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Glassy solids may undergo a fluidization (yielding) transition upon deformation whereby the material
starts to flow plastically. It has been a matter of debate whether this process is controlled by a specific
time scale, from among different competing relaxation/kinetic processes. Here, two constitutive
models of cage relaxation are examined within the microscopic model of nonaffine elasto-plasticity.
One (widely used) constitutive model implies that the overall relaxation rate is dominated by the
fastest between the structural (α) relaxation rate and the shear-induced relaxation rate. A different
model is formulated here which, instead, assumes that the slowest (global) relaxation process controls
the overall relaxation. We show that the first model is not compatible with the existence of finite
elastic shear modulus for quasistatic (low-frequency) deformation, while the second model is able
to describe all key features of deformation of ‘hard’ glassy solids, including the yielding transition,
the nonaffine-to-affine plateau crossover, and the rate-stiffening of the modulus. The proposed
framework provides an operational way to distinguish between ‘soft’ glasses and ‘hard’ glasses based
on the shear-rate dependence of the structural relaxation time.

I. INTRODUCTION

Liquids behave like solids at sufficiently high rates of
deformation, but at very slow (quasistatic) deformation
they flow with zero energy cost [1, 2]. Glassy solids ex-
hibit a very similar behaviour at intermediate to high
deformation rates, but they possess a finite shear mod-
ulus when subject to quasistatic deformation. However,
when the amplitude of applied deformation is sufficiently
large, glassy solids yield to plastic deformation [3, 4]. The
question about the kinetics of this yielding, or the elastic-
plastic transition, has a long history: it goes back to, at
least, the work of Eyring [5], who introduced the basic
concepts still in use today [6, 7].

The key concept in Eyring’s theory and most of the
subsequent treatments, including the Shear Transforma-
tion Zone (STZ) theory [8] or the Cooperative Shear
Model (CSM) [9, 10], is that the plastic flow sets in when
the applied stress suppresses the barrier for molecular
jumps out of the local energy well, such that the motion
of molecules in the direction of shear matches the glob-
ally applied shear rate. In such models, there is a single
relaxation time, set by the escape rate out of the energy
well, and often referred to as the α-relaxation [11].

Successive modifications of the Eyring model ac-
counted for the distribution of relaxation times, following
from the distribution of energy wells [12]. This approach
led to the celebrated Soft Glassy Rheology (SGR) the-
ory [13]. A different way of incorporating the hetero-
geneity of the dynamical process is through the already
mentioned STZ model, which has proven useful in the
modelling of real solids.

In most of these models the relevant time scales for
relaxation in the strained system are identifiable with lo-
cal energy barriers, although in Mode Coupling Theory
the relaxation is more collective and cooperative [3, 4].

Recently, it has been emphasized that the dynamics of
glasses may be controlled by local, rather than global re-
laxation processes [14]. Accordingly, these models cannot
give closed-form constitutive relations depending on the
overall (observable) structural relaxation time and the
(externally imposed) deformation rate.

Here we compare and contrast the ‘soft’ and the ‘hard’
glassy materials, where the soft glassy systems age, re-
structure, and therefore adjust their modulus on the ex-
perimental time scale. The ‘hard glass’ instead is con-
trolled by frozen-in configurations that are stable on a
time scale much longer than any experiment: such amor-
phous solids appear with a well-defined plateau modulus
at low frequencies. We follow a different approach to the
strain- and strain rate-dependent deformation of glassy
solids [16, 27]: our model is analytically tractable, and
based on the theory of nonaffine elasticity [15, 17, 18].
The key role is played by the overall structural relaxation
time.

Within this elasto-plastic model, two different relations
for the structural relaxation time τα are examined: one in
which τα is controlled by the slowest macroscopic process
in the glass under dynamic shear, and the other, where
it is controlled by the process with the highest rate, typ-
ically the local shear-assisted bond-breaking time-scale.
It turns out that only the former model can recover the
hallmark of hard glassy solids: a non-zero shear modu-
lus plateau at vanishing frequencies/rates. Other char-
acteristics of glassy deformation including the yielding
(elastic-plastic transition) and its temperature depen-
dence, are also recovered.

The title of this paper is a deliberate counterpoint to
the Soft Glassy Rheology theory [13], because we focus on
the elasticity and yielding transition of true solids with
the quasistatic shear modulus, whereas in SGR the long-
time limit is that of a fluid flow.
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II. NONAFFINE ELASTOPLASTIC MODEL

A. Free energy of deformation

We start from a phenomenological model that de-
scribes the mechanical response of glasses [16]. The
shear modulus for a generic amorphous solid can be
written in a form: G = 2

5π (κφ/R0)(z − zc). Here, κ is
the bond spring constant, φ is the atomic/particle pack-
ing fraction, R0 is the mean distance between nearest
neighbours, and z is the average number of mechanically-
active neighbours. This mean contact number z does not
include nearest-neighbours which are fluctuating fast in
and out of contact. As illustrated in many previous stud-
ies, the shear modulus vanishes at a critical connectivity
value zc, due to nonaffine displacements which soften
the elastic response [17, 18]. We recall that nonaffine
displacements are prominent in amorphous solids: due
to the lack of local symmetry in the particle environment
(which may also be induced by thermal fluctuations [19])?,
the forces that this particle receives from its nearest
neighbours in the affine position prescribed by the strain
tensor are unbalanced [15]. This lack of mechanical
equilibrium in the affine position causes the additional
displacement of the particle towards a true equilibrium
position under the action of the unbalanced local force.
This additional displacement is accompanied by a
decrease in the free energy of deformation because the
displacement implies a mechanical work which is done
by the solid to keep equilibrium.

This is true for both athermal solids (such as jammed
packing of particles) and also for thermal systems (e.g.
polymer or metallic glasses). If interparticle interactions
are purely central-force, then zc = 6 [20], reflecting the
celebrated Maxwell counting of constraints, whereas for
more complex interactions one has zc = 2.4 for covalent
networks [21, 22], and z = 4 for a glass of linear polymer
chains [23–25] (where a mixture of covalent bonds and
central-force Lennard-Jones type interactions is present).

The elastoplastic free energy Fel-pl response to the im-
posed shear deformation γ can be written as: Fel-pl(γ) =
FA(γ)−FNA(γ), with two contributions corresponding to
the affine deformation (as in Born-Huang theory and its
extensions [26]), and to the nonaffine deformation (the
sum of negative local, internal work contributions), re-
spectively. Using the generic shear modulus G(z), this
free energy becomes

Fel-pl =
1

2

(
2κφ

5πR0

)[
z(γ)− zc

]
γ2, (1)

where the modulus G(z) incorporates the microscopic
parameters of spring constant κ, and the mean packing
fraction φ. The source of elastic nonlinearity here is the
change (reduction) of the mean contact number z with in-
creasing deformation in the affine part of Fel-pl [16]. It is
important to point out that the nonaffine part of this de-
formation free energy remains quadratic in the strain am-
plitude γ, even beyond the yield point of the glass. This

R0

z0 z0



FIG. 1. (Color online) A scheme of local cage packing, when
the two extension sectors under applied shear reduce the num-
ber of mechanically-active contacts, while the two compres-
sion sectors do not change their mean connectivity.

theoretical prediction [15, 22] has also been confirmed
experimentally in colloid glass by measuring the mean
squared nonaffine displacement at different strains [27].

As discussed in studies by various authors, upon be-
ing sheared, the glassy cage of nearest-neighbours gets
deformed in such a way that neighbours are lost in the
two extensional sectors of the solid angle around a given
particle [12, 16]. In the two compression sectors, the par-
ticles, instead, are pushed against the test particle, but
due to excluded volume there is practically no gain of
new mechanical contacts, see Fig. 1. Hence, there is a
net decrease of the total z due to the shear deformation.
In many amorphous solids, this is associated with dila-
tancy [28], although in some glasses the dilatancy could
be too small to be measured as the decrease of z(γ) can
be associated with redistribution of particles in free vol-
ume pockets.

B. Evolution of connectivity with strain

The simplest physically-motivated expression that cap-
tures the relevant limits of undeformed glass z → z0, and
the post-yielding fluidized state z → z0/2 (which would
be equal to 6 in the Maxwell packing of monodisperse
spheres where the local shear modulus becomes zero [17]),
with an exponential crossover dependence on both the
energy barrier (Arrhenius) β∆ ≈ Tg/T ≥ 1 [16], and on
the shearing time, is as follows:

z(γ) =
z0
2

[
1 + e−(Tg/T )γe−t/τα

]
, (2)

where the factor e−t/τα is expected from the general solu-
tion to the time-dependent diffusive (Smoluchowski) dy-
namics [29]. This equation compactly expresses the fact
that the number of long-lived neighbors z decays (even-
tually to about a half of its value, in the two compacted
sectors out of the four in Fig. 1) either upon externally
driving the system to a very large deformation γ, or sim-
ply by waiting for a very long time t much longer than
the characteristic α-relaxation time, τα. Note that lower-
ing the temperature much below Tg makes the transition
happen at smaller γ, i.e. the material is more brittle.



3

Please note that within this picture, conceptually consis-
tent with MCT [30, 31], the cooperatively-enhanced local
cage-level energy barrier sets the global energy barrier,
hence β∆ ≈ Tg/T used above.

The factor z0 is the mean number of mechanical con-
tacts at rest; its value is z0 ≈ 12 for dense glasses [35],
as also confirmed experimentally in colloidal glass [27].
In a glass of linear polymer chains, z0 ≈ 8 was found
in Brownian-dynamics simulations [25], and by examin-
ing the packing of tetrahedral sublattices [36]. Finally,
in a silica glass (an archetype system of random covalent
bonds), the mean packing number was found to be z0 ≈
5-6 [37, 38]. Here we want to propose that, as the mean
connectivity z0 of a hard glassy material diminishes on
increasing shear amplitude, its value does not drop be-
low the critical number at marginal stability zc: At this
point (when z = zc) the solid is fully fluidised, and any
further decrease in density is unjustified. Accordingly, we
take z0/2 ≈ zc. This assumption is supported by many
observations: in the colloid packing zc = 6 [21, 27], in a
linear polymer zc = 4 [24, 25] and in a covalent-bonded
network zc = 2.4 [21, 22].

C. Stress-strain relation and strain-dependent
modulus

Putting Eq. (2) back into the free energy of deforma-
tion, Eq.(1), replacing t with γ = γ̇t for the case of de-
formation ramp, and differentiating, the following stress-
strain relation for the non-viscous part of the stress under
a constant-rate strain ramp is obtained:

σ =
1

4
z0Kγ e

−Aγ (2−Aγ) , (3)

with the linear modulus G0 = 1
2z0K. ** You need to

say a word what K is, now it’s been seen in Eq.1 **
Predictions of this model have been found in quantitative
agreement with experimental data on metallic glass [39],
colloidal glass under shear [27, 40, 41] and data of 2D
colloidal glass at the air-water interface [42, 43].

Finally, upon differentiating the stress in Eq. (3), we
find the expression for the modulus

G =
1

2
G0e

−Aγ (2− 4Aγ +A2γ2
)

(4)

where the shorthand parameter A = (Tg/T ) + (γ̇τα)−1 is
coming from Eq. (2), and τα is the structural relaxation
time, which will also depend on the applied shear-rate γ̇.

In the next section, we will address different concep-
tual models which express the overall τα in terms of the
underlying kinetic processes. We will see that different
ways of combining the underlying rate processes leading
to different τα(γ̇) expressions, result in two completely
different scenarios which can distinguish between ”soft”
and ”hard” glasses.

III. RATE-DEPENDENT RELAXATION TIME

Equation (3) still does not take into account how the
shear rate affects the structural relaxation time τα, which
appears in Eq. (2). When the rate of a physical process is
determined by the interplay of sub-processes, each with
its own kinetics, two possibilities exist: either the over-
all relaxation rate is controlled by the fastest of the two
rates (summation in series), or instead it is the longest
relaxation time that controls the overall process, making
the rates add in parallel.

In our case, we could have the in-series addition of two
key rates:

τ−1α = τ−10 +
γ̇

γc
, (5)

where τ0 is the static structural α-relaxation time of the
cage, and γc is a constant parameter that sets the amount
of strain needed to break a cage (typically γc ∼ 0.1
[39, 44]). This constitutive expression is saying that the
faster rate of cage breaking controls the overall relaxation
rate. This relation is used within an extended version
of Mode-Coupling theory for sheared liquids, which is
able to describe shear-thinning of viscoelastic liquids [44].
Furthermore, this relation has been found in both exper-
iments and simulations of supercooled liquids [45] and
polymer melts [46, 47].

One should note that in the static limit γ̇ → 0 one
recovers τα → τ0, with a finite cage relaxation time, as
typical for liquids. Note that a similar relation to Eq.
(4) with a power-law exponent n acting on γ̇ defines a
broader class of Herschel-Bulkley models [48].

A different choice would be to say that the longest
process time dominates the overall relaxation dynamics
(in a solid this would be the structural relaxation). In
this case, the in-parallel summation gives

1

1/τα
=

1

1/τ0
+

1

γ̇
, i.e. τ−1α =

γ̇

1 + γ̇τ0
, (6)

where τ0 is the equilibrium cage relaxation. That is,
we measure the total time of relaxation in two steps:
τ0 + 1/γ̇, as e.g. in the reaction-diffusion case, where the
total time of the process is a sum of the two consecutive
times. When γ̇ is high, the deformation is affine (not
able to relax local internal forces by adjusting positions
and reducing z0 connectivity). An affine deformation also
implies that the characteristic time of the structural re-
arrangement is much larger than the time-scale of the
external driving, τ0γ̇ � 1. In general, τ0 could be identi-
fied with the Maxwell-Frenkel relaxation time, approxi-
mately given by the hopping time of one atom to get out
of the cage [2]. Since in a high-rate affine deformation
the atoms never leave the cage (their motion is limited
to high-rate motions within the cage), it is clear that the
time-scale set by τ0 is the one which governs the struc-
tural relaxation.

In contrast, at low γ̇ such that τ0γ̇ � 1, the relative
internal positions adjust non-affinely into much deeper
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FIG. 2. (Color online) A scheme comparing the addition of
relevant rates in series (liquid-like, Eq. 5), and in parallel
(solid-like, Eq. 6), with reference to the equations in the text.
The finite relaxation time at γ̇ → 0 is a feature of SGR model,
presented as dashed line, i.e. the liquid-like quasistatic re-
sponse. ** Is this correct? Graphic OK?

minima under the action of the external drive, and the
stronger barriers to relaxation result in the increase of the
effective τα. However, for hard materials, in practice, the
overall relaxation time is close to the equilibrium struc-
tural relaxation time τ0. For example, for silicate glasses,
the structural relaxation time is found experimentally on
the order of 19,000 years [49] so that 1/τ0 is probably
much smaller than any experimentally accessible γ̇.

The two models are schematically compared in the car-
toon of Fig. 2.

IV. RESULTS AND COMPARISON

We will now compare predictions of the model with
these two different constitutive relations for the relax-
ation process. In Eq.(4), we replace τα = γcτ0/(γc + γ̇)
inside the parameter A = (Tg/T )+(γ̇τα)−1, which imple-
ments the in-series rate addition in Eq.(5). This modulus
is plotted in Fig. 3 as a function of increasing shear rate,
for several values of the final strain γ. It is clear that the
solid-like response for quasistatic deformation (γ̇ → 0) is
never attained, even at the smallest strain. This shows
that the constitutive model given by Eq. (5) cannot de-
scribe a solid in equilibrium, but at most a viscoelastic
liquid. We should also remark on the fact that this out-
come is in contradiction with the underlying premise of
the theoretical model which assumes the existence of a
free energy of deformation quadratic in the strain, Eq.
(1).

In contrast, when we apply the in-parallel constitu-
tive model for the rates addition, τα = (1 + γ̇τ0)/γ̇ in
Eq. (6), the plots in Fig. 4 show the shear modulus
having the correct qualitative behaviour. At very low
strain, the modulus reaches the quasistatic (equilibrium)
plateau. However, above a critical yield strain γ∗ the
low-rate response is at zero modulus (plastic flow). This
elastic-plastic crossover is achieved because the structural
relaxation diverges in the constitutive model of Eq. (6).
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FIG. 3. (Color online) Model predictions from Eq. (4) using
the constitutive relation Eq. (5). For the calculations the
cage barrier has been kept constant, β∆ = 5. From top to
bottom the applied strain is: γ = 0.001, 0.01, 0.02, 0.03. The
parameter γc = 0.1 (strain at cage breaking) is kept constant
for all curves.
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FIG. 4. (Color online) Model predictions from Eq. (4)
using the constitutive relation Eq. (6). The cage bar-
rier β∆ = 5. From top to bottom the applied strain is:
γ = 0.05, 0.08, 0.09, 0.1, 0.105, 0.11. The parameter γc = 0.1
(strain at cage breaking) is kept constant for all curves.

The low-rate (equilibrium) plateau is dominated by the
nonaffine dynamics, after which a smooth crossover leads
to a higher plateau at high strain rates, which is instead
affine.

Figure 5 shows how the yield point γ∗ (the solution
of ∂σ/∂γ = 0) approaches the simple asymptotic value

γ∗ = (2−
√

2)/β∆, independent of the strain rate when
the cage barrier is high. That is, strongly bonded glass
reaches the limit of its elastic response already at a very
small strain – while in a weak glass the yield point has a
strong dependence on the rate of applied shear, expressed
as γ̇τ0 in Fig. 5.

The same qualitative behaviour of G is to be ex-
pected for the complex modulus G∗(ω) in response to
an oscillating deformation of amplitude γ. It has been
shown [50, 51] that the rate-dependent modulus can be
converted into a frequency-dependent complex modulus
merely by replacing γ̇ with the relation γ̇ ≈ 4iωγ0, where
γ and ω are the wave amplitude and the frequency of
the signal in oscillatory shear deformation. The resulting
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FIG. 5. (Color online) The dependence of the yield strain γ∗

on the strength of cage barrier β∆ = Tg/T , for different rates
of strain ramp. The dashed line is showing the asymptote
γ∗ = (2 −

√
2)/β∆. From top to bottom the curves are for

increasing shear rate: γ̇τ0 = 0.1, 1 and 10.

storage modulus G′(ω) is in full agreement with experi-
mental data on a variety of materials [52–58], all featur-
ing a low-frequency equilibrium modulus plateau (with
strong nonaffine behaviour) which transitions smoothly
to an upper (affine) plateau at higher frequency, Fig. 6.
Upon reaching a sufficiently high strain amplitude, the
atoms in the extensional sectors of the cage (see Fig. 1)
have now left the cage and the critical condition z → z0/2
is reached at which fluidization occurs, leading to the
disappearance of the low-frequency plateau in the post-
yielding regime. Although there is not yet experimental
confirmation of this trend as a function of strain ampli-
tude, similar curves of fluidization have been reported for
T -induced fluidization as a function of T [56, 58, 59].

The plots in Fig. 7 show the corresponding imaginary
part of the complex modulus, G′′(ω). It also shows an
expected behaviour consistent with experimental trends
on various hard glasses (metallic, silicates) [56–58], with
the characteristic peak in the loss modulus around the
characteristic frequency ωτ0 ∼ 1, and a power-law decay
on both sides of the peak. It is, however, unexpected to
see almost no difference in the loss modulus for differ-
ent strain amplitudes: in great contrast to the storage
modulus that shows a very dramatic fluidisation effect.
Again the small horizontal shift of the resonance peak
in G′′ is consistent with trends observed in hard glasses
upon T -induced fluidization [56–58]. In retrospect, we
have to accept that the loss mechanism in this theory
arises from the cage re-arrangement sketched in Fig. 1,
which is the same microscopic process on either side of
the elastic-plastic transition.

V. CONCLUSION

Our main conclusion is that to describe a solid glass
elasticity, one must adopt a physical view of microscopic
cage dynamics expressed by the constitutive relation (6).
This implies that the overall cage relaxation time under
an external dynamic strain is dominated by the inter-
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FIG. 6. (Color online) The storage modulus G′(ω), for
β∆ = 5 and for different amplitudes of oscillating strain:
γ0 = 0.05, 0.08, 0.09, 0.1 and 0.11, from top to bottom, again
revealing the fluidisation above a critical strain amplitude.
The parameter γc = 0.1 (strain at cage breaking) is kept con-
stant for all curves.
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FIG. 7. (Color online) The loss modulus G′′(ω), for ∆/kBT =
5 and strain amplitudes: γ0 = 0.05, 0.08, 0.09, 0.1 and 0.11.
The relaxation peak at ωτ0 ∼ 1 changes very little during
the fluidisation transition. The parameter γc = 0.1 (strain at
cage breaking) is kept constant for all curves.

nal parameter τ0 at shear rates above γ̇τ0 ≥ 1. In con-
trast, in quasi-static equilibrium, the glass behaves as
a perfect solid with a well defined reference state, and
the equilibrium shear modulus. The model reproduces
the elastic-plastic transition, with the yield strain γ∗ in
Fig. 5 that distinguishes between the strong and weak
glasses. In turn, the parameter which discriminates be-
tween strong and weak glass is the bonding energy bar-
rier ∆ for a nearest-neighbour to be removed from the
cage. In the future, the spatial variation of energy barri-
ers and of relaxation times can be added to address more
complicated strain histories and the specificity of various
material chemistries.
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