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ABSTRACT
When looking at in-building or urban settings, information about
the number of people present and the way they move through the
space is useful for helping designers to understand what they have
created, fire marshals to identify potential safety hazards, planners
to speculate about what is needed in the future, and the public to
have real data on which to base opinions about communal choices.
We propose a network of edge devices based on Raspberry Pi and
TensorFlow, which will ultimately push data via LoRaWAN to a
real-time data server. This network is being integrated into a Digital
Twin of a local site which includes several dozen buildings spread
over approximately 500,000 square metres. We share and discuss
issues regarding privacy, accuracy and performance.

CCS CONCEPTS
•Computer systems organization→ Sensor networks; •Hard-
ware→ Sensor applications anddeployments; Sensor devices
and platforms.

KEYWORDS
object detection, object tracking, edge computing
ACM Reference Format:
Matthew Danish, Justas Brazauskas, Rob Bricheno, Ian Lewis, and Richard
Mortier. 2020. DeepDish: Multi-Object Tracking with an Off-the-Shelf
Raspberry Pi . In 3rd International Workshop on Edge Systems, Analytics and
Networking (EdgeSys ’20), April 27, 2020, Heraklion, Greece. ACM, New York,
NY, USA, 6 pages. https://doi.org/10.1145/3378679.3394535

1 INTRODUCTION
We propose a system of edge devices based on a low-power comput-
ing board, the Raspberry Pi, that analyses the movement of people
using a standard camera peripheral and can publish real-time events
and anonymous statistics to a low-bandwidth and secure network.
The system runs several machine-learning-based algorithms to per-
form multi-object tracking (MOT) on sequential image data and
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distils the information down to a few numbers that can be trans-
mitted over a LoRaWAN network from sensors in the field.

The MOT problem takes as input an image sequence and a set of
objects of interest. Solutions must trace their movement throughout
the image sequence while maintaining the distinct identity of each
object. We identify objects of interest by category (e.g., ‘person’)
and then apply category-specific object-detection methods to auto-
matically draw bounding boxes around all objects of interest within
each frame. Solving the MOT problem then requires finding the
corresponding bounding boxes in each successive frame, as well as
determining if a bounding box is being drawn around a newly in-
troduced object, and if a previously-known object has disappeared.
This is known as the tracking-by-detection approach [4].

The object-detection problem has been studied intensively and
solutions have advanced rapidly in recent years thanks to the suc-
cess of supervised deep learning methods [5]. We focus in particular
on the MobileNet model architecture [7] because it is optimised for
use in the mobile processor context, and we use a model trained on
the COCO data-set [11] that offers 91 possible object categories.

For tracking-by-detection, we employ DeepSORT [17], which
extends SORT [2] with a ‘feature encoder’ that extracts a vector
using a pre-trained convolutional neural network (CNN) on the
image data within each bounding box. SORT is designed to be fast
because it relies only on simple techniques of association based
on scores computed using Kalman filtering and the Mahalanobis
distance metric and then solved using the Hungarian method, but
SORT can easily be fooled by object occlusion. By adding the fea-
ture encoder vector to the mix, DeepSORT helps avoid accidental
identity switches between overlapping objects, while maintaining
much of the performance required for online tracking of real-time
video.

We show that this can be achieved with a low cost, stock Rasp-
berry Pi 4B thanks to some unexpected findings we discuss in §7.

2 RELATEDWORK
Past work by Ren et al. [14] relied on a network of edge-based
servers with high-performance GPUs that could be placed close
enough to gather image data from local network of cameras. Car-
tas et al. [3] performed object-detection by sending video frames
from mobile devices to nearby small servers backed up by high-
performance but more distant servers; they were only able to
achieve 150ms inference time by equipping the small servers with
GPUs. EdgeEye [12] similarly depends on having aGPU.Hochstetler
et al. [6] bench-marked a Raspberry Pi 3B processor both with and
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without an Intel Movidius™ Neural Compute Stick on data from a
visual recognition challenge. When setting the model input image
size to 224x224, they found that the CPU alone performed at about
2.1 frames-per-second (FPS) on the object detection task, while
adding the Neural Compute Stick boosted that to 17.2 FPS. The
DeepX project [9] looked at ways of distributing inference tasks
across heterogeneous resources such as GPUs and lower-power
processing units present on certain mobile platforms, with which
they were able to achieve sub-500ms object-detection inference
times at significant energy savings.

DeepSORT is a popular tracking algorithm; one recent and no-
table work using it is by Zhang et al. [18] who considered the case
of fixed-view cameras: they computed a differential filter to isolate
only the portions of the view that were changing, then used the
YOLOv2 [13] object-detection system with DeepSORT to perform
online MOT on a high-performance server and GPU. Al-Tarawneh
et al. [1] used a different style of feature vectors computed on high-
performance servers to re-identify customers over the course of a
day as they browsed a shop, in order to produce retail analytics of
their behaviour.

3 EXPERIMENTAL SETUP
Our pilot project intended1 to count the number of people entering
and exiting a particular building for fire safety purposes. While
person-counting is a venerable field, this is only intended as a test
case for a much larger experiment that will study the movement
of people in public space as part of a project to create a Digital
Twin [8] of a local site, which includes several dozen buildings and
covers approximately 500,000 square metres of land.

With a large enough field-of-view, we hypothesise that the count-
ing task can be performed even if the software can only process
a low number of FPS, because people would enter the view for at
least several seconds. Careful placement of the camera is critical
to ensure that people are within view for sufficient time on either
side of the pre-determined ‘counting line’, while not being too far
away to compromise the object detector.

3.1 Hardware
Our edge node is a Raspberry Pi 4B, which is a Broadcom BCM2711
system-on-chip with a quad-core Cortex-A72 (ARM v8) 64-bit pro-
cessor running at 1.5GHz, with 4GB of RAM.We used a night-vision
camera module recording video at 640×480 in full colour, however
we also tested with the standard Pi camera, which provides a similar
quality of video albeit without the infrared lighting support. We
added the Fan SHIM for temperature control, and a PiJuice battery
‘HAT’ mounted on the GPIO interface to provide a power supply
backup. The device is packaged in a 3D-printed case that allows the
camera to be rotated into the desired position, as shown in Figure 1.
Future work will include a LoRaWAN HAT as well.

3.2 Operating software
We use TensorFlow 1.15.0, including the TensorFlow Lite engine,
and the controlling software is written in Python 3.7 running under
Hypriot, a Debian-based operating system customised for Rasp-
berry Pi.
1Late note: the pilot project has been cancelled due to the global COVID-19 pandemic.

Figure 1: The counting device.

3.3 Algorithm
Following the tracking-by-detection concept used by DeepSORT,
we break down the algorithm into three steps shown in Figure 2:
object-detection, feature-extraction and tracking/association.

The object-detection model is a pre-trained quantised version of
SSD MobileNet v1 [7] compiled for TensorFlow Lite, made avail-
able by Google. We feed it images of size 300×300, and from the
output use only the detections that are labelled with the category
‘person’. The feature-extraction step uses the DeepFLOW CNN
model trained on the Motion Analysis and Re-identification Set
(MARS) data-set [15] using the cosine metric learning technique [16].
Feature-extraction must be run separately on each person detected,
therefore the algorithm scales linearly by the number of people that
need tracking. Association of tracks with known history of objects
is performed by the DeepSORT method of combining Mahalanobis
distance computed on Kalman Filter distributions and cosine met-
ric distance computed on extracted feature vectors. People who
are new to the tracking history (based on a feature threshold) are
assigned a fresh identification number, and people that fail to be
found for over 30 frames are considered to have left the scene.

At each step the most recent track vector of each known person
is compared against the pre-determined counting line by solving
for line intersection and cross-product (to determine direction of
movement). When an intersection is found, a ‘count’ event is gener-
ated, and the intersecting segment is highlighted in red, as shown
in Figure 3. Internally, we maintain a running total of counts go-
ing in each direction, as well as the number of tracks that have
been deleted after the person was not identified for 30 consecutive
frames. When an HDMI monitor is hooked up to the device we
display this information as an overlay on the current camera view,
for debugging purposes, as well as drawing the count line, rectan-
gles around detected people and their tracked vectors. You can also
enable a web interface that shows the same debugging information.

4 PERFORMANCE
We used SSD MobileNet v1 because in our testing, we found it to
give the best response times by far, as can be seen in Figure 4. The
accuracy scores are also quite good, under the circumstances, as
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Figure 2: Tracking-by-detection pipeline.

Figure 3: Screenshot from the ‘Office’ test video, showing
two intersection events. The numbers at the bottom corners
of the screen record the counts of people who have crossed
the red counting line in either direction. The central num-
ber is the difference. The boxes around people are results
fromobject-detection, and the numbers in the corners of the
boxes are tracking identities. The purple lines that follow
people are the tracking vectors; the intersecting segments
are coloured redmomentarily when an intersection event is
detected.
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Figure 4: Inference time for object detection using different
versions of SSD MobileNet.

discussed in §6. A further speed-up can be obtained by overclocking
the Raspberry Pi, as seen in Figure 5. We found that the platform
remained stable up to 1,900MHz, speeding up inference by about
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Figure 5: Object detection inference times for SSDMobileNet
v1 with overclocking.

16.5%, with core temperatures fluctuating somewhat under 60°C
with active cooling from the Fan SHIM. However, we learned that
the PiJuice did not work reliably when the Pi was over-volted, and
the HAT had to be removed before conducting these tests.

The DeepSORT feature-encoder CNN model comes trained on
MARS data with an image input size of 128×64. However, we found
that running it took 95ms per person per frame: too slow for real-
time processing of scenes with multiple people. Therefore, we re-
sized the image input to 64×32 and retrained the CNN model. Af-
ter doing that we achieved a 35ms running time per person per
frame, 63% faster than before. With overclocking the typical time
for feature-encoding was reduced further to 32ms per person per
frame. This is considerably more practical in our expected use case.

When overclocking to 1,900MHz, the running time can be esti-
mated using the following numbers:

• Fixed costs per frame: approximately 130ms, composed of,
– Object-detection: about 96ms
– Processing (e.g. input, resizing and output): about 34ms

• Cost per person tracked: approximately 36ms, composed of,
– Feature-encoding: about 32ms
– Association: about 4ms

Therefore, the overall inference time per frame when tracking 𝑛
people at a time averages approximately 𝑇 (𝑛) = 130 + 36𝑛 millisec-
onds. We can track up to ten people at a time while still maintaining
two FPS, five people at a time at three FPS and two people at about
five FPS.
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Table 1: Power draw and CPU temperature in different CPU
frequencies and modes.

CPU Clock Mode Power CPU Temp.
(MHz) (W) (°C)
1,500 Run 6.0 49
1,500 Sleep 3.6 35
1,500 Idle Pi 3.4 33

1,750 Run 7.0 51
1,750 Sleep 3.9 35
1,750 Idle Pi 3.6 34

1,900 Run 8.5 57
1,900 Sleep 4.2 36
1,900 Idle Pi 3.7 35

4.1 Power usage
Table 1 shows the power draw and CPU temperature of the Rasp-
berry Pi under different loads. Run mode is the normal operation,
seeking maximum performance. In Sleep mode the program does
not invoke inference but instead periodically checks if anything
has changed in the input, waking back up if necessary. Both are
compared against a baseline of an idle Raspberry Pi. There are sig-
nificant opportunities for power-saving during quiet periods when
there is no motion in front of the camera and it is looking at a fixed
scene.

5 PRIVACY
Putting up cameras raises privacy concerns, even in public spaces.
One assurance we can offer is that since our data transmission will
ultimately be carried by LoRaWAN, there is simply not enough
bandwidth for it to be practical to transmit images at all. The only
data transmitted are counting events and the current state of the
counters. An attacker could learn the number of people within
the public part of the building, but this is not considered sensitive
information. For debugging purposes, the WiFi device in the Rasp-
berry Pi has been configured with a private network protected by
a pre-shared key. It is not connected to the Internet and can only
be accessed by a person with the password and in close proximity
to the device.

As the algorithm reads and processes each camera frame, it finds
the coordinates of boxes around each object it detects, then distils
the contents of each box down to a short vector of 128 numbers, and
finally discards the frame. The vectors may stay in memory as long
as the object is within sight but they are a very sparse encoding
of pixel colours and basic shapes, with no personally identifying
information associated with them.

6 ACCURACY
We set up a test-bed to accept pre-recorded video in place of the live
camera feed into the same algorithm used by the live tracker. The
test video named ‘Office’ comprises twominutes of filming using the
Raspberry Pi camera in an office environment similar in character to
the pilot project location, with seven volunteers instructed to enter
and exit the office repeatedly and without any particular patterns.
The test video named ‘Plaza’ comprises 50 seconds of video from

Figure 6: Screenshot from the ‘Plaza’ test video.

the MOT17 challenge [10], taken from a fixed camera overlooking a
pedestrian plaza with a fairly intense flow of people moving about,
as seen in Figure 6.

The code was instrumented so that it wrote the current value
of several counter variables into a file every ten seconds: persons
crossing the counting line in each direction (as determined by the
sign of the cross-product), overall number of crossings, and number
of tracking identities that have expired.

Ground truth for test videos was established using the following
method: in each ten-second interval we counted the number of
people crossing the counting line in each direction.

Therefore, for each ten second interval of test video, we know
the number of people walking to the ‘negative’ side of the line
(negcount) and the number of people walking to the ‘positive’ side of
the line (poscount). These values were subtracted and then compiled
into a vector covering the whole video. This allowed us to see how
the algorithm varied from the ground truth over time, and penalised
offsetting mistakes to some extent.

Vectors drawn from the ground truth and from test runs of the
algorithm are compared using cosine-distance, subtracted from 1.
The ideal score is 1, the worst score is 0. We ran the tests with a
number of configurations of the test-bed, tweaking parameters to
DeepSORT, and trying much slower (but more accurate) YOLO-
based object detectors in addition to MobileNet. The test-bed also
was able to simulate different frame-rates, for example, by dropping
five frames out of every six to simulate a 200ms inference latency.

Parameters adjustable for testing include the resolution of the
MARS-trained feature encoder (64×32, 128×64 or 256×128), the
simulated FPS value (from 5–30), the maximum cosine distance
(max-cos-distance) threshold for two feature vectors to be consid-
ered part of the same ‘track’, and the ‘non-maximum suppression’
(nms-max-overlap) threshold that eliminates spurious overlapping
object detection boxes (at 1.0 the boxes must overlap completely for
one to be pruned, and at 0 it would eliminate even non-overlapping
boxes). Over 450 configurations were tested. A selection of scores
is shown in Table 2.
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Table 2: Accuracy of counting: a selection of test results.

Score Test name Object-detector Feature encoder FPS max-cos-distance nms-max-overlap
0.968 Office YOLO v3 128x64 5 0.3 0.6
0.948 Office MobileNet v1 64x32 5 0.6 0.6
0.938 Office MobileNet v2 64x32 30 0.9 0.6
0.906 Office MobileNet v1 128x64 5 0.3 0.3
0.878 Office MobileNet v2 64x32 5 0.9 1.0
0.794 Office MobileNet v1 128x64 30 0.9 0.6
0.656 Office MobileNet v2 256x128 30 0.6 0.6
0.424 Office MobileNet v2 256x128 15 0.01 1.0

0.986 Plaza YOLO v3 64x32 5 0.6 0.6
0.903 Plaza MobileNet v1 128x64 15 0.9 0.6
0.880 Plaza MobileNet v2 128x64 5 0.3 0.6
0.843 Plaza MobileNet v1 64x32 5 0.6 0.8
0.839 Plaza MobileNet v2 256x128 5 0.9 0.6
0.815 Plaza MobileNet v2 64x32 5 0.6 0.3
0.713 Plaza MobileNet v1 64x32 15 0.01 1.0
0.596 Plaza MobileNet v2 128x64 30 0.9 1.0

7 DISCUSSION
The most surprising finding from our experiments is that increased
frame-rate was not helpful and in fact could make things worse. As
seen in Table 2, using a configuration with conditions similar to our
live video counter, we achieved a score of 0.948 on the ‘Office’ test
with MobileNet v1 running at 5 FPS. This rivalled the top test score
of 0.968 that was obtained using a powerful GPU running YOLO
v3 (tests at both 5 and 30 FPS achieved this mark). Figure 7 shows
the overall average scores at each frame-rate: the worst cases are
considerably worse with 15 and 30 FPS compared to 5 FPS.

The cosine distances were often not that large between vectors
encoded from the views of different people, especially if they were
wearing similar colour clothing. This could result in unwanted
identity swaps, but that would only affect the score in a small way
if the overall count was correct. Generally, setting max-cos-distance
to very low values tended to reduce the performance of the tracker,
effectively removing any assistance from the feature encoder. This
effect can be seen in Figure 8.

Lower ‘non-maximum suppression’ was slightly more important
with MobileNet than YOLO because the latter tends to generate
higher-quality object-detection boxes and get less confused when
multiple people are standing together in a group. With MobileNet,
it helped to suppress some spurious boxes that could be generated
by clusters of people, and lower values of nms-max-overlap led to
slightly improved performance, as can be seen in Figure 9.

Another unexpected finding is that lowering the resolution of
the input to the feature encoder in order to gain performance did
not affect scores overall. In Figure 10, it shows that the 64×32 fea-
ture encoder gave approximately the same scores as the slower
default resolution of 128×64. We also tried experiments with an
even higher resolution feature encoder, at 256×128, and that back-
fired, producing worse results.

Finally we compare models in Figure 11. This chart focuses on
the generally good configurations: with feature encoder resolu-
tion 64×32, processing 5 FPS, having max-cos-distance ≥ 0.3, and
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Figure 7: The effect of frame-rate on score.

nms-max-overlap < 1.0. Both MobileNet versions score about the
same (just a slight advantage for v2) but in our judgement that is
outweighed by the worse running time.

8 CONCLUSION
We show that practical performance can be achieved on a Rasp-
berry Pi 4B in this application without requiring special hardware
acceleration. Although our pilot project was meant to take place
inside a building, we anticipate future deployments in places where
network access is limited, space is at a premium and power supply
may be more circumscribed. We are continuing to refine the mod-
els and parameters so this system may be used in more extensive
experiments for our larger Digital Twin project.
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