
Typal Heterogeneous Equality Types

Andrew M.Pi�s

University of Cambridge, UK

Abstract
�eusual homogeneous form of equality type inMartin-Löf Type�eory contains iden-

ti�cations between elements of the same type. By contrast, the heterogeneous form of
equality contains identi�cations between elements of possibly di�erent types. �is paper
introduces a simple set of axioms for such types. �e axioms are equivalent to the com-
bination of systematic elimination rules for both forms of equality, albeit with typal (also
known as “propositional”) computation properties, together with Streicher’s Axiom K, or
equivalently, the principle of uniqueness of identity proofs.

1 Introduction
Equality types in the intensional version ofMartin-Löf Type�eory (see for example Nordström
et al., 1990, Section 8.1) are traditionally formulated in terms of an introduction rule (re�exivity)
together with a rule for eliminating proofs of equality and a rule describing how elimination
computes when it meets a re�exivity proof. Some recent work (Bezem et al., 2014; Cohen et al.,
2018) on models of Homotopy Type �eory (Univalent Foundations Program, 2013) uses a for-
mulation of equality types that di�ers from this in two respects. First, the elimination operation
is replaced by the combination of a simple operation for transporting elements along proofs of
equality, together with an axiom asserting contractibility of singleton types. Secondly, the ana-
logue of the computation rule for the eliminator, namely that transporting along a re�exivity
proof does nothing, is weakened from a judgemental equality to the existence of an element
of the corresponding equality type; see Coquand (2011) and Figure 2 in (Bezem et al., 2014).
�is formulation is sometimes called a “propositional” equality type (van den Berg, 2018), but
here I will follow Shulman (2018, Section 1.6) for the reasons given there and refer to typal
equality types. Although these changes to the formulation of equality types a�ect computa-
tion, it seems that they do not change what is provable (see Boulier and Winterhalter (2019)
for example) and they make it easier to construct models. Furthermore, they can lead to sur-
prising simpli�cations. For example, Lumsdaine [private communication] has observed that
the computation rule is super�uous (for elimination, but the observation also holds for trans-
port): if a proto-identity type has a transport operation lacking its typal computation property,
then the operation can be corrected to a new one that does have the computation property (see
Lemma 2.1 and the Appendix).

1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Apollo

https://core.ac.uk/display/323993866?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Axioms for typal heterogeneous equality satisfying Axiom K
postulate

≡≡ : ∀{l}{A B : Set l} → A → B → Set l

-- the derived homogeneous equality

≡ : ∀{l}{A : Set l} → A → A → Set l
x ≡ y = x ≡≡ y

postulate

rfl : ∀{l}{A : Set l} (x : A) → x ≡ x
ctr : ∀{l}{A B : Set l}{x : A}{y : B}(e : x ≡≡ y) → rfl x ≡≡ e
eqt : ∀{l}{A B : Set l}{x : A}{y : B} → x ≡≡ y → A ≡ B
tpt : ∀{l m n}{A : Set l}{B : A → Set m}(C : (x : A) → B x → Set n)

{x x′ : A}{y : B x}{y′ : B x′} → x ≡ x′ → y ≡≡ y′ → C x y → C x′ y′

Axioms for Σ-types with surjective pairing
postulate∑

: ∀{l m}(A : Set l)(B : A → Set m) → Set (l t m)

module {l m}{A : Set l}{B : A → Set m} where
postulate

, : (x : A) → B x →
∑

A B

fst :
∑

A B → A
snd : (z :

∑
A B) → B (fst z)

fpr : (x : A)(y : B x) → fst(x , y) ≡ x
spr : (x : A)(y : B x) → snd(x , y) ≡≡ y
eta : (z :

∑
A B) → (fst z , snd z) ≡ z

-- concrete syntax for
∑
-types

syntax
∑

A (_ x → B) =
∑

x : A , B

Figure 1: �e Axioms

2

�e above remarks apply to the usual, homogeneous notion of equality in which elements
of the same type are compared. �e purpose of this paper is to give an analogous treatment of
heterogeneous equality (McBride, 1999; Altenkirch et al., 2007) in the presence of Σ-types and the
Axiom K of Streicher (1993, Section 1.2). Since Axiom K is not compatible with the Univalence
Principle of Homotopy Type�eory (Univalent Foundations Program, 2013, Example 3.1.9), the
focus here is on the simpler (but still useful!) world of zero-dimensional type theory. We will
see that the axioms in Fig. 1 capture homogeneous and heterogeneous equality satisfying their
usual dependent elimination and (typal) computation properties andAxiomK, and Σ-types with
their usual dependent elimination and (typal) computation properties. It seems necessary to
include Σ-types in order to get Lumsdaine’s resultmentioned above (see Remark 2.5); the axioms
we give for such types are standard, except that the equality property of dependent second
projection (spr) is simpli�ed by the use of heterogeneous rather than homogeneous equality.
�e axioms in the �gure are pleasingly simple compared to the usual formulation in terms of
elimination and computation properties, and may aid �nding new models of heterogeneous
equality types.

�e implementation of intensional Martin-Löf Type �eory provided by Agda 2.6 (Agda
Wiki, [n.d.]) is used to state the axioms and develop their properties. More precisely, we just
make use of Agda’s implementation of a countably in�nite, non-cumulative hierarchy of uni-
verses Set l, where l ranges over a type Level of universe levels whose closed normal forms
are in bijection with the natural numbers. �e universes are closed under dependent function
types (wri�en in Agda as (x : A) → B) and inductive types. �e use of a whole hierarchy of
universes is necessary; for example, the function eqt in Fig. 1 takes a heterogeneous equality
type x ≡≡ y in universe Set l and produces a homogeneous one A ≡ B in the universe one
level up, which is denoted Set(lsuc l) in Agda. We also use Agda’s notation for in�x and for
implicit arguments. For example, the function ≡≡ in Fig. 1 takes �ve arguments, the �rst three
of which are implicit and the last two of which are in�x. In particular, Agda’s ability to infer
the values of implicit arguments (or of unspeci�ed explicit arguments, which are denoted by an
underscore,) is used quite aggressively in what follows, in order to be able to see the wood
from the trees.

Although the code in this paper has been checked by Agda, some parts of it that are not es-
sential for understanding the development have been hidden; the complete (non-literate) Agda
code can be found at [https://doi.org/10.17863/CAM.47902].

2 �e axioms and their properties
Figure 1 postulates a family of types ≡≡ in all universes, together with some operations on
them that together capture a typal version of heterogeneous equality. Heterogeneous equality
typeswere introduced byMcBride (1999, Section 5.1.3) under the name of “JohnMajor equality”.
Unlike ordinary, homogeneous equality types, such a type x ≡≡ y relates elements x and y of
possibly di�erent types, A and B say. �e intention is that elements of type x ≡≡ y denote
proofs that not only are x and y equal, but so also are their types A and B. �e �gure de�nes
homogeneous equality ≡ as the special case of ≡≡ when the types of the two arguments are

3

https://doi.org/10.17863/CAM.47902

already known to be the same. Axiom rfl says that≡ is re�exive. Axiom ctr is a heterogeneous
version of the contractibility property of singleton types (cf. center in Figure 2 of Bezem et al.
(2014)). Axiom eqt says that heterogeneously equal things have (homogeneously) equal types.
Axiom tpt is a form of the transport property of equality (cf. T in Figure 2 of Bezem et al. (2014))
involving both homogeneous and heterogeneous equalities. Finally,

∑
, , , fst, snd, fpr, spr

and eta axiomatize dependent product types satisfying surjective pairing.
We begin with some simple lemmas establishing the basics of equational logic for ≡≡,

namely chain-reasoning using re�exivity (already an axiom), symmetry, transitivity and con-
gruence properties. �ese are given in Fig. 2.

�e axioms in Fig. 1 are notably lacking a “regularity” property for tpt, that is, a proof of
type tpt (rfl x) (rfl y) z ≡ z. But such a thing is needed if we are to derive the expected
elimination and (typal) computation rules for ≡≡ and ≡ . To get those, one can de�ne a
“corrected” form of transport that has this regularity property, using a simpli�ed version of a
trick due to Peter Lumsdaine [unpublished]. In fact, it is enough to produce a function coercing
proofs of equality of types e : A ≡ B into functions coe e : A → B and which satis�es the
heterogeneous regularity property that coe e x ≡≡ x (so that, given how we de�ne ≡ in terms
of ≡≡, the usual form of regularity, coe (rfl A) x ≡ x, is just the special case of this when e is
rfl A).

Lemma 2.1. �e axioms in Fig. 1 imply the existence of a coercion function

coe : ∀{l}{A B : Set l} → A ≡ B → A → B

satisfying a heterogeneous regularity property:

coeIsRegular : ∀{l}{A B : Set l}(e : A ≡ B)(x : A) → coe e x ≡≡ x

Proof. First we de�ne the type of functions that are injective with respect to ≡ and note that
the identity function is one such:

Inj : ∀{l}(A B : Set l) → Set l
Inj A B =

∑
f : (A → B) , ∀{x y} → f x ≡ f y → x ≡ y

id : ∀{l}{A : Set l} → A → A
id x = x

idInj : ∀{l}(A : Set l) → Inj A A
idInj = (id , id)

Next we use tpt to de�ne a function coercing equalities into injective functions:

icoe : ∀{l}{A B : Set l} → A ≡ B → Inj A B
icoe {l} {A} e = tpt (_ C → Inj A C) (rfl (Set l)) e (idInj A)

�e injectiveness of icoe e is used as follows. Applying the operation tpt to the type family

4

symm : ∀{l}{A B : Set l}{x : A}{y : B} → x ≡≡ y → y ≡≡ x
symm e = tpt (_ y → y ≡≡) (eqt e) e (rfl)

proof : ∀{l}{A B : Set l}{x : A}{y : B} → x ≡≡ y → x ≡≡ y
proof p = p

≡≡[] : ∀{l}{A B C : Set l}(x : A){y : B}{z : C} →
x ≡≡ y → y ≡≡ z → x ≡≡ z

x ≡≡[e] f = tpt (_ z → x ≡≡ z) (eqt f) f e

qed : ∀{l}{A : Set l}(x : A) → x ≡ x
x qed = rfl x

cong : ∀{l m}{A : Set l}{B : A → Set m}(f : (x : A) → B x){x y : A} →
x ≡ y → f x ≡≡ f y

cong f {x} e = tpt (_ z → f x ≡≡ f z) e e (rfl (f x))

cong2 : ∀{l m n}{A : Set l}{B : A → Set m}{C : (x : A) → B x → Set n}
(f : (x : A)(y : B x) → C x y){x x′ : A}{y : B x}{y′ : B x′} →
x ≡ x′ → y ≡≡ y′ → f x y ≡≡ f x′ y′

cong2 f {x} { } {y} e e′ = tpt (_ x′ y′ → f x y ≡≡ f x′ y′) e e′ (rfl (f x y))

cong3 : ∀{k l m n}{A : Set k}{B : A → Set l}{C : (x : A) → B x → Set m}
{D : (x : A)(y : B x) → C x y → Set n}
(f : (x : A)(y : B x)(z : C x y) → D x y z)
{x x′ : A}{y : B x}{y′ : B x′}{z : C x y}{z′ : C x′ y′} →
x ≡ x′ → y ≡≡ y′ → z ≡≡ z′ → f x y z ≡≡ f x′ y′ z′

cong3 f {x} { } {y} { } {z} e e′ =
tpt (_ x′ y′ → ∀{z′} → z ≡≡ z′ → f x y z ≡≡ f x′ y′ z′) e e′ (cong2 (f x) (rfl y))

Figure 2: Equational reasoning for heterogeneous equality

5

fsticoe : ∀{l}{A : Set l}(x : A)(B : Set l)(e : A ≡ B) → Set l
fsticoe x B e =

∑
y : B , (fst (icoe (rfl B)) y ≡ fst (icoe e) x)

we can transport the element (e , rfl (fst (icoe (rfl A)) x) of type fsticoe x A (rfl A) along
e : A ≡ B and ctr e : rfl A ≡≡ e to give an element of type fsticoe x B e. �e �rst projection
of this element gives the value of the desired coercion along e at x :

coe e x = fst (tpt (fsticoe x) e (ctr e) (x , rfl))

and its second projection can be used along with the injectiveness property of icoe to get the
regularity property of this coercion:

coeIsRegular { } {A} e x = tpt (_ e′ → coe e′ x ≡≡ x) e (ctr e) coerfl

where

coerfl : coe (rfl A) x ≡ x
coerfl = snd (icoe (rfl A)) (snd (

tpt (fsticoe x) (rfl A) (ctr (rfl A)) (x , rfl)))

�

An immediate corollary is that the axioms imply the uniqueness of identity proofs (UIP) and
hence Streicher’s Axiom K (Streicher, 1993). (We will see in Sect. 3 that in fact it is only the tpt
function that contains an implicit use of Axiom K.)

�eorem 2.2 (UIP and Axiom K). �e axioms in Fig. 1 imply that ≡ satis�es

uip : ∀{l}{A : Set l}{x y : A}(e e′ : x ≡ y) → e ≡ e′

axiomK : ∀{l m}{A : Set l}{x : A}(P : x ≡ x → Set m)(p : P (rfl x)) →
∀ e → P e

axiomKComp : ∀{l m}{A : Set l}{x : A}(P : x ≡ x → Set m)(p : P (rfl x)) →
axiomK P p (rfl x) ≡ p

Proof. Using the functions from Fig 2 and Lemma 2.1 we have:

uip e e′ = tpt (_ e′′ → e′′ ≡≡ e′) e (ctr e) (ctr e′)

axiomK P p e = coe (cong2 (_ → P) (rfl p) (ctr e)) p

axiomKComp P p = proof

coe (cong2 (_ → P) (rfl p) (ctr (rfl))) p

≡≡[cong (_ e → coe e p) (uip)]

coe (rfl) p

≡≡[coeIsRegular p]

p

qed

�

6

�e elimination and computation properties of ≡ and ≡≡ then follow:

�eorem 2.3 (Elimination and typal computation properties). �e axioms in Fig. 1 imply that
≡ has the usual elimination and (typal) computation properties of homogeneous equality (in the
form suggested by Paulin-Mohring (1993))

≡Elim : ∀{l m}{A : Set l}{x : A}(P : (y : A) → x ≡ y → Set m)
(p : P x (rfl x))(y : A)(e : x ≡ y) → P y e

≡Comp : ∀{l m}{A : Set l}{x : A}(P : (y : A) → x ≡ y → Set m)
(p : P x (rfl x)) → ≡Elim P p x (rfl x) ≡ p

�e axioms also imply that ≡≡ has the elimination and (typal) computation properties of hetero-
geneous equality described by McBride (1999, Section 5.1.3)

≡≡Elim : ∀{l m}{A : Set l}{x : A}(P : (B : Set l)(y : B) → x ≡≡ y → Set m)
(p : P A x (rfl x))(B : Set l)(y : B)(e : x ≡≡ y) → P B y e

≡≡Comp : ∀{l m}{A : Set l}{x : A}(P : (B : Set l)(y : B) → x ≡≡ y → Set m)
(p : P A x (rfl x)) → ≡≡Elim P p A x (rfl x) ≡ p

Proof. Using the functions from Fig 2 and Lemma 2.1 we have:

≡Elim P p e = coe (cong2 P e (ctr e)) p

≡Comp P p = proof

coe (cong2 P (rfl) (ctr (rfl))) p

≡≡[cong (_ e → coe e p) (symm (ctr))]

coe (rfl) p

≡≡[coeIsRegular p]

p

qed

≡≡Elim P p e = coe (cong3 P (eqt e) e (ctr e)) p

≡≡Comp P p = proof

coe (cong3 P (eqt (rfl)) (rfl) (ctr (rfl))) p

≡≡[cong (_ e → coe e p) (uip)]

coe (rfl) p

≡≡[coeIsRegular p]

p

qed

�

7

Note that a corollary of the above two theorems is that ≡≡ is uniquely determined up to
logical equivalence by the axioms in Fig. 1. In other words, for any other such family of types
≡≡′ , there are functions in either direction between x ≡≡ y and x ≡≡′ y ; and because of

UIP these are necessarily mutually inverse up to ≡≡ (or ≡≡′).
Remark 2.4. ≡≡Elim is the elimination form systematically derived (Backhouse et al., 1989)
from ≡≡ and rfl, regarding them as the formation and introduction rules for an inductive
type. As McBride (1999, page 120) points out, ≡≡Elim is not very useful, because of the way
it’s motive P involves abstraction over an arbitrary type B. McBride goes on to give another,
more useful form of elimination for ≡≡, but in our se�ing where ≡ is a special case of ≡≡, that
coincides with the eliminator ≡Elim.
Remark 2.5 (�e role of Σ-types). One of the strengths of machine-checked mathematics is
that it aids the detection of logical dependency. Although we included the equations fpr, spr
and eta for Σ-types in Fig. 1, they have not been used for the results so far, as may be veri�ed
by commenting them out from this literate Agda �le and re-checking it up to this point.

So only the weak form of dependent product given by
∑
, , , fst and snd in the �gure is

used to de�ne the regular version of coercion in Lemma 2.1 and then prove �eorems 2.2 and
2.3. It would be nice if there was some way to de�ne

∑
, , , fst and snd just using dependent

function types and universes.
However, the extra equations fpr, spr and eta for

∑
are of course very natural. Let us

record the fact that they enable one to de�ne the usual elimination rule for dependent products,
with a typal computation rule:∑

Elim : ∀{l m n}{A : Set l}{B : A → Set m}(C :
∑

A B → Set n)
(c : (x : A)(y : B x) → C (x , y))(z :

∑
A B) → C z∑

Elim C c z = coe (cong C (eta z)) (c (fst z) (snd z))∑
Comp : ∀ {l m n}{A : Set l}{B : A → Set m}(C :

∑
A B → Set n)

(c : (x : A)(y : B x) → C (x , y))(x : A)(y : B x) →∑
Elim C c (x , y) ≡ c x y∑

Comp C c x y = let z = (x , y) in

proof

coe (cong C (eta z)) (c (fst z) (snd z))

≡≡[coeIsRegular]

c (fst z) (snd z)

≡≡[cong2 c (fpr x y) (spr x y)]

c x y

qed

3 Consistency of the axioms
We have seen that the axioms in Fig. 1 su�ce to de�ne dependent products and both hetero-
geneous and homogeneous equality types with uniqueness of identity proofs, all satisfying the

8

usual elimination properties, albeit with typal computation rules. Conversely it is not hard to
see that the elimination and computation rules in �eorem 2.3 and Remark 2.5, together with
Axiom K, imply the axioms in Fig. 1. Instead of doing that, in this section we just check that the
axioms are provable from inductive de�nitions of equality and dependent product types. One
can make these inductive de�nitions in Agda as follows:

data ≡≡ {l}{A : Set l} : {B : Set l} → A → B → Set l where

rfl : (x : A) → x ≡≡ x
data

∑
{l m}(A : Set l)(B : A → Set m) : Set (l t m) where

, : (x : A) → B x →
∑

A B

-- the derived homogeneous equality

≡ : ∀{l}{A : Set l} → A → A → Set l
x ≡ y = x ≡≡ y

�en Agda’s implementation of dependent pa�ern matching enables straightforward de�ni-
tions of the functions from Fig. 1, as follows:

ctr : ∀{l}{A B : Set l}{x : A}{y : B}(e : x ≡≡ y) → rfl x ≡≡ e
ctr (rfl x) = rfl (rfl x)

eqt : ∀{l}{A B : Set l}{x : A}{y : B} → x ≡≡ y → A ≡ B
eqt { } {A} (rfl) = rfl A

tpt : ∀{l m n}{A : Set l}{B : A → Set m}(C : (x : A) → B x → Set n)
{x x′ : A}{y : B x}{y′ : B x′} → x ≡ x′ → y ≡≡ y′ → C x y → C x′ y′

tpt (rfl) (rfl) y = y

module {l m}{A : Set l}{B : A → Set m} where
fst :

∑
A B → A

fst (x ,) = x

snd : (z :
∑

A B) → B (fst z)

snd (, y) = y

fpr : (x : A)(y : B x) → fst (x , y) ≡ x
fpr x = rfl x

spr : (x : A)(y : B x) → snd (x , y) ≡≡ y
spr y = rfl y

eta : (z :
∑

A B) → (fst z , snd z) ≡ z
eta (x , y) = rfl (x , y)

Since we know from the previous section that these functions entail Axiom K, the above de�-
nitions have to use Agda’s default --with-K option to switch the existing implementation of

9

dependent pa�ern matching (Cockx and Abel, 2018) back to the original version due to Co-
quand (1992), which is known to imply Axiom K (Goguen et al., 2006). More precisely, it is only
the matches on the two occurrences of the pa�ern rfl in the de�nition of tpt that involve an
implicit use of Axiom K (to discharge the uni�cation constraints A � A and B x � B x); all the
other functions can be de�ned without Axiom K.

4 Conclusion
�is paper has investigated heterogeneous equality and produced a simple collection of axioms
for its typal form, in the spirit of Coquand (2011). �e point of view is foundational. From a
practical perspective, the use of heterogeneous equality has much to recommend it for formal-
izing mathematics in dependent type theory when assuming uniqueness of identity proofs1;
but that is another story.

References
Agda Wiki. [n.d.]. https://wiki.portal.chalmers.se/agda/pmwiki.php.

T. Altenkirch, C. McBride, and W. Swierstra. 2007. Observational equality, now!. In PLPV
’07: Proceedings of the 2007 Workshop on Programming Languages Meets Program Veri�cation.
ACM, New York, NY, USA, 57–68. https://doi.org/10.1145/1292597.1292608

R. Backhouse, P. Chisholm, G. Malcolm, and E. Saaman. 1989. Do-it-Yourself Type �eory.
Formal Aspects of Computing 1 (1989), 19–84.

M. Bezem, T. Coquand, and S. Huber. 2014. A Model of Type �eory in Cubical Sets. In
19th International Conference on Types for Proofs and Programs (TYPES 2013) (Leibniz In-
ternational Proceedings in Informatics (LIPIcs)), R. Ma�hes and A. Schubert (Eds.), Vol. 26.
Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, Dagstuhl, Germany, 107–128. https:

//doi.org/10.4230/LIPIcs.TYPES.2013.107

S. Boulier and T. Winterhalter. 2019. Weak Type�eory is Rather Strong. (June 2019). Abstract
for the 25th International Conference on Types for Proofs and Programs (TYPES 2019), Oslo,
Norway.

J. Cockx and A. Abel. 2018. Elaborating Dependent (Co)Pa�ern Matching. Proc. ACM Program.
Lang. 2, ICFP, Article 75 (July 2018), 30 pages. https://doi.org/10.1145/3236770

C. Cohen, T. Coquand, S. Huber, and A. Mörtberg. 2018. Cubical Type �eory: A Construc-
tive Interpretation of the Univalence Axiom. In 21st International Conference on Types for
Proofs and Programs (TYPES 2015) (Leibniz International Proceedings in Informatics (LIPIcs)),
T. Uustalu (Ed.), Vol. 69. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, Dagstuhl, Ger-
many, 5:1–5:34. https://doi.org/10.4230/LIPIcs.TYPES.2015.5

1Such is the approach of Lean (�e Lean �eorem Prover, [n.d.]) since version 3, for example.

10

https://wiki.portal.chalmers.se/agda/pmwiki.php
https://doi.org/10.1145/1292597.1292608
https://doi.org/10.4230/LIPIcs.TYPES.2013.107
https://doi.org/10.4230/LIPIcs.TYPES.2013.107
https://doi.org/10.1145/3236770
https://doi.org/10.4230/LIPIcs.TYPES.2015.5

T. Coquand. 1992. Pa�ernMatching with Dependent Types. In Proceedings of the 1992 Workshop
on Types for Proofs and Programs, Båstad, Sweden, B. Nordström, K. Petersson, and G. D.
Plotkin (Eds.). 66–79.

T. Coquand. 2011. Equality and Dependent Type �eory. (Feb. 2011). A talk given for the 24th
AILA meeting, Bologna (http://www.cse.chalmers.se/~coquand/bologna.pdf).

H. Goguen, C. McBride, and J. McKinna. 2006. Eliminating Dependent Pa�ern Matching. In
Algebra, Meaning, and Computation: Essays dedicated to Joseph A. Goguen on the Occasion
of His 65th Birthday, K. Futatsugi, J.-P. Jouannaud, and J. Meseguer (Eds.). Springer Berlin
Heidelberg, Berlin, Heidelberg, 521–540. https://doi.org/10.1007/11780274_27

C. McBride. 1999. Dependently Typed Functional Programs and their Proofs. Ph.D. Dissertation.
University of Edinburgh.

B. Nordström, K. Petersson, and J. M. Smith. 1990. Programming in Martin-Löf’s Type �eory.
Oxford University Press.

Chr. Paulin-Mohring. 1993. Inductive de�nitions in the system Coq; rules and properties. In
Typed Lambda Calculus and Applications (Lecture Notes in Computer Science), M. Bezem and
J. F. Groote (Eds.), Vol. 664. Springer-Verlag, Berlin, 328–345.

M. Shulman. 2018. Brouwer’s Fixed-Point �eorem in Real-Cohesive Homotopy Type �eory.
Mathematical Structures in Computer Science 28 (2018), 856–941.

T. Streicher. 1993. Investigations into Intensional Type �eory. Habilitation�esis. Ludwig Max-
imilian University, Munich.

�e Lean �eorem Prover. [n.d.]. https://leanprover.github.io.

�e Univalent Foundations Program. 2013. Homotopy Type �eory: Univalent Foundations for
Mathematics. http://homotopytypetheory.org/book, Institute for Advanced Study.

B. van den Berg. 2018. Path Categories and Propositional Identity Types. ACM Trans. Comput.
Logic 19, 2 (June 2018), 15:1–15:32. https://doi.org/10.1145/3204492

Appendix: typal homogeneous equality without K
In this appendix, for completeness sake we consider axioms in dependent type theory without
Axiom K for homogeneous equality types

postulate

≡ : ∀{l}{A : Set l} → A → A → Set l

following Coquand (2011). (Since without Axiom K heterogeneous equality is not very useful,
we do not bother to consider axiomatizing ≡≡ in that se�ing.) One of the axioms makes use

11

http://www.cse.chalmers.se/~coquand/bologna.pdf
https://doi.org/10.1007/11780274_27
https://leanprover.github.io
http://homotopytypetheory.org/book
https://doi.org/10.1145/3204492

of dependent product types. Although one could axiomatize those types as we did in the main
part of the paper, it is simpler to use an inductive de�ntion and corresponding pair pa�erns:

data
∑

{l m}(A : Set l)(B : A → Set m) : Set (l t m) where
, : (x : A) → B x →

∑
A B

-- concrete syntax for
∑
-types

syntax
∑

A (_ x → B) =
∑

x : A , B

-- dependent product projections

module {l m}{A : Set l}{B : A → Set m} where
fst :

∑
A B → A

fst (x ,) = x

snd : (z :
∑

A B) → B (fst z)

snd (, y) = y

�e axioms for homogeneous equality are

postulate

refl : ∀{l}{A : Set l} (x : A) → x ≡ x
cntr : ∀{l}{A : Set l}{x y : A}(e : x ≡ y) → (x , refl x) ≡ (y , e)

sbst : ∀{l m}{A : Set l}(B : A → Set m){x x′ : A} → x ≡ x′ → B x → B x′

Coquand also considers a regularity axiom for sbst (ax3 in loc.cit.), but one can do without that
by using Peter Lumsdaine’s trick to correct sbst to a version subst for which there is a proof
substIsRegular : ∀b → subst (refl x) b ≡ b, as follows. �e proof begins as for Lemma 2.1
by considering functions that are injective modulo ≡:

Inj : ∀{l}(A B : Set l) → Set l
Inj A B =

∑
f : (A → B) , ∀{x y} → f x ≡ f y → x ≡ y

id : ∀{l}{A : Set l} → A → A
id x = x

idInj : ∀{l}(A : Set l) → Inj A A
idInj = (id , id)

But then to construct subst and substIsRegular, one has to work a bit harder than in the
proof of the lemma, because of the lack of uniqueness of identity proofs:

module {l m}{A : Set l}(B : A → Set m){x : A} where
Inj2 : {y z : A} → x ≡ y → x ≡ z → Inj (B y) (B z)
Inj2 {y} p q =

sbst (_ z′ → Inj (B y) (B z′)) q
(sbst (_ y′ → Inj (B y′) (B x)) p (idInj (B x)))

12

sbst2 : {y z : A} → x ≡ y → x ≡ z → B y → B z
sbst2 p q = fst (Inj2 p q)

C : {y : A}(p : x ≡ y)(b : B x) →
∑

c : B y , (sbst2 p p c ≡ sbst2 (refl x) p b)
C p b = sbst C′ (cntr p) (b , refl)

where

C′ :
∑

y : A , (x ≡ y) → Set m
C′ (y , p) =

∑
c : B y , (sbst2 p p c ≡ sbst2 (refl x) p b)

subst : {y : A} → x ≡ y → B x → B y
subst p b = fst (C p b)

substIsRegular : (b : B x) → subst (refl x) b ≡ b
substIsRegular b = snd (Inj2 (refl x) (refl x)) (snd (C (refl x) b))

13

	Introduction
	The axioms and their properties
	Consistency of the axioms
	Conclusion

