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Granzyme A (GrA) has long been recognized as one of the key players in the induction of

cell death of neoplastic, foreign or infected cells after granule delivery by cytotoxic cells.

While the cytotoxic potential of GrA is controversial in current literature, accumulating

evidence now indicates roles for extracellular GrA in modulating inflammation and

inflammatory diseases. This paper aims to explore the literature presenting current

knowledge on GrA as an extracellular modulator of inflammation by summarizing (i)

the presence and role of extracellular GrA in several inflammatory diseases, and (ii) the

potential molecular mechanisms of extracellular GrA in augmenting inflammation.
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INTRODUCTION

Granzymes are a family of homologous serine proteases primarily expressed by a collective of
cytotoxic cells, i.e., cytotoxic T lymphocytes (CTLs), γδ T cells, natural killer (NK) cells, NK-T cells.
Classically the role of cytotoxic cells is described as promoting cytotoxic lymphocyte-mediated
eradication of neoplastic, foreign or infected cells via the induction of (apoptotic) cell death (1).
Apoptosis mediated by cytotoxic cells is induced via engagement of the death receptor pathway
or the granule secretory pathway (2). Whereas the death receptor pathway involves death cell
surface receptor-ligand interaction and caspase recruitment, the granule secretory pathway delivers
granzymes through a process involving the aid of perforin, a pore-forming protein, to target cells
(3, 4). Upon recognition of a target cell, cytotoxic cells release the content of granules into the
immunological synapse. Perforin provides granzymes access to the cytosol of the targets cell, where
granzymes cleave their cohort of substrates to promote programmed cell death (5, 6). To date, five
human granzymes are known (granzymes A, B, H, K, and M), while ten mouse granzymes have
been identified (7). Granzyme A (GrA, a tryptase) and granzyme B (GrB, an aspartase) being best
characterized (3, 8). Although, human granzymes are highly homologous in amino acid sequence
(40%), they variate in their primary substrate specificity (amino acid after which the granzyme
preferably cleaves) resulting in a unique granzyme degradome (9).

GrA is the most abundant protease present in cytotoxic granules and is reported as dominant
mediator of toxicity in vitro (4). Among serine proteases GrA has an unique quaternary structure
consisting of a disulphide-linked homodimer of 60kDa linked via Cys93 (10). Dimerization creates
a high degree of specificity for GrA due an extended site for its substrates (11). GrA cleaves substrate
after Arg or Lys like its closest homolog GrK, whilst GrB cleaves after Asp or Glu, GrM after Leu
or Met and GrH after Tyr or Phe (12). One intracellular inhibitor has been identified for GrA
(Serpinb6b) (13), whilst two extracellular inhibitors have been reported [Kazal-type pancreatic
secretory trypsin inhibitor (14), serpin antithrombin III (SERPINC1) (15)]. With its tryptase-like
activity GrA has been shown to activate caspase independent cell death pathways with the cleavage
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of the mitochondrial protein NDUFS3 resulting in reactive
oxygen species (ROS) generation. Triggered by ROS, the SET
complex translocates to the nucleus where GrA cleaves SET
complex components which result in opening of the DNA (due
to targeting of histones) and single stranded DNA nicks (16–
20). However, both human studies and in vivo mouse studies
indicate that GrA by itself is not cytotoxic in contrast with
initial in vitro reports (21). Furthermore, new in vitro studies
also indicate contrasting results with native human GrA showing
a lack of cytotoxicity in vitro, whilst recombinant mouse GrA
studies contrastingly demonstrate cytotoxicity in several in vitro
assays (4, 22). This may suggest alternatives roles for GrA.

The functioning of GrB has recently been redefined by the
discovery of multiple extracellular roles including the mediation
of skin injury, inflammation and repair (23). Moreover,
cumulative clinical and biochemical evidence indicate elevated
levels of extracellular GrA in plasma, serum, synovial fluid
and bronchoalveolar lavage (BAL) fluid. This includes patients
with various viral infections, bacterial infections or other pro-
inflammatory conditions (8, 24, 25). These elevated levels
of extracellular GrA could potentially reflect spontaneous or
inadvertent release of granzymes after elevated CTL/NK numbers
in response to persistent inflammation, however extracellular
biological effects are increasingly described (6, 8) (Figure 1).
Furthermore, dendritic cells, mast cells and macrophages can
express GrA but not perforin, suggesting perforin-independent
(extracellular) roles for granzymes (26). Yet, little has so far been
described on potential functioning of extracellular GrA.

This paper aims to explore the literature presenting current
knowledge onGrA as an extracellularmodulator of inflammation
by summarizing (i) the presence and suggested roles of
extracellular GrA in several inflammatory diseases, and (ii) the
molecular mechanisms of GrA in augmenting inflammation.

EXTRACELLULAR GRANZYME A DURING
INFLAMMATORY DISEASE

Microbial Infections, Bacteria
A plethora of pathogenic micro-organism exists (bacteria,
viruses, parasites, and fungi) that can infect the human body.
Exposure typically leads to acute infection that with appropriate
immune response subsides in the elimination of the involved
pathogen within days (27). With 1.6 million deaths and 10
million cases in 2017 alone, tuberculosis (TB) remains a
global health problem with impaired control by the emergence
of drug resistant forms of Mycobacterium tuberculosis (28,
29). Extracellular plasma GrA levels are increased in patients
with TB in comparison with control patients, suggesting that
extracellular GrA could be a potential new therapeutic target
in the inflammatory response to mycobacteria (29–31). In
TB, extracellular GrA has been found to induce inflammatory
responses that lead to intracellular anti-microbial activity in
vitro. Co-culture of mycobacteria infected macrophages with
either mycobacteria specific Vγ9Vδ2 T cells or purified GrA
result in the production of the pro-inflammatory cytokines TNFα
and IL-1β by macrophages. This alone or in combination with

unidentified factors results in the inhibition of intracellular
mycobacterial growth. The inhibitory mechanism is independent
of perforin, apoptosis, autophagy, nitric oxide production, type
I interferons, and Fas/FasL. Necessity of TNFα is clear, as anti-
TNF neutralizing antibodies prevent the inhibitory activity of
Vγ9Vδ2 T cells and TNF knockdown prevents inhibition of
intracellular mycobacterial growth. As high levels of TNFα is
a marker of uncontrolled mycobacterial growth, it is currently
believed that in vitro GrA mediated inhibition of mycobacterial
growth includes other factors in addition to TNFα. The complete
molecular signature responsible for GrA-mediated response and
how TNFα influences mycobacterial growth therefore remains
unknown (31). In an attempt to find a potential source of
increased GrA in vivo, correlations between intracellular and
extracellular granzymes were analyzed in active TB patients.
However, this did not yield any significant results for the human
lymphocyte populations studied (30). Furthermore, a recent
mouse study on the in vivo role of GzmA in tuberculosis
infection contradicts in vitro results. Although, GzmA is
expressed by cytotoxic cells from mouse lungs during infection,
GzmA knockout mice show no difference in lung bacterial
burden compared to wildtype mice in long and short-term M.
tuberculosis infection. This suggests extracellular GrA may not
have a protective role in vivo in tuberculosis response (32).

Studies on sepsis and experimental endotoxemia found
extracellular GrA plasma levels significantly higher in severe
sepsis, septic shock and endotoxemia (33, 34). Experimental
endotoxemia, a well-accepted model of systemic inflammation in
humans, was induced by intravenous injection of the endotoxin
LPS in volunteers. Extracellular plasma GrA increases peaking
at 2 h post administration and associates with a decrease in
the number of CTL and NK cells in the circulation. The
latter suggests that LPS administration results in the activation
of cytotoxic lymphocytes in vivo, which results in a quick
granzyme release (33). Patients with melioidoses caused by
Burkholderia pseudomallei, a gram-negative bacterium, also
indicate increased serum levels of GrA in comparison with
control subjects on admission and remained high during the
72 h study period. Serum GrA levels were not significantly
elevated in patients with non-bacteremic melioidosis (33).
Additionally, while patients infected with Salmonella enteric
(1) in typhoid fever and Streptococcus Pneumoniae (35) in
community-acquired pneumonia had elevated GrA levels in
acute phase plasma and BAL, respectively, patients withNeisseria
meningitides (36) infection did not, except for patients with
shock. Extracellular plasma GrA levels in patients with typhoid
fever correlate with IFN-γ, which is critical in the systemic
control of S. enterica infections (1, 35). Combining these findings
from several bacteria with the observation that stimulation
with endotoxin strongly induces secretion of extracellular GrA,
GrA release is most likely a general (acute-phase) immune
response during bacterial infection and not specific for certain
species (33).

Experimental results in mice suggest that GrA-induced release
of pro-inflammatory cytokines contribute to the development
of sepsis during infection with Brucella microti, without being
essential for clearance of B. microti. GrA−/− mice injected
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FIGURE 1 | Suggested mechanism resulting in extracellular granzyme A release. Granzyme A can be release as a result of (1) constitutive granzyme A secretion after

degranulation, (2) leakage of granzyme A from the immunological synapse, (3) degranulation after engagement of integrin with the ECM, (4) induction of degranulation

by locally released chemokines (5) induction of degranulation by bacteria or LPS (8).

with a sublethal dose of the bacterium clear the infection
like wild-type (WT) mice, while GrB−/− mice, perforin−/−

mice and mice depleted of cytotoxic CD8+ T cells do not.
GrA−/− mice have a higher survival rate compared with WT
mice and perforin or GrB depleted mice, which is correlated
with a significant reduction in the levels of the cytokines
IL-1α, IL-1β, IL-6. Transfer of WT NK cells into GrA−/−

mice reverses susceptibility to sepsis, indicating that NK cells
are the source of GrA during the infection (37). As both
perforin−/− and perfxgzmAxB−/− mice are equally susceptible
to sepsis as WT mice, this study was unable to determine
whether the participation of GrA occurs intracellularly or
extracellularly (7, 37). In agreement with this, similar studies
reported that GrA−/− mice are more resistant to LPS induced
toxicity compared to WT mice, GrA−/− mice show increased
survival and lower bacterial load in BAL during S. Pneumoniae
infection and GrA−/− mice have reduced levels of pro-
inflammatory cytokines during S. Pneumoniae infection (21,
35, 38). These data support a role for this granzyme in pro-
inflammatory cytokine signaling during infection. By targeting
GrA, bacteria-mediated sepsis can therefore be ameliorated
without compromising the ability of the immune system
to control infection. Exact molecular mechanisms are to be
determined (7).

Microbial Infections, Viruses
In addition to bacterial infections, viruses can infiltrate the
human body and initiate an immune response mediated by
cytotoxic lymphocytes (39). Longitudinal plasma samples from
EBV-infected patients and one HIV-1 infected patient show
increased levels of GrA in plasma during the acute phase
of the infection and subsequent decline during its resolution.
Increase in plasma GrA levels occur simultaneously with early
markers of infection (40). Similarly, elevated plasmaGrA is found
in patients with dengue fever and cytomegalovirus infection
after renal transplantation and in patients with respiratory
syncytial virus infection (41–43). In the latter infection, plasma
GrA clearly correlates with increased IL-8 levels and white
blood cell counts after acute onset respiratory tract illness
(43). In both non-human primates (44) and in chikungunya
fever patients (44, 45), circulating GrA levels are elevated after
chikungunya virus infection. Peak levels coincide with peaks
of circulating IFNγ levels, increased viral load and disease
scores in these patients (44, 45). It may seem conceivable
that GrA contributes to the clearance of viral infections in
humans by inducing a pro-inflammatory immune response
in accordance with the correlated upregulation of cytokines
and extracellular GrA in viral infections. Cytokines could
directly inactivate the intracellular virus or they recruit and
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activate immune cells to remove infected cells (4). Yet, in vivo
conflicting knockout mouse studies suggest these hypotheses
may not be reliable. GrA deficiency does not seem to affect
susceptibility to infections with e.g., chikungunya virus (44) and
lymphocytic choriomeningitis virus (LMCV) (46). In contrast,
GrA deficiency exhibited increased susceptibility to mousepox
ectromelia (Ect) (47), herpes simplex virus (HSV) (48) and
mouse cytomegalovirus (MCMV) (49). Control of the latter
pathogens is often only delayed, without compromising mice
survival, suggesting compensation mechanisms for absent GrA
(50). Subcutaneous injection of enzymically active recombinant
mouse GrA was able to mediate inflammation of chikungunya,
zika and dengue virus (45).

Moreover, it has been found that several granzymes [e.g., GrH
(51, 52), GrB (52), GrM (53)] can cleave viral [e.g., adenoviral
DNA-binding protein (DBP) (52), phosphoprotein 71 (pp71)
(53)] and host cell proteins involved in protein synthesis [e.g., La
(51)] leading to restriction of viral replication (9, 54). In addition,
the SET complex (a GrA/GrK substrate) has shown to be required
for efficient HIV-1 infection by preventing autointegration (55)
and for transcription of early genes during adenovirus infection
(56). Whether extracellular GrA might also be able to cleave
viral surface proteins, viral proteins expressed on the surface
of infected cells, or host-surface proteins involved in the viral
infection needs to be further explored (5, 9, 54). Interestingly,
several viruses [e.g., cowpox virus (57), myxoma virus (58)] have
been reported to encode proteins that inhibit GrB, suggesting
immune evasive adaptations (59, 60), whilst no viral inhibitors
have been described for GrA in the current literature.

Microbial Infections, Parasites
Parasites comprise diverse organisms with complex life
cycles and often life-cycle specific interactions with the host
immune systems. Many are long-term (chronic) persistent
in the host due inadequate host immunity. Limited studies
explored extracellular GrA in parasitic infections. A study
in Cameroon showed that children presenting with clinical
malaria (Plasmodium falciparum) have significantly increased
concentrations of extracellular plasmaGrA. Likewise, five healthy
Dutch volunteers with no prior exposure to malaria that were
experimentally infected by P. falciparum displayed extracellular
plasma GrA increment 1-2 days prior to clinical symptoms and
microscopically detectable parasitemia. This coincided with
increases in IFNγ , IL-12p40, and IL-8. Although, granzymes
are often considered as marker for CTL/NK involvement,
additional roles in inflammation cannot be excluded and have
to be determined (61). A study exploring the in vivo role of
GzmA in mice showed that GzmA deficiency did not impact
the outcome of Leishmania major infection (62). Other in vivo
mice studies [e.g., on Trypanosoma cruzei (63)] used double
knock-outs (e.g., GrA×B−/−) and therefore precludes drawing
conclusions on GrA.

Rheumatoid Arthritis
Rheumatoid Arthritis (RA) is a chronic autoimmune disease
characterized by inflammation of the joints (synovitis),
autoantibodies, systemic inflammation and cartilage and bone

destruction (64, 65). The synovial membrane is infiltrated by
multiple immune cells, including T cells, B cells, macrophages,
and NK cells. Inflammation, predominantly mediated by IL-1
and TNF, leads to joint swelling and pain (64, 66). The final
outcome of the disease is destruction of the joint (64, 65).
Although external factors regulating TNF are well-known,
endogenous factors may amplify TNF expression.

Increased levels of GrA in plasma, synovial fluid, and synovial
tissue have been described in RA patients (40, 41, 66, 67).
Markedly higher levels of GrA have been recorded in synovial
fluid (up to 10-fold higher than patients with osteoarthritis or
reactive arthritis), whereas GrA plasma levels are more similar to
those of healthy controls. This suggest a local GrA release (40, 66).
Mice with collagen induced arthritis (CIA) have significantly
elevated extracellular levels of GrA in their joints and plasma
and activated CLs at early and late RA stages. CIA was only
slightly reduced in perforin−/− mice, therefore the function
of GrA seems perforin independent (68). Together with the
finding of activated cytolytic cells in RA synovium, these results
strongly suggest that GrA is synthesized and secreted locally in
the rheumatoid joint and plays a role in the pathogenesis of RA
(24, 33). However, further studies are required to validate and
explore these hypotheses.

The function of extracellular GrA in synovial inflammation
and joint destruction remains unclear. As for bacterial sepsis,
GrA promotes inflammation of the joint by stimulating the
release of pro-inflammatory cytokines (7, 37, 66). IL-1β, TNF-α,
IL-6, and IL-8, produced mainly by macrophages and fibroblasts,
are abundantly present in the synovium of RA patients (66).
CIA mice have increased levels of IL-6 and TNF-α during
both early and late stages of RA compared with WT mice,
whereas these cytokines are reduced in GrA−/− CI mice (68).
Furthermore, GrA may contribute to rheumatoid arthritis partly
by promoting mice osteoclast precursor differentiation via the
stimulation of TNF-α secretion of monocytes and osteoclast
precursors present in the inflammatory joint (68). Osteoclasts
are cells that carry out bone resorption and have been shown
to contribute to joint destruction in RA (69). Finally, ECM
degradation induced by extracellular GrA might contribute to
pathogenesis. Biologically active fibronectin fragments found in
the synovium can induce neutrophil and monocyte chemotaxis,
induce matrix metalloproteinase (MMP), induce chondrocyte
aggrecanase expression and disrupt chondrocyte cell adhesion
(8). ECM degradation may assist migration of activated cytotoxic
T lymphocytes through the endothelial basement membrane
and facilitate the influx of mononuclear cells contributing to
hyperplasia and joint destruction (70).

Inflammatory Lung Disease
Numerous lung diseases are characterized by the presence of
activated alveolar CTL and NK cells. Active GrA levels are
locally increased in the BAL fluid, but not in blood, of patients
with CD8+ T-cell-mediated hypersensitivity pneumonitis (HP)
compared to control subjects. This is in contrast with increased
plasmatic GrA concentrations in several viral, bacterial and
parasitic infections (Table 1). Not surprisingly, TNFα, IL-6, and
IL-8 are increased in BAL of HP patients coinciding with GrA
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TABLE 1 | Detection of extracellular granzyme A in patients with infections or pro-inflammatory disease.

Disease status Extracellular space

Plasma/Serum Synovial

fluid

BAL Sputum

Lung disease

Asthma

Hypersensitivity pneumonitis (HP)

Chronic obstructive pulmonary disease (COPD)

− (71)

− (72)

− (73)

↑ (71)

↑ (74)

↑ (75)

Viral infection

Chikungunya virus (CHIKV)

Cytomegalovirus (CMV)

Dengue virus (DENV)

Epstein-barr virus (EB)

Human immunodeficiency virus (HIV)

Respiratory syncytial virus (RSV)

↑ (44, 45)

↑ (41, 42)

↑ (41)

↑ (40)

↑ (40)

↑ (43)

Bacterial infection

Burkholderia pseudomallei (melioidosis)

Mycobacterium tuberculosis

Neisseria meningitidisa

Salmonella enterica

Streptococcus Pneumoniae

Endotoxemiab

Severe sepsisc

Septic shock patientsc

↑ (33)

↑ (29, 30)

− (36)

↑ (1)

↑ (33)

↑ (34)

(34)

↑ (35)

Parasitic infection

Plasmodium falciparum ↑ (61)

Arthritis

Rheumatoid arthritis (RA)

Osteoarthritis (OA)

Reactive arthritis

↑ (41, 66), (40)

− (66)

− (66)

↑ (40, 66, 67)

Other

Acute renal allograft rejectiond

Behçet’s disease

Celiac disease

Cow’s milk protein sensitive enteropathy

− (42)

↑ (76)

↑ (77)

↑ (77)

BAL, bronchoalveolar lavage Symbols: ↑: higher levels compared to healthy individuals; −: no difference or non-significant difference. aOnly increased in patients in shock

(although marginally).
bExperimental human endotoxemia was used as a well-accepted model of systemic inflammation in humans. Volunteers received a bolus of intravenous injection of Escherichia coli

endotoxin (LPS) (33).
cPatients suffered from gram negative or positive infections, respectively. Some patients suffered from infection by multiple microorganisms. In some patient no infectious agent was

found (34). dConcurrent viral infections were absent during acute rejection episode (42).

Sole inclusion of primary research.

levels (71). GrA positive cells and increased levels of GrA in
sputum are also found in some smoking patients with asthma,
smokers and nonsmoking patients with asthma (73, 74, 78). Both
support a role for extracellular GrA in the lung inflammatory
response. In allergic asthma there was no increase of GrA in BAL
consistent with the absence of a lymphoid source (e.g., CTLs)
(73, 74, 78). Moreover, GrA mRNA and IL-1β, IL-6, IL-8, and
TNFαmRNAwere upregulated in cells from BAL of patients with
acute respiratory distress syndrome following sepsis. Though
indirect, it has been suggested that this might indicate elevated
extracellular GrA levels (79).

Immunohistological studies indicate GrA expression by
CTLs, NKs, alveolar macrophages, bronchiolar epithelium and
type II pneumonocytes in both control subjects and chronic
obstructive pulmonary disease (COPD) patients. GrA expression
is significantly increased in sputum and/or lung specimens of
patients with COPD in comparison with controls, but not in

blood (72, 75, 80). Like in HP this suggest local lung GrA
expression and tissue destruction (72). Several roles have been
postulated in COPD. IL-6 and IL-8 show increased expression
in COPD patients, indicating potential pro-inflammatory roles
of GrA (80). Conjointly, recombinant rat GrA was found to
cause rounding and detachment of an alveolar type II epithelial
cell line (A549 cells), probably through its ability to cleave
ECM, and was found to stimulate IL-8 via a mechanism
involving microtubule disruption. This suggests that GrA might
be involved in lung disease pathogenesis by loss of alveolar wall
structures, chronic inflammation and neutrophil accumulation
(81). It is noteworthy that the sulfated oligosaccharide k-
carrageenan can inhibit the GrA promoted detachment of A549
cells in vitro, releasing IL-8. This might be of use for clinical
purposes (82). Examination of BAL fluid and GrA−/− mouse
models could provide further insights in the role of GrA in
COPD patients.
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In conclusion, locally elevated extracellular GrA is likely to
play a role in general lymphocytic lung disease by enhancing
inflammation in the lungs through release of pro-inflammatory
cytokines and contributing to tissue damage. Nevertheless,
additional research is required on the multifactorial roles of GrA
in lung tissue destruction.

Other Inflammatory Diseases
Other diseases, such as Behçet’s disease (BD), celiac disease
(CD) and cow’s milk protein sensitive enteropathy (CMSE), also
show elevated GrA in serum and/or plasma (76, 77). Various
micro-organisms, neutrophil hyperfunction, and autoimmune
manifestation have been implicated as causative agents in BD.
Using a BLT esterase assay, active BD patients show increased
GrA levels in supernatants of lymphocytes correlated with the
Vγ9Vδ2 expansion factor, suggesting active participation of CTLs
and GrA in BD pathogenesis. The biological role of extracellular
GrA in BD has not been studied. As GrA levels are elevated
in both supernatant and serum, an extracellular role for GrA is
speculated (76). Additionally, the intestinal immune response in
both CMSE and CD is manifested by increased serum GrA, GrB
and CD30. Elevated GrA correlates with the extent of CD villous
atrophy. This offers new complementary means for diagnostic
assessment of these diseases. More comprehensive studies on
the detailed association and skewing of gut-associated lymphoid
tissue and GrA functioning are needed (77).

Tumors
Questions are raised about the impact of
pharmacological/biological inhibition of GrA in inflammatory
carcinoma. Considering the variety of roles of extracellular
GrA in immune response described, it has been speculated
that extracellular GrA may contribute to the cancer response
and/or tumor promotion. For example, ulcerative colitis
(UC) patients have higher levels of infiltrating lymphocytes
expressing GrA (83) and respond better to anti-inflammatory
immunotherapy correlating with decrease in GrA (84). However,
such observations could be circumstantial and not related to
extracellular GrA functioning. Currently, there is a lack of
(published) human, animal and in vitro studies in this context
so far. Efforts to properly understand the potential role of GrA
(intracellular and extracellular) in tumor progression can hold
great promise for therapeutic approaches.

PRO-INFLAMMATORY MECHANISMS OF
EXTRACELLULAR GRANZYME A

A central function of GrA in themodulation of pro-inflammatory
cytokine expression, which is at least partly enhanced upon GrA
intracellular delivery, is postulated (Figure 2) (95). Granzymes
are localized both intra-and extracellular and thereby possess
the potential to cleave on both sides of the membrane (96).
Extracellular substrates for GrA are beginning to emerge.
While direct in vivo evidence of granzyme-mediated cleavage of
extracellular substrates is limited under physiological conditions,
several substrates in vitro (Table 2) have formed the basis for

hypothesis formulation linking multifactorial extracellular GrA
activity to disease pathogenesis (Table 1).

Cytokine Release and Activation
First evidence suggesting a role of GrA as pro-inflammatory
mediator in cytokine activity was proposed almost 25 years
ago when it was found that GrA can function in vitro as
an IL-1β-converting enzyme. GrA, but not GrB, cleaves the
31 kDa precursor form (pIL-1β) into the active 17 kDa
cytokine in cultured macrophages expressing pIL-1β (101).
Physiological relevance of this has never been shown (3).
Although some have been able to show GrA alone can convert
IL-1β to its mature form via direct cleavage, others were
unsuccessful reproducing this maturation or suggest the aid of
the inflammasome (3, 21, 85, 102).

In vitro human extracellular GrA stimulates release of
various pro-inflammatory cytokines in multiple cell-types; IL-
6 from fibroblast cell lines (lung, intestinal) and IL-8 from
both fibroblasts (lung, skin, intestinal) and cultured (lung)
epithelial cell lines (86). Additionally, GrA stimulates the
production of IL-6, IL-8 and TNF-α in human peripheral blood
mononuclear cells and purified monocytes without the presence
of perforin (103), whilst inducing macrophages to produce
TNF-α and IL-1 β (21, 85). Recently it has been shown that,
although able to enhance the cytokine response induced by LPS,
extracellular GrA is not enough to induce release of cytokines
from human monocytes (26). At the same time, depletion of
caspase-1 almost completely inhibits the release of IL-1β and
IL-6 in monocytes, supporting arguments for involvement of
an inflammasome. In contrast, GrA internalized by human
blood derived-macrophages GrA can independently enhance
cytokine expression (3, 102). A new model proposed that GrA
in murine macrophages is induced by bacterial toxin, via the
JAK-STAT pathway. GrA is subsequently released extracellularly
via exocytosis and taken up by other macrophages, where
it directly induces conversion of intracellular pro-IL-1β into
mature IL-1β (102).

The molecular mechanism by which granzymes directly
release pro-inflammatory cytokines remains unclear. Catalytic
activity seems to be required for cytokine release and
internalization of GrA partly enhances its release, suggesting
activation of down-side effectors localized both internally and
externally of cytokine producing cells (3, 21, 85, 86). Recently,
we have examined the role of GrA in potentiating toll-like
receptor (TLR) mediated cytokine response. Extracellular GrA
potentiates a marked increase in TLR2/4 agonist-induced pro-
inflammatory cytokines. Interestingly, inactive mutant GrA (Ser
to Ala substitution in the GrA catalytic center) results in similar
cytokine response as WT GrA, indicating an independence of
the GrA catalytic activity. Thus, GrA can use its proteolytic
activity to release cytokines in the absence of TLR stimulation
or inactive GrA can make use of TLRs (95). Multiple studies
suggest the presence of unidentified GrA-sensitive receptors on
the cell-surface of reacting cells (21, 31, 85, 86, 95, 96).

As granzyme activity is tightly regulated by serine protease
inhibitors in vivo and extracellular GrA in complex with
proteoglycans is resistant to serpins, regulation of granzyme
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FIGURE 2 | Intracellular and putative extracellular functions of Granzyme A. Classically GrA and other granzymes have been described as promoting cytotoxic

lymphocyte mediated eradication of target cells via the induction of (apoptotic) cell death. Upon recognition of the target cell CTL release granule content into the

immunological synapse, perforin provides access to the cytosol and granzymes promote cell death intracellularly (1). During a number of inflammatory disease statues

GrA accumulates in extracellular space and is suggested to (i) induce release of pro-inflammatory cytokines in fibroblasts, epithelial cells, monocytes, and

macrophages (3, 85, 86), (ii) remodel extracellular matrix (87–91), (iii) contribute to the migration of activated CTLs through tissue and extravasation of these cells from

the vasculature (88), and (iv) cleavage of (cell surface) receptors as the Thrombin like receptor in neurite retraction (92–94).

activity might be essential to fine-tune pro-inflammatory
cytokine response (95). GrA-inducible cytokines have been
linked to diseases beyond those described above suggesting
alternative roles to the traditionally proposed cytotoxic role for
GrA in chronic inflammation (96).

Extracellular Matrix Remodeling
Early evidence of extracellular GrA disrupting basement
membrane proteins was proposed in a study that showed that
high GrA concentrations in vitro could cleave the α2(IV) chain
of collagen IV in mice (88). Additionally, extracellular GrA
cleaves fibronectin, myelin basic protein and heparan sulfate
proteoglycans in vitro, suggesting a role in ECM remodeling (87–
91, 97). Destruction and remodeling of the ECM could contribute
to the migration of activated cytotoxic T lymphocytes through
tissue and extravasation of these cells from the vasculature and to
the pathogenesis of several viral, bacterial and parasitic diseases
(88, 104). As GrA is elevated in COPD and identified extracellular

GrA substrates are components of the alveolar ECM, GrA may
contribute extracellularly to alveolar wall damage in COPD (75).
Detachment of cells, such as long epithelial cells and small
intestinal epithelial cells, due cleavage of ECM proteins, could
lead to both cell death resulting in COPD in lung epithelial
cells and maturation and exfoliation of cells in the intestine
(81, 97). Furthermore, integrin interactions with ECM proteins
(e.g., fibronectin and vitronectin) may induce T-cell activation
and degranulation of GrA (8). Additional work is needed to
establish the in vivo relevance of these findings.

Receptor Cleavage
Several receptors are identified as external substrates of GrA,
including e.g., thrombin-like receptor on neurites and platelet
thrombin receptors. Cleaving of these receptors by GrA may
activate them and/or induce inflammation in disease (92, 93,
100). By cleavage and subsequent activation of the thrombin
receptor on neurites, immediate neurite retraction and reversed
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TABLE 2 | Extracellular substrates of GrA and suggested biological impact.

Substrate Suggested biological impact References

Basement

membrane proteoglycans

Liberation basic fibroblast growth

factor, protection against inhibition

by natural high molecular weight

inhibitors, lymphocyte migration.

(87)

Collagen IV Influence on lymphocyte migration,

anoikis, cell adhesion.

Reduction adhesion of epithelial

cells with cell-basement membrane.

(88, 97)

Fibronectin Influence on lymphocyte migration

(through fibrin clots), anoikis, cell

adhesion.

Reduction adhesion of epithelial

cells with cell-basement membrane.

(89, 97)

Myelin basic

protein (MBP)

MBP degradation resulting in myelin

destruction. Pathogenesis

multiple sclerosis.

(98)

Pro-urokinase

plasminogen activator

Convert single-chain human

pro-urokinase into active two-chain

enzyme

Roles in plasmin generation

(99)

Thrombin-like

receptor on neurites

Platelet

thrombin receptor

Neurite retraction, reversed

stellation of astrocytes

Desensitized response to

thrombin-induced aggregation

by platelets

(92)

(93, 94)

Unidentified (likely)

cell surface

receptora

Pro-inflammatory cytokine

production by fibroblasts, epithelial

cells, monocytes,

and macrophages.

(21, 31, 85,

86, 95)

Proteinase-activated

receptor 2 (PAR-2)b
Protease-activated receptor-2

activating peptide (SLIGRL) is

yielded.

Roles in promoting inflammation.

(100)

aSower et al. found a 5-fold difference in potency between thrombin and GrA suggesting

that granule-associated proteases may signal through other membrane proteins than

the thrombin receptor. However, no such receptor has been identified yet. Release of

pro-inflammatory cytokines is suggested to be on their own or potentiating LPS-induced

responses (21, 31, 85, 86, 95).
bHansen et al. found that treatment of P20 peptide (corresponding to the

cleavage/activation site of the wt-r PAR-2N terminus) with GrA for 20 h yielded 22 ±

2% (n = 3) conversion to the PAR-2 -activating peptide. However, calcium mobilization

experiments did not show activation of PAR-2 by GrA (data not shown in paper) (100) and

another study notes that the tryptase fails to induce Ca influx to efficiently cleave various

PAR sub-types (data not shown in paper) (21).

As most studies have been performed in vitro or in mouse/rat models it is unclear to what

extent these findings have physiological relevance in humans.

stellation of astrocytes is induced. This may contribute to
the etiology of autoimmune disorders of the nervous system
(92). In contrast, GrA cleavage of the platelet thrombin
receptor desensitizes response to thrombin-induced aggregation

by platelets. This might be a result of competition of GrA
with thrombin for ThR binding (93, 94). PAR-2 has also been
suggested as a substrate of GrA, although available data is limited
and conflicting. PAR-2 is a G-protein coupled receptor activated
through the cleavage of the receptor’s extracellular N-terminal
domain. This yields the PAR-2 activating sequence that can
subsequently induce the expression of e.g. pro-inflammatory
cytokines (96, 100). One study found that treatment of P20
peptide (corresponding to the cleavage/activation site of the wt-
rPAR-2 N terminus) with GrA yielded conversion to the PAR-2-
activating peptide. However, calcium mobilization experiments
did not show activation of PAR-2 by GrA (100) and another
study notes that GrA fails to induce Ca influx to efficiently cleave
various PAR-2 sub-types (21).

CONCLUDING REMARKS

Extracellular GrA is involved in several inflammatory diseases.
After amplified debate on GrA’s cytotoxic potential, novel
functions challenge the traditional dogma of a protective role
of GrA in immune homeostasis. The observations suggest
that GrA might induce increased inflammation, (over)reaction
of the immune system and pathogenesis (e.g., alveolar wall
damage in COPD, sepsis, tumor promotion, rheumatoid
arthritis). The elevated GrA levels in bodily fluids from
patients with the described diseases and infections possibly
arise from local release of GrA in the inflamed tissue.
Considering its pro-inflammatory role, GrA is a potential target
for anti-inflammatory interventions. Nevertheless, although
implicated in cytokine release, ECM matrix remodeling and
receptor cleavage, functional and pathological consequences
of extracellular GrA release remain largely unknown. Further
research is required to assess (i) mechanism and regulation
of extracellular GrA release, (ii) extracellular and intracellular
pathways activated for the promotion and/or release of cytokines,
(iii) direct involvement of GrA in disease pathogenesis (e.g.,
virus infections, parasitic infections, cancer promotion, (iv)
potential usage of GrA as target in therapies without ameliorating
the immune systems’ ability to control infections, e.g. by
using the native GrA inhibitors, (v) the potential to use
extracellular GrA expression for diagnostic tools, and (vi)
whether known GrA inhibitors in the extracellular matrix (or
other mechanism) are altered in favor of increased GrA activity
in inflammatory disease.
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