes that are downregulated in the M phase (or, equivalently,
upregulated in the G1 phase) are expected to have negative weights.

The following figure shows a real-case example of a Factor capturing the cell cycle effect, with the
corresponding weights:
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Figure 2: Example of a factor (Factor 2) that captures the cell cycle phenotype. Left shows a scatterplot
of Factor 1 and Factor 2, where each dot is a single cell. The cells are colored by the inferred lineage
and they are shaped by the inferred cell cycle phase. Right shows the RNA expression weights for
Factor 5. Each dot represents a gene.

Importantly, the scale of the weights should not be compared across views, only within a view. The
scale of the weights are adjusted to match the distribution of the data modalities, so if you multiple the
values of a data modality by two this will yield weights scaled by a factor of 2. Hence, for simplicity, it
is common practice to report them scaled from -1 to 1 (or from 0 to 1 if using the absolute value).
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1.3 Interpretation of the noise

The use of a probabilistic framework allows the model to explicitly disentangle the signal (the explained
variance) from the noise (the unexplained variance). In the Gaussian framework, large values of τmd
indicate that the model predicts with high accuracy the observations for the feature d in view m. In
contrast, small values of τmd are indicative of low predictive power.

1.4 Prior distributions for the factors and the weights

The key determinant of the model is the regularization used on the prior distributions of the factors and
the weights. In the first version of MOFA we defined a standard Gaussian prior on the factors:

p(znk) = N (znk | 0, 1) (4)

Effectively this assumes, a priori, independent samples centered at 0. This zero-mean prior induces spar-
sity, but only to some extent. If the data does not contain meaningful factors, the posterior distributions
will also be centered at 0.

In contrast, the weights are assumed to be potentially very sparse, the rationality being that the number
of features is very large and that real biological factors are driven by potentially small gene regulatory
networks [8]. To achieve this, MOFA encodes two levels of sparsity: (1) a view- and factor-wise sparsity
and (2) an individual feature-wise sparsity. The aim of the factor- and view-wise sparsity is to identify
which factors are active in which views, such that the weight vector wm

:,k is shrunk to zero if the factor
k does not explain any variation in view m. In addition, we place a second layer of sparsity which
encourages inactive weights on each individual feature.

Mathematically, we express this as a combination of an Automatic Relevance Determination (ARD) prior
[14] for the view- and factor-wise sparsity and a spike-and-slab prior [16] for the feature-wise sparsity:

p(wmkd) = (1− θmk )10(wmkd) + θmk N (wmkd | 0, 1/αmk ) (5)

However, the spike-and-slab prior contains a Dirac delta function, which makes the inference procedure
troublesome. To solve this, we introduce a re-parametrization of the weights w as a product of a Gaussian
random variable ŵ and a Bernoulli random variable s [24], resulting in the following prior for every single
weight wkd:

p(ŵmkd, s
m
kd) = N (ŵmkd | 0, 1/αmk ) Ber(smkd | θmk ) (6)

In this formulation αmk controls the strength of factor k in view m and θmk controls the fraction of non-
zero (active) weights (i.e. the sparsity levels) of factor k in view m. Finally, we allow the model to learn
the levels of sparsity and introduce the following hierarchical priors for θ and α:

p(θmk ) = Beta
(
θmk | aθ0, bθ0

)
(7)

p(αmk ) = G (αmk | aα0 , bα0 ) , (8)

with hyper-parameters aθ0, b
θ
0 = 1 and aα0 , b

α
0 = 1e−3 to get uninformative priors. Posterior values of θmk

close to 0 implies that most of the weights of factor k in view m are shrinked to 0 (sparse factor). In
contrast, a value of θmk close to 1 implies that most of the weights are non-zero (non-sparse factor). A
small value of αmk implies that factor k is active in view m. In contrast, a large value of αmk implies that
factor k is inactive in view m.

This achieves the definition of the original MOFA model.
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2 Multi-Omics Factor Analysis v2

2.1 Introducing sparsity on the latent space

The use of a view-wise sparsity prior on the weights relies on the assumption that the features are not
independent but structured into different views. Some factors may explain variability in only subsets of
views, resulting in a structured sparsity as illustrated in Figure 1.
Following the same logic, the integration of multiple conditions or studies requires breaking the assump-
tion of independent samples and introducing a prior that captures the existence of different groups, such
that some factors are allowed to be active in different subsets of groups.
For example, consider the case where we try to integrate two single-cell multi-omics experiments where
the first one contains a lineaging event that is not present in the second one. In this scenario, one expects
to learn a factor that capture such variability, but this factor should only be active in the first data set.
A real case example is shown in the following figure:
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Figure 3: Example of factor that captures a lineaging event during mouse gastrulation. The data
consists of six views (RNA expression, DNA methylation of promoters and enhancers, and chromatin
accessibility of promoters and enhancers, respectively) and two experiments (embryonic day E3.5 and
E7.5). For simplicity, a single factor (Factor 1) is shown. The left plot shows the variance explained
by Factor 1 in each view and experiment. The right plot shows Factor 1 values per experiment, where
each dot is a single cell.

In addition, if the data has a large number of (noisy) cells, one can expect each factor to be active in
only a small fraction of cells.

To formalise the assumptions above, we mirror the double sparsity prior from the weights:

p(ẑgnk, s
g
nk) = N (ẑgnk | 0, 1/α

g
k) Ber(sgnk | θ

g
k) (9)

p(θgk) = Beta
(
θgk | a

θ
0, b

θ
0

)
(10)

p(αgk) = G (αgk | a
α
0 , b

α
0 ) , (11)

where g is the index of the sample groups.

In addition, to account for the fact that different sample groups may exhibit different noise levels, we
use the following noise model, where εm,gd denotes the residual for a particular view, feature and sample
group :

p(εm,gd ) = N (εm,gd | 0, 1/τm,gd ) (12)

p(τm,gd ) = G (τm,gd | aτ0 , bτ0) (13)

Effectively, this symmetric sparsity allows the model to integrate multiple views (at the feature level) as
well as multiple groups (at the sample level). The graphical model is shown in Figure 4:
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Figure 4: Graphical model for MOFA 2.0. The white circles represent hidden variables that are inferred
by the model, whereas the grey circles represent the observed variables. There are a total of five plates,
each one representing a dimension of the model: M for the number of views, G for the number of
groups, K for the number of factors, Dm for the number of features in view m and Ng for the number
of samples in group g

Solving the rotational invariance problem

Conventional Factor Analysis is invariant to rotation in the latent space[26]. To demonstrate this prop-
erty, let us apply an arbitrary rotation to the weights and the factors, specified by the rotation matrix
R ∈ RK×K :

Z̃ = ZR−1

W̃ = RW

First, note that the model likelihood is unchanged by this rotation, irrespective of the prior distribution
used.

p(Y|Z̃W̃, τ) = p(Y|ZR−1RW, τ) = p(Y|ZW, τ)

However, the prior distributions of the factors and the weights are only invariant to rotations when using
isotropic Normal priors:

ln p(W) ∝
K∑
k=1

D∑
d=1

w2
d,k = Tr(WTW) = Tr(WTR−1RW) = Tr(W̃TW̃)

where we have used the property RT = R−1 that applies to rotation matrices. The same derivation
follows for the factors Z.

In practice, this property renders conventional Factor Analysis unidentifiable, hence limiting its inter-
pretation and applicability. Sparsity assumptions, however, partially address the rotational invariance
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problem [10].
It is important to remark that the factors are nonetheless invariant to permutations. This implies that,
under different initial conditions, the order of the factors is not necessarily the same in independent
model fittings. To address this, we manually sort factors a posteriori based on total variance explained.

2.2 Scaling up using stochastic variational inference with natural gradients

The size of biological datasets is rapidly increasing, particularly in the field of single cell sequencing,
with some studies reporting more than a milion cells[23, 6].
In the original MOFA model, inference was performed using variational Bayes [2, 3, 11]. While this
framework is typically faster than sampling-based Monte Carlo approaches, it becomes prohibitively
slow with very large datasets, hence motivating the development of a more efficient inference scheme.
For this purpose, we derived the stochastic version of the variational inference algorithm developed by
[9, 7, 1] for our specific probabilistic model (Figure 4).

In the first two subsections, we briefly review the variational inference algorithm and its stochastic
version as proposed by [9]. In the next two subsections, we show how to derive the variational inference
algorithm and its stochastic version for the specific MOFA+ probabilistic model.

2.2.1 Review section: Variational Inference (VI)

a) Main principles

First, we briefly introduce the variational Bayes framework and show how to turn it into an optimisation
problem that can be solved via coordinate or gradient ascent methods. For a detailed mathematical
introduction to variational methods we refer the reader to [4, 17, 5, 25, 3].

Let us define a generative model specified by some observations Y and some latent variables X.
The central aim of Bayesian inference is to obtain the posterior distribution of the latent variables given
the observations:

p(X|Y) =
p(Y,X)∫
x
p(Y,X)

For most realistic models, the integral in the denominator is intractable and one has to resort to approx-
imations.

In variational inference the true (but intractable) posterior distribution p(X|Y) is approximated by a
simpler (variational) distribution q(X). This distribution is found as the closest approximation to the
true posterior, among a predefined family of distributions which are tractable to compute. The distance
between the true posterior distribution and an approximate posterior distribution (belonging to the
chosen family) is calculated using the KL divergence:

KL(q(X)||p(X|Y)) = −
∫
x

q(X) log
p(X|Y)

q(X)

Note that, if we allowed any possible choice of q(X), then the minimum of this function would occur
when q(X) equals the true posterior distribution p(X|Y). Since the true posterior is intractable to com-
pute, we instead look for the distribution minimizing the KL divergence among a restricted family of
approximate distributions.

Doing some calculus it can be shown (see [4, 17]) that the KL divergence KL(q(X)||p(X|Y)) is the
difference between the log of the marginal probability of the observations log(Y) and a term L(X) that
is typically called the Evidence Lower Bound (ELBO):

KL(q(X)||p(X|Y)) = log(Y)− L(X)

The first term in the right-hand side is a constant. Hence, as illustrated in Figure 5, minimising the KL
divergence is equivalent to maximising L(X) :

L(X) =

∫
x

q(X)
(

log
p(X|Y)

q(X)
+ log p(Y)

)
dX

= Eq[log p(X,Y)]− Eq[log q(X)]

(14)
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The first term is the expectation of the log joint probability distribution with respect to the variational
distribution. The second term is the entropy of the variational distribution. Importantly, given a simple
parametric form of q(X), each of the terms in Equation (14) can be computed in closed form.
In some occasions, we will use the following form for the ELBO:

L(X) = Eq[log p(Y|X)] + (Eq[log p(X)]− Eq[log q(X)]) (15)

where the first term is the expectation of the log likelihood and the second term is the difference in the
expectations of the p and q distributions of each hidden variable.

In conclusion, variational learning involves minimising the KL divergence between q(X) and p(X|Y) by
instead maximising L(X). The following image summarises the general picture of variational learning:

Figure 5: The quantity L(X) provides a lower bound on the true log marginal likelihood log p(Y),
with the difference being given by the Kullback-Leibler divergence KL(q||p) between the variational
distribution q(X) and the true posterior p(X|Y)

To define the family of distributions where to find the approximate posterior q(X), two approaches are
possible : non-parametric or free-form [4], and parametric or fixed-form [25, 5]. We will present both
approaches under the mean-field assumption, which assumes that the approximate posterior factorises
over M disjoint groups of variables[21]:

q(X) =

M∏
i=1

qi(xi) (16)

b) Free-form mean-field variational inference

A common approach is to make no parametric assumptions on the form of the factors qi.
Using calculus of variations (see [4, 17]), it can be shown that the ELBO is maximised with respect to
qi when:

log q∗i (xi) = E−i[log p(Y,X)] + const (17)

where E−i denotes an expectation with respect to the q distributions over all variables xj except for xi.
The additive constant is set by normalising the distribution q∗i (xi):

q∗i (xi) =
exp(E−i[log p(Y,X)])∫

exp(E−i[log p(Y,X)])dX

Equation 17 consists in a set of one equation per model variable xi, with dependencies in the first and
second moment of the other distributions qj 6=i (via the expectation E−i). In practice, this is solved us-
ing coordinate ascent, where qi distributions are updated iteratively while keeping the qj 6=i distributions
fixed, until convergence of the ELBO. When conjugate priors are used, the qi distributions have the same
functional forms as the priors P (xi), and their parameters can easily be identified from the functional
form of E−i [lnP (Y,X)]. Again, please refer to [4, 17, 26] for mathematical details.
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c) Fixed-form mean-field variational inference

An alternative and straightforward choice is to directly define the distribution q(X) to be of the same form
as the prior distribution p(X), with (variational) parameters Θ. Thus, each factor qi belongs to the same
family as the prior over the variables xi, and can be parametrized with its own parameters θi to be tuned.

Importantly, this approach introduces parametric assumptions which only match the free-form mean-
field derivation when using conjugate priors. However, for generic models with arbitrary families of
distributions, no closed-form variational distributions exist via the free-form mean-field approximation
[25, 5].

In the fixed-form approach, the ELBO can be maximised by optimising the parameters Θ via conventional
numeric optimisation methods. Hence, while the parametric assumption certainly limits the flexibility
of variational distributions, the advantage of this formulation is that it opens up the possibility to use
(potentially fast) gradient-based methods for the inference procedure [9, 18, 12].

2.2.2 Review section: Stochastic Variational Inference (SVI)

We have seen in the previous section that mean-field variational inference amounts to a coordinate ascent
procedure to maximise the evidence lower bound.
A faster alternative to maximise the ELBO with respect to the variational distribution q(X) is to use a
stochastic gradient ascent procedure. In the context of variational inference, this approach was proposed
by [9] by the name of Stochastic Variational Inference (SVI).
In the followings, we first review briefly the two ingredients required to understand SVI - stochastic
gradient ascent and natural gradients - to finally introduce the SVI algorithm.

a) Stochastic gradient ascent

Gradient ascent is a common first-order optimization algorithm for finding the maximum of a function
[4, 17]. It works iteratively by taking steps proportional to the gradient of the function evaluated at each
iteration. Formally, for a differentiable function F (x), the iterative scheme of gradient ascent is:

x(t+1) = x(t) + ρ(t)∇F (x(t)) (18)

At each iteration, the gradient ∇F is re-evaluated and a step is performed towards its direction. The
step size is controlled by ρ(t), a parameter called the learning rate, which is typically adjusted at each
iteration t [19].

Gradient ascent is appealing because of its simplicity, but it becomes prohibitively slow with large
datasets, mainly because of the computational cost (both in terms of time and memory) associated with
the iterative calculation of gradients [22].

Assuming the existence of redundancy in the dataset, a fast approximation of the gradient ∇̂F can be
calculated using a random subset of the data (minibatch). Formally, as in standard gradient ascent, the
iterative training schedule proceeds by taking steps of size ρ in the direction of the approximate gradient
∇̂F :

x(t+1) = x(t) + ρ(t)∇̂F (x(t)) (19)

The step size ρ(t) can also be adjusted at each iteration t. When the series ρ(t) satisfies the Robbins-
Monro conditions:

∑
t ρ

(t) = ∞ and
∑
t(ρ

(t))2 < ∞, F is guaranteed to converge to a local maximum
[20]. If F is not convex, the algorithm is sensible to the initialisation xt=0.

b) Natural gradient ascent

Let us consider a model with a single hidden variable x and corresponding variational parameter θ. The
objective function is the ELBO L(θ). From the definition of the gradient:

∇L(θ) = lim
||h||→0

L(θ + h)− L(θ)

||h||

10



where h represents an infinitesimally small positive step in the space of θ.
To find the steepest gradient, one would need to search over all possible directions d in an infinitely small
distance h, and select the d̂ with the largest gradient:

∇L(θ) = lim
h→0

1

h
arg max
d s.t.‖d‖=h

L(θ + d)− L(θ)

Notice that the neighborhood of θ is measured in terms of its Euclidean norm, and the direction of steepest
ascent is hence dependent on the Euclidean geometry of the θ space. This is the key problematic issue
when working with probability distributions. A small step from θ(t) to θ(t+1) does not guarantee an
equivalently small change from L(θ(t)) to L(θ(t+1)). As an example, consider four random variables:

ψ1 ∼ N (0 | 5)

ψ2 ∼ N (10 | 5)

ψ3 ∼ N (0 | 1)

ψ4 ∼ N (10 | 1)
(20)

Using the Euclidean metric, the distance between ψ1 and ψ2 is the same as the distance between ψ3 and
ψ4. However, the distance in distribution space (measured for example by the KL divergence) is clearly
much larger between ψ1 and ψ2 than between ψ3 and ψ4 (Figure 6).
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Figure 6: Illustration of the problem of using Euclidean distances to measure distances between param-
eters of distributions. In both plots, the red and blue distributions are separated by the same Euclidean
distance of 10. Yet, the distance in probability space between the two distributions is intuitively much
higher in the right plot.

Hence, rather than using the Euclidean distance, it is more appropriate to use the KL divergence as a
distance metric:

∇KLL(θ) = lim
h→0

1

h
arg max

d s.t.KL[pθ||pθ+d]=h
L(θ + d)− L(θ)

The direction of steepest ascent measured by the KL divergence is called the natural gradient [1, 15].
By introducing Lagrange multipliers and Taylor expansions, one can solve the optimisation problem
to obtain the direction of the steepest natural gradient (see [1, 13]). The solution corresponds to the
standard (Euclidean) gradient pre-multiplied by the inverse of the Fisher Information Matrix of q(x|θ):

d̂KL ∝ F−1(θ)∇θL(θ) (21)

where F(θ) is defined as
F(θ) = Eq(x|θ)[(∇θ log q(x|θ))(∇θ log q(x|θ))T ]

Effectively, the premultiplication by F−1 takes into account the local curvate of q(θ) in distribution space.
Importantly, when q(x|θ) belongs to the exponential family, the Fisher Information matrix is simply the
Hessian of the log normalizer.

In conclusion, while the standard gradient points to the direction of steepest ascent in Euclidean space,
the natural gradient points to the direction of steepest ascent in a space where distances are defined by
the KL divergence [13, 1, 9].
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c) SVI is a stochastic natural gradient ascent

We can finally introduce the stochastic variational inference (SVI) algorithm, which may indeed be seen
as a stochastic natural gradient ascent. This approach was proposed by [9] to solve the fixed-form mean-
field variational inference introduced in the previous section.
The stochastic nature of the approach is interesting when one dimension of the matrix of observed vari-
ables is much larger than the others. In our case, it corresponds to N , the number of samples (or cells).

In this section we will summarise the key principles to understand the SVI algorithm. For a complete
mathematical derivation we refer the readers to [9]
As a starting point, we classify the variables of the probabilistic model into four different types:

• observations (Y): N different vectors yn which contain the observed variables for the n-th sample.

• local (hidden) variables (Z): N different vectors zn which contain all K hidden variables associated
with each sample n.

• global (hidden) variables (β): one vector that contains all B hidden variables not indexed by n.

• parameters (α): a vector that contains all fixed parameters for the global variables.

The distinction between local and global variables lies on the conditional dependencies. Given the global
variables β, the nth local variable zn is conditionally independent from any other observation yj or local
variable zj (where j 6= n):

p(yn, zn|yj , znj , β, α) = p(yn, zn|β, α)

Under the assumptions that the complete conditionals in the model are in the exponential family 1 —
which notably imply that p(β) and p(yn, zn|β) are also in the exponential family —, [9] showed that:

• The update equations of the classic variational inference algorithm (which is a coordinate ascent
using the classic gradient of the ELBO) are also satisfied when following the natural gradient of
the ELBO

• The ELBO decomposes into a global term and a sum of local terms — each local term specific
to a particular sample —, and so does its natural gradient, which makes the stochastic gradient
algorithm applicable to the natural gradient.

• The natural gradient of the ELBO is cheaper to compute than the classic gradient.

To illustrate the key points above, let us introduce a general formula for the ELBO (the objective
function) in terms of the four types of variables defined above. For this purpose, we first introduce the
following notations:

• the prior distributions are members of the exponential family :

p(β|αβ) = h(β) exp{ηg(αβ)t(β)− ag(αβ)}
p(znk|αz) = h(znk) exp{ηl(αz)t(znk)− al(αz)}

(22)

• the complete conditionals are members of the exponential family:

p(β|Y,Z,α) = h(β) exp{ηg(Y,Z,α)T t(β)− ag(ηg(Y,Z,α))}
p(zn|ynj , znj , β) = h(zn) exp{ηl(ynj , znj , β)T t(zn)− al(ηl(ynj , znj , β))}

(23)

• the variational distributions in the fixed-form mean-field assumption belong to the same exponential
family as their priors:

q(z, β) = q(β|λ)

N∏
n=1

K∏
k=1

p(znk|φnk) (24)

q(β|λ) = h(β) exp{ηg(λ)t(β)− ag(λ)} (25)

q(znk|φnk) = h(znk) exp{ηl(φn)t(znk)− al(znk)} (26)

where λ are the parameters governing the global variable and φnk are the parameters governing
the k-th local variable for the n-th sample.

1a complete conditional is the distribution of a hidden variable given all other variables, hidden or observed

12



Following this, the ELBO (Equation (14)), factorises as:

L = Eq(Z,β)[log p(Y,Z, β)]− Eq(Z)[log q(Z)]− Eq(β)[log q(β)]

=

N∑
n=1

Eq(zn,β)[log p(yn, zn, β)]−
N∑
n=1

K∑
k=1

Eq(znk)[log q(znk)]− Eq(β)[log q(β)]
(27)

Notice the existence of global terms (which do not depend on n) and local terms (which do depend on
n). We can further derive the corresponding noisy estimate by using a randomly sampled mini-batch of
size S:

LS =
N

S

S∑
n=1

Eq(zn,β)[log p(yn, zn, β)]− N

S

S∑
s=1

K∑
k=1

Eq(znk)[log q(znk)]− Eq(β)[log q(β)]

where the factor N/S ensures that the estimate is unbiased.

To derive the variational updates, we need to compute the natural gradient of LS with respect to the
global and the local parameters at a turn.

Taking the natural gradient of LS with respect to the local parameter φnk leads to :

∇̂φL(φnk) = Eq(β,znj)[ηl(yn, znj , β)]− φnk

Similarly, taking the natural gradient of LS with respect to the global parameter λ leads to :

∇̂λLS(λ) = Eq(z)
[
N

S
ηg(Y1:S ,Z1:S ,α)

]
− λ (28)

If we had taken the natural gradient of L instead of LS , we would have obtained:

∇̂λL(λ) = Eq(z) [ηg(Y,Z,α)]− λ (29)

which we can compare to the equation obtained using the standard (Euclidean) gradient:

∇λL(λ) = ∇2
λag(λ)(Eq(z)[ηg(Y,Z,α)]− λ) (30)

The standard gradient requires the Hessian of the log normalizer (i.e. the Fisher Information Matrix)
to be explicitly computed at each iteration. Remarkably, in the natural gradient this term has canceled
out (see Equation (21)), which leads to a much cheaper computation.

d) SVI algorithm vs. VI algorithm

We can notice that the SVI algorithm (with natural gradients) is equivalent to the non-stochastic VI
algorithm when using a step-size 1 and when each mini-batch is equal to the full dataset:

Algorithm 1 Mean-field variational inference

1: Initialise the global parameters λ(t=0) randomly
2: repeat
3: for each local variational parameter φnk do
4:

φ
(t+1)
nk = E

q(t)(β,znj)[ηl(yn, znj ,β)]

5: end for
6: for each global variational parameter λ do
7:

λ(t+1) = Eq(t+1)(z)[ηg(Y,Z,α)]

8: end for
9: until ELBO convergence

13



Algorithm 2 Stochastic mean-field variational inference

1: Initialise the global parameters λ(t=0) randomly.
2: Initialise step size ρ(t=0)

3: repeat
4: sample B a mini-batch of samples of size S
5: for each local variational parameter φnk such that n is in batch B do
6:

φ
(t+1)
nk = E

q(t)(β,znj)[ηl(yn, znj ,β)]

7: end for
8: for each global variational parameter λ do
9:

λ(t+1) = λ(t) + ρ(t)∇̂λLS(λ)

= (1− ρ(t))λ(t) + ρ(t)Eq(t+1)(z)

[
N

S
ηg(Y[n∈B],:,Z[n∈B],:,α)

]
(31)

10: where [n ∈ B] denotes the subset of indices corresponding to the samples in B
11: end for
12: until ELBO convergence

e) Hyperparameters

Stochastic variational inference algorithm has two critical hyperparameters:

• The batch size S controls the number of samples that are used to compute the gradients at each
iteration. A trade-off exists where high batch sizes lead to a slower computation of the gradient
but to a less noisy estimate of the gradient.

• The learning rate ρ(t) controls the step size in the direction of the natural gradient, with high
learning rates leading to higher step sizes. Also, in the natural gradient setting, the learning
rate controls how much memory from previous iterations is translated to the current updates.
The particular case of a constant ρ = 1 yields no memory from previous iterations, which is the
particular case of the standard gradient ascent. To ensure proper convergence, the learning rate
is usually decayed during training by a pre-defined function. How to adapt the learning rate is an
extensive area of research [19].
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2.2.3 Deriving the variational inference algorithm

We applied the variational inference principle previously introduced. We looked for an approximate
distribution of the true posterior which is the closest to this true posterior (according to the KL divergence
distance) among the following family of factorized distributions:

q(X) = q
(
{Ẑg,Sg, αg, θg}g∈J1;GK, {Ŵm,Sm, αm, θm}m∈J1;MK, {τgm}g∈J1;GK, m∈J1;MK

)
=

G∏
g=1

Ng∏
n=1

K∏
k=1

q(ẑgnk, s
g
nk)

G∏
g=1

K∏
k=1

q(αgk)

G∏
g=1

K∏
k=1

q(θgk)

×
M∏
m=1

Dm∏
d=1

K∏
k=1

q(ŵmkd, s
m
kd)

M∏
m=1

K∏
k=1

q(αmk )

M∏
m=1

K∏
k=1

q(θmk )

×
G∏
g=1

M∏
m=1

Dm∏
d=1

q(τgmd )

Inspired by [24], we did not look for fully factorized distributions like in the mean-field distribution, since
we can hardly assume ŵmk and smk to be independent in the posterior (θk and αk correspond respectively
to the amount and the variability of the non-zero weights for factor k).

Since the posterior is fully factorized in terms of the following variables {(ẑgnk, s
g
nk), αgk, θ

g
k, (ŵmkd, s

m
kd), α

m
k , θ

m
k , τ

gm
d },

we could derive from equation 17 update equations for the parameters of the following factors : q(ẑgnk),
q(ẑgnk|s

g
nk = 0), q(ẑgnk|s

g
nk = 1), q(αgk), q(θgk), q(ŵmkd|smkd = 0), q(ŵmkd|smkd = 1), q(αmk ), q(θmk ), and q(τgmd ).

In order to derive update equations for the parameters of q(sgnk) (and similarly for q(smkd)), we adapted
the reasoning done in [4] to show that, when the functional L(q) is maximized, then we get the following
equation (where we denote X ′ = X \ {ẑgnk, s

g
nk}) and which slightly differs from equation 17 :

log q(sgnk) =EX′,ẑgnk|s
g
nk

[
log

p(Y,X)

q(ẑgnk|s
g
nk)

]
=EX′,ẑgnk|s

g
nk

log p(Y |X) + EX′,ẑgnk|s
g
nk

log p(ẑgnk|α
g
k) + EX′,ẑgnk|s

g
nk

log p(sgnk)

− EX′,ẑgnk|s
g
nk

log q(ẑgnk|s
g
nk)

(32)

Below we give the explicit update equations for every hidden variable of MOFA 2.0 model which are
applied at each iteration of the classic variational inference algorithm.

a) Update equations

Non-sparse factors

For every group g, sample n and factor k:

Prior distribution p(zgnk):

p(zgnk) = N (zgnk|0, 1)

Variational distribution q(zgnk):

q(zgnk) = N (zgnk|µzgnk , σ
2
zgnk

) (33)

where

σ2
zgnk

=

(
M∑
m=1

Dm∑
d=1

〈τgmd 〉〈(w
m
kd)

2〉+ 1

)−1

µzgnk = σ2
zgnk

M∑
m=1

Dm∑
d=1

〈τgmd 〉〈w
m
kd〉

 G∑
g=1

ygmnd −
∑
j 6=k

〈wmjd〉〈z
g
nj〉

 (34)
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Sparse factors (with spike-and-slab prior)

For every group g, sample n and factor k:

Prior distribution p(ẑgnk, s
g
nk):

p(ẑgnk, s
g
nk) = N (ẑgnk | 0, 1/αgk) Ber(sgnk | θ

g
k) (35)

Variational distribution q(ẑgnk, s
g
nk):

Update for q(sgnk):

q(sgnk) = Ber(sgnk|γ
g
nk) (36)

with

γgnk =
1

1 + exp(−λgnk)

λgnk = 〈ln θ

1− θ
〉+ 0.5 ln

〈αgk〉
〈τgmd 〉

− 0.5 ln

(
M∑
m=1

Dm∑
d=1

〈(wmkd)2〉+
〈αgk〉
〈τgmd 〉

)

+
〈τgmd 〉

2

(∑M
m=1

∑Dm
d=1 y

gm
nd 〈wmkd〉 −

∑
j 6=k〈s

g
nj ẑ

g
nj〉
∑M
m=1

∑Dm
d=1〈wmkd〉〈wmjd〉

)2
∑M
m=1

∑Dm
d=1〈(wmkd)2〉+

〈αgk〉
〈τgmd 〉

(37)

Update for q(ẑgnk):

q(ẑgnk|s
g
nk = 0) = N (ẑgnk|0, 1/α

g
k)

q(ẑgnk|s
g
nk = 1) = N

(
ẑgnk

∣∣∣µzgnk , σ2
zgnk

) (38)

with

µzgnk =

∑M
m=1

∑Dm
d=1 y

m,g
nd 〈wmkd〉 −

∑
j 6=k〈s

g
nj ẑ

g
nj〉
∑M
m=1

∑Dm
d=1〈wmkd〉〈wmjd〉∑M

m=1

∑Dm
d=1〈(wmkd)2〉+

〈αgk〉
〈τgmd 〉

σ2
zgnk

=
〈τgmd 〉−1∑M

m=1

∑Dm
d=1〈(wmkd)2〉+

〈αgk〉
〈τgmd 〉

(39)

ARD precision of the factors

For every group g and factor k:

Prior distribution:

p(αgk) = G (αgk | a
α
0 , b

α
0 ) (40)

Variational distribution q(αgk):

q(αgk) = G
(
αgk | â

α
gk, b̂

α
gk

)
(41)

where:

âαgk = aα0 +
Ng
2

b̂αgk = bα0 +

∑Ng
n=1〈(ẑ

g
nk)2〉

2

(42)
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Sparsity parameter of the factors

For every group g and factor k:

Prior distribution:

p(θgk) = Beta
(
θgk | a

θ
0, b

θ
0

)
(43)

Variational distribution:

q(θgk) = Beta
(
θgk | â

θ
gk, b̂

θ
gk

)
(44)

where

âθgk =

Ng∑
n=1

〈sgnk〉+ aθ0

b̂θgk = bθ0 −
Ng∑
n=1

〈sgnk〉+Ng

(45)

Non-sparse weights

For every view m, feature d and factor k:

Prior distribution p(wmkd):

p(wmkd) = N (wmkd|0, 1)

Variational distribution q(wmkd):

q(wmkd) = N (wmkd|µwmkd , σ
2
wmkd

) (46)

where

σ2
wmkd

=

 G∑
g=1

Ng∑
n=1

〈τgmd 〉〈(z
g
nk)2〉+ 1

−1

µwmkd = σ2
wmkd

G∑
g=1

Ng∑
n=1

〈τgmd 〉〈z
g
nk〉

 M∑
m=1

ygmnd −
∑
j 6=k

〈zgnj〉〈w
m
jd〉


(47)

Sparse weights (with spike-and-slab prior)

For every view m, feature d and factor k:

Prior distribution p(ŵmkd, s
m
kd):

p(ŵmkd, s
m
kd) = N (ŵmkd | 0, 1/αmk ) Ber(smkd | θmk ) (48)

Variational distribution q(ŵmkd, s
m
kd):

Update for q(smkd):

q(smkd) = Ber(smkd|γmkd) (49)
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with

γmkd =
1

1 + exp(−λmkd)

λmkd = 〈ln θ

1− θ
〉+ 0.5 ln

〈αmk 〉
〈τgmd 〉

− 0.5 ln

 G∑
g=1

Ng∑
n=1

〈(zgnk)2〉+
〈αmk 〉
〈τgmd 〉


+
〈τgmd 〉

2

(∑G
g=1

∑Ng
n=1 y

gm
nd 〈z

g
nk〉 −

∑
j 6=k〈smjdŵmjd〉

∑G
g=1

∑Ng
n=1〈z

g
nk〉〈z

g
nj〉
)2

∑G
g=1

∑Ng
n=1〈(z

g
nk)2〉+

〈αmk 〉
〈τgmd 〉

(50)

Update for q(ŵmkd):

q(ŵmkd|smkd = 0) = N (ŵmkd|0, 1/αmk )

q(ŵmkd|smkd = 1) = N
(
ŵmkd

∣∣∣µwmkd , σ2
wmkd

) (51)

with

µwmkd =

∑G
g=1

∑Ng
n=1 y

gm
nd 〈z

g
nk〉 −

∑
j 6=k〈smjdŵmjd〉

∑G
g=1

∑Ng
n=1〈z

g
nk〉〈z

g
nj〉∑G

g=1

∑Ng
n=1〈(z

g
nk)2〉+

〈αmk 〉
〈τgmd 〉

σ2
wmkd

=
〈τgmd 〉−1∑G

g=1

∑Ng
n=1〈(z

g
nk)2〉+

〈αmk 〉
〈τgmd 〉

(52)

ARD precision of the weights

For every view m and factor k:

Prior distribution p(αmk ):
p(αmk ) = G (αmk | aα0 , bα0 )

Variational distribution q(αmk ):

q(αmk ) = G
(
αmk | âαmk, b̂αmk

)
(53)

where:

âαmk = aα0 +
Dm

2

b̂αmk = bα0 +

∑Dm
d=1〈(ŵmkd)2〉

2

(54)

Sparsity parameter of the weights

For every view m and factor k:

Prior distribution:
p(θmk ) = Beta

(
θmk | aθ0, bθ0

)
Variational distribution:

q(θmk ) = Beta
(
θmk | âθmk, b̂θmk

)
(55)

where

âθmk =

Dm∑
d=1

〈smkd〉+ aθ0

b̂θmk = bθ0 −
Dm∑
d=1

〈smkd〉+Dm

(56)
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Noise (Gaussian)

For every view m, group g and feature d:

Prior distribution p(τgmd ):
p(τgmd ) = G

(
τmdg | aτ0 , bτ0

)
,

Variational distribution q(τgmd ):

q(τgmd ) = G
(
τgmd | âgmd , b̂gmd

)
(57)

where:

âgmd = aτ0 +
Ng
2

b̂gmd = bτ0 +
1

2

Ng∑
n=1

〈

(
ygmnd −

K∑
k

wmkdz
g
nk

)2

〉
(58)

b) Evidence Lower Bound

Although computing the ELBO is not necessary in order to estimate the posterior distribution of the
parameters, it is used to monitor the convergence of the algorithm. As shown in Equation (15), the
ELBO can be decomposed into a sum of two terms: (1) the expected log likelihood under the current
estimate of the posterior distribution of the parameters and (2) the KL divergence between the prior
and the variational distributions of the parameters:

L = Eq(X) lnP (Y |X)−KL (q(X)||p(X)) (59)

Log likelihood term Assuming a Gaussian likelihood:

Eq(X) lnP (Y |X) =−
M∑
m=1

NDm

2
ln(2π) +

G∑
g=1

Ng
2

M∑
m=1

Dm∑
d=1

〈ln(τgmd )〉

−
G∑
g=1

M∑
m=1

Dm∑
d=1

〈τgmd 〉
2

Ng∑
n=1

(
ym,gnd −

K∑
k=1

〈smkdŵmkd〉〈z
g
nk〉
)2 (60)

KL divergence terms Note that KL (q(X)||P (X)) = Eq(q(X))− Eq(P (X)).
Below, we will write the analytical form for these two expectations.

Sparse weights

Eq[ln p(Ŵ , S)] =−
M∑
m=1

KDm

2
ln(2π) +

M∑
m=1

Dm

2

K∑
k=1

ln(αmk )−
M∑
m=1

αmk
2

Dm∑
d=1

K∑
k=1

〈(ŵmkd)2〉

+ 〈ln(θ)〉
M∑
m=1

Dm∑
d=1

K∑
k=1

〈smkd〉+ 〈ln(1− θ)〉
M∑
m=1

Dm∑
d=1

K∑
k=1

(1− 〈smkd〉)

(61)

Eq[ln q(Ŵ , S)] =−
M∑
m=1

KDm

2
ln(2π) +

1

2

M∑
m=1

Dm∑
d=1

K∑
k=1

ln(〈smkd〉σ2
wmkd

+ (1− 〈smkd〉)/αmk )

+

M∑
m=1

Dm∑
d=1

K∑
k=1

(1− 〈smkd〉) ln(1− 〈smkd〉)− 〈smkd〉 ln〈smkd〉

(62)
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Non-sparse weights

Eq[ln p(W )] = −DK
2

ln(2π)− 1

2

M∑
m=1

Dm∑
d=1

K∑
k=1

〈(wmkd)2〉

Eq[ln q(W )] = −DK
2

(1 + ln(2π))− 1

2

M∑
m=1

Dm∑
d=1

K∑
k=1

ln(σ2
wkd

)

(63)

Sparse factors

Eq[ln p(Ẑ, S)] =−
G∑
g=1

NgK

2
ln(2π) +

G∑
g=1

Ng
2

K∑
k=1

ln(αgk)−
G∑
g=1

αgk
2

Ng∑
n=1

K∑
k=1

〈(ẑgnk)2〉

+ 〈ln(θ)〉
G∑
g=1

Ng∑
n=1

K∑
k=1

〈sgnk〉+ 〈ln(1− θ)〉
G∑
g=1

Ng∑
n=1

K∑
k=1

(1− 〈sgnk〉)

(64)

Eq[ln q(Ẑ, S)] =−
G∑
g=1

NgK

2
ln(2π) +

1

2

G∑
g=1

Ng∑
n=1

K∑
k=1

ln(〈sgnk〉σ
2
zgnk

+ (1− 〈sgnk〉)/α
g
k)

+

G∑
g=1

Ng∑
n=1

K∑
k=1

(1− 〈sgnk〉) ln(1− 〈sgnk〉)− 〈s
g
nk〉 ln〈s

g
nk〉

(65)

Non-sparse factors

Eq[ln p(Z)] = −NK
2

ln(2π)− 1

2

G∑
g=1

Ng∑
n=1

K∑
k=1

〈(zgnk)2〉

Eq[ln q(Z)] = −NK
2

(1 + ln(2π))− 1

2

G∑
g=1

Ng∑
n=1

K∑
k=1

ln(σ2
znk

)

(66)

ARD precision for the weights

Eq[ln p(α)] =

M∑
m=1

K∑
k=1

(
aα0 ln bα0 + (aα0 − 1)〈lnαk〉 − bα0 〈αk〉 − ln Γ(aα0 )

)
Eq[ln q(α)] =

M∑
m=1

K∑
k=1

(
âαk ln b̂αk + (âαk − 1)〈lnαk〉 − b̂αk 〈αk〉 − ln Γ(âαk )

) (67)

Sparsity parameter of the weights

Eq [ln p(θ)] =

M∑
m=1

K∑
k=1

Dm∑
d=1

(
(a0 − 1)× 〈ln(πmd,k)〉+ (b0 − 1)〈ln(1− πmd,k)〉 − ln(B(a0, b0))

)
Eq [ln q(θ)] =

M∑
m=1

K∑
k=1

Dm∑
d=1

(
(amk,d − 1)× 〈ln(πmd,k)〉+ (bmk,d − 1)〈ln(1− πmd,k)〉 − ln(B(amk,d, b

m
k,d))

) (68)

ARD precision for the factors

Eq[ln p(α)] =

G∑
g=1

K∑
k=1

(
aα0 ln bα0 + (aα0 − 1)〈lnαk〉 − bα0 〈αk〉 − ln Γ(aα0 )

)

Eq[ln q(α)] =

G∑
g=1

K∑
k=1

(
âαk ln b̂αk + (âαk − 1)〈lnαk〉 − b̂αk 〈αk〉 − ln Γ(âαk )

) (69)
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Sparsity parameter of the factors

Eq [ln p(θ)] =

G∑
g=1

K∑
k=1

Ng∑
n=1

(
(a0 − 1)× 〈ln(πgn,k)〉+ (b0 − 1)〈ln(1− πgn,k)〉 − ln(B(a0, b0))

)

Eq [ln q(θ)] =

G∑
g=1

K∑
k=1

Ng∑
n=1

(
(agk,n − 1)× 〈ln(πgn,k)〉+ (bgk,n − 1)〈ln(1− πgn,k)〉 − ln(B(agk,n, b

g
k,n))

) (70)

Noise

Eq[ln p(τ )] =

M∑
m=1

Dma
τ
0 ln bτ0 +

G∑
g=1

M∑
m=1

Dm∑
d=1

(aτ0 − 1)〈ln τgmd 〉 −
G∑
g=1

M∑
m=1

Dm∑
d=1

bτ0〈τ
gm
d 〉 −

M∑
m=1

Dm ln Γ(aτ0)

Eq[ln q(τ )] =

G∑
g=1

M∑
m=1

Dm∑
d=1

(
âτdgm ln b̂τdgm + (âτdgm − 1)〈ln τgmd 〉 − b̂

τ
dgm〈τ

gm
d 〉 − ln Γ(âτdgm)

)
(71)

21



2.2.4 Applying the stochastic variational inference algorithm

a) The algorithm

The local dimension we chose to apply the Stochastic Variational Inference algorithm is the axis of the
samples. Indeed, in large single-cells datasets, there is often more single cells than variables measured :
N =

∑G
g=1Ng is often larger than D =

∑M
m=1Dm.

Consequently, the only local hidden variables are the factors matrices Zg = (zgnk)1≤n≤Ng, 1≤k≤K which
contains the factors expressions for each sample n belonging to group g ∈ [1, G]. When adding the
spike-and-slab prior over the factors matrices Zg (sparse factors), the only local hidden variables are the

two matrices Ẑg and Sg (whose term-wise product gives Zg) for each g ∈ [1, G].

All other hidden variables are global : τgm, Ŵm and Sm (whose term-wise product gives Wm), αm, θm,
as well as αg and θg when adding the spike-and-slab prior over the factor matrices Zg.

Hence, we chose to apply the following SVI algorithm to speed-up the inference of the MOFA model on
datasets with a large number of samples N :

Algorithm 3 Stochastic mean-field variational inference for MOFA 2.0 with sparse factors

1: Initialise randomly the parameters of the global variables {τgm, Ŵm, Sm, αm, θm, αg, θg}.
2: Initialise the step size ρ(t=0)

3: repeat
4: sample B a mini-batch of samples of size S << N

5: for each local variational parameter φgnk of nodes { ˆzgnk, sgnk} such that n is in batch B do
6:

7: φ
(t+1)
nk is the updated parameter φnk following the classic VI update equation

8:

9: end for
10: for each global variational parameter λ of nodes {τgm, Ŵm, Sm, αm, θm, αg, θg} do
11:

λ(t+1) = (1− ρ(t))λ(t) + ρ(t)λ
(t+1)
B (72)

12: where λ
(t+1)
B is the updated parameter λ following the classic VI update equation,

13: but considering the selected batch B repeated N/S times instead of the full dataset.
14: end for
15: until ELBO convergence

b) Choosing the hyperparameters

Batch size: Using small batch sizes for inference on large datasets is often interesting : the number of
iterations required to converge is multiplied by less than n while the time per iteration is divided by n.
We may explain this fact by a faster improvement in the very first iterations of the guess of the global
parameters : indeed, we do not need to know the observations for each cell of the dataset to improve the
guess of the global variables from their random initialization. We did our experiments with a batch size
varying from 10% to 50% of the full dataset.

Learning rate: We used the following function to iteratively decrease the learning rate:

ρ(t) =
τ

(1 + κt)3/4

This function has two hyperparameters:

• The forgetting rate κ: controls the decay of the learning rate, with large κ leading to faster decays.
In the natural gradient setting, κ also controls how quickly information from previous iterations is
forgotten.
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• The delay τ : determines the initial learning rate. In the natural gradient setting, the larger τ the
more early iterations are down-weighted.

Figure 7 shows the effect on the learning rate of varying the two hyperparameters.
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