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Abstract: A suite of grounding-line landforms on the Antarctic seafloor, imaged at 

unprecedented sub-meter horizontal resolution from an autonomous underwater vehicle, 

enables calculation of ice-sheet retreat rates from a complex of grounding-zone wedges on 

the Larsen continental shelf, western Weddell Sea. The landforms are delicate sets of up to 90 

ridges, <1.5 m high and spaced 20-25 m apart. We interpret these ridges as the product of 

squeezing up of soft sediment during the rise and fall of the ice-shelf grounding line during 

successive tidal cycles. Each ridge is preserved as the grounding line retreats. Grounding-line 

retreat rates of 40-50 m/day (>10 km/yr) are inferred during regional deglaciation of the 

Larsen shelf after the Last Glacial Maximum. If repeated today, such rapid mass loss to the 

ocean would have clear implications for increasing the rate of global sea-level rise.  

 

One Sentence Summary: Submarine landform patterns suggest past Antarctic ice-sheet 

retreat rates much faster than modern satellite observations.    
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Main Text: The ice shelves fringing about 75% of the Antarctic Ice Sheet represent a highly 

sensitive interface between ice and ocean, with potential for rapid grounding-line retreat and 

associated mass loss from the parent ice sheet (1, 2). It is not known, however, whether 

modern satellite-derived grounding-line retreat rates of tens to hundreds of meters per year, 

acquired over a time-window of about 30 years at most (3, 4), are representative of the 

maximum possible magnitude of retreat in, for example, West Antarctica’s Pine Island Bay.  

    An ice-sheet grounding zone is the region over which seaward-flowing ice decouples from 

its underlying bed and becomes a freely-floating ice shelf; the instantaneous, tidally 

modulated junction between grounded ice, the seafloor and the resulting sub-ice shelf ocean-

water cavity beyond is known as the ‘grounding line’ (5). The former grounding zone is often 

identified on high-latitude continental shelves by the presence of sedimentary depositional 

centres, grounding-zone wedges (GZWs), which provide a well-preserved geological archive 

of the transition zone between grounded ice sheets and floating ice shelves (5-7). GZWs build 

up predominantly through delivery of soft deforming sediments from the ice-sheet interior to 

the grounding zone along a line source. There is little space for vertical accretion in the 

restricted cavities immediately beyond the grounding zone (8) and GZWs are therefore 

typically subdued, asymmetrical features on the seafloor; they generally have a steeper ice-

distal face of a few degrees in slope angle and a more extensive ice-proximal portion often 

less than one degree (5, 7). GZW volumes can be up to several cubic kilometers, with the rate 

of formation depending on sediment supply and the duration of any still-stand during regional 

grounding-line retreat (5, 9).  

    We investigate, using an autonomous underwater vehicle (AUV) (10), the morphology and 

shallow stratigraphy of an ~9 km2 area of five GZWs within a 40 by 10 km grounding-zone 

complex preserved after ice retreat beneath about 500 m of water on the continental shelf 



offshore of Larsen Inlet, eastern Antarctic Peninsula (Figs. 1, 2) (11). Multibeam echo-

sounder data from the AUV are unprecedented in horizontal resolution at a few tens of 

centimeters (Materials and Methods), representing a step-change in our ability to observe 

fine-scale landforms preserved on the seafloor and to understand the highly sensitive setting 

of a former ice-sheet grounding zone and the processes operating there. The GZWs were 

deposited during deglaciation of the NE Antarctic Peninsula continental shelf following the 

Last Glacial Maximum (LGM), probably before the minimum age for the transition from 

grounded ice to ice shelf in the inner Larsen-A embayment at 10,700 cal. yr BP (derived by 

relative paleomagnetic intensity dating of core KC023, Fig. 1a (11-13)). They have remained 

almost undisturbed since ice retreat except for a thin drape of hemipelagic sediment (Fig. 2).  

    Surface-morphological evidence (Fig. 2a) and shallow acoustic stratigraphy (Fig. 2c, d) 

demonstrate that the GZWs cross-cut one another, providing a relative chronology for 

formation (Fig. 2b, inset). Heights varying between about 10-20 m mark the outer edges of 

GZWs 3, 4 and 5, and, together with limited acoustic-stratigraphic evidence (Fig. 2c, d), 

imply that the depocenters are approximately 10 to 20 m thick. Their asymmetry (Fig. 2a, d) 

is typical of over 100 GZWs identified elsewhere in the polar continental-shelf record (5, 7). 

GZWs a and 2-5 rest on an older surface (labelled 1 in Fig. 2b) that includes streamlined 

landforms (Fig. 2a), and nearby cores VC318 and VC247 (Fig. 1a) contain soft (<8 kPa) 

diamictic subglacial traction till that has undergone deformation (11, 14). These elongate 

sedimentary features, which are interpreted as mega-scale glacial lineations (MSGLs) (Fig. 

2a, e, f), are orientated in the direction of regional ice flow (Fig. 1a). The presence of MSGLs 

implies formation subglacially in soft sediments beneath actively flowing and probably fast-

flowing ice before and during GZW deposition (15, 16). In addition, the ice-distal margin of 

the GZWs, marking former ice-sheet grounding zones, contains a number of lobate forms 50-



100 m long (Fig. 2e, f) that are interpreted as debris flows demonstrating wedge progradation 

as deformation till was delivered to the grounding line by active ice.   

    On the low-gradient GZW surfaces a complex assemblage of fine-scale landforms is 

present, imaged at sub-meter resolution (Fig. 2a). The features are of two types forming the 

appearance of ‘ladders’ with numerous ‘rungs’. The sides of each ‘ladder’ are linear features 

typically 2-4 m high, hundreds of meters long, spaced 50-200 m apart and orientated sub-

parallel to the past ice-flow direction; they are interpreted as MSGLs. The MSGLs are 

formed within an acoustically semi-transparent unit that is overlain by a thin (c. 1 m) drape of 

sediment (Fig. 2c, d). Overprinting the MSGLs are sets of delicate transverse-to-flow ridges 

or ‘rungs’ that are typically <0.5 m high and spaced about 20-25 m apart (Table S1). These 

rungs are of relatively uniform morphology, with many having a steeper ice-distal side (Fig. 

3b-e).  

    This delicate submarine glacial landform assemblage, which we term ‘ladder and rung 

topography’, covers almost the whole imaged area of each GZW (Figs. 2a, 3). A maximum of 

90 rungs has been identified on GZW 4 (Fig. 3; Table 1). Although the rungs have greater 

seafloor expression in the depressions between MSGL crests, they can often be traced across 

the intervening and larger MSGLs, and series of up to 50 are continuous right across several 

of the GZWs (Fig. 3a). This implies that the rungs are younger than the larger flow-parallel 

MSGLs and the GZWs. The rungs are interpreted to have formed during retreat of the ice-

sheet grounding line across the GZW surface. Their regular spacing implies a cyclical 

formation mechanism.  

    Regularly spaced small transverse ridges have been observed occasionally at coarser 

resolution on high-latitude continental shelves and in fjords (17, 18). Graham et al. (18), for 

example, used an AUV to image distinctive sets of ridges along several individual transects 

beneath the floating tongue of Pine Island Glacier, West Antarctica, at 2 m grid-cell size. The 



dimensions, spacing, and plan-view and cross-sectional geometry of similar ridges observed 

on several Antarctic shelves are compared in Table S1. Many of the sets of small ridges, 

which have been referred to previously as corrugation ridges, have been interpreted as the 

product of tidal action that moves ice regularly up and down on a sedimentary seafloor (19). 

The ice can be in the form of iceberg keels, sub-ice shelf keels or a wider grounding line 

(Supplementary Text; Table S1). Where corrugation ridges are located within iceberg 

ploughmarks, they are likely to have been produced by the tidal motion of iceberg keels 

impinging on the seafloor (17). Corrugation ridges are also present within scours that are 

interpreted to have been produced by the forward ploughing of ice keels close to the 

grounding line (18). Where these ridges, or ‘rungs’, are more laterally extensive, as we 

observe over several kilometers on the Larsen shelf, and where they overprint MSGLs on the 

surface of GZWs (Fig. 2a), they likely form through regular vertical motion of an ice-sheet 

grounding line that leads to the squeezing up of deforming soft sediment as small ridges on 

each falling tide (18). Indeed, it has been observed that short-lived perturbations in upstream 

longitudinal stress and ice flow, associated with tidal-induced flexure at the grounding zone, 

can cause small changes in the surface of the Antarctic Ice Sheet even tens of kilometers 

inland of the grounding line (20, 21). By contrast, recessional moraine ridges, which are 

typically larger and less regularly spaced than the ‘rungs’ reported here (Table S1; 

Supplementary Text), have been described from the Ross and Amundsen seas and are thought 

to form by short-lived readvances of the grounding line during overall retreat (22-24). In 

Svalbard fjords, such ridges form during small winter readvances of tidewater glacier termini 

during regional glacier recession (25, 26). 

    Given their presence overprinting MSGLs on GZW surfaces, and continuity over at least 5 

km, the rungs of our ‘ladder and rung topography’ are interpreted to form by grounding-line 

sediment squeezing in successive tidal cycles (Figs. 2, 3). Grounding-line retreat is necessary 



in order to preserve individual rungs produced as the ice presses into the underlying soft 

sediment on each falling tide; otherwise the delicate rung would be deformed or partially 

eroded during the next tidal cycle. The individual rungs are generally well-developed and 

simple in morphology, with little evidence of subsequent disturbance (Figs. 2, 3). We provide 

a schematic model of the formation and preservation of ‘ladder and rung topography’ at the 

retreating grounding line of an ice shelf (Fig. 4). Although we favour an interpretation in 

which rung formation occurs at the grounding-line, it is possible that these features were 

produced subglacially, contemporaneous with the MSGLs. Subglacial processes for the 

formation of subdued transverse ridges could include sediment squeezing into basal crevasses 

as the ice moves forward, and/or water flow over sediment in the depressions between the 

MSGLs (18). 

    Our interpretation of ‘ladder and rung topography’ as a product of tidally induced 

grounding-line migration allows the past rate of deglacial retreat to be calculated over days to 

weeks. This is only possible due to the sub-meter resolution of our AUV-derived multibeam 

imagery (Figs. 2, 3). In the absence of systematic tidal-gauge observations, an inverse model 

of Weddell Sea tides by Padman et al. (27) predicts semidiurnal tidal heights generally <1.5 

m for the Larsen area today; maximum tidal ranges can exceed 3 m in some places.. During 

ship operations adjacent to Larsen C Ice Shelf in January 2019, we confirmed a strong 

coherency between the predictions of Padman’s tidal model and our on-board observations. 

Although the configuration of the Weddell Sea during deglaciation will differ in detail from 

today due to isostatic rebound and the presence of residual inner-shelf ice, gross basin-form 

will be largely similar.  

    The rate of deglacial grounding-line retreat is derived from the spacing between each rung. 

Such an implication would be valid whether the rungs were in fact produced along a whole 

section of the groundling line or by discrete ice-shelf keels impinging on the seafloor (18), 



although we favour the former mechanism for the Larsen shelf features given their 

considerable lateral continuity. Average rung spacing is between 20 and 25 m and the number 

of observed rungs in the imaged area of each GZW is between 28 and 90 (Table 1); there are 

likely to be many more rungs on the unimaged distal surfaces of the GZWs. Assuming 

formation during each semi-diurnal tidal cycle, this yields an average grounding-line retreat 

between 40 and 50 m/day over periods between 14 and 45 days. If extrapolated over the 

GZW surfaces landward of our imaged area, this gives grounding-line retreat of about 18 

km/yr, which might conservatively be halved to about 10 km if we assume that winter sea-ice 

cover might curtail ice-shelf flexure associated with long-period swell waves for about half 

the year (28). This retreat rate of many kilometers per year is at least an order of magnitude 

higher than that observed between 1992 and 2011 at Pine Island Glacier (1.6 km/yr) (29), 

which was itself two orders of magnitude greater than the average retreat rate for the last 

10,000 years (30). Short-lived phases of very rapid post-LGM retreat, of up to 100 km/yr, 

have also been simulated in numerical experiments by Jamieson et al. (31). The alternative 

model of rung formation, in which the rungs are produced subglacially (18), implies even 

higher rates of grounding-line retreat, as the ice would have to lift off from its bed near-

instantaneously in order to preserve the delicate rungs. 

    The implication is that retreat across the imaged area of the GZW complex on the Larsen 

continental shelf could have taken place in approximately one year. The multiple sets of 

GZWs suggest that periods of readvance and still-stand punctuated overall retreat, 

demonstrating the highly dynamic behaviour of the grounding line. Presumably, final rapid 

retreat would have exposed the distal sections of the GZW complex and continued through 

the remaining 30 km or so of Larsen Inlet, given the deepening water landward of our study 

area (Fig. 1a), and the increasing buoyancy of the grounding zone that would result. Thus, it 

appears that final deglacial retreat from the still-stand represented by the last of the 10-20 m 



thick GZWs was very rapid. This explains, too, why many streamlined glacial landforms, 

produced subglacially prior to deglaciation, are typically well-preserved and not overprinted 

by other landforms – retreat is sufficiently rapid that there is little deposition. Grounding-line 

retreat, as inferred here over each tidal cycle, is not necessarily accompanied by retreat of the 

ice-shelf frontal margin. For example, Pine Island Glacier underwent a sustained grounding-

line retreat of ~30 km between 1992 and 2011 (3, 4) but did not experience any significant 

change in its ice-shelf frontal position during that time (32). 

    The wider significance of our high-resolution observations of a past ice-shelf GZW 

complex is to show using the geological record that very high rates of grounding-line retreat 

are possible, greater by an order of magnitude than those reported for ice shelves since 

satellite observations began. Thus, a grounding-line retreat of, for example, 10 km/yr along a 

5 km length of a 500 m thick ice stream would yield a total ice mass loss of 25 km3/yr (23 

Gt/yr using an assumed ice density of 916.7 kg/m3). A similar calculation extrapolated across 

a 30 km-wide and 1 km-thick grounding line, the typical width and thickness of most ice-

stream centers in modern Pine Island Bay in West Antarctica, yields a total mass loss of 150 

km3/yr (138 Gt/yr). This value is 3-5 times greater than mean contemporary (1992-2017) 

rates of mass loss integrated over Pine Island Glacier’s entire drainage basin (31 km3/yr; 28.4 

Gt/yr) and the combined Thwaites-Pope-Smith-Kohler Glacier drainage system (50.3 km3/yr; 

46.1 Gt/yr), respectively (33). This implies that the rapid retreat of even a single Antarctic 

outlet glacier could, therefore, increase substantially the short-term mass-loss from the ice 

sheet. This is without taking account of residual ice-dynamic effects associated with ice-shelf 

loss (34); the removal of this buttressing effect provides an additional mechanism for 

substantial increases in ice discharge to the ocean from interior drainage basins (1, 2, 35). In 

addition, once retreat at this pace has begun, the self-stabilizing process of continuing 

subglacial sediment delivery to the grounding line to offset deglacial ice-shelf thinning and/or 



sea-level rise (36, 37) ceases to be important given the very short time, perhaps only a year or 

two, for sediment build-up.  
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Fig. 1. Map of the study area. (A) Map showing the location of the surveyed grounding-zone 

wedge complex in Larsen Inlet (red box). Black lines are GZW crests. White arrows show the 

former ice-flow direction. Red circles are locations of sediment cores KC023, VC247 and 

VC318. Background land area is from a Sentinel-2b Level-1C Top of Atmosphere reflectance 

image acquired on 5 December 2018. Background bathymetry is from the International 

Bathymetric Chart of the Southern Ocean (IBCSO) (38). BDE Trough = Bombardier, 

Dinsmoor and Edgemoor Trough. 1986, 1989 and 1995 ice-shelf frontal positions are from 

Cook et al. (39), and the 1963 ice-shelf front position was ascertained from declassified 

Argon satellite imagery (40). Inset shows the location of the study area (red box) on the 

Antarctic Peninsula (AP). Dashed grey line is present-day shelf break. LC = Larsen C Ice 

Shelf. (B) Bathymetric image of a GZW complex beyond Larsen Inlet, acquired from RRS 



James Clark Ross in 2002 using a Kongsberg EM120 multibeam echo-sounder with a 

frequency of 12 kHz. Grid-cell size 50 m. The image is modified from Evans et al. (11). 

Black arrows show GZW crests. 

 

Fig. 2. Geophysical data showing a GZW complex in Larsen Inlet, acquired from an AUV. 

(A) Bathymetric data of the GZW complex, derived from an AUV-deployed multibeam echo-

sounder. Grid cell-size is 1 m. Location is in Fig. 1a. (B) Interpretation of individual GZWs 

within the grounding-zone complex. Inset is a schematic diagram showing GZW stratigraphy 

as derived from multibeam echo-sounder data and sub-bottom profiles. GZWs a and 2-5 rest 

on an older surface (labelled 1). GZW a overlies surface 1 and is beneath GZW 5, but its 

stratigraphic position relative to GZWs 2-4 is unknown. (C) and (D) Sub-bottom profiles 

along the GZWs, showing the GZW stratigraphy and a thin (~0.7 m) uppermost draping unit 

(pink fill). (E) and (F) Detail of debris-flow lobes on the seaward flank of the GZWs. 

 

Fig. 3. Detail of ‘ladder and rung topography’. (A) The mapped distribution of ‘rungs’ or 

transverse-to-flow ridges on GZW surfaces. (B) and (C) Details of transverse-to-flow ridges 

on GZW surfaces. (D) and (E) Profiles across the ‘rungs’ shown in (B) and (C).  

 

Fig. 4. Schematic model (not to scale) of the hypothesised formation of ‘rungs’ or transverse-

to-flow ridges on the surface of a GZW. When a glacier transitions into a floating ice shelf, 

delicate transverse-to-flow ridges can form by tidally influenced ‘sit-downs’ of the grounding 

line. The ridges are formed at low tide by ice squeezing and pushing of sediments at the 

grounding line. The plan-view shape of the ridges reflects lateral variations in the shape of 

the grounding line. Series of parallel to sub-parallel ridges are formed when there is 

continuous grounding-line retreat. Because the ice is actively flowing during grounding-line 



retreat, as indicated by the presence of mega-scale glacial lineations (MSGLs), the parallel to 

sub-parallel nature of the rungs/ridges suggests that the shape of the ice-sheet base remained 

relatively constant in the ice-flow direction.  

 

GZW 

surface 

GZW 

max. 

thickness 

(m) 

GZW 

planar 

area 

(km²) 

Number 

of ridges 

Ridge 

height 

(m) 

Average 

ridge 

spacing 

(m) 

Average 

daily 

retreat 

(m) 

Retreat 

duration 

(days) 

1 

(several) 

/ 3.1 71 0.1-0.4 20 40 35 

a 
3 0.4 33 0.2-0.3 24 48 16 

2 
/ 0.3 28 0.2-0.6 25 50 14 

3 
16 1.4 44 0.3-1.0 20 40 22 

4 
15 2.3 90 0.5-1.5 21 42 45 

5 
9 1.0 40 0.2-0.4 20 40 20 

 

Table 1. Morphological characteristics of ‘rungs’ or transverse-to-flow ridges on GZW 

surfaces in the study area. GZW thickness is maximum thickness derived from sub-bottom 

profiles. GZW area is only given for those parts of the GZWs that were surveyed from the 

AUV (Fig. 2a); the GZWs most probably extend beyond the study area. Average daily retreat 

and retreat duration values are calculated assuming that the ridges were produced by tidally 

influenced ‘sit-downs’ of the grounding line (i.e. two rungs/ridges produced per day).  
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Materials and Methods 

    Multibeam swath-bathymetric data of the seafloor were acquired during a precisely geo-

located 12-hour dive of a Kongsberg Maritime Hugin 6000 AUV to image the complex of 

GZWs on the Larsen continental shelf in great detail. The AUV was fitted with an EM2040 

multibeam echo-sounder with 400 individual beams operated at 400 kHz and an EdgeTech 

216 sub-bottom profiler operating at 11 kHz to provide shallow acoustic stratigraphy. The 

AUV flew at a speed of 3.6 knots at 70 m above the seafloor in bottom-tracking mode, giving 

a swath-width of 400 m for the multibeam echo-sounder. An area of almost 9 km2 was 

imaged at a horizontal resolution of about 0.5 m using the multibeam system, and 64 line-km 

of sub-bottom profiler data were acquired on 32 legs to image the GZWs (Fig. S1).  

    Previous observations of the Larsen Inlet area from conventional hull-mounted multibeam 

echo-sounders had enabled the mapping of the GZW complex on the shelf beyond Larsen 

Inlet at a horizontal resolution of a few tens of meters (Fig. 1B) (11, 41–43). Knowledge of 

the location and general shape of the GZWs allowed us to construct the detailed grid survey 

in Figure S1 used in our high-resolution AUV-derived geophysical survey of the GZW 

complex.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Supplementary Text 

 

Fine-scale ridges in the geological record 

    The term ‘corrugation ridges’ has been used previously to encompass a variety of fine-

scale, transverse-to-flow ridges that are preserved on glaciated continental shelves. We 

interpret corrugation ridges as being produced by the tidally influenced grounding and 

ungrounding of ice into seafloor sediments. The ridges appear to form in three different 

glaciological settings: by icebergs, by sub-ice shelf keels, and at the grounding line (see 

references in Table S1). 

 

Corrugation ridges 

    Many of the fine-scale ridges that have been described previously as corrugation ridges on 

Antarctic continental shelves have been identified within linear to curvilinear depressions that 

are interpreted as iceberg ploughmarks (17, 19, 22, 44–47). In these cases, fine-scale ridges 

up to 3 m high have been suggested to form as icebergs move vertically with tides, causing 

their keels to contact and press into the seafloor intermittently. The parallel conformity of the 

ploughmarks and the regular spacing of the corrugation ridges have been explained by the 

icebergs being trapped within a frozen mélange of sea ice and small bergs (18, 19). Similar 

features have been reported from Arctic continental shelves (48, 49).  

    Corrugation ridges have also been identified within linear to curvilinear depressions that 

are interpreted to have been produced by the forward ploughing of sub-ice shelf keels close to 

the grounding line (18, 19, 22, 46). Sub-ice shelf keel scours can be distinguished from 

subglacially produced mega-scale glacial lineations (MSGLs) by their erosional form and 

lower parallel conformity. In addition, sub-ice shelf keel scours are often associated with 

terminal mounds that are formed by the pushing of sediment in front of the sub-ice shelf keel 

(19).  

    The ‘ladder and rung topography’ that we report and illustrate from Larsen Inlet (Figs. 2 

and 3) is interpreted to have been produced by the squeezing up of soft sediment during the 

rise and fall of the ice-sheet grounding line during successive tidal cycles. These fine-scale 

ridges differ from those that are interpreted to have been produced by the tidal motion of 

icebergs or sub-ice shelf keels (Table S1). Most notably, the ridges in Larsen Inlet are not 

confined within linear to curvilinear grooves that are interpreted as iceberg ploughmarks or 

sub-ice shelf keel scours. Instead, they are laterally continuous over a broad (c. 5 km) region 

of the seafloor (Fig. 2A) where they can be traced overprinting elongate linear ridges (Fig. 3B 

and C) on the low-gradient upper surface of GZWs. The linear ridges are interpreted as 

MSGLs because of their narrow spacing (50–200 m) and high parallel conformity (Fig. 2A). 

Comparison of geomorphological characteristics suggests that the ‘rungs’ in Larsen Inlet are 

generally slightly more subdued and more closely spaced than corrugation ridges that have 

been identified within iceberg ploughmarks or sub-ice shelf scours in Antarctica (Table S1). 

The cross-sectional geometry of the rungs, which is often asymmetric with a steeper ice-distal 

side (Fig. 3B and C), is interpreted to result from the squeezing of sediment into 

accommodation space immediately seaward of the grounding line (Fig. 4). This asymmetry is 

difficult to reconcile with ridge formation through the periodic grounding of sub-ice shelf 

keels.  

    We propose that the fine-scale features reported from the Ross Sea (50) and Prydz Bay, 

East Antarctica (51), may be similar to the ladder and rung topography that we present from 

Larsen Inlet, which we interpret to have been formed by tidal motion of the grounding line 

(Table S1). The ‘corrugation moraines’ that have been described by Shipp et al. (50) in the 

Ross Sea, which are 1–2 m high and spaced 40–100 m apart, occur on the low-gradient upper 

surface of GZWs and are associated with MSGLs. Similarly, ridges up to 1 m high and 



spaced around 50 m apart are described from Prydz Bay, East Antarctica, where they are 

associated with the upper surface of GZWs and have a slightly convex form between MSGLs 

(51). 

    The fine-scale ridges that we present from Larsen Inlet also appear similar to the seafloor 

corrugations reported from beneath Pine Island Glacier Ice Shelf by Graham et al. (18), 

which were interpreted to have been formed by tidal motion during the forward ploughing of 

sub-ice shelf keels. The ridges beneath Pine Island Glacier Ice Shelf have similar dimensions 

(heights of 0.1–1 m) and regular spacing (roughly 50–80 m) to those reported from Larsen 

Inlet. Other similar observations include that the ridges thin where they overprint the crests of 

associated elongate ridges, and that some of the fine-scale ridges are paired (e.g. Fig. 3B and 

C) (18). It is not possible to fully assess the wider geomorphological context of the data 

acquired beneath Pine Island Glacier Ice Shelf because those observations were acquired 

during single AUV transects which provide little lateral continuity of form. 

 

Recessional moraines 

    Corrugation ridges have markedly different geomorphological characteristics compared to 

recessional moraines that are formed by the delivery and ice-pushing of sediment during 

short-lived re-advances of the grounding line during overall retreat (Table S1). Although 

small recessional moraines, which are often referred to as De Geer moraines and can be 

formed annually (52), are usually identified in assemblages of tens to hundreds of ridges that 

are a few meters high, they are typically sub-parallel to each other and less regularly spaced 

than tidally produced ridges. Recessional moraines have been identified mainly on Northern 

Hemisphere continental shelves and in fjords (25, 26, 53) but have also been reported from 

Antarctic shelves and bays (22–24, 54–56).  

 

Alternative hypotheses for fine-scale ridge formation  

    The squeezing of soft sediments into crevasses at the ice-sheet base during ice stagnation 

has been suggested as a possible mechanism for the formation of fine-scale ridges in the 

geological record (18, 50). However, the fine-scale ridges in Larsen Inlet (Figs. 2 and 3) 

clearly lack the characteristic rhombohedral plan-view geometry of crevasse-fill ridges, as 

well as their sharp crests and steep sides (26). It is possible that the fine-scale ridges are 

sediment waves formed by ocean currents, and this interpretation is favored by O’Brien et al. 

(51) for the features in Prydz Bay, East Antarctica. Although it is possible that ocean currents 

beneath ice shelves are modulated by tides, the formation of sediment waves would require 

the availability of coarse well-sorted sediment (18). We note that in sediment core VC318, 

which was acquired on the upper surface of the GZWs in Larsen Inlet, close to the surveyed 

area (Fig. 1A), 0.4 m of fine-grained sediment interpreted to have been deposited in an open 

marine or sub-ice shelf setting distal from the grounding line, overlie 0.8 m of thick 

diamicton beds alternating with thin fine-grained layers, which are interpreted as sub-ice 

shelf sediments deposited proximal to the grounding line. These grounding-line proximal 

sediments are underlain by 1.5 m of massive, matrix supported diamicton interpreted as 

subglacial soft till (11). 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure S1. Map showing the track lines (white lines and black arrows) of the autonomous 

underwater vehicle (AUV) that acquired the multibeam and sub-bottom profiler data 

presented in this study. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Table S1. Comparison of the geomorphological characteristics of corrugation ridges and 

recessional moraines on Antarctic continental shelves.   

 
 Corrugation ridges  

(produced by the interaction of ice and tides at the seafloor) 

Recessional 

moraines  

(produced by the 

ice-pushing of 

sediment during 

short-lived re-

advances of the 

grounding line) 

Produced by iceberg 

keels, often in 

mélange 

Produced by the 

forward ploughing 

of sub-ice shelf 

keels 

Produced along the 

grounding line 

during grounding-

line retreat  

(‘ladder and rung 

topography’) 

Ridge height 

 

 

0.2 – 3.4 m 0.5 – 3 m  0.1 – 2 m; more 

pronounced in 

depressions 

between MSGL 

0.5 – >10 m 

Ridge length Spans width of 

iceberg ploughmark 

Spans width of sub-

ice shelf keel scour 

Laterally 

continuous over 

several kilometers  

Several hundred 

meters to 

kilometers 

Ridge spacing Regular to irregular; 

tens to hundreds of 

meters 

Highly regular; tens 

to hundreds of 

meters 

Highly regular; 

several tens of 

meters 

Irregular; tens of 

meters to several 

kilometers 

Cross-sectional 

geometry 

Symmetric or 

asymmetric 

Symmetric or 

asymmetric 

Often asymmetric 

with steeper ice-

distal side; some 

ridges are ‘paired’ 

Symmetric or 

asymmetric with 

steeper ice-

proximal side 

Plan-view 

geometry 

Linear to convex Linear to convex  Linear to convex; 

overprint MSGL 

Linear to sinuous; 

continuous to 

discontinuous 

Wider 

geological 

context 

Confined within 

iceberg ploughmarks 

Confined within 

sub-ice shelf keel 

scours 

Overprint MSGLs 

on the low-gradient 

upper surface of 

GZWs 

Sometimes 

overprint MSGL 

Previous 

interpretations 

of corrugation 

ridges in the 

literature 

‘Washboard pattern’ 

(Barnes and Lien 

(44); Lien et al. (45)) 

 

‘Corrugation ridges’ 

(Jakobsson et al. 

(17); Klages et al. 

(46); Halberstadt et 

al. (22); Jakobsson 

and Anderson (47); 

Smith et al. (19)) 

 

‘Corrugations’ 

(Graham et al. 

(18)) 

 

‘Corrugation 

ridges’  

(Klages et al. (46); 

Halberstadt et al. 

(22); Smith et al. 

(19)) 

‘Washboard 

moraines’ 

(Anderson, (57)) 

 

‘Dunes’ 

(O’Brien et al. 

(51)) 

 

‘Corrugation 

moraines’  

(Shipp et al. (50)) 

 

 This study 

‘Small marginal 

moraines’ 

(Halberstadt et al. 

(22)) 

 

‘Recessional 

moraines’  

(Klages et al. (23, 

54); Simkins et 

al. (24, 55); 

Batchelor et al. 

(56)) 

 

 

 

 

 

 

 

 



References 

 

(41) J. Evans, K. A. Hogan, “Grounding-zone wedges on the northern Larsen shelf, Antarctic 

Peninsula” in Atlas of Submarine Glacial Landforms: Modern, Quaternary and Ancient, J. 

A. Dowdeswell, M. Canals, M. Jakobsson, B. J. Todd, E. K. Dowdeswell, K. A. Hogan, 

Eds. (Geological Society, London, Memoirs Series, 2016), vol. 46, pp. 237–238. 

(42) C. Lavoie, E. W. Domack, E. C. Pettit, T. A. Scambos, R. D. Larter, H.-W. Schenke, K. 

C. Yoo, J. Gutt, J. Wellner, M. Canals, J. B. Anderson, D. Amblas, Configuration of the 

Northern Antarctic Peninsula Ice Sheet at the LGM based on a new synthesis of seabed 

imagery. Cryosphere 9, 613–629 (2015). 

(43) J. M. Campo, J. S. Wellner, E. Domack, C. Lavoie, K.-C. Yoo, Glacial geomorphology of 

the northwestern Weddell Sea, eastern Antarctic Peninsula continental shelf: shifting ice 

flow patterns during deglaciation. Geomorphology 280, 89–107 (2017). 

(44) P. W. Barnes, R. Lien, Icebergs rework shelf sediments to 500 m off Antarctica. Geology 

16, 1130–1133 (1988). 

(45) R. Lien, A. Solheim, A. Elverhøi, K. Rokoengen, Iceberg scouring and sea bed 

morphology on the eastern Weddell Sea shelf, Antarctica. Polar Res. 7, 43–57 (1989). 

(46) J. P. Klages, G. Kuhn, A. G. C. Graham, C.-D. Hillenbrand, J. A. Smith, F. O. Nitsche, R. 

D. Larter, K. Gohl, Palaeo-ice stream pathways and retreat style in the easternmost 

Amundsen Sea Embayment, West Antarctica, revealed by combined multibeam 

bathymetric and seismic data. Geomorphology 245, 207–222 (2015).  

(47) M. Jakobsson, J. B. Anderson, “Corrugation ridges in the Pine Island Bay glacier trough, 

West Antarctica” in Atlas of Submarine Glacial Landforms: Modern, Quaternary and 

Ancient, J. A. Dowdeswell, M. Canals, M. Jakobsson, B. J. Todd, E. K. Dowdeswell, K. A. 

Hogan, Eds. (Geological Society, London, Memoirs Series, 2016), vol. 46, pp. 265–266. 

(48) K. Andreassen, M. C. M. Winsborrow, L. R. Bjarnadóttir, D. C. Rüther, Ice stream retreat 

dynamics inferred from an assemblage of landforms in the northern Barents Sea. Quat. Sci. 

Rev. 92, 246–257 (2014). 

(49) J. A. Dowdeswell, K. A. Hogan, “Huge iceberg ploughmarks and associated corrugation 

ridges on the northern Svalbard shelf” in Atlas of Submarine Glacial Landforms: Modern, 

Quaternary and Ancient, J. A. Dowdeswell, M. Canals, M. Jakobsson, B. J. Todd, E. K. 

Dowdeswell, K. A. Hogan, Eds. (Geological Society, London, Memoirs Series, 2016), vol. 

46, pp. 269–270. 

(50) S. S. Shipp, J. S. Wellner, J. B. Anderson, “Retreat signature of a polar ice stream: sub-

glacial geomorphic features and sediments from the Ross Sea, Antarctica” in Glacier-

influenced Sedimentation on High-latitude Continental Margins, J. A. Dowdeswell, C. Ó 

Cofaigh, Eds. (Geological Society, London, Special Publications, Springer, 2002), vol. 

203, pp. 277–304. 

(51) P. E. O’Brien, L. De Santis, P. T. Harris, E. Domack, P. G. Quilty, Ice shelf grounding 

zone features of western Prydz Bay, Antarctica: sedimentary processes from seismic and 

sidescan images. Antarct. Sci. 11, 78–91 (1999). 

(52) M. Lindén, P. Möller, Marginal formation of De Geer moraines and their implications to 

the dynamics of grounding-line recession. J. Quat. Sci. 20, 113–133 (2005). 

(53) D. J. Burton, J. A. Dowdeswell, K. A. Hogan, R. Noormets, “Little Ice Age terminal and 

retreat moraines in Kollerfjorden, NW Spitsbergen” in Atlas of Submarine Glacial 

Landforms: Modern, Quaternary and Ancient, J. A. Dowdeswell, M. Canals, M. 

Jakobsson, B. J. Todd, E. K. Dowdeswell, K. A. Hogan, Eds. (Geological Society, London, 

Memoirs Series, 2016), vol. 46, pp. 71–72. 



(54) J. P. Klages, G. Kuhn, C.-D. Hillenbrand, A. G. C. Graham, J. A. Smith, R. D. Larter, K. 

Gohl, First geomorphological record and glacial history of an inter-ice stream ridge on the 

West Antarctic continental shelf. Quat. Sci. Rev. 61, 47–61 (2013). 

(55) L. M. Simkins, S. L. Greenwood, J. B. Anderson, Diagnosing ice sheet grounding line 

stability from landform morphology. Cryosphere 12, 2707–2726 (2018). 

(56) C. L. Batchelor, J. A. Dowdeswell, K. A. Hogan, R. D. Larter, E. Parsons, O. West, 

Processes and patterns of glacier-influenced sedimentation and recent tidewater glacier 

dynamics in Darbel Bay, western Antarctic Peninsula. Antarct. Sci. 31, 218–227 (2019).   

(57) J. B. Anderson, Antarctic Marine Geology (Cambridge University Press, 1999).  

 

 


