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Abstract

Increased demand to learn English for busi-
ness and education has led to growing interest
in automatic spoken language assessment and
teaching systems. With this shift to automated
approaches it is important that systems reliably
assess all aspects of a candidate’s responses.
This paper examines one form of spoken lan-
guage assessment; whether the response from
the candidate is relevant to the prompt pro-
vided. This will be referred to as off-topic
spoken response detection. Two forms of
previously proposed approaches are examined
in this work: the hierarchical attention-based
topic model (HATM); and the similarity grid
model (SGM). The work focuses on the sce-
nario when the prompt, and associated re-
sponses, have not been seen in the training
data, enabling the system to be applied to new
test scripts without the need to collect data
or retrain the model. To improve the perfor-
mance of the systems for unseen prompts, data
augmentation based on easy data augmenta-
tion (EDA) and translation based approaches
are applied. Additionally for the HATM, a
form of prompt dropout is described. The
systems were evaluated on both seen and un-
seen prompts from Linguaskill Business and
General English tests. For unseen data the
performance of the HATM was improved us-
ing data augmentation, in contrast to the SGM
where no gains were obtained. The two ap-
proaches were found to be complementary to
one another, yielding a combined F0.5 score of
0.814 for off-topic response detection where
the prompts have not been seen in training.

1 Introduction

Spoken language assessment of English is on
the rise as English is the chosen language of
discourse for many situations. Businesses and
academic institutes demand rigorous assessment
methods to ensure prospective employees and

students exceed a baseline standard for English
proficiency so they can succeed and contribute
in their new environment. Standardised assess-
ments such as IELTS (Cullen et al., 2014), Pearson
Test of English Academic (Longman, 2010) and
TOEFL (ETS, 2012) include “free speaking” tasks
where the candidate speaks spontaneously in re-
sponse to a prompted question to ensure their speak-
ing skills are fully assessed. A candidate might
attempt to achieve a higher grade by speaking a
pre-prepared response, irrelevant to the prompt.
For scoring validity it is important that measures
are taken to detect any off-topic responses so they
do not influence the final grade. This is particu-
larly true for automatic assessment systems which
are increasingly being deployed to cope with the
growing demand for examinations and may see in-
creased cheating if candidates are aware that a com-
puterised system is responsible for grading them
(e.g. (Mellar et al., 2018)). These systems are more
susceptible to inaccurate scoring due to empha-
sis given to criteria such as fluency, pronunciation
and language use, over topic relevance (Lochbaum
et al., 2013; Higgins and Heilman, 2014).

Automatic off-topic spoken response detection
systems based on attention (Malinin et al., 2017b,a)
and similarity grid (Wang et al., 2019) models have
shown good performance for prompts seen in train-
ing. For operational reasons it would be cost and
time effective to be able to use the same systems
on responses to new prompts, unseen in training i.e.
removing the need to collect new data and retrain
models prior to deployment. Yoon et al. (2017) has
had some success with handling unseen prompts.
This is still a challenging research problem, how-
ever, with significant degradation observed on even
the best performing hierarchical attention-based
topic model (HATM) (Malinin et al., 2017a), and
with no assessment to date of Wang et al. (2019)’s
similarity grid model (SGM) approach. This paper



therefore focuses on investigating how to improve
performance on unseen prompts for these mod-
els. It presents extensions to the HATM and SGM
with the goal of learning robust representations of
seen prompts for effective generalisation to unseen
prompts. The resulting systems are shown to have
complementary detection characteristics, yielding
improved off-topic response detection when com-
bined.

The remainder of the paper is structured as fol-
lows: Section 2 presents related work; Section 3
details the components of the HATM and SGM,
proposing modifications to each (universal regular-
isation and multi-channel cosine-similarity, respec-
tively) to make them more robust; data augmenta-
tion is proposed in Section 4 to overcome limited
training data; the experimental set-up and structure
of the data is described in Section 5; Section 6
presents the experimental results and analysis; con-
clusions are given in Section 7.

2 Related Work

Initial off-topic spoken response detection systems
were based on vector space models, measuring
the relevance between the spoken response and
test prompts inspired by systems for written es-
says (Higgins et al., 2006; Louis and Higgins,
2010). Cheng and Shen (2011)’s approach using
speech confidence derived features is unsuited to
general free speaking tasks, whereas Yoon and Xie
(2014) required hundreds of example responses for
each prompt from highly proficient speakers.

Using word embeddings and deep neural net-
works to measure sentence similarity has since be-
come dominant. Rei and Cummins (2016) gen-
erated sentence-level relevance scores for written
essays by using various similarity metrics based
on word embeddings. For spoken responses, Ma-
linin et al. (2016) proposed a topic-adapted recur-
rent neural network language model (RNNLM) to
rank prompt-response pairs. This handles sequen-
tial information but cannot handle prompts unseen
in training so Malinin et al. (2017b) introduced an
attention-based topic model (ATM) which can. The
deep learning ATM architecture uses an attention
mechanism to attend over response word embed-
dings with the prompt sentence embedding as the
key. A hierarchical variant of the ATM (HATM)
is proposed in Malinin et al. (2017a) where an ad-
ditional (prompt) attention mechanism is incorpo-
rated to attend over sentence embeddings of a set

of seen prompts with the test prompt embedding
acting as the key. Hence, an unseen prompt is able
to lock onto the vector representation of a combi-
nation of the seen prompts. The HATM assumes
the set of seen prompts are sufficiently diverse to
capture aspects of all possible unseen prompts. Ma-
linin et al. (2017a) observed lower performance on
unseen prompts due to a lack of diversity.

A radically different approach was proposed
by Wang et al. (2019) based on initial work in Lee
et al. (2017) and Yoon et al. (2017). Very deep
CNNs are employed for automatic detection of off-
topic spoken responses in which a prompt-response
pair is represented as a similarity grid that can be in-
terpreted as an image (this model will be referred to
here as SGM). Similarity measurements are made
based on word embeddings (or other distance met-
rics) of the prompt/response content words. The
training data used in Wang et al. (2019) was from
exams with generally short prompts which resulted
in a limited number of content words to use. It was
not assessed on unseen prompts.

3 Off-Topic Spoken Response Detection

This paper builds upon the hierarchical attention-
based topic model (HATM) (Malinin et al., 2017a)
(section 3.1) and the similarity grid in CNNs model
(SGM) (Wang et al., 2019) (section 3.2) for de-
tection of off-topic spoken responses to prompted
questions. The candidate can answer freely so auto-
matic speech recognition (ASR) is needed to deter-
mine the words in their response in each case. Both
systems assign a probability that the ASR obtained
response, ẑ, is relevant to the prompt, x̂.

The performance of the HATM and SGM mod-
els on responses to prompts seen in training is high,
with F0.5 scores above 0.9. A key issue, however,
in the practical deployment of off-topic response
detection systems is handling responses to prompts
that were unseen in training so that new examina-
tion questions can be asked without requiring ex-
ample responses to be collected and the detection
system retrained. Although Malinin et al. (2017a)
improved off-topic detection on unseen prompts
compared to earlier work, the performance is still
quite far below that of seen, and the SGM has not
been evaluated in the unseen prompt scenario. This
section presents two approaches to potentially im-
prove performance on unseen prompts: universal
regularisation in an attention mechanism as a struc-
tural modification to the HATM in order to en-



courage generalisation; multi-channel SGM based
on cosine distance (MSGM). Data augmentation
strategies to increase the number of prompts avail-
able for training are presented in Section 4.

3.1 Attention-Based Model

Figure 1: Hierarchical Attention-based Topic Model
(HATM).

The Hierarchical Attention-based Topic Model
(HATM) (Malinin et al., 2017a) is depicted in Fig-
ure 1. The system uses an encoding of the prompt
word sequence, hp, as the key for an attention
mechanism over an embedding of the response to
yield a fixed length vector, h, that is used to predict
the probability, y, that the response was relevant
to the prompt. To improve the robustness of the
estimate of the prompt embedding an additional at-
tention mechanism is run over all NT embeddings
of the prompts seen in training, h̃(1)

p , . . . , h̃
(NT )
p .

This attention mechanism uses an embedding of
the test prompt, ĥp, as the key to yield hp. This ad-
ditional attention mechanism over the prompts was
found to improve the performance of the system
when the prompt had not been seen in the training
data (Malinin et al., 2017a). The same network
configuration as that used in Malinin et al. (2017a)
was implemented in this work:

• bi-directional (Schuster and Paliwal, 1997)
LSTMs (Hochreiter and Schmidhuber, 1997)
were used as the encoders for both the prompts
and the responses. Separate models were used
for the prompt and response encoders1;

1More complex sentence and word embeddings, such as
BERT (Devlin et al., 2019) were examined in initial experi-
ments but were not found to yield performance gains.

• additive attention mechanisms were used for
both the attention mechanism over the training
prompts and that over the responses;

• the classifier used ReLU activation functions.

The parameters of the network were optimised
using cross-entropy training. For the training of
the prompt attention mechanism, the actual prompt
was excluded from the attention mechanism, oth-
erwise the attention mechanism simply focuses on
the matched prompt embedding.

One of the issues observed with the HATM
is that the performance of the system on unseen
prompts is significantly poorer than the perfor-
mance on seen prompts that have been seen, along
with relevant responses, in the training data. This
motivates the need for the model to improve the
generalisation of the system to unseen prompts.
Here, the prompt attention mechanism (see Fig-
ure 1) is targeted. A specific form of dropout,
where training prompt embeddings are excluded
from the prompt attention mechanism, referred to
as prompt-dropout, is proposed. Denoting αk =

Softmax
[
ĥp, h̃

(k)
p , θpa

]
as the attention weight

for the kth training prompt embedding, h̃(k)
p , with

the test prompt embedding, ĥp, as the key, random
attention weights are set to zero during training in
prompt-dropout such that

αk =

{
0 w.p. 1− κ
Softmax

[
ĥp, h̃

(k)
p , θpa

]
w.p. κ

(1)
where κ represents the keep-probability. The atten-
tion weights must be re-normalised after prompt-
dropout. Sampling κ from a probabilistic distribu-
tion for each attention weight is motivated by Gar-
nelo et al. (2018). In initial experiments this dis-
tribution of dropout rate was found to outperform
selecting a fixed dropout rate.

3.2 Similarity Grid Model

The Similarity Grid Model (SGM) (Wang et al.,
2019) represents a prompt-response pair as a “sim-
ilarity image”. This image is transformed by an
Inception network into a measure of the degree
of relevance between the test prompt and test re-
sponse.

Initially all stop words are removed such that a
given prompt and response pair only consists of



Figure 2: Similarity Grid Model (SGM) where the grid
“pixel” colours indicate the level of similarity.

content words2. After this pre-processing the simi-
larity grid model for a prompt-response pair is as
shown in Figure 2. For all content words in the
test prompt, {x̂i}NL

i=1, and test response, {ẑi}NR
i=1,

word embeddings,
{
ĥ
(i)
p

}NL

i=1
and

{
ĥ
(i)
r

}NR

i=1
, are

computed. These word embeddings are used to con-
struct a similarity grid, S. This two-dimensional
grid has NL columns and NR rows and the cell
position (i, j) holds an inverse similarity metric
between the ith prompt word embedding, ĥ(i)

p , and
the jth response word embedding, ĥ(j)

r . S is then
resized to 180× 180 in order to make the similar-
ity grid of standard size regardless of the number
of content words in the test prompt and response.
Perceiving the similarity grid as an image, an In-
ception network transforms the resized image to a
value 0 ≤ y ≤ 1, indicating the degree of relevance
between the test prompt and test response.

The network configuration used in this work is
closely related to that used in Wang et al. (2019):

• context independent word embeddings are
computed for each word in the prompt and
the response. The embeddings for both the
prompt and response are tied;

• a cosine distance to compute the distance be-
tween each prompt response word embedding
pair, followed by a bilinear transform was
used to resize the similarity grid;

2A comprehensive list of stop words is provided
by nltk.corpus https://www.nltk.org/api/
nltk.corpus.html.

• the Resnet-152 (He et al., 2016b) Inception
network was used.

The similarity grid has one channel i.e. one
single measurement value per cell. This can be
extended to multiple channels (MSGM), with dif-
ferent forms of embeddings or distance functions
used to compute the grid in each channel. Wang
et al. (2019) used cosine distances in the first chan-
nel and inverse document frequency (IDF) values
of the prompt and response words for the second
and third channel, respectively. For this paper a
MSGM with three channels where each channel
represents the cosine distance between prompt and
response word embeddings with a different set of
word embeddings learnt for each channel is used3.
The variety in the embeddings, and resulting chan-
nel, is achieved by using different initialisation
seeds with the same network configuration. As
the Inception network filters over the channels are
simultaneously trained the resulting filters will be
complementary.

4 Data Augmentation

In general, the performance of off-topic response
systems is limited by insufficient unique prompts
being available for training. Data augmentation,
where the training data is modified in some way
to create new examples, is regularly applied on
low resource tasks in areas such as speech recog-
nition (e.g. (Cui et al., 2015)) and computer vision
(e.g. (Shorten and Khoshgoftaar, 2019)) and has
had some success in NLP (e.g. (Zhang et al., 2015;
Kafle et al., 2017; Wei and Zou, 2019)). This mo-
tivates investigating if augmentation of the train-
ing prompts such that multiple versions of each
prompt are generated can help improve robustness4.
Prompt augmentation will permit the model to ex-
plore the region around each unique prompt rather
than being restricted to a discrete point in the high-
dimensional prompt-space.

Both structured and unstructured data augmenta-
tion techniques are considered here. Augmentation
of prompts is performed on-the-fly during training.
Note, the hierarchy of seen prompts of the HATM

3In this work, the use of IDF values in the second and third
MSGM channels did not improve performance over the SGM
so was not used.

4Data augmentation of training responses is also possible.
This was found to degrade performance in initial experiments,
possibly due to there being a large number of diverse responses
available for training without augmentation and issues with
generating sensible back-translations on ASR output.

https://www.nltk.org/api/nltk.corpus.html.
https://www.nltk.org/api/nltk.corpus.html.


in the prompt attention mechanism (Figure 1) does
not include the additional augmented prompts be-
cause the expectation is that augmented prompts
will not dramatically differ from the original unique
prompts.

Easy Data Augmentation (EDA) techniques
were trialled by Wei and Zou (2019). They pro-
posed that different variants of any textual data can
be generated using a combination of synonym re-
placement, random insertion, random swap and ran-
dom deletion of words. A single hyper-parameter,
α, controls the fraction of words that are modi-
fied in the original text. Using the default value of
α = 0.1, prompts are augmented using the above
techniques to replace, insert, swap or delete 10%
of the words randomly in the original prompt. This
structured augmentation approach should enable
the model to learn a more robust representation of
each unique prompt.

Back-translation is employed as an unstructured
method to augment the amount of available train-
ing data. A machine translation model is employed
to translate a given training prompt into a foreign
language by taking the maximum likelihood out-
put. Then a reverse machine translation model
takes the prompt in the foreign language and trans-
lates it back into English. The expectation is that
the original and final pair of English prompts will
be very similar in meaning but will have a differ-
ent ordering and choice of specific words. There-
fore, the back-translated prompt can be treated as
a new prompt which can be paired with the orig-
inal prompt’s response to generate a new prompt-
response pair. The use of several different lan-
guages permits the creation of several variants of
the same prompt. Translation can be achieved us-
ing standard machine translation packages.

5 Data and Experimental Set-Up

The HATM and SGM models and the proposed
extensions were assessed on their ability to detect
off-topic responses to prompts in free speaking
tests where the candidates can talk for up to one
minute in answering the question.

5.1 Training and evaluation data

Data from the Cambridge Assessment English Lin-
guaskill Business and Linguaskill General English
tests5 are used in the training and evaluation of the

5https://www.cambridgeenglish.org/
exams-and-tests/linguaskill/

systems. The two tests are similar in format but
with different foci and therefore vary in the topics
discussed by candidates and their associated vo-
cabularies. They are multi-level, global, tests - i.e.
taken by candidates from across the CEFR levels,
A1-C2, with a wide range of first languages (L1s)
and variation in response proficiency.

Both Linguaskill speaking tests are comprised
of five parts. For this paper only prompts and corre-
sponding responses from the three long free speak-
ing parts are used. The candidate has 60 seconds in
parts 3 and 4 to talk on a topic such as advice for
a colleague/friend and discuss a picture or graph,
respectively. Part 5 consists of 20 second responses
to a set of five contextualised prompts, such as start-
ing a retail business, or talk about a hobby. The
diversity of these prompts is discussed by Malinin
et al. (2017a).

Data TRN SEEN UNS
#Prompts 379 219 56

#Responses 257.2K 40.8K 85.0K
Avg. prompt length 51 51 55

content words 28 28 29
Avg. resp. length 48 43 42

content words 22 20 19

Table 1: Prompt/response statistics for training (TRN)
and seen (SEEN) and unseen (UNS) evaluation data
sets.

Table 1 outlines the statistics for the training
(TRN) and two evaluation data sets (SEEN and
UNS). TRN and SEEN are taken from the Lin-
guaskill Business test and UNS from the Lin-
guaskill General English test. There is no over-
lap in speakers between any of the data sets. The
response texts are generated automatically from
the 1-best hypotheses from an ASR system with
a word error rate (WER) of 25.7% on Business
English data. TRN consists of a total of 257.2K re-
sponses to 379 unique prompts, an average of 679
responses per prompt compared with 186 for SEEN
and 1518 for UNS. The average number of words
are similar across the 3 data sets, with prompts (51-
55) being slightly longer than responses (42-48) on
average. This reduces by about half when content
words only are included. The HATM is trained
and evaluated using all the words in every textual
prompt-response pair while the SGM is trained and
evaluated using only the content words in every
prompt-response pair.

https://www.cambridgeenglish.org/exams-and-tests/linguaskill/
https://www.cambridgeenglish.org/exams-and-tests/linguaskill/


5.1.1 Training data construction

All responses are taken from tests assessed by hu-
man examiners, which permits the assumption that
all responses in the data are on-topic. Therefore
synthetic off-topic responses have to be created
to train the systems. The off-topic data is gener-
ated using a dynamic sampling mechanism; this
matches responses from one prompt with a differ-
ent prompt. Balance is maintained such that the
empirical distribution of topics in the on-topic ex-
amples is mimicked in the generation of synthetic
off-topic examples. Off-topic examples for training
data are generated on-the-fly (Malinin et al., 2017a)
instead of producing a fixed set of negative exam-
ples prior to training as in Malinin et al. (2016)
because dynamic sampling allows the diversity of
negative examples to be efficiently increased. For
each on-topic example, one off-topic example is
generated.

For the data augmentation experiments the num-
ber of prompts was increased by a factor of 10
using EDA (Wei and Zou, 2019) or machine trans-
lation, and 20 when both were applied. The default
value of α = 0.1 was used in EDA to change 10%
of words in the original prompt by replacing, insert-
ing, swapping and/or deleting. Machine translation
was performed offline using the Babylon MT sys-
tem 6. Back-translations were generated using 9
different languages7.

5.1.2 Evaluation data construction

Due to the scarcity of real off-topic examples, nega-
tive off-topic examples are generated by permuting
on-topic examples for SEEN and UNS. Each on-
topic example has ten off-topic examples generated
and duplicated ten times to maintain balance. Data
set SEEN is formed from prompts that have been
seen during training and negative responses that
correspond to a different set of prompts seen dur-
ing training. Data set UNS consists of prompts that
are unseen during training and negative responses
that correspond to prompts that are unseen during
training too. Forming negative examples by per-
muting on-topic examples is reasonable because
real off-topic examples by candidates are antici-
pated to consist of responses to a different prompt
to that being answered.

6https://translation.babylon-software.
com/english/Offline/

7Machine translation languages: Arabic, French, German,
Greek, Hebrew, Hindi, Japanese, Korean, Russian.

5.2 Hyper-parameters and models

The HATM consists of two 400 dimensional BiL-
STM encoders with 200 forward and backward
states each and TanH non-linearities. 200 dimen-
sional parameters are used for the prompt attention
mechanism. The binary classifier is a DNN with 2
hidden layers of 200 rectified linear (ReLU) units
and a 1-dimensional logistic output. Dropout reg-
ularisation (Srivastava et al., 2014) with a keep
probability of 0.8 is applied to all layers except
for the LSTM recurrent connections and word em-
beddings. The universal regularisation samples its
keep probability using κ ∼ U(0.05, 0.95). The
HATM is initialised from an attention-topic model
(ATM) as described in Malinin et al. (2017a). It is
trained for 3 epochs using an Adam optimizer, with
an exponentially decaying learning rate initialised
at 1e-3 and decay factor of 0.85 per epoch. The first
two epochs train only the prompt attention mecha-
nism and the final epoch is used to train the whole
network apart from the DNN binary classifier. This
configuration was optimised using seen develop-
ment data, similarly for the SGM. The ATM takes
approximately 3 hours to train and an additional
1 hour for the HATM on an nVidia GTX 980M
graphics card.

The SGM learns 200 dimensional word embed-
dings for each word in the prompt and response.
ResNet-152 (He et al., 2016a)8 with 152 residual
layers is used as the Inception network with a 1-
dimensional logistic output. The SGM is trained
for 1 epoch using an Adam optimizer with a learn-
ing rate of 1e-3. It takes about 2 hours to train on
an nVidia GTX 980M graphics card. The extended
HATM and the SGM were built in Tensorflow9.

The HATM and SGM results reported are com-
puted on an ensemble of 15 models unless noted
otherwise. Each model has an identical architecture
and training parameters but each has a different ini-
tial seed value, creating modeling diversity. For
this work a large ensemble is reported to minimise
variance on the ensemble performance results. No
analysis of efficiency is given. Approaches such as
ensemble distillation (Hinton et al., 2015) can be
directly applied to reduce computational cost.

8Code available at https://github.com/
KaimingHe/resnet-1k-layers.

9Code available at https://github.com/
VatsalRaina/HATM.

https://translation.babylon-software.com/english/Offline/
https://translation.babylon-software.com/english/Offline/
https://github.com/KaimingHe/resnet-1k-layers
https://github.com/KaimingHe/resnet-1k-layers
https://github.com/VatsalRaina/HATM
https://github.com/VatsalRaina/HATM


5.3 Performance criteria

Following Wang et al. (2019), precision and re-
call are used to assess performance except F0.5 is
preferred over F1 as there is a greater interest in
achieving a higher precision compared to recall:
a candidate’s response should not be mistakenly
classified as off-topic as such responses are to be
assigned a score of 0. This is a more standard
metric than the area under the curve (AUC) used
in Malinin et al. (2017a) and more intuitive in terms
of test evaluation. Note, the results are given for
a particular instance of permuting the off-topic ex-
amples for evaluation.

6 Experimental Results

This section presents the results of experiments
performed on SGM, MSGM and extended HATM
systems. Section 6.1 compares the performance of
the baseline HATM with the MSGM on the unseen
(UNS) and seen (SEEN) evaluation data sets. Sec-
tion 6.2 explores the improvement in performance
due to extending the baseline HATM using universal
regularisation and prompt augmentation strategies.
Finally, 6.3 investigates the complementary nature
of the MSGM and the extended HATM. The prompt-
specific performance of the combined system is
considered in Section 6.4.

6.1 Baseline systems

Model P R F0.5

SEEN

HATM — — 0.918
±0.010

-ensemble 0.963 0.841 0.936
MSGM — — 0.905

±0.009
-ensemble 0.943 0.838 0.920

UNS

HATM — — 0.612
±0.032

-ensemble 0.815 0.370 0.657
MSGM — — 0.767

±0.019
-ensemble 0.833 0.691 0.800

Table 2: Comparison of baseline HATM [B] and MSGM,
for seen (SEEN) and unseen (UNS).

Table 2 shows the baseline performance for the
HATM and MSGM models. There is a relatively low
variance between individual system results but com-
bining the outputs in an ensemble improves the F0.5

score in each case, with a larger gain (0.045/0.033
vs 0.018/0.015) observed on the unseen data. The

HATM performs slightly better on the seen data
than the MSGM, with a higher F0.5 and a similar
but always slightly higher precision-recall curve
(Figure 3). For unseen data, however, the reverse is
true with MSGM having a higher F0.5 score of 0.800
compared to 0.657 for the baseline HATM. From
Figure 3 it can be seen that the precision-recall
curves for the HATM and SGM/MSGM systems on
unseen data are quite different in shape. The HATM
has a higher precision at the lowest recall but this
drops quickly as the threshold increases. The degra-
dation in the MSGM precision is much more gradual.

Figure 3: Comparison of precision-recall curves for
baseline ensemble systems for HATM, SGM and
MSGM for seen (SEEN) and unseen (UNS).

Figure 3 confirms that the focus should be on im-
proving the performance on the unseen evaluation
data set. The use of multi-channels benefits the sim-
ilarity grid model as can be seen in Figure 3, with
a SGM F0.5 score of 0.908 on the seen and 0.768
on the unseen data sets, respectively. These gains
are similar to those observed in Wang et al. (2019).
Therefore, the results in the following sections will
only be presented for the unseen evaluation data
set and MSGM systems.

6.2 Regularisation and data augmentation
Universal regularisation and data augmentation
were applied to the HATM to see if they improved
detection performance. From Table 3 and Figure 4,
it is evident that the universal regularisation on the
prompt attention mechanism yields an increase in
the F0.5 score. Both the structured techniques and
the machine translation (MT) prompt data augmen-
tation strategies produce a boost in performance
on the baseline HATM with universal regularisa-
tion. MT yields a much larger gain but the struc-
tured technique is shown to be complementary by



Model P R F0.5

B 0.815 0.370 0.657
B ⊕ PD 0.846 0.386 0.683
B ⊕ PD ⊕AE 0.790 0.464 0.693
B ⊕ PD ⊕AM 0.877 0.529 0.775
B ⊕ PD ⊕AE ⊕AM 0.891 0.524 0.782

Table 3: Impact of universal regularisation, PD, and
data augmentation (AE = structured techniques and
AM = machine translation) on baseline HATM, B, for
unseen (UNS).

a further improvement when prompts are gener-
ated by both methods which was larger than ob-
served when simply doubling the MT augmented
prompts. Hence, the extended HATM is defined as
B ⊕ PD ⊕AE ⊕AM.

Figure 4: Impact of universal regularisation, PD, and
data augmentation (AE = structured techniques and
AM = machine translation) on baseline HATM, B, on
precision-recall curves for unseen (UNS).

Experiments were also run on applying data aug-
mentation to SGM. This led to significant drops in
F0.5, probably as a result of the SGM over-fitting to
the training data.

6.3 Combining MSGM and extended HATM
As for the baseline HATM, the precision-recall
curve for the extended HATM displays different
characteristics to MSGM on the unseen data set as
shown in Figure 5. These systems are comple-
mentary; combining the systems by averaging their
outputs yields precision-recall curves which boost
the precision at each recall level, giving a small
gain over the best individual system at each thresh-
old. The individual F0.5 scores are boosted on the
unseen data set from 0.782 and 0.800 to 0.814 and
from 0.921 and 0.920 to 0.935 on the seen data set

Model P R F0.5

SEEN
HATM 0.956 0.802 0.921
MSGM 0.943 0.838 0.920
Comb 0.962 0.839 0.935

UNS
HATM 0.891 0.524 0.782
MSGM 0.833 0.691 0.800
Comb 0.875 0.635 0.814

Table 4: Impact of combining models SGM and ex-
tended HATM [B ⊕ PD ⊕AE ⊕AM] on seen (SEEN)
and unseen (UNS). Comb = HATM & MSGM.

for the HATM and MSGM systems, respectively (Ta-
ble 4). For comparison with Wang et al. (2019), the
combined system here has an F1 score of 0.922 and
0.807 on the seen and unseen data sets respectively.

Figure 5: Impact of combining models MSGM and ex-
tended HATM [B ⊕ PD ⊕AE ⊕AM] on seen (SEEN)
and unseen (UNS).

6.4 Prompt-specific performance analysis

The performance of any off-topic response detec-
tion system is expected to depend on both the na-
ture of the prompts, and how “close” a test prompt
is to one seen in the training data. Yoon et al. (2017)
found that performance varied substantially across
different prompts. In this work the 10 most com-
mon, in the sense of having a large number of re-
sponses, unseen prompts in UNS were used to anal-
yse the prompt specific performance. These com-
mon prompts should give robust per-prompt F0.5

scores. The average performance of the combined
MSGM and extended HATM system on this subset
of prompts was 0.832, with a standard deviation of
0.048. This standard deviation across prompts is
approximately half of the value presented in Yoon
et al. (2017). As the prompts for that data are not



available, however, it is unclear whether this reduc-
tion is due to the nature of the prompts or improved
generalisation of the combined model.

From Table 4 there is a large F0.5 performance
difference between prompts seen during training,
0.935, and those not seen, 0.814. Given this varia-
tion in performance, it is interesting to see whether
the performance of an individual test prompt can
be predicted given the set of training prompts. For
prompts that are expected to perform poorly it
would then be possible to collect training data.

Figure 6: Relationship between unseen prompt dis-
tance to closest seen prompt and F0.5 performance
of MSGM & extended HATM [B ⊕ PD ⊕AE ⊕AM] on
the unseen prompts subsets.

In Malinin et al. (2017a) the entropy of the
prompt attention mechanism was used to rank per-
formance of the prompts based on area under the
curve metrics. From initial experiments this was
not found to be a good predictor of F0.5 score
on these unseen test prompts. In this work, the
cosine distance from the test prompt embedding,
ĥp, and each of the training prompt embeddings,
h̃
(i)
p , was computed. The closest distance was then

used as the measure of similarity of the individ-
ual test prompt to the training data prompts. Fig-
ure 6 shows the individual F0.5 score against this
distance again using the 10 most common unseen
prompts. There is a strong negative correlation,
an R2 statistic of 0.739, between the individual
prompt performance and its distance to the closest
seen prompt, showing the cosine distance between
the prompt embeddings is a good indicator of un-
seen prompt performance.

From Figure 6 the cosine distance allows the
unseen prompts to be partitioned into two distinct
groups, close and far prompts with respect to the

training prompts. The performance of all the un-
seen prompts was then evaluated using a distance
threshold of 0.24 at the same operating point as
Table 4. This yielded F0.5 of 0.833 for close, and
0.777 for far prompts. Note for all distance thresh-
olds examined, that resulted in a split of the unseen
prompts, close always outperformed far.

7 Conclusion

This paper addresses the issue of off-topic detec-
tion in the context of unconstrained spoken re-
sponses to prompts. In particular, the problem of
robustness to prompts unseen in training is con-
sidered. The Hierarchical Attention-based Topic
Model (HATM) (Malinin et al., 2017a) and Similar-
ity Grid Model (Wang et al., 2019) are compared
and extended. Universal regularisation and data
augmentation, from structured techniques and ma-
chine translation, increased the HATM F0.5 by 19%
relative to 0.782 on the unseen evaluation set. This
contrasts with a three channel SGM (MSGM) based
on cosine distances between prompt and response
embeddings which yielded F0.5 of 0.800.

The extended HATM and MSGM are shown
to have very different precision-recall characteris-
tics on unseen prompts, with the HATM having a
very high precision at low recall but with a fairly
sharp drop-off whilst the SGM’s precision does not
reach quite the same level but degrades at a much
more gradual rate. The best individual systems
are found to be complementary, with system com-
bination boosting off-topic response detection on
both unseen and seen prompts, achieving the best
performance of F0.5 of 0.814 on unseen and 0.935
on seen prompts. This combined system closely
follows, and slightly enhances, the envelope of the
best precision-recall path across the two individual
systems. Finally the distance between a test prompt
and the closest training is shown to predict the sys-
tem performance, indicating which prompts may
require additional training data to be collected.
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