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The second law of thermodynamics points to
the existence of an ‘arrow of time’, along which
entropy only increases. This arises despite the
time-reversal symmetry (TRS) of the microscopic
laws of nature. Within quantum theory, TRS un-
derpins many interesting phenomena, most no-
tably topological insulators [1–4] and the Hal-
dane phase of quantum magnets [5, 6]. Here, we
demonstrate that such TRS-protected effects are
fundamentally unstable against coupling to an en-
vironment. Irrespective of the microscopic sym-
metries, interactions between a quantum system
and its surroundings facilitate processes which
would be forbidden by TRS in an isolated sys-
tem. This leads not only to entanglement en-
tropy production and the emergence of macro-
scopic irreversibility [7, 8], but also to the demise
of TRS-protected phenomena, including those as-
sociated with certain symmetry-protected topo-
logical phases. Our results highlight the enig-
matic nature of TRS in quantum mechanics, and
elucidate potential challenges in utilising topolog-
ical systems for quantum technologies.

Many isolated systems possess features that rely on
symmetries of their Hamiltonian. Most strikingly, in
many-body systems the presence of symmetries leads
to new phases of matter, including symmetry-protected
topological phases (SPTs) [9, 10]. SPTs exhibit many
remarkable features, such as the emergence of topologi-
cal bound states (e.g. Majorana zero modes [11]), which
have potential applications in quantum information pro-
cessing [12, 13].

An important practical question, which we address in
this Letter, is whether symmetry-protected phenomena
such as these can persist in realistic scenarios where the
system is weakly coupled to an environment. Previous
studies of topology in open systems begin with an ap-
proximate equation of motion for the system (e.g. non-
Hermitian Hamiltonian [14] or Lindblad master equation
[15–17]). Instead, our starting point is the full system-
environment Hamiltonian

Ĥtot = ĤS ⊗ 1̂E + 1̂S ⊗ ĤE + ĤSE , (1)

where ĤS and ĤE act on the system and environment,
respectively, and ĤSE couples the two. This coupling
can always be decomposed as [18]

ĤSE =

M∑
α=1

Âα ⊗ B̂α, (2)

where Âα, B̂α are Hermitian operators acting on the sys-
tem and environment, respectively, and M is the num-
ber of ‘coupling channels’. This approach allows us to
define symmetries microscopically, rather than imposing
them a posteriori on the effective master equation (as in,
e.g. Ref. [19]).

Any symmetry-protected features exhibited by ĤS will
of course be spoiled if ĤSE breaks the relevant symme-
tries. Even for symmetry-respecting ĤSE , the same will
still occur if the individual operators Âα acting on the
system are symmetry-violating. For example, tunnelling
of electrons in/out of a system can lead to decoherence
of Majorana zero modes [20], even when the fermion
parity of the combined system and environment is con-
served. Therefore, to preserve the desired features, these
processes must be suppressed such that the remaining
operators Âα, B̂α, and ĤE are individually symmetry-
respecting. One might expect that scenarios of this type,
which we focus on throughout this paper, are sufficiently
protected, since each Âα obeys the same constraints as
the original Hamiltonian ĤS . Our key finding is that this
intuition can fail: when the protecting symmetry is an-
tiunitary (e.g. TRS), protection is lost regardless of the
symmetries of Âα.

As a concrete example, we focus on the coherence
properties of topological bound states. We find that
bound states protected by antiunitary symmetries will in-
evitably decohere at a rate that scales only algebraically
with the environment temperature τcoh ∼ T−γ [Eq. (4)] –
this calls into question their potential usefulness in quan-
tum information technologies [12, 13]. In contrast, deco-
herence processes are thermally activated when the pro-
tecting symmetries are unitary τcoh ∼ eEg/T , where Eg

is the bulk gap. We postulate that corrections to quan-
tized transport in higher dimensional SPTs follow the
same pattern of temperature dependence.

To understand this fragility of TRS-protected phe-
nomena, it is instructive to analyse a simple few-body
model. Consider an isolated spin-3/2 with Hamiltonian
ĤS = Eg(Ŝz)2, with twofold degenerate ground states
|1/2〉 and |−1/2〉. As long as a suitable symmetry is en-
forced, the two ground states will remain degenerate
when ĤS is varied. For instance, the degeneracy can
be protected by TRS (Kramers’ theorem). This eigen-
state property is reflected in the dynamics of the system.
Consider encoding a qubit in the degenerate subspace,
|ψ〉S = α |1/2〉+β |−1/2〉. Time evolution under ĤS leaves
this state undisturbed and the qubit can be reliably re-
covered at late times. Even if ĤS is weakly perturbed,
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the overlap | 〈ψ(0)|ψ(t)〉 |2 will remain close to 1 provided
the appropriate symmetries are maintained.

How does this change when the spin is weakly cou-
pled to an environment? Insight can be gained from
considering the limit ĤE = 0, wherein |Ψ(t)〉 can be
computed using time-dependent perturbation theory in
V ∼ ‖ĤSE‖, the characteristic strength of the system-
environment coupling. (We will restore ĤE in a more
quantitative calculation later.)

Starting from a factorized initial state |Ψ(0)〉 = |ψ〉S⊗
|χ〉E , the correction to first order in V is |Ψ(1)(t)〉 =

−it
∑
α Π̂GSÂα |ψ〉S ⊗ B̂α |φ〉E , where Π̂GS projects onto

the degenerate ground state subspace of the system S.
For generic {Âα}, the system becomes entangled with
the environment (since |Ψ(t)〉 cannot be written in a
factorized form), leading to decoherence of the qubit.
Note that decoherence still occurs even if ĤSE is it-
self symmetric. However, if all {Âα} respect the same
symmetry as the Hamiltonian ĤS , then these operators
can only act trivially within the degenerate subspace,
i.e. Π̂GSÂα |ψ〉S = aα |ψ〉S [21]. This gives |Ψ(t)〉 =

|ψ〉S ⊗ (1− it
∑
α aαB̂α) |φ〉E , so the system remains un-

perturbed. This lends credence to the simple expecta-
tion, stated above, that coherence is preserved if the op-
erators {Âα} are invariant under the symmetries of ĤS

that protect the degeneracy.

However, this hypothesis turns out to be incorrect in
general. This can be seen already from the second order
corrections in V :

|Ψ(2)(t)〉 =
−it

Eg

∑
αβ

Π̂GSÂαΠ̂ExÂβ |ψ〉S ⊗ B̂αB̂β |φ〉E ,

(3)

where Π̂Ex := 1̂− Π̂GS projects onto excited states. (We
have assumed that the coupling is gradually turned on
at a rate slower than Eg, and ignored contributions ∝
|Ψ(0)〉.) Equation (3) captures processes that occur via
a virtual excited state [see Fig. 1b].

By analogy to the above, transitions will only oc-
cur if Ĉαβ := ÂαΠ̂ExÂβ acts non-trivially within the

ground state subspace. Observe that Ĉαβ is itself in-
variant under the relevant symmetries; however, it is
generically non-Hermitian, and so might not obey the
same constraints as a symmetry-respecting Hamiltonian.
We therefore decompose Ĉαβ = X̂αβ + iŶαβ , where

X̂αβ := (Ĉαβ + Ĉβα)/2, and Ŷαβ := −i(Ĉαβ − Ĉβα)/2
are both Hermitian. Now, if the protecting symmetries
are unitary, then both X̂αβ and Ŷαβ are also symmetry-
respecting Hermitian operators, and so cannot cause
transitions between different ground states. We show
in the Methods section that transitions among ground
states are forbidden at all orders in V , and so the system
and environment remain unentangled. However, due to
the factor of (−i) required by Hermiticity, Ŷαβ will not

a 1st order (forbidden) b 2nd order (allowed)

|1/2〉 |−1/2〉 |1/2〉 |−1/2〉

Eg ∼ V ∼ V
2

Eg

c
(α |1/2〉+ β |−1/2〉)⊗|φ〉

Coherent

|1/2〉⊗|φ+〉+ |−1/2〉⊗|φ−〉
Incoherent

Time

evolution

FIG. 1. Decoherence mechanisms for topological
bound states coupled to an environment. The spectrum
of the 1D SPT system ĤS (thick lines) features degenerate
ground states (|1/2〉 and |−1/2〉, representing different config-
urations of the bound state), which are separated in energy
from bulk excitations by a gap Eg. If the environment is at
a temperature T � Eg, then transitions to excited states are
thermally activated, and occur at an exponentially slow rate
∼ e−Eg/T . a, Direct transitions between ground states are
forbidden by symmetry if the coupling operators Âα [Eq. (2)]
respect the relevant symmetries. b, If the protecting symme-
try is TRS (or any antiunitary symmetry), then indirect tran-

sitions are allowed regardless of the symmetries of Âα. These
proceed via a virtual excited state, and the corresponding ma-
trix elements scale as V 2/Eg [see Eq. (3)]. c, Because TRS
acts non-trivially on both the system and environment, the
coherence of the bound state (being a property of the system
only) is no longer protected and the initial qubit decoheres.
This obstruction to defining a ‘local’ TRS, acting on a sub-
space of the total Hilbert space, can be used to understand
how an arrow of time emerges from TRS-respecting laws of
motion [7, 8].

be invariant under antiunitary symmetries, such as time-
reversal. If the ground state degeneracy is protected by
antiunitary symmetries, then Ĉαβ can act non-trivially
within the ground state subspace for α 6= β. (For ex-
ample, take Â1 = (Ŝx)2 and Â2 = {Ŝx, Ŝz}, which are
both TRS-even.) Unless ĤSE is fine-tuned such that it
is factorizable, i.e. M = 1, then this leads to decoherence
of the qubit. Although the limit ĤE = 0 precludes an
estimation of a corresponding decoherence rate, we see
that the perfect coherence enjoyed by the isolated sys-
tem is fragile against coupling to an environment if the
protecting symmetries are antiunitary. This decoherence
is also manifest in the eigenstates of Ĥtot; see Methods.

While the above analysis refers explicitly to the spin-
3/2 model, it highlights a much more general issue re-
garding symmetry protection in quantum systems. The
problem stems from the fact that there is no way to con-
sistently define antiunitary symmetries on a subsystem
of some larger Hilbert space (see, e.g. Ref. [22], p. 8).
Consequently, the system-environment coupling will en-
able processes that effectively break TRS for the sys-
tem, regardless of any microscopic symmetry consider-
ations. The rôle of this mechanism in the emergence
of irreversible dynamics is well-known. Here, we show
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that it leads to an inherent fragility of TRS-protected
phenomena: In the above, even if every component of
the Hamiltonian ({Âα}, {B̂α}, ĤS , and ĤE) were TRS-
invariant, the relevant protection occurs not at the level
of the system Hilbert space, but on the composite system-
environment Hilbert space. Thus, without explicit con-
trol over the environment, the system will not exhibit
the desired TRS-protected properties (e.g. coherence of
quantum information, see Fig. 1c). In contrast, it is pos-
sible to define a unitary symmetry that pertains only to
the system and not to the environment, under which the
relevant phenomena can remain protected at non-zero
coupling.

Our arguments are readily extended to symmetry-
protected topological phases (SPTs). In isolated one-
dimensional SPTs, the system boundaries host topologi-
cal bound states – collective degrees of freedom that re-
main spatially localized and gapless as long as the rele-
vant symmetries are enforced. We will focus on dynam-
ics in the vicinity of one such bound state; accordingly,
the eigenstate structure of the system exactly mirrors
that of the spin-3/2: There are multiple ground states
(representing different configurations of the bound state)
whose degeneracy is protected by a group of symmetries,
and all excited states have energies above some gap Eg

(see Fig. 1). Our newfound intuition suggests that if the
SPT is protected by (anti-)unitary symmetries, then the
topological bound state will (not) remain coherent upon
coupling to an environment. More precisely, those phases
that can be trivialized by explicitly breaking all antiuni-
tary symmetries will exhibit decoherence; this particular
class of SPTs has been classified in a different context
[23, 24].

We confirm this by explicitly calculating a decoherence
rate for quantum information stored within the bound
state. Here, we no longer neglect ĤE (which itself will be
symmetry-respecting), and consider a thermal environ-

ment ρ̂(0) = |ψ〉S 〈ψ|S ⊗ ρ̂E , where ρ̂E ∝ e−ĤE/T . More-
over, we focus on the regime T � Eg, such that transi-
tions to excited states are exponentially slow τex ∼ eEg/T .
(The effects of thermally generated excitations on bound
state coherence have been considered elsewhere [25].)
Our calculation, described in the methods section, re-
sembles that of the spin-3/2 in terms of symmetry con-
siderations. However, rather than computing |Ψ(t)〉, we
derive a master equation for the system density matrix
ρ̂S(t) := TrE ρ̂(t). As before, we must account for transi-
tions between ground states proceeding via a virtual ex-
cited state. We therefore work beyond the commonly em-
ployed Born-Markov approximation [18], which captures
only lowest-order effects. For a bound state protected
by antiunitary symmetries coupled to the simplest type
of environment (a bath of harmonic oscillators), we find

that at leading order in V , τcoh scales as

τcoh ∼
E4

gω
2+2s
c

V 4T 3+2s
, (4)

where the exponent s and cutoff frequency ωc charac-
terise the distribution of oscillator frequencies in the bath
(see Methods). Although the exact dependence on T may
vary slightly for more structured environments, crucially
it is only algebraic. In contrast, when the protecting
symmetry is unitary, the fastest decoherence process in-
volves propagation of a bulk excitation across the system
[20]; this thermally activated processes is exponentially
slow τcoh ∼ eEg/T . As well as dictating the lifetime of
quantum information, τ−1coh could also be inferred from
spectroscopic measurements of the system as a charac-
teristic width of the zero-energy peak [17].

Higher dimensional SPTs possess gapless edge modes
which give rise to quantized transport signatures. For
example, in an isolated quantum spin Hall bar, TRS for-
bids elastic backscattering between counter-propagating
edge channels, leading to perfect conduction [1]. It is well
known that quantization can be marred by environmental
couplings for which Âα are symmetry-breaking (e.g. mag-
netic impurities [26] or tunnelling into leads [27]); how-
ever our findings demonstrate that such TRS-breaking
processes occur much more ubiquitously. While an ex-
plicit conductance calculation is beyond the scope of this
work, our arguments can be used to show that elastic
backscattering between degenerate counter-propagating
states in helical channels can occur via the same virtual
transition that led to decoherence of topological bound
states in the above, even for a bosonic, non-magnetic en-
vironment. (Note that this effect differs in nature from
the inelastic backscattering processes which have previ-
ously been identified [28–30].) The quantized conductiv-
ity protected by TRS is thus in this sense fragile against
coupling to an environment. Conductance quantization
would be restored if an appropriate unitary symmetry
were additionally imposed (e.g. if spin orbit coupling van-
ishes so that total spin is conserved).

In conclusion, we have argued on general grounds that
phenomena protected by TRS (or other antiunitary sym-
metries) are inevitably compromised by coupling to an
environment. We attributed this effect to the fact that
such symmetries cannot be defined on a subsystem of a
larger Hilbert space. Thus, although a given composite
system may respect TRS microscopically, any subsystem
therein can propagate in a seemingly TRS-violating
manner, since it is not itself isolated. This leads to both
the emergence of macroscopic irreversibility, and to the
inevitable loss of TRS-protected phenomena in open
systems.
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Coherence Time of Topological Bound States

Here, we outline the calculation of the coherence time
for a topological bound state weakly coupled to an envi-
ronment in thermal equilibrium at a temperature T �
Eg. The calculation in the main text elucidates the struc-
ture of matrix elements between states of the system due
to the coupling ĤSE . However, there we took a sim-
plifying limit ĤE = 0, which led to an unusual time-
dependence of the transition probabilities (Pi→f (t) ∝
t2, rather than the familiar Fermi’s Golden rule result
Pi→f (t) = γt). Here, we will include ĤE , which will lead
to well-defined transition rates t−1Pi→f (t); however our
key findings regarding the differences between unitary
and antiunitary symmetries do not change.

For concreteness, let us describe the symmetry prop-
erties of a topological bound state. The Hamiltonian ĤS

will possess NS ground states ĤS |j〉 = 0, j = 1, . . . , NS ,
each differing only in the vicinity of the bound state un-
der consideration. The ground state subspace HGS =
span(|j〉) forms a NS-dimensional irreducible projective
representation of the protecting symmetry group G. Ac-
cordingly, any symmetry-respecting Hermitian operator
Ĥ must satisfy Π̂GSĤ Π̂GS ∝ Π̂GS (this is a consequence
of Schur’s lemma [21]). The same structures arise in sys-
tems possessing Majorana zero modes, although one may
need to keep track of an additional bound state far from
the region of interest, such that the system is composed
of a whole number of Dirac fermions.

In our calculation for the open system, we will make
use of the two-time correlation functions

Γ̃αβ(t) := TrE

(
ρ̂EB̂α(t)B̂β(0)

)
=

∫
dε

2π
e−iεtΓαβ(ε),

(5)

and the associated spectral functions Γαβ(ε). (Here,

B̂α(t) := eiĤEtB̂αe
−iĤEt.) For simplicity we assume

that the environment is Gaussian, such that the above
quantities fully characterise the state of the environment

ρ̂E = e−βĤE/Z, where Z = TrE e
−βĤE is the partition

function. Spectral functions will be exponentially sup-
pressed for large negative arguments Γαβ(−|ε|) ∼ e−β|ε|.
We will therefore neglect contributions to the decoher-
ence rate for which Γαβ(ε) is evaluated at ε ≤ −Eg (these
terms will represent the generation of bulk excitations).

Our aim will be to derive a master equation for the
state of the system ρ̂S(t) = TrE ρ̂(t). In the scenarios
considered in this Letter, the dynamics of ρ̂S(t) is well
described by a quantum Markov process over appropri-
ately coarse-grained timescales; that is ∂tρ̂(t) ≈ Lρ̂(t),

where the time-independent generator L is an appropri-
ate superoperator. To understand why this is so, we
must compare the typical rate of change of ρ̂S(t) (given
by τ−1coh) with the ‘memory time’ of the environment τm,
i.e. the characteristic timescale over which Γαβ(t) decays.
If τcoh � τm [which does indeed turn out to be true, as
can be seen from (4)], then the back-action of the system
on the environment is ‘forgotten’ before the system has
changed appreciably. Accordingly, provided one is not in-
terested in the temporal variation of ρ̂S(t) over timescales
shorter than τm, the dynamics of the system can be as-
sumed to be independent of its history. (See Ref. [31] for
a fuller discussion of an analogous classical problem.)

With this understood, we can calculate the generator
L by calculating ρ̂S(t) (coarse grained over a timescale
∆t � τm), and comparing it with the formal solu-
tion ρ̂(t) = eLtρ̂(0). Specifically, for t � τcoh, we ex-
pect that the linear-in-time component of ρ̂(t) will be
exactly t × Lρ̂(0). (This is analogous to the deriva-
tion of transition rates in Fermi’s Golden Rule.) We
will find that τcoh � V −1 (where V ∼ ‖ĤSE‖ is the
system-environment coupling strength), and so on these
timescales, we expect that time-dependent perturbation
theory will converge well. We will work in the interac-
tion picture with respect to Ĥ0 = ĤS + ĤE , such that
ρ̂(t) = Û(t, 0)ρ̂(0)Û†(t, 0), where the time evolution op-

erator is Û(t, t′) = T exp[−i
∫ t
t′

dt1ĤI(t1)] (where T de-

notes time-ordering, and ĤI(t) = eiĤ0tĤSEe
−iĤ0t).

To proceed, we expand the time-evolution operators
either side of ρ̂(0) in the expression for ρ̂S(t) in powers
of V , and then take the trace over environment degrees
of freedom. The derivation of the lowest order (V 2) con-
tributions is well-known [18], and gives

dρ̂S
dt

=
∑
ω,α,β

Γαβ(ω)
[
Âβ(ω)ρ̂Â†α(ω)

− 1

2

{
Â†α(ω)Âβ(ω), ρ̂S

}]
+ i[ĤS + ĤLS , ρ̂S ]. (6)

Here, {·, ·} is the anticommutator, and Âα(ω) =∑
ε′−ε=ω Π̂εÂαΠ̂ε′ is the component of Âα that lowers

the energy of the system by an amount ω [18] (Π̂ε is the
projector onto the eigenspace of ĤS with energy ε). For
our purposes, we need only know that the Lamb shift
ĤLS is Hermitian; commutes with ĤS ; and respects the
same symmetries as ĤSE . Therefore it will have no ef-
fect within the ground state subspace. The remaining
part of Eq. (6) captures direct processes in which an en-
ergy ω is transferred from system to environment; thus if
the initial state is a ground state, the only non-thermally
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activated processes will be those with ω = 0, and tran-
sitions will be generated by Âα(0)Π̂GS = Π̂GSÂαΠ̂GS ,
as we found for the simpler model in the main text. If
{Âα} respect the relevant symmetries, then the above
gives dρ̂S/dt = 0, up to corrections that scale as e−Eg/T .

The intuition developed in the main texts suggests that
when the protecting symmetries are antiunitary, decoher-
ence will arise at next-to-leading order, which requires us

to calculate ρ̂(t) to fourth order in V . If we write ρ̂
(i,j)
S (t)

for the contribution coming from expanding Û(t, 0) to ith
order and Û†(t, 0) to jth order, then one of the contribut-

ing terms is ρ̂
(2,2)
S (t):

ρ̂
(2,2)
S (t) =

∑
α1...α4

∑
ω1...ω4

∫ t

0

dt1

∫ t1

0

dt2

∫ t

0

dt3

∫ t3

0

dt4

× Âα1
(ω1)Âα2

(ω2) |ψS(0)〉 〈ψS(0)| Â†α4
(ω4)Â†α3

(ω3)

× TrE [B̂†α4
(t4)B̂†α3

(t3)B̂α1(t1)B̂α2(t2)ρ̂E ]

× e−iω1t1−iω2t2+iω3t3+iω4t4 . (7)

The trace over the environment can be expressed in terms

of the correlation functions Γ̃αβ(t) by using our assump-

tion that ρ̂E and ĤE are Gaussian.

In our setup, the initial state of the system |ψS(0)〉
is a ground state of ĤS , which is separated in energy
from excited states by a gap Eg. For each term in the
sum over {ωi}, we therefore have either ω1 + ω2 = 0,
or ω1 + ω2 ≤ −Eg (similarly for ω3 + ω4). The latter
terms, which correspond to bulk excitations, can be ne-
glected, since to make such a term on-shell requires the
environment to provide an energy Eg � T , which will
be suppressed as Γαβ(−Eg) ∼ e−Eg/T . (This still leaves
off-shell contributions, but these should not be included
when coarse-graining over a timescale ∆t � τm, since
they oscillate at a rate much faster than τ−1m . This coarse-
graining can be performed by considering the Laplace
transform of (7) at values of the Laplace parameter much
less than (∆t)−1.) After a lengthy yet straightforward

derivation, including the other ρ̂
(i,j)
S (t), and using the

realness of Γαβ(ε) (which follows from the time-reversal

symmetry of ĤE), we arrive at an expression for ρ̂S(t)
from which we infer that the master equation is

dρ̂S
dt

=
∑
{αi}

∑
ω1,ω2≥Eg

∫
dε

4π
Γα4α1

(ε)Γα3α2
(−ε)

(
Ĉα1α2

(ω1, ε)ρ̂S Ĉα4α3
(ω2,−ε)−

1

2

{
Ĉα1α2

(ω1, ε)Ĉα4α3
(ω2,−ε) , ρ̂S

})
,

(8)

where

Ĉαβ(ω, ε) := Π̂GS

[
Âα(ω)Â†β(ω)

ω − ε +
Âβ(ω)Â†α(ω)

ω + ε

]
Π̂GS.

(9)

The quantity (9) generalises the operator Ĉαβ which
we defined in the main text. Again, if the symme-
tries protecting the topological bound state are uni-
tary, then both the Hermitian and antihermitian com-
ponents of Ĉαβ(ω, ε) are constrained by Schur’s Lemma,

and so Ĉαβ(ω, ε) ∝ Π̂GS; in this case the above re-
duces to dρ̂S/dt = 0, and we conclude that the bound
state can only decohere through thermally activated pro-
cesses at this order. Moreover, if we were to compute
the master equation at (2n)th order in V , we see from
the structure of perturbation theory that non-thermally-
activated transitions would be generated by analogous
operators Ĉα1...αn

composed of products of n operators
Π̂GSÂα1

(ω1) · · · Âαn
(ωn)Π̂GS, which are projected onto

the ground state subspace to ensure conservation of en-
ergy. Any such product can be decomposed into Hermi-
tian and antihermitian components, which again must
both be proportional to Π̂GS by Schur’s Lemma, and
thus will be unable to cause transitions. We conclude

that for unitary symmetries, the coherence time scales as
τcoh ∼ eEg/T at all orders in perturbation theory.

In contrast, if an antiunitary symmetry is required to
protect the bound state, then the antihermitian compo-
nent Ŷαβ(ω, ε) := −i[Ĉαβ(ω, ε)−Ĉβα(ω, ε)]/2 can act non-
trivially within the ground state subspace. In this case,
τcoh is not thermally activated. The integral in (8) will
be dominated by the region |ε| . T � Eg, and so we
can expand the energy denominators appearing in (9)
in powers of ε/ω. The zeroth order terms are Hermi-
tian, and so do not contribute to Ŷαβ(ω, ε). We therefore

have Ŷαβ(ω, ε) ≈ (ε/ω2)D̂αβ(ω) for some appropriate ε-

independent dimensionless operator D̂αβ(ω), up to cor-
rections that are higher order in T/Eg. Since ω & Eg,
the decoherence rate is on the same order as the integral
K{αi} := E−4g

∫
dε ε2Γα4α1

(ε)Γα3α2
(−ε).

We can estimate K{αi} in the case where the environ-

ment is a bath of harmonic oscillators ĤE =
∑
q ωq b̂

†
q b̂q

(with canonical commutation relations [b̂q, b̂
†
q′ ] = δqq′),

and the couplings are linear B̂α =
∑
q gαq b̂q + g∗αq b̂

†
q.

Following Caldeira and Leggett [32], we define the
bath spectral density Jαβ(ω) :=

∑
q g
∗
αqgβqδ(ω − ωq).

The spectral functions are then given by Γαβ(ω) =
Θ(ω)[1+nB(ω)]Jαβ(ω)+Θ(−ω)nB(−ω)Jβα(−ω), where
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nB(ω) = (eω/T − 1)−1 is the Bose distribution func-
tion. The bath spectral density is normalised such
that

∫∞
0

dωJαβ(ω) = Tr[B̂†αB̂β ] ∼ V 2, and is typ-
ically characterised by a power-law at small frequen-
cies with exponent s, and a cutoff at large frequen-
cies ω & ωc, e.g. Jαβ(ω) ∼ V 2ωsω−s−1c e−ω/ωc (how-
ever only the low-frequency behaviour of Jαβ(ω) mat-
ters here, provided ωc � T ). The case s = 1 corre-
sponds to an Ohmic bath. It follows straightforwardly
that K{αi} ≈ κ{αi}T

3+2sV 4E−4g ω−2−2sc , where κ{αi} are
non-universal dimensionless constants of order 1. This
justifies the scaling of τcoh quoted in Eq. (4).

Having established the scaling behaviour of the coher-
ence times of topological bound states in general, we pro-
vide some specific examples. For TRS-broken topologi-
cal superconductors possessing Majorana zero modes, the
protecting symmetry is conservation of fermion parity,
which is unitary. (In a non-interacting system, one may
instead view the phase as being protected by particle-hole
symmetry, which imposes a constraint on the first quan-
tized Hamiltonian that involves complex conjugation.
However as a many-body operator, particle-hole symme-
try is still unitary [33], and so should still be robust; see
also Ref. [23].) If fermions can tunnel between system
and environment then Âα will break the symmetry, and
the decoherence rate will be governed by direct processes
[Eq. (6)]. This ‘quasiparticle poisoning’ effect [20] leads
to a finite coherence time τcoh ∼ V 2Γ(ω = 0). For ex-
ample, coupling to metallic leads gives τcoh ∼ V 2ν(EF ),
where ν(EF ) is the density of states at the Fermi energy.
If tunnelling is suppressed, e.g. via Coulomb blockade
effects [34], then Âα conserve fermion parity, and the co-
herence time is thermally activated τcoh ∼ eEg/T .

Examples of topological bound states protected by an-
tiunitary symmetries include Majorana Kramers’ pairs
in time-reversal symmetric topological superconductors
[35]; spin-1/2 edge modes in the Haldane phase [5]; and
boundary modes of the Su-Schreiffer-Heeger chain [36]
(protected by antiunitary chiral symmetry). If no ad-
ditional symmetries are present, then these modes will
possess a non-thermally-activated coherence time; how-
ever there may be scenarios where an additional unitary
symmetry is present which is sufficient to protect the
phase in question, e.g. spin rotation symmetry can pro-
tect the Haldane phase [6]. When the system in question
features a combination of unitary and antiunitary sym-
metries, one can determine whether the coherence will
remain protected by consulting the classification tables
in Refs. [23, 24], which enumerate those phases that are
stable once antiunitary symmetries are removed.

Eigenstates of the Composite System

As mentioned in the main text, our findings can be
understood in a time-independent framework based on

eigenstates of the full Hamiltonian (1). For example,
consider the open spin-3/2 model, protected by TRS.
We assume that the environment is ergodic, so eigen-
states of ĤE are thermal in the sense of the eigenstate
thermalisation hypothesis, and can be assigned a corre-
sponding temperature T−1 = dS(E)/dT , where S(E) is
the thermodynamic entropy at energy E [8]. (Even if
ĤE were not ergodic, as in the calculation above, we ex-
pect that the weak coupling ĤSE will induce ergodicity
without changing S(E) appreciably.) When the system-
environment coupling is turned on, a given factorized
eigenstate of the decoupled system will strongly hybridize
with other eigenstates that are nearby in energy. Specif-
ically, we expect strong hybridization when the matrix
element coupling the two states is greater than the level
spacing in the environment δE ∼ e−const×N (see Ref. [37]
for a related problem). We have seen already that when
the protecting symmetry is antiunitary, different ground
states can be coupled via indirect processes, with ma-
trix elements of order V 2/Eg [Fig. 1b]. Therefore, the
number of these resonant states contributing to a given
eigenstate is G := V 2E−1g δ−1E � 1.

Provided V � Eg, a sufficiently low-energy eigenstate
can be written as |Ψ〉 = |1/2〉⊗|φ+〉+|−1/2〉⊗|φ−〉. (Com-
ponents of |Ψ〉 in which the system is excited will be
exponentially suppressed ∼ e−Eg/T , provided that the
eigenenergy in question corresponds to an environment
temperature T � Eg.) Now, since Ĥtot is itself TRS-
invariant, Kramers theorem can be applied to the com-
posite system and environment, so the eigenstates come
in degenerate pairs. However since the protecting sym-
metry is antiunitary, the operation that relates degen-
erate eigenstates involves nontrivial transformations on
both the system and environment. Therefore, there are
no separate symmetry constraints on |φ±〉. Assuming
that the ∼ G unperturbed eigenstates from which |Ψ〉
is composed are ‘typical’ (i.e. not fine-tuned), we expect
| 〈φ+|φ−〉 |2 ∼ G−1. Therefore, for G � 1 the eigenstates
of Ĥtot will be incoherent mixtures of the two ground
states. Given that the eigenstates dictate the state of the
open system at late times, this is consistent with our find-
ings. We can also see that the critical coupling strength
where the eigenstates cross over from coherent to incoher-
ent is Vc ∼

√
EgδE , which is exponentially small in the

number of degrees of freedom in the environment. Thus
an arbitrarily weak system-environment interaction will
lead to decoherence of the system in question, provided
that the environment is sufficiently large.

In contrast, if an appropriate unitary symmetry were
imposed that acts only on the system, then one can read-
ily show that |φ+〉 = α |φ−〉 for some constant α, since
the symmetry operation leaves the environment unaf-
fected. The eigenstates therefore have vanishing system-
environment entanglement, and coherence is maintained.
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