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Preface  
 
This thesis is the result of my own work and includes nothing which is the outcome of 

work done in collaboration except as declared in the Preface and specified in the text.  

This dissertation is not substantially the same as any that I have submitted, or, is being 

concurrently submitted for a degree or diploma or other qualification at the University of 

Cambridge or any other University or similar institution except as declared in the Preface 

and specified in the text. I further state that no substantial part of my dissertation has 

already been submitted, or, is being concurrently submitted for any such degree, diploma 

or other qualification at the University of Cambridge or any other University or similar 

institution except as declared in the Preface and specified in the text.  

 

This dissertation does not exceed the word limit of 60,000 words. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

“...Καλά πια καταλαβαίνεις πως αυτή είναι η αξία του ανθρώπου: να ζητά και να ξέρει πως 

ζητά το αδύνατο, και να είναι σίγουρος πως θα το φτάσει...” 

(…Now you understand well, how the ultimate value of man is as follows: to strive, and 

to know that you are striving, for the impossible; and to be certain that you shall 

achieve it…) 

N. Kazantzakis, Captain Michalis     
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SUMMARY  

Dynamics of cerebral fluids in patients suffering from 

hydrocephalus and pseudotumour cerebri 

Despoina Afroditi Lalou 

 

This dissertation is devoted to dynamics of brain liquids in patients with altered CSF 

circulation and pressure-volume compensation. Since the introduction of intracranial 

pressure (ICP) monitoring, the studies of CSF dynamics have revealed unique 

information about the intracranial circulation and opened new opportunities for 

diagnosis and treatment of hydrocephalus and pseudotumour cerebri. The adaptation 

of infusion tests in clinical practice over 45 years ago has introduced a practical tool 

to benefit both patients and research into altered CSF dynamics.  Objective testing of 

intracranial circulation in patients with clinical symptoms constitutes a unique 

situation, where the discovery of new patterns and reasons for disturbed intracranial 

circulation can be quantified. Such macroscopic yet practical quantifications can 

easily be translated to clinically useful information, and back, in real time or 

alternative past and future synchronicities.  
 

The aim of this dissertation is to demonstrate the value of testing CSF dynamics in 

vivo and how it could provide pathophysiological and clinical insights into 

hydrocephalus and pseudotumour cerebri syndrome (PTCS). My intention was to  

describe and reflect the main themes involved in the study of CSF dynamics: a) their 

role in diagnosis and treatment, b) their use in understanding shunts and shunt 

malfunction c) the need to optimise our understanding of the contents of ICP, meaning 

that long-term ICP monitoring or dynamic tests are required in CSF disorders, not 

snapshot ICP measurements and finally d) the mapping and quantification of the 

interaction between CSF circulation and cerebral blood flow (CBF).  

As the above foundations and results of my work lead to the formation of a 

required, albeit expected, long doctoral treatise, I have structured the later in 9 
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chapters containing a comprehensive literature review of the Resistance to CSF 

outflow as well as a systematic literature review of the CBF and autoregulation of the 

CBF in NPH. I have also dedicated a methods chapter, Chapter 3, into introducing 

and explaining the variable tested during a CSF infusion test, such as the 

fundamental amplitude of ICP and the compensatory reserve indices. Following this 

is the presentation of the data and clinical material used for my original projects.  

Specifically, my results contain the following:  
 

 

 

 

I) Autoregulation of cerebral blood flow in hydrocephalus  

CSF infusion tests provide a unique setting where both ICP and cerebral blood flow 

and autoregulation can be measured in ambulatory patients utilising many different 

methods. Autoregulation has been studied by quantifying the interaction between the 

CSF and cerebral blood circulation has revealed diagnostic and outcome implications 

that could perhaps describe the natural course of a CSF disorder, or differentiate 

between a CSF disorder and a vascular disorder, or the coexistence of the two, opening 

new chapters to the comprehension of shunt responsive NPH. I have explored the 

state of global autoregulation in patients undergoing infusion tests, in an attempt to 

set out a reference for investigations related to NPH, Resistance, autoregulation and 

their clinical implications.  

 

       In the 5th chapter, I have:  

• Described the relationship between Rout, cerebral autoregulation and arterial 

blood pressure. Rout demonstrates a negative linear relationship with global 

autoregulation. When I combined these parameters and accounted for the 

patients’ age, I was able to show a good correlation with outcome, much 

improved compared to Rout alone. 

 

II) CSF dynamics in normal pressure hydrocephalus and pseudotumour 

cerebri.  

CSF dynamics in different conditions have shown that parameters such as the 

Resistance to CSF outflow in NPH and ICP at baseline combined with compensatory 

reserve indices in PTCS, could provide important diagnostic and management 
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information. This could be a valuable addition of objective evidence to imaging and 

clinical examination.  

Using large cohorts of patients, I have explored the Resistance to CSF outflow (Rout) 

in NPH in the context of different aetiologies of NPH, its relationship with age as well 

as its overall correlation with outcome after shunting. I have also explored these 

relationships in relevance to clinical practice. In PTCS, I have described the findings 

from infusion tests in both adult and paediatric patients and have highlighted the 

differences with hydrocephalus.  

 

In chapter 6, , I have described the following:  

• Davson’s equation in NPH: The so-called Davson’s equation describes the 

relationship between ICP, Rout, CSF formation rate and sagittal sinus 

pressure under physiological circumstances. I have validated the existence 

of such a linear relationship in NPH.  

• CSF dynamics in post-traumatic hydrocephalus: Traumatic brain injury, as 

a cause of secondary NPH, shows some differences in Rout and ICP 

amplitude compared to idiopathic NPH. I have also described the effect of 

decompressive craniectomy and of cranioplasty on CSF dynamics.  

 

In chapter 7, I have explored the CSF dynamics of PTCS and in particular:  

• The coupling between CSF pressure and Sagittal sinus pressure (SSp) in 

PTCS patients at baseline and during infusion tests. I have also shown how 

this relates to Davson’s equation under an unstable SSp and the possible 

pathophysiological consequences of this finding.  

• The CSF dynamics of paediatric patients with PTCS. Those included all 

patients assessed in Cambridge and classified as definite, probable and not 

PTCS.  

 

III) Shunt testing in vivo.  

Shunts are currently the mainstay for the management of hydrocephalus, as well as 

an important part of the management of PTCS. They change CSF dynamic 

parameters in a way that is easily assessed with shunt infusion tests. The knowledge 
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of the post-shunting CSF circulation contains crucial information on the state of the 

shunt function, as well as the adequate restoration of the patients’ intracranial 

circulation. I have described how objective knowledge from shunt testing in vivo 

impacts clinical practice and patients’ outcomes.  

 

In chapter 8, I have presented two studies about testing shunt function in-vivo: 

• Shunt testing in vivo using infusion tests is important in avoiding unnecessary 

revisions of patent shunts and allows patients to be managed conservatively, 

with good outcomes. This also translates to financial benefits for healthcare 

systems.  

• In paediatric hydrocephalus, shunt infusion studies are an accurate and useful 

tool for investigating insidious shunt obstruction.  

 

IV) Slow waves of Intracranial Pressure. 

Reliable, long-term overnight monitoring is the gold standard in monitoring and 

analysing ICP and its contents. Slow waves, compensatory reserve and relationship 

with the venous circulation contain reliable information that are again correlated to 

clinical practice and can be compared and incorporated into the shorter-term infusion 

test. I have explored the behaviour of slow waves in anaesthetized patients  

 

      In chapter 9, I have investigated the influence of general anaesthesia on slow 

waves of ICP in NPH and traumatic brain injury (TBI) patients.  

 

   Conclusion: Infusion tests are a practical tool for research and possibly diagnosis 

and treatment in patients with PTCS and NPH. CSF dynamics provide a quantitative 

description of cerebral pathophysiology in CSF disorders, both for CSF and potentially 

for cerebral blood flow. After shunting, infusion tests are a reliable and cost-effective 

tool for identifying or excluding shunt malfunction. Further studies are needed to 

verify the clinical implications of CSF infusion tests and cerebral blood flow and 

autoregulation in those patients. 
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CHAPTER 1 
 
INTRODUCTION 
 
 

1.1 Intracranial Pressure and Cerebrospinal Fluid dynamics 

Since the total volume of the brain has been established to be around 1,500 mL and 

the volume of CSF around 150 mL, the commonly described role of CSF as a “buoyant” 

means for the brain is a gross misconception and dismissal of Archimedes’ actual law 

of buoyancy. It is hence impossible for such a large volume of brain to float in a volume 

of fluid equating to less than a drinking glass. Based on such a misconception, one 

could understand perhaps how many difficulties there have been in studying and 

describing CSF and its roles throughout the years. 

Modern understanding of CSF dynamics through mathematical modelling has given 

us a thorough representation of the intracranial circulation. The Marmarou model(1) 

(Figure 1.1), presented as a simple electrical circuit, was based on the classical 

experimental findings and includes CSF formation, circulation through Rout, storage 

and absorption through the venous compartment. Knowledge of which component is 

disturbed could provide us with important diagnostic and treatment options in different 

disorders. 

 
 

Figure 1.1: CSF dynamics as an electrical circuit: CSF formation represents the current source, with the 
resistor being the Rout, created from a pressure gradient between sagittal sinus pressure (SSp) and ICP. 
The compensatory space in the brain and spine constitutes the capacitor. From Marmarou A: A theoretical 
model and experimental evaluation of the cerebrospinal fluid system. Thesis, Drexel University, Philadelphia, 
PA, 1973(2)  
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1.2 Normal Pressure Hydrocephalus and Pseudotumour Cerebri 
Syndrome 
 

1.2.1 Normal Pressure Hydrocephalus 
 

Hydrocephalus, from the Greek words hydro (ὕδωρ-water) + cephalus 

(κεφαλή/κέφαλος -head), involves a very heterogenous range of disease in all age 

groups with a disturbance in their CSF circulation(3,4). NPH is a rare condition in 

the adult population (2.2/million new cases /year, frequency in the general population 

still uncertain and potentially significantly higher with increasing age, with 

prevalence of described around 2% in >65s but around 5% in >80s)(5–10). Albeit rare, 

it is the only reversible dementia so far, and is possibly underdiagnosed. This is 

highlighted by studies unravelling NPH in around 6% of total dementias, but this was 

as high as 14 - 22% in nursing home residents with severe dementia of unclear 

diagnosis and no response to other treatments(11). It is traditionally classified into 

idiopathic (iNPH) and secondary, with the majority of the cases (c. 2/3) being 

idiopathic, whereas rarely a cause such as traumatic brain injury (TBI), subarachnoid 

haemorrhage (SAH), aqueductal stenosis etc is known and identified(11,12). With 

neurosurgical treatment [insertion of a shunt or endoscopic third ventriculostomy 

(ETV), when there is a recognised obstructive cause], symptoms can be completely 

reversible, but without neurosurgical treatment it leads to severe dementia and death 

after progressive loss of the ability to walk & control ones’ bodily functions(13).  

Since its first description, now over 50 years ago, there has been significant progress 

and research on testing for, imaging and researching NPH, however there are many 

significant, unanswered questions holding back progress in understanding and 

managing NPH. Firstly, although described as consisting of the clinical triad of gait 

disturbance, dementia and urinary incontinence as well as radiological hydrocephalus 

and normal baseline CSF pressure, its very definition remains controversia(14–16)l. 

In addition, no definitive criteria and methods have been established to differentiate 

NPH from the current common vascular dementias and neurodegenerative diseases 

of the elderly, such as Parkinson’s plus syndromes, and even Alzheimer’s disease(16–

20). It is a disorder of CSF circulation, as analysis of CSF pressure recordings and 
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infusion studies demonstrate an increased resistance to CSF outflow and an increased 

frequency of pathological waves of ICP(21–25). However, it has recently been 

demonstrated that increased Rout or frequent/pathological ICP waves are not 

satisfactorily predictive of outcome after shunting, raising a lot of questions related 

to Rout and iNPH management(26,27). Lastly, neurosurgical intervention as well as 

long-term shunt implantation carry significant risks for elderly patients and only 40-

80% of patients respond to shunting(4,26,28). From poor understanding of definition, 

spanning to challenging diagnosis, doubtful prognostication and no objective evidence 

of why improvement after shunting often fails to occur, NPH constitutes a very 

complex syndrome in the modern era, often underestimated and neglected. Given the 

limitations that clinical, subjective and semi-quantitative investigations have in 

advancing our understanding for NPH, prioritising objective testing of those patients 

could provide some solutions to all above issues.   

1.2.2 Pseudotumour cerebri syndrome 

Pseudotumour cerebri syndrome (PTCS) has been principally described as a disease 

of post-pubertal females with raised BMI and its accurate diagnosis is particularly 

challenging in the paediatric population(29). The current intracranial pressure (ICP) 

thresholds in the paediatric spectrum of the disease (28cm CSF for obese and/or 

sedated children, 25cm CSF for normal weight and non-sedated children for definite 

PTCS), have been established epidemiologically, being set at the 90th percentile level 

of ICP measurements obtained in a single, ‘normal’ paediatric population(29,30). 

There are no adequately powered, randomised studies to reliably confirm that the 

thresholds are clinically relevant. Furthermore, current diagnostic criteria and 

guidelines, although thorough, are not able to explain patients’ symptoms, disease 

burden, or direct successful diagnosis and pharmacological or neurosurgical 

management(29,31).  

 

Despite uncertainty on its probable cause, its underlying mechanism has been shown 

to be abnormalities of the venous system leading to impaired CSF drainage, therefore 

classifying the condition as a syndrome, the Pseudotumour Cerebri Syndrome(32–35). 
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This complex syndrome’s venous pathophysiology includes known, secondary causes 

from venous sinus lesions such as cerebral venous thrombosis and stenosis, that are 

potentially treatable with resolution of the resulting venous sinus obstruction. In 

idiopathic intracranial hypertension (IIH) however, raised cerebral venous 

pressures had generally been considered the result of raised intracranial pressure 

or raised central venous pressure, until early MR and CT venographies suggested 

stenosis with a gradient between CSFp and   sagittal sinus pressure (SSp) as a 

common mechanism. This lead to the use of stenting as a management option in IIH, 

particularly for those cases where the venous sinus stenosis appears primarily 

localised in the venous system and is demonstrated not to be amenable to CSF 

drainage(33,35,36). Nonetheless, the causes, as well as a standardised practice and 

investigating PTCS patients in order to clarify whether raised venous pressures are 

a cause or effect of the disease process remain uninvestigated. Moreover, even as 

venous sinus pathology is generally accepted as one of the main pathophysiological 

mechanisms in PTCS, there is still some evidence of alternative or co-existing 

mechanisms, such as cerebral oedema, increased cerebral arterial blood volume 

(CaBV) and impaired CSF absorption(37–39). Due to the high variability of the 

disease’s symptoms and manifestations, this evidence is sparse and conflicting, yet 

revealing a large spectrum of possibilities and subcategories within the same 

syndrome. Despite limited knowledge of the disease pathophysiology, a large 

armamentarium of old and new management options, have eliminated the interest in 

investigating CSF dynamics and therefore it has been one of the main goals of this 

dissertation to achieve this and to link the dynamics with further understanding and 

clinical implications of the syndrome.  

 

1.3  Shunts  
In order to understand the management of hydrocephalus and the reasons behind its 

success, failure and complications, it is important to possess in-depth knowledge and 

information on the hydrodynamic properties of shunts and how they alter CSF 

dynamics.  
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Shunts are pressure-passive and are characterised by an operating pressure, which 

is the pressure at which the valve opens and CSF drainage begins; a critical pressure, 

representing the maximum pressure the shunt allows, and a resistance, which is 

usually low (<6 mmHg*min/ml, with a few exceptions) and fixed, with very few having 

variable resistance (mainly the Polaris and Orbis-Sigma valves)(40–44). There are 

several overdrainage prevention mechanisms, nowadays either included in the shunt 

and valve system, or implanted separately. Examples of the first include the Strata 

valve, that contains an integrated siphon control device, or the Pro-GAV valve, that 

also consists of a shunt assistant(44–47). Fundamentally, the selection and 

implantation of a shunt on a patient with disturbed CSF dynamics should aim at: 1) 

altering the CSF dynamics so as to reverse the initial disturbance (e.g. lowering the 

high Rout in NPH) and 2) preventing overdrainage, and therefore preventing its 

consequences as well as future shunt revisions.  

To approximate this, the integration of a shunt in the electrical circuit in Figure 1.1 

represents how, when a shunt is open, alters the operating pressure and Rout (Figure 

1.2). As a result, the investigation and management of CSF disorders does not stop at 

the initial assessment and implantation of the shunt, but continues and binds 

together the state of the pressure, resistance, and overall CSF dynamics electrical 

circuit before shunting with what happens after shunting, together with 

troubleshooting and diagnosis of shunt malfunction(1,42,48). 



21 
 

 
 Figure 1.2: Extension of the previous model in Figure 2.1, where the hydrodynamic consequence of 
shunting is shown: when the second diode (valve) is open, the previous resistor is replaced with the Rout 
of the implanted shunt. From Marmarou A: A theoretical model and experimental evaluation of the 
cerebrospinal fluid system. Thesis, Drexel University, Philadelphia, PA, 1973 (2) 

 

1.4 CSF infusion studies and overnight ICP monitoring 
 

Overnight ICP monitoring via an intraparenchymal bolt remains the gold standard 

in studying ICP and its contents(49–51). Due to the dynamic nature of ICP, long-term 

monitoring allows us to calculate components such as slow waves and pathological 

plateau waves or spikes of ICP that are frequent and/or above the expected limit. Slow 

waves, also known as b-waves, are rhythmic oscillations of ICP at a frequency of 0.3-

3 cycles/minute, most likely vasogenic in origin and have been described both in 

normal as well as individuals with disturbed CSF dynamics, particularly in NPH.  

Furthermore, the assessment of compensatory reserve with the use of the RAP index 

becomes more reliable with overnight monitoring, as well as intracranial hypotension 

and/or shunt overdrainage, especially posture-related overdrainage(52–54). 

Aims & Goals of infusion tests 

Infusion studies have been used experimentally and clinically for CSF disorder for 

over three decades.  
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Overall, the scientific, patient outcome and financial benefits of infusion studies can 

be summarised in 4 main points: 

1) Reliable, longer-term baseline ICP 

2) Assessment, recording & storage of dynamic changes 

3) Post-shunting outcome implications 

 

1) Reliably measuring and monitoring ICP  
 

There is a growing body of evidence accentuating the importance of proper, long-term 

ICP monitoring against single “snapshot” measurements(50,52,55,56). This is 

because it is well-known that standard LP measurements can be affected by posture, 

movement, emotion, volume loss, anaesthetic agents and hypercapnia, which can lead 

to unreliable estimation of ICP. Most importantly though, ICP levels are dynamic, so 

a ‘normal’ recorded ICP at a single time-point may not be a representative value. In 

adults and children, the assessment of average ICP over more than 20 minutes 

(‘steady state’), is reported to be more reliable than a single opening pressure 

measurement(50,52,56). Therefore, using LP manometry to diagnose, classify and 

treat CSF disorders is a methodological error, that unfortunately has shaped part of 

the universal clinical practice and will continue to do so unless we generate the 

appropriate clinical evidence to disprove that. It is also an inadequate tool for 

scientific standards, due to lack of recording and objective evidence when reporting 

data for reproducible and transparent purposes.  

 

2) Investigation and assessment of CSF dynamics 

Although it is important to estimate ICP more reliably, baseline ICP as a number 

cannot provide a full assessment for the diagnosis and understanding of the CSF 

circulatory disorders. This is because it is the production, circulation or reabsorption 

of CSF that make ICP dynamic and are likely to be deranged in PTCS. Historically, 

only around 30% of these disturbances have been shown to be reflected on steady-

state ICP values(50,55,57). For these reasons, monitoring of ICP in conjunction with 

CSF dynamics has long been established in the field. 
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In many centres around the world, patients are shunted on the basis of clinical 

examination and radiological findings. Nowadays, it is known that almost 70-80% of 

those selected from such rudimentary investigations respond to shunting(26,58,59). 

However, this improvement rate, based on recent randomised trials has also come 

into question, unmasking two recurring issues in NPH research and clinical practice: 

a) there is significant variation in the improvement rate reporting between centres, 

as well as the methodology of outcome assessment(26,28,60–63), and b) blind 

shunting deprives these patients of the opportunity to understand why they did not 

improve, as well as getting a different diagnosis and treatment that could slow down 

their degenerative process, instead of worsening it. Lastly, this approach deprives us 

from the knowledge of the state of the cerebral circulation before shunting and a 

better description of the disorder, as well as what its effects are on the blood flow, 

facts that have got important implications for shunting as well as understanding how 

shunting works, whether it has restored the CSF and the cerebral blood circulations 

and how to best select for shunting, including timing of shunting.  

Resistance to CSF outflow in NPH 

NPH is a heterogeneous disease characterized radiologically by enlarged ventricles 

and clinically by Hakim’s triad: gait disturbance, urinary incontinence, and dementia. 

Since its first description in 1965, the works of Marmarou and the development of the 

lumbar infusion test by Katzman set the path for studying the CSF dynamics of the 

patients presenting with this clinical syndrome(2,12,64). Early trials such as those 

from Borgensen et al and the Dutch normal pressure hydrocephalus study, 

demonstrated that increased Rout (>12 mmHg*min/ml and >18 mmHg*min/ml 

respectively) was characteristic of NPH and strongly predictive of outcome after 

shunting(12,64–67). Unfortunately, more and more modern centres, despite 

guidelines, clinical and paraclinical test, discovered shunting responders varied from 

40-80%, with the latter being the most frequent on modern, specialised centres. 

Moreover, new studies and trials failed to demonstrate the initially described as very 

high prognostic value of Rout for shunting(26,68,69). From the data available in 

Cambridge, one of the main modern centres to utilise infusion tests in NPH, we can 
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begin to understand the problems with Rout by comparing it to the results of trials 

from the other centres in Table 1.1. Figure 1.3 illustrates the differences among 

centres in the reporting of the prognostic value of Rout. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.3 (Modified from Lalou AD, Asgari S, Czosnyka M et al The role of CSF dynamics in Normal Pressure 
Hydrocepalus Diagnosis and Shunt Prognostication; In press, Acta Neurochir Suppl): Comparison of centre- 
reported predictive values of Rout(26,62,63,66,67). All studies presented are single-centred except for the multi-
centre trial of European iNPH by Wikkelso et al(26). The different Rout thresholds reported in each study are 
plotted against the absolute values for sensitivity, specificity,  positive predictive value (PPV), negative predictive 
value (NPV) and accuracy, as well as overall Rout likelihood ratio. Studies varied in numbers and aetiology of NPH, 
with overall the Borgensen and Dutch studies yielding the most optimistic PPV, likelihood ratio (LR) and sensitivity, 
and the European iNPH the most pessimistic, with a LR close to 1 for all Rout thresholds except 18mmHg*min.ml, 
signifying that Rout between 8 and 18 is barely related to outcome after shunting.  

 

             A summary of all studies and trials on Rout and outcome is shown in Table 1.1. 
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Table 1.1 (Modified)(70) Studies of Resistance to CSF outflow (Rout) in NPH: prediction of outcome after 

shunting.  

 

 

Despite criticism, CSF circulation is still one of the main pathophysiological 

hypotheses of NPH and studies related to the resistance and other components of the 

intracranial compartment are essential until the complex puzzle of NPH is unravelled.  

Furthermore, shunting, with its hydrodynamic implications as shown in Figure 1.2 of 

this introduction, remains the mainstay of management of hydrocephalus, via 

drainage and reduction of Rout.  

 

Whether other elements of the circulation or metabolism, such as the regulatory 

mechanisms of CBF are disturbed cannot be concluded based on previous 

studies(72,73). With an unknown state of cerebral haemodynamics, combined with a 

persistently unknown state of CSF dynamics, a need for direction on rigorous research, 

with detailed knowledge of these aspects and improved sample sizes emerges. 

Reference NPH  Aetiology   Rout          PPV  NPV Other main Findings 

 

Borgensen et al 

 (1982)(67) 

 

Borgensen et al 

 (1989)(66)      

 

Boon et al  

(1997)(63) 

 

 80 

183 

101 

   mixed 

   mixed 

   iNPH 

 ≥12             96-100% 

 ≥12             NA 

 ≥12& ≥18  80%&92% 

>95% 

100% 

 34%                        

NA 

NA 

Highest LR of 3.5 for Rout 18 

Kahlon et al  

(2002)(71) 

 68    iNPH  ≥14             80%  NA Strong correlation of Rout with  

Outcome 

 

Wikkelso et al  

(2013)(26) 

115    iNPH  ≥12& ≥18  86%&94%  18%&18% No correlation of Rout with  

Outcome 

 

Nabbanja et al  

(2016)(62) 

310    mixed  ≥13&≥18  NA   NA Rout correlated with  

outcome. Kruskall- Wallis  

Value >6.5 and >6. 
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Furthermore, in 2005, the NPH guidelines study group concluded that a single 

standard for shunt prognostication in iNPH was lacking(4). New guidelines are yet to 

be developed, therefore despite the current clear definition, even the label of NPH 

remains uncertain, the concept of NPH as a whole recently coming to question. Among 

the burning questions in NPH are the behaviour of the resistance related to age and 

the aetiology of NPH (idiopathic, secondary and all causes under secondary), as well 

as its differentiation with cerebrovascular disease, questions that are extremely 

difficult to address, given the relative rarity of disease and the complexity of the 

ageing population. Some of these questions will be addressed in parts of this 

dissertation.  

3) Understanding the cerebral circulation post shunting 
 

When a pre-operative infusion has been performed, we are able to understand 

whether the shunt has made any difference in the patient’s circulation by comparing 

the measured parameters pre and post shunting. In cases of no improvement, there 

is a margin to understand why some patients are probably getting more drainage than 

they require, or less, even none, in cases where the shunt is set at an inappropriate 

setting. Shunt infusion tests simply allow is to “look inside” a brain with an implanted 

shunt, describe the ICP and its parameters, assess the flow through the shunt and 

prevent excessive drainage before it causes unwanted effects.  

A shunt, as a mechanical device, often malfunctions and fails. It is not easy to 

diagnose shunt malfunction in clinical practice, especially at an elderly brain. Shunt 

infusion studies provide objective and detailed information on the functioning status 

of a shunt(42,43,48,74,75). 

 

1.5 Cerebral blood flow and autoregulation in CSF disorders 

 

Intracranial hypertension is often linked to a vascular problem, either in the arterial 

or the venous compartment. It is known that ICP and cerebral blood flow (CBF) 

interact; the constructed Cerebral Perfusion Pressure [CPP; equal to mean arterial 

blood pressure (MAPMAP) - ICP] influences how cerebral vessels physiologically react 
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to changes in its value in order to maintain a constant CBF in the very well-described 

and well-known concept of cerebral autoregulation (CA). A simple model of the 

cerebral circulation inside a rigid skull (represented as a box), describes the 

interactions the cerebral blood and the CSF circulation from arterial blood inflow to 

CSF formation and venous outflow (Figure 1.3). 

 

 
Figure 1.3 Global Model of Cerebral Blood Flow and Circulation of Cerebrospinal Fluid. The outer 
box represents the skull. Ci: CSF storing associated with the compliant dural sac within the lumbar channel. At 
the start of the pathway, arterial blood flows through the high resistance of large intracranial arteries (Ra) to the 
high-pressure arterial compartment (Pa);Ca=arterial compliance. CBF through the cerebrovascular resistance 
(CVR) vessels is influenced by autoregulation. Finally, venous blood (Ps: Pressure in the venous compartment + 
Cv: venous compliance) comes across the Resistance of venous outflow (bridging veins, Rb) and flows out to the 
sagittal sinus. In parallel, CSF undergoes formation, storage and reabsorption. Pathophysiological changes in any 
of the compartments and their interaction creates different disequilibria in flows and pressures.  MAP: Arterial 
Blood Pressure, ICP: Intracranial Pressure, Rcsf: Resistance to CSF outflow. From: Czosnyka M, Piechnik S, Richards 
HK, Kirkpatrick P, Smielewski P, Pickard JD. Contribution of mathematical modelling to the bedside tests of 
cerebrovascular autoregulation. Journal of Neurology, Neurosurgery, and Psychiatry 1997; 63:721-731(76).  

 

The influence of vascular factors into the development and progress of NPH has been 

investigated over the last four decades, and a clear relationship between disturbed 

CBF/CA and NPH is suspected(15,73,77–79). Whether it is vascular factors driving 

the CSF circulation disturbance though, or vice versa, is not yet known and remains 

to be elucidated. Furthermore, a standardised method to quantify the two circulations 

and their interactions is yet to be demonstrated and the clinical implications of such 

a relationship are also yet to be specified. 
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Efforts to understand autoregulation in NPH should ideally be focused on 

understanding both circulations combined and separately, as much of the complexity 

in NPH is not only on the state of the CBF and CA, but also on its very definition, 

description and natural or pathological progression. The meaning of disturbed CSF 

circulation has come in contrast with the progression of the disease, the presence of 

atrophy (or even lowered CBF), as well as outcome after shunting(80). It is often 

difficult to investigate a CSF disorder diagnosis, early versus late disease and 

diagnosis versus shunting outcome in a logical and evidence-based time continuum. 

As such, mapping pathological intracranial circulation in all its complexity could 

contribute to elucidating some of the main unanswered questions in NPH, vascular 

disease and the ageing brain. 

 
 

Alzheimer’s disease and cerebrovascular disease (degeneration of the cerebral vessels 

due to chronic damage from hypertension and other vascular factors) are thought to 

be a lot more common in the elderly than NPH. This means that a) these conditions 

could often be coexisting with NPH, making their differentiation and characterization 

quite challenging b) part of those diagnosed with these disorders could instead be 

suffering with hydrocephalus(81–86), and since proper testing of the CSF circulation 

is not common in clinical practice, a misdiagnosis would have condemned them to 

inevitable decline and death, as highlighted above from its high prevalence in nursing 

homes. 

 

Using a quantitative test such as the infusion tests, which could mark their CSF 

circulation parameters, as well as describe their cerebral blood flow, could therefore 

be of significant value in investigating and treating those patients.  
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CHAPTER 2 
 

AIMS AND HYPOTHESES  
 

 

Even though CSF dynamics studies have been consistently performed since over 40 

years now, the clinical significance and utility of their derived information are still 

under scrutiny. Since brain physics laboratory in Cambridge exclusively acquires data 

from the bedside, I have focused on laying the foundations for reliably applying our 

results and interpretations back to the bedside.  

My main thesis is very broad, reflecting the importance of understanding and treating 

CSF disorders as a continuum, both before and after shunting, and that clinical 

testing of the CSF circulation, ideally together with autoregulation, should be 

performed as an adjunct in all neurosurgical patients when clinically possible. 

 

  

Hypotheses  

In the course of my main thesis supporting projects, I formulated and subsequently 

tested the following hypotheses:  
 

Hypothesis I: CSF dynamics in NPH requires investigation and assists in 

definition, diagnosis and appropriate management.  

NPH has been traditionally known as a disorder of increased Resistance to CSF 

outflow (Rout). Despite evidence that questions the clinical validity and predictive 

value of Rout, an alternative explanation of the pathophysiology of the condition could 

not be described, to the best of our knowledge. Therefore, as derived from Davson’s 

equation, it is the Rout that is increased and not the CSF production or the sagittal 

sinus pressure. Any interaction that disturbs the cerebral blood flow and its 

regulation in the brain could be reversed by lowering Rout through shunting. Other 

elements that compose the dynamic nature of ICP, such as compensatory reserve, 

could provide more insights as to why Rout does not always correlate with the clinical 

presentation and outcome after shunting.  
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Hypothesis II: PTCS is a disorder with characteristic CSF dynamics, resulting 

from venous outflow abnormalities.  

Contrary to NPH, it is not the Rout but the venous pressure that are increased, and 

as a result of impaired venous absorption and high venous pressures, the excessive 

fluid produces characteristic patterns of depleted compensatory reserve and variation 

but generally increased CSFp and SSp. The pathophysiology likely is the same in both 

adult and paediatric patients. PTCS could be diagnosed and/or managed through 

careful exploitation of its pathophysiological CSF dynamics properties 

 

Hypothesis III: Shunt testing in vivo with infusion tests is a highly accurate 

method for assessing shunt function that could improve the management of 

shunted hydrocephalus and PTCS patients.   

Shunt testing in vivo has been utilised clinically for many decades. It is possible 

because of previous testing of shunts in vitro and knowledge of their properties and 

how they alter CSF dynamics. I aimed to show how the adaptation from the laboratory 

to patients works with high accuracy and how this changes the way a lot of shunted 

patients are managed. 

 

Hypothesis IV: Detection of slow waves needs standardisation before it could 

reveal clinically useful information 

There have been different methods reported in the calculation of slow waves in 

hydrocephalus, as well as optimistic and pessimistic clinical correlates. I aimed to 

explore the limitations and benefits of different algorithms, in order to conclude what 

the most accurate method could be and what the clinical significance of the magnitude 

of slow waves could be in larger cohorts of patients.  

 

Hypothesis V: The CSF circulation and regulation of CBF interact in 

hydrocephalus, with diagnostic and outcome implications. 

It is known that CSF and CBF interact, however exactly how dependent one is on the 

other and what this correlation means is not known. I have hypothesised that there 
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is a quantifiable dependence of the Rout and autoregulation and that the results of 

the quantified interaction could help in predicting outcome after shunting and mark 

degrees of cerebrovascular disease that either point away from NPH or make it 

irreversible.  
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CHAPTER 3 

MATERIAL AND METHODS: THE CSF INFUSION TEST 

 

My dissertation has mainly been built on retrospective studies, using material from 

the Brain Physics Laboratory. In all 8 of my original works, I have used this 

retrospective material, and on occasions and where necessary to increase the external 

validity of my findings, have supplemented it with some infusion tests collected 

prospectively. Those included infusion tests on non-shunted patients (via LP or 

Ommaya reservoir) or shunted patients.  

Analytically, chapters and sections 5, 6.1, 7.1, 7.2 and 8 consist only of 

retrospective material. Section 7.2 has paediatric PTCS patients whose clinical data 

had been entered prospectively, with some infusion tests having been collected 

retrospectively but a few performed in 2016, at the beginning of my PhD. Chapter 5 

also contains data with CSF infusion tests and arterial blood pressure monitoring, 

where the patients had been monitored before 2016, but some were followed-up after 

the infusion test during 2016.  
 

3.1 Material 

3.1.1 Infusion test database 

 

Brain Physics Laboratory through the years has formed a database with over 7,000 

infusion tests and overnight ICP monitorings of hydrocephalus and PTCS patients. 

Some of these patients date back to 1992, however most patients had been recruited 

after 2003, whereby ICM+ was launched and replaced its older version, ICM (4194 

between 2003 and 2017, of whom 3533 had investigations for hydrocephalus of all 

aetiologies and 661 for PTCS). The monitoring modalities included ICP, with non-

invasive MAP occasionally monitored via Finapres®(87–90).  

 

Clinical information and reporting of radiological findings are also stored in the 

infusion database. Information includes symptoms, reasons for referral, general 

medical history, demographical details and report of CT/MRI as per expert 

neuroradiologist. All patients tested for NPH in Cambridge University Hospital have 
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documented and reported radiological evidence of ventriculomegaly on CT and/or on 

MRI scans, without  significant and disproportionate to age atrophy,baseline CSF and 

at least two of or a complete Hakim & Adams triad (gait disturbance, cognitive 

impairment, urinary incontinence), including gait disturbance plus one or more of 

these features. When the documented details were not adequate to meet the objectives 

of a study, the documentation from their assessment at the Hydrocephalus Clinic was 

used. Until 2013, dementia was diagnosed by neuropsychologists and gait was 

assessed by physiotherapists. Detailed tests were performed, as part of research as 

well as clinical purposes. After 2013, cognitive and gait impairment were assessed by 

routine clinical tests. It has not been my purpose to assess those tests or link them 

with my current findings, therefore I have used the diagnosis provided by the 

consultant neurosurgeons, who make the final decisions on diagnosing and shunting.  

 

There is some data overlap with previous publications, with patients recruited from 

the same database in overlapping time periods. 

 

Limitations of using infusion tests in Cambridge for NPH prognostication 

 

Cambridge University Hospital has a nearly three-decade long history now of 

performing infusion tests for hydrocephalus (for PTCS it is slightly more 

recent(25,62,91–94)). Rout has been and remains one of the main parameters our 

neurosurgeons use in order to support and formulate their clinical decisions. 

Therefore, in addition to limitations related to the retrospective nature of my studies, 

it is likely that a lot of the results are at high risk of selection bias (mainly allocation 

bias).  

 
3 

3.1.2 Ethical approval  
 

Health Research Authority approval was sought and granted when required and, in 

line with this approval and the protocol in the Cambridge University Hospitals NHS 

Trust, all the retrospective studies were conducted without separate approval from 
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an ethics committee. This applies to all the following studies performed using infusion 

tests including in my dissertation from now on (Total of 8 studies, Chapters 5-9). 

All patients were investigated with infusion test within the clinical neurosciences 

department, or other paediatric departments in collaboration with clinical 

neurosciences as a part of routine clinical assessment. They (themselves or next of 

kin) all consented for these studies. 

All 8 studies performed were registered and approved as clinically oriented service 

evaluations/quality improvement projects, with local trust approval. No additional 

information and consent for research project participation is required under those 

condition to include patient data in the below analyses and to access their medical 

records as a result.  

Patient recruitment period was between 2003-2017 for all projects, except for a few 

additional patients between 1995 and 2002 for Chapter 5 and a few up to March 2018 

for Chapter 6.2. These were before the Data Protection Act implementing the General 

Data Protection Regulation (GDPR) came into effect in the UK in May 2018.  

 

 

3.2 Methods 

 

3.2.1 Data acquisition 

Data were recorded, safely stored, processed and analysed using ICM+ software 

(Cambridge Enterprise, UK, https://icmplus.neurosurg.cam.ac.uk). MAP and ICP 

waveforms were sampled at 30 - 50 Hz and amplified and digitalised to 100 Hz. ADL 

and MC (authors) independently searched and extracted articles. The disagreements 

that emerged regarding the final data synthesis were settled with JDP (third 

reviewer) who also lead and facilitated a relevant discussion. 

 

A flowchart of patients recruited for each project of this dissertation is shown in 

Figure 3.1 

  

https://icmplus.neurosurg.cam.ac.uk/
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NPH selected for shunting with 

outcome available: 

N = 369 

CSF infusion tests performed in 

Academic Neurosurgery between 1998 

-2017 

N = 4713 

 

Shunt infusion 

tests 

(N =2267) 

PTCS (incl IIH) 

Shunted: N = 411/ Not shunted: 

N= 250 

N= 10 adults 
included in Ch 7.1 

 

N = 46 Post TBI, 

36 incl in Ch 6.2 

 

ICM+ recordings 

(2003-2017) 

N = 4194 

 

Lumbar/reservoir 

tests (no shunt) 

(N = 1927) 

Hydrocephalus 

(N= 1856) 

Hydrocephalus 

(N = 1677) 

Studies 

included in Ch 

8.1 

(N = 365) 

N = 164 

Paediatric 

(<16yo) included 

in Ch 8.2 

Total Hydrocephalus N = 3533 

 

N= 31 paediatric 

included in Ch 7.2 

 

N = 30 under GA 

+ 30 non GA 

included in Ch 9 

 

N = 229 

included in Ch 

6.1 

N = 131 with MAP 

recorded included 

in Ch 5 

Figure 3.1: Flowchart of patients selection from all CSF infusion tests in the Brain Physics lab database for 
each of the projects included 
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3.2.2 Infusion test parameters and analysis 

Infusion test procedure 

There are different infusion techniques developed during the 1970s. Constant-rate 

infusion is the standard in Cambridge, as initially described by Katzman et al(64)  for 

the lumbar test and adapted to its modern, computerised version.  This constant-rate 

technique, after shunt testing in vitro, was applied for shunt testing in vivo to assess 

shunt function(42,48,75,95). 

There are not very strict criteria for selecting a patient for infusion and they can vary 

from independent consultants. Criteria involve signs and symptoms of raised ICP 

(headaches, vomiting, developmental delay, attention deficits, behavioural issues etc) 

without changes in ventricular size, and are requested in order to assess the need for 

a shunt revision or safety for reassurance and transfer of care to a different specialty.  

Even at the presence of clear clinical and radiological signs, investigating the shunt 

in order to receive an accurate diagnosis of the shunt issue and the possible site of 

obstruction gives supporting information for planning treatment (e.g. locating the site 

of the obstruction so that only part of the shunt gets revised(44,96)). 

 

ICP is assessed when the infusion set-up is connected to a line with direct access to 

the ventricles (shunt or Ommaya reservoir). When access to the CSF is gained via LP, 

then the pressure is referred to from now on as CSFpressure (CSFp). Although 

preliminarily a high correlation between these two pressures has been shown, there 

is no evidence that correlates them in either PTCS or NPH.  

 

The procedure takes place as follows: A lumbar puncture is performed by the duty 

doctor with an 18-gauge Quincke needle after infiltrative local anaesthesia. Two 25-

gauge orange butterfly needles are inserted when a pre-implanted Ommaya 

reservoir/shunt is in situ. In the first instance, the patient is lying on a left lateral 

decubitus position, whereas if an Ommaya is present, they are able to lay flat in the 

supine position. The edge of the needle is then attached to fluid filled manometer lines 

with a pressure transducer (Edwards LifesciencesTM) and pressure amplifier 
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(Spiegelberg or Philips) and ICP (or CSFp) waveform detected digitally in real-time 

using ICM+(95,97,98).  
 

 

Once the expected waveform has been confirmed, CSFp is then recorded continuously 

and stored at a frequency of 30-100Hz. Baseline measurements were taken for 10 

minutes, followed by infusion of Hartmann’s solution at 1.5ml/min until the ICP had 

stabilised for 5-10minutes (plateau). As a safety measure, if ICP increased to 

40mmHg or above the infusion was stopped. The total duration of the infusion tests 

was approximately 30 to 45 minutes. Once the infusion test was concluded, a tap test 

withdrawal of 30 – 50 mls of CSF is carried out prior to removal of LP needle and the 

patient was kept in hospital for observation for 4 hours. A representative example of 

an infusion test recording and analysis can be found in Figure 3.2 (in next page). 
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Figure 3.2: Representative example of a CSF infusion study recording and analysis of the test results. 

Upper panel:  Example of a lumbar infusion test recording of a patient with possible iNPH.  CSFp (upper area) 

is monitored at baseline for 5-10 minutes and is gradually increased by Hartmann’s infusion until a stable plateau. 

AMP (fundamental amplitude of ICP – dark red area) typically follows the increase of CSFp.  Lower panel; CSF 

infusion test analysis using theoretical models integrated in ICM+ to optimise calculation of Rout and other 

parameters calculated during infusion test. Right curve: the solid, red line represents the theoretical model 

representing the response of CSFp to infusion at each time -baseline, during infusion and plateau.  The fitted 

blue line represents the calculations performed by the interpreter of the CSF test and which should optimally fit 

the theoretical mode. Left curve: The solid, light blue line represents a similar model, where the calculations of 

the user (blue dotted line) should fit the Pressure – Volume curve as proposed by Marmarou (1974) and integrated 

in ICM+.  

 

AMP 

Pulse amplitude usually refers to the peak-to-peak amplitude of the ICP waveform, 

i.e. the difference between the systolic and diastolic peak of the wave (Figure 3.3 upper 

panel). However, in most of my work, unless referred to otherwise, AMP is 

automatically calculated through ICM+ as the fundamental amplitude of the first 

harmonic of the ICP pulse waveform (Figure 3.3 lower panel)(25,99–102).  
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    Figure 3.3 Peak-to-peak amplitude and fundamental amplitude of ICP. Upper panel: Pulse      

    waveform of ICP. The difference between the systolic and diastolic peak represent the classic peak-to-peak   

    amplitude. Lower panel: Time plot and spectral analysis of ICP, showing the fundamental amplitude of AMP   

    marked with an asterisk. The rest of the peaks in the graph, from left to right, represent an initial spike that   

    is produced by the rise in ICP, the slow waves, and last before AMP, the respiratory wave.  
 

RAP 

RAP is calculated as the moving correlation coefficient between ICP and AMP. The 

pre-configured infusion test profile in ICM+ automatically displays RAP through this 

moving 4-minute window that updates every 10 seconds(75,100,103). 

RAP is generally more reliable when calculated from continuous ICP monitoring in 

TBI and overnight ICP monitoring in hydrocephalus(50,100,104–106). However, with 

a proper, artefact-free baseline of over 10 minutes, it is possible to calculate a reliable 

RAP,  

IC
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although this has not been validated against overnight ICP monitoring. Figure 3.3A 

(upper panel) demonstrates an example where baseline RAP could not be calculated 

during an infusion test, versus the lower panel, where a longer, stable baseline 

allowed for a reliable RAP value to be generated.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

      Figure 3.4 Baseline RAP calculation via CSF infusion test. Upper panel: ICP and AMP monitored 

at baseline, however RAP not calculated properly, as the monitoring period was short (4 minutes), which is 

also portrayed in the noisy recording of RAP. In all such cases, RAP is considered as NaN. Lower panel: 

Longer-term monitoring of ICP without artefacts allowed for a more reliable calculation of RAP after the first 

4 minutes of monitoring. RAP baseline >0.6 is and indicator of depleted pressure-volume compensation.  

 

AMP-P slope 

AMP and ICP show a strong, linear correlation during infusion. Sometimes, a strong 

linear relationship is present at baseline, without any breakpoints of the regression 

CSFp 
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AMP 
[mmHg] 

RAP 
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AMP 
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RAP 



41 
 

line (Figure 3.5 upper panel). Frequently, there is a breakpoint present, after which 

the relationship gains its stronger linear characteristic. This is referred to as the lower 

breakpoint of the AMP-P line (Figure 3.5 lower panel). The slope of the AMP-P line is 

strongly correlated to elasticity, as a steeper slope reflects the increase in pulsatility 

caused by decreased compliance(107,108). 

 

 

  

 
 

 

Figure 3.5 Slope and lower breakpoint of the AMP-P line. Upper panel: ICP and AMP correlate 

strongly, without a lower breakpoint. Lower panel: Lower breakpoint of the AMP-P regression line, whereby 

above the breakpoint the addition of volume during infusion causes steeper rise in pulsatility and pressure, 

as compliance decreases. 
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Elasticity 

Elasticity is calculated automatically through ICM+ using the mathematical formula 

Elasticity = 1/[C * (ICP – P0)], where C is compliance (109–112)  (Figure 3.6). P0 is 

usually neglected or assumed to be similar to the Sagittal Sinus pressure (SSp). In 

ICM+ calculations, P0 is estimated as the intercept of the amplitude-pressure line 

with the pressure axis. Nonetheless, Elasticity is not dependent on ICP, and a value 

<0.18 describes a compliant system, whereas a value >0.18 indicates depletion of 

pressure-volume compensation. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.6 Relationship between compliance and ICP. Compliance (Ci) is dependent on ICP (Pi) via 

the formula at the top left:  Ci =1/E*(P-Po). Po has been reported as either insignificant compared to P and 

therefore could be omitted, or equal to Sagittal Sinus Pressure. In ICM+ calculations, P0 is estimated as the 

intercept of the amplitude-pressure line with the pressure axis. Elasticity, or Elastance coefficient E, is 

constant and when increased, compliance is significantly decreased, therefore causing sharp increases in 

Pi.  

 

 

𝟏

𝑬 ∗ ሺ𝑷 − 𝑷𝟎ሻ
 

𝟏

𝑬 ∗ (𝑷𝒐𝒑𝒕 − 𝑷𝟎)
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Rout 

Rout is calculated using Davson’s equation (ICP = Rout*If +SSp). Since the infusion 

test consists of a steady-state ICP after infusion (ICP plateau) and a steady-state ICP 

before infusion (ICP baseline), the Rout calculated during an infusion test in non-

shunted patients is derived by subtracting ICPplateau and ICPbaseline from the 

Davson’s equation formula. Therefore, the static formula for Rout is (ICP-plateau – 

ICPbaseline)/If, whilst If during infusion is the infusion rate used (1ml/min or 1,5 

ml/min)(1,97,113–115). Rout estimation can be optimised by fitting the infusion test 

calculations to the in-software mathematical model. 

In shunted patients, provided that the proximal end is patent and the shunt valve 

open, according to Figure 1.2, the Rout measured during infusion should be the Rout 

of the shunt, unless there is a distal obstruction, which increases this Rout.  

 

Sedation, general anaesthesia and paediatric infusion tests 

Sedation is strictly avoided in adults, due to possible and unconfirmed effects on 

intracranial circulation and difficulty in close monitoring of patients during the 

procedure. If adults cannot comply with the procedure, this will be attempted in 

operating theatres after general anaesthesia (GA) with close monitoring. We routinely 

perform lumbar and reservoir infusion tests in children under investigation for PTCS 

and hydrocephalus, as well as those already diagnosed or shunted. All children unable 

to cooperate in the fully alert state are studied under GA. Occasionally, mild sedation 

[chloral hydrate but mainly Entonox (nitrous oxide/oxygen mixture 50%/50%) 

inhalation during needle insertion] is given and, when feasible, children are studied 

fully conscious with parent (s) and play activities at the bedside. The procedure then 

takes place in the exact same way as in adults.  
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Complications associated with infusion tests 

i) Lumbar infusion tests 

I have not explored infections associated with lumbar infusion tests. From data of a 

previous internal audit (unpublished), our lumbar infusion tests infection rate has 

been shown to be quite low (<1%) and our aseptic technique quite effective. The overall 

tolerability of the invasive test, which uses a larger needle (18g) for a long period of 

time, and includes infusion as well as withdrawal, appears quite good. From a series 

of 562 patients reported in multiple centres from Sweden and one centre in Denmark, 

headaches and back pain 24hrs after infusion tests occurred in about 15% of patients, 

however were short lasting and disappeared within the next days(116). From our 

experience, we hardly ever see serious headaches or back pain post lumbar infusions, 

and only 1-2 patients/year will require hospitalisation for severe headaches after the 

procedure (from an average of 150 tests/year). 

ii) Reservoir/shunt infusion tests 

Similar to lumbar tests, reservoir/shunt test infection rate has been audited and 

shown to be quite low (<0.5%, unpublished data). I have also investigated the infection 

rate in the cohort studied in chapter 8.1  
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CHAPTER 4 

CEREBRAL BLOOD FLOW AND AUTOREGULATION IN NPH: 

A SYSTEMATIC REVIEW 
 

4.1 Introduction 

 

Normal Pressure Hydrocephalus: pathophysiology 

 

NPH remains, to the best of our current knowledge, the only reversible dementia. Its 

potential reversibility, combined with the suboptimal clinical understanding and 

limited shunt responsiveness, form a demand for elucidating its pathophysiology. 

Guidelines and best-practice recommendations have existed for a while and continue 

to be updated. Over 50 years since the Hakim and Adam description of the clinical 

syndrome, there is no good modern definition of NPH, nor better description of its 

underlying mechanisms. Few studies have sought to interpret imaging findings in the 

context of theories of NPH pathogenesis.(14,117,118) Furthermore, the division 

between idiopathic NPH (iNPH) and secondary NPH, is also based on a consensus 

and there exist barely any quantitative, adequately powered studies that have 

investigated the differences in pathophysiological sequelae between the two(119,120).  

Physiologically, it is known that the CSF and the cerebral blood circulation interact, 

hence many historical and current reports have focused on vascular factors -expressed 

in studies of Cerebral Blood Flow (CBF), including cerebral autoregulation (CA) in 

NPH. The interaction between hydrocephalus and disturbed CBF has been studied 

increasingly since 2001, with the development of new imaging methods(73,121–123).  
 

Cerebral Blood Flow and its Regulation  

The difference between Mean Arterial blood pressure (MAP) and ICP represents the 

constructed concept of Cerebral Perfusion Pressure (CPP). Cerebral autoregulation 

refers to the physiological, adaptive vascular responses in the brain to changes in CPP 

that maintain CBF relative constant. As such, the paramount role of autoregulation in 

maintaining a healthy brain, protected from ischaemic and hyperaemic insults has prompted a 
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plethora of investigations into its underlying processes. Most of them have been summarised 

analytically but still remain to be deciphered and applied therapeutically (124–127).   

Current knowledge on cerebral blood flow and autoregulation in NPH 

While CA has been extensively studied in healthy individuals, as well as diseases such 

as brain injury and stroke(49,128–135), the state of CA in NPH is more complex and 

ambiguous, with scarce studies putting CBF/CA into the context of the CSF 

circulation. Furthermore, there are no gold standard tests for the assessment of CBF 

as a diagnostic or prognostic tool or current systematic review of the methods. We 

have not aimed to attempt this with the current review. 

Owler et al(73) systematically reviewed in 2001 the past efforts on implicating CBF 

and a few CA measurements in NPH diagnosis and outcome predictions, including 

reviewing the methods available at the time. With this review, important foundations 

in reviewing and designing studies to further our discoveries in the topic have been 

laid. The reviewers also concluded that: 1) There remained abundant ground for 

investigation in this area, especially related to CA 2) It is important to obtain 

sufficient numbers of patients and well-defined patient subgroups, one of the most 

important challenges in NPH. Definition of “normal pressure” and even NPH are not 

yet homogeneous enough globally 3) More detailed studies on regional CBF(rCBF) 

could shed some important light 4) magnetic resonance (MR) perfusion could be a 

promising technique for NPH 5) Concomitant studies of cerebral metabolism are 

needed, since there are no reports of whether reduced CBF could reflect a 

correspondingly reduced metabolism in NPH and 6) Relative findings in the field need 

to be transferable to the bedside and signify something for patients’ outcomes. 

Additionally to updating the previous systematic review and methodology, we sought 

to review the new information available thanks to new imaging techniques, not only 

in perfusion, but also in structural, especially microstructural studies.   

 

 



47 
 

4.2 Methods 

We used the PRISMA checklist and flowchart for quality in systematic review 

reporting(136). From March 4th up to 31 January 2018, we performed a detailed search 

on Scopus, Cochrane, PubMed, Scopus and Web of Knowledge, using the key phrases 

“autoregulation in hydrocephalus”, “cerebrovascular reactivity in hydrocephalus” and 

finally “autoregulation/cerebrovascular reactivity AND hydrocephalus”, in order to 

extend the search to all studies related to CBF, CVR and CA in NPH. Study 

participants had to be patients with idiopathic or secondary NPH, measurements of 

their CBF and/or CA/other CVR test, comparing baseline state with post-surgical 

state and also magnitude of the symptoms with CBF/CA. 

Results were filtered in order to yield manuscripts after 2001 (date of completion of 

the Owler et al review) and up until 31/01/18. The language in which papers were 

written did not matter, since we had access to a vast majority of the world languages. 

The articles had to be published, and conference/other abstracts without a 

corresponding paper, unpublished work or work under publication were not 

considered 

We looked into a wide spectrum of the NPH vignette: pre-shunting assessment of CBF 

or autoregulation at baseline and/or after CSF drainage or shunting; this was because 

at each step, baseline, post-shunting, or prognostic value, the relative questions 

related to the state of CBF and/or CA have not yet been answered. We weighed and 

compared all papers for consistency of references, background, analytical reporting of 

methods according to guidelines and checklists. Reasoning and drawing of conclusion 

in an unbiased manner, taking into account NPH literature and its pathophysiological 

considerations was an important factor for discussion. 

We extracted data from all the original articles using piloted data forms; the forms 

underwent some dynamic changes during the data extraction when new data or 

information arose. The RTI tool was used to assess bias in observational studies(137). 

The QUIPS tool was used for assessing risk of bias for study participation, prognostic factor 

measurement and outcome measurement(137). 
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The GRADE tool was used to classify the diagnostic and prognostic level of evidence 

as High, Moderate and Low(138). In order to assign higher level of evidence in current 

findings, the following criteria had to be met in defining and selecting the NPH group, 

as reported in Owler et al(73):  

1) Full or incomplete clinical triad/primarily gait disorder;  

2) ventricular dilatation on CT/MRI without significant atrophy;  

3) absence of focal neurological deficit or focal pathology on CT;  

4) normal ICP/CSF pressure (<15 mmHg) (ICP monitoring or infusion 

study(56,95,139,140));  

5) objective, well documented follow-up. 
 

This review design and protocol can be accessed in the PROSPERO register, with its 

registration number CRD42018090946. 

 

4.3 Results 

A total of 51 articles met our criteria for the final synthesis, from an initial total of 

3,597 from all databases (2,996 when duplicates were removed and only 373 relevant 

to the topic searched for). Results from the search were synthesised into 4 main 

categories: 1) global CBF & rCBF 2) CA and CVR 3) CBF after temporary CSF 

withdrawal and 4) CBF and CA/CVR post-shunting (with or without baseline 

reference).  

Analytical results, including main findings are represented in Tables 4.1-4.4.  

 

 

 

 

 

 

 



49 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

T
a

b
le

 4
.1

 A
 (

m
o

d
if

ie
d

):
 S

u
m

m
a
ry

 o
f 
p
re

v
io

u
s 

e
v
id

e
n
ce

  
a
n
d
 n

e
w

e
r 

st
u
d
ie

s 
o
n
 b

a
se

lin
e
 g

lo
b
a
l 
C
B
F
 a

ft
e
r 

2
0
0
1
: 

N
 =

 n
u
m

b
e
r 

o
f 
p
a
ti
e
n
ts

 i
n
cl

u
d
e
d
. 

iN
P
H

 =
 a

e
ti
o
lo

g
y
 o

f 
N

P
H

 (
id

io
p
a
th

ic
 v

s 
se

co
n
d
a
ry

).
 P

C
 M

R
I:

 p
h
a
se

 c
o
n
tr

a
st

 M
R
I,

 t
C
B
F
: 

to
ta

l 
C
B
F
, 

P
V
W

M
: 

p
e
ri
ve

n
tr

ic
u
la

r 
w

h
it
e
 m

a
tt

e
r,

 D
S
C
 M

R
I:

 

d
yn

a
m

ic
 s

u
sc

e
p
ti
b
ili

ty
 c

o
n
tr

a
st

 p
e
rf

u
si

o
n
 M

R
I.

 T
h
e
 *

 d
e
n
o
te

s 
th

a
t 

th
e
 m

a
rk

e
r 

st
u
d
y 

in
cl

u
d
e
d
 r

e
su

lt
s 

o
n
 r

C
B
F
 a

s 
w

e
ll 

a
s 

tC
B
F
. 

 

 R
e

f 
N

 
iN

P
H

 
 S

tu
d

y
 D

e
s
ig

n
 

M
e

th
o

d
 

M
a

in
 F

in
d

in
g

s
 

O
th

e
r 

m
a

in
 F

in
d

in
g

s
 

B
a

te
m

a
n

 e
t 

a
l 

(2
0

0
8

) 
 (

1
5
6
) 

3
2
 

iN
P
H

 

 C
o
m

p
a
ri
so

n
 b

e
tw

e
e
n
 I

N
P
H

 a
n
d
 

h
e
a
lt
h
y
 c

o
n
tr

o
l 
p
re

-s
h
u
n
ti
n
g
 

P
C
 M

R
I 

T
o
ta

l 
b
lo

o
d
 i
n
fl
o
w

, 
sa

g
it
ta

l 
si

n
u
s 

o
u
tf

lo
w

, 
re

la
ti
v
e
 c

o
m

p
lia

n
ce

 r
a
ti
o
 

a
ll 

si
g
n
if
ic

a
n
tl
y
 ↓

 i
n
 t

h
e
 N

P
H

 g
ro

u
p
 

co
m

p
a
re

d
 t

o
 c

o
n
tr

o
ls

. 

 

T
a

k
a

y
a

 e
t 

a
l 

(2
0

1
0

) (
1
5
7
) 

1
4
 

iN
P
H

 

P
re

-s
h
u
n
ti
n
g
 i
N

P
H

 C
B
F
 

a
ss

e
ss

m
e
n
t 

&
 a

ss
o
ci

a
ti
o
n
 w

it
h
 

cl
in

ic
a
l 
sy

m
p
to

m
s.

 

M
R

I 
&

 

S
P
E
C
T
 

H
y
p
o
p
e
rf

u
si

o
n
 d

e
v
e
lo

p
e
d
 i
n
 a

ll 

b
ra

in
 r

e
g
io

n
s 

b
e
fo

re
 t

h
e
 

a
p
p
e
a
ra

n
ce

 o
f 

sy
m

p
to

m
s 

&
 w

a
s 

n
o
t 

co
rr

e
la

te
d
 w

it
h
 t

h
e
 d

e
g
re

e
 o

f 

sy
m

p
to

m
s 

in
 i
N

P
H

 

 

E
l 

S
a

n
k

a
ri

 e
t 

a
l 

(2
0

1
1

) 
 (

8
5
) 

1
3
 

iN
P
H

 

tC
B
F
 i
n
 i
N

P
H

 v
s 

h
e
a
lt
h
y
 

v
o
lu

n
te

e
rs

, 
a
m

n
e
si

c 
M

ild
 

C
o
g
n
it
iv

e
 I

m
p
a
ir
m

e
n
t 

&
 

A
lz

h
e
im

e
r’

s 
d
is

e
a
se

 

P
C
 M

R
I 

tC
B
F
 l
o
w

e
r 

in
 i
N

P
H

 t
h
a
n
 i
n
 a

-M
C
I 

a
n
d
 t

e
n
d
e
d
 t

o
 b

e
 l
o
w

e
r 

th
a
n
 A

D
, 

b
u
t 

n
o
 d

if
fe

re
n
t 

to
 h

e
a
lt
h
y
 

v
o
lu

n
te

e
rs

 

 

S
z
c
z
e

p
a

ń
s
k

i 
e

t 

a
l 

(2
0

1
2

) 
 (
1
9
6
) 

4
0
 

m
ix

e
d
 

B
F
V
 &

 P
I 

a
ss

e
ss

m
e
n
t 

in
 p

re
-

sh
u
n
te

d
 i
N

P
H

 &
 c

h
a
n
g
e
s 

d
u
ri
n
g
 

C
S
F
 i
n
fu

si
o
n
 t

e
st

s 

in
fu

si
o
n
 t

e
st

 

&
T
C
D

 

in
cr

e
a
se

 o
f 

th
e
 p

u
ls

a
ti
lit

y
 i
n
d
ic

e
s 

o
f 

B
F
V
 m

a
y
 i
n
d
ic

a
te

 p
re

se
rv

e
d
 

a
u
to

re
g
u
la

ti
o
n
 

N
o
 c

h
a
n
g
e
s 

o
f 

B
F
V
 d

u
ri
n
g
 

in
fu

si
o
n
 

Z
ie

g
e
li

tz
 e

t 
a

l 

(2
0

1
3

) (
1
5
8
) 

2
1
 

iN
P
H

 
P
re

o
p
e
ra

ti
v
e
 a

ss
e
ss

m
e
n
t 

o
f 

C
B
F
 

in
 i
N

P
H

 
D

S
C
 M

R
I 

D
e
cr

e
a
se

d
 p

re
o
p
e
ra

ti
v
e
 C

B
F
 i
n
 t

h
e
 

g
lo

b
a
l 
p
a
re

n
ch

y
m

a
. 

 

p
e
rf

u
si

o
n
 d

e
fi
ci

ts
 i
n
 P

V
W

M
, 

le
n
ti
fo

rm
 n

u
cl

e
u
s 

&
 

h
ip

p
o
ca

m
p
u
s,

 n
o
t 

in
 t

h
a
la

m
u
s 

 

Q
v
a

rl
a

n
d

e
re

t 
a

l 

(2
0

1
7

) (
1
5
9
) 

1
6
 

iN
P
H

 
C
o
m

p
a
ri
so

n
 b

e
tw

e
e
n
 i
N

P
H

 &
  

h
e
a
lt
h
y
 c

o
n
tr

o
ls

 
P
C
 M

R
I 

T
o
ta

l 
C
B
F
 n

o
t 

lo
w

e
r 

in
 N

P
H

 

co
m

p
a
re

d
 t

o
 h

e
a
lt
h
y
 i
n
d
iv

id
u
a
ls

. 
 

 



50 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

T
a

b
le

 4
.1

 B
(m

o
d

if
ie

d
):

 S
u
m

m
a
ry

 o
f 
st

u
d
ie

s 
o
n
 b

a
se

lin
e
 r

e
g
io

n
a
l 
C
B
F
 (

rC
B
F
) 

a
ft

e
r 

2
0
0
1

: 
p
C
A
S
L:

 P
se

u
d
o
-c

o
n
ti
n
u
o
u
s 

a
rt

e
ri
a
l 
sp

in
 l
a
b
e
lin

g
, 
e
Z
IS

: 
e
a
sy

 

Z
-s

co
re

 I
m

a
g
in

g
 S

ys
te

m
. 
T
h
e
 *

 a
g
a
in

 d
e
n
o
te

s 
th

e
se

 s
tu

d
ie

s 
in

cl
u
d
e
d
 r

e
su

lt
s 

o
n
 p

re
 &

 p
o
st

-o
p
e
ra

ti
ve

 C
B
F
. 

T
h
e
 p

a
p
e
r 

o
f 

M
o
m

ja
n
 e

t 
a
l,
 d

e
n
o
te

d
 w

it
h
 2

 a
st

e
ri
sk

s,
 

is
 r

e
p
e
a
te

d
 o

n
 t

a
b
le

 2
A
 a

n
d
 c

o
n
ta

in
s 

m
e
a
su

re
m

e
n
ts

 o
f 

rC
B
F
 a

t 
b
a
se

lin
e
, 
a
u
to

re
g
u
la

ti
o
n
 a

t 
b
a
se

lin
e
 a

s 
w

e
ll 

a
s 

C
B
F
 p

re
&

 p
o
st

-o
p
e
ra

ti
ve

ly
. 

 R
e

f 
 N

 
iN

P
H

 
S

tu
d

y
 D

e
s
ig

n
 

M
e

th
o

d
 

M
a

in
 F

in
d

in
g

s
 

O
th

e
r 

m
a

in
 F

in
d

in
g

s
 

O
w

le
r 

e
t 

a
l 

(2
0

0
4

) (
1
4
0
) 

1
7
 

m
ix

e
d
 

P
re

-s
h
u
n
t 

rC
B
F
 i
n
 h

e
a
lt
h
y
 

co
n
tr

o
ls

 v
s 

iN
P
H

 &
 i
N

P
H

 v
s 

se
co

n
d
a
ry

 N
P
H

 

H
2
O

 P
E
T
&

 3
T
 

M
R

I 

D
e
cr

e
a
se

d
 r

C
B
F
 i
n
 t

h
e
 t

h
a
la

m
u
s,

 

p
u
ta

m
e
n
 a

n
d
 c

e
re

b
e
llu

m
 o

f 
N

P
H

 

co
m

p
a
re

d
 w

it
h
 c

o
n
tr

o
ls

 

D
e
cr

e
a
se

d
 r

C
B
F
 i
n
 t

h
e
 

sa
m

e
 r

e
g
io

n
s 

in
 i
N

P
H

 v
s 

se
co

n
d
a
ry

 N
P
H

 

M
o

m
ja

n
 e

t 

a
l(

2
0

0
4

)(
1
6
1
) 

1
2
 

iN
P
H

 

C
B
F
+

C
A
 p

re
&

p
o
st

-s
h
u
n
ti
n
g
 &

 

cl
in

ic
a
l 
im

p
ro

v
e
m

e
n
t 

m
e
a
su

re
m

e
n
t 

H
2
O

 P
E
T
 

&
M

R
I 

  

P
o
o
re

st
 a

u
to

re
g
u
la

ti
o
n
 a

ss
o
ci

a
te

d
 

w
it
h
 p

ro
x
im

it
y
 t

o
 t

h
e
 v

e
n
tr

ic
le

s 

S
a
m

e
 a

re
a
 s

h
o
w

e
d
 g

re
a
te

r 

re
st

o
ra

ti
o
n
 o

f 
rC

B
F
 a

ft
e
r 

sh
u
n
ti
n
g
 w

h
ic

h
 c

o
rr

e
la

te
s 

w
it
h
 c

lin
ic

a
l 
im

p
ro

v
e
m

e
n
t 

O
w

le
r 

e
t 

a
l 

(2
0

0
4

)(
1
6
0
) 

1
7
 

  
 i
N

P
H

 

A
ss

e
ss

m
e
n
t 

o
f 

p
re

-s
h
u
n
te

d
 

iN
P
H

 w
it
h
 C

S
F
 d

y
n
a
m

ic
s 

m
e
a
su

re
m

e
n
ts

 

P
E
T
&

M
R

I&
in

fu

si
o
n
 t

e
st

 

M
e
a
n
 r

C
B
F
 d

e
cr

e
a
se

d
 i
n
 t

h
e
 

th
a
la

m
u
s 

a
n
d
 b

a
sa

l 
g
a
n
g
lia

 &
 w

h
it
e
 

m
a
tt

e
r 

re
g
io

n
s.

  

T
h
e
se

 r
e
d
u
ct

io
n
s 

si
g
n
if
ic

a
n
tl
y
 c

o
rr

e
la

te
d
 

w
it
h
 c

h
a
n
g
e
s 

in
 I

C
P
 a

n
d
 

w
it
h
 p

ro
x
im

it
y
 t

o
 t

h
e
 

v
e
n
tr

ic
le

s.
 

S
a

s
a

k
i 
e

t 
a

l 

(2
0

0
7

) (
1
6
4
) 

  
3
0
 

iN
P
H

 

A
ss

e
ss

m
e
n
t 

o
f 

iN
P
H

 v
s 

co
n
tr

o
ls

 p
re

-s
h
u
n
ti
n
g
 &

 

co
rr

e
la

ti
o
n
 w

it
h
 s

y
m

p
to

m
s 

S
P
E
C
T
 

S
ig

n
if
ic

a
n
tl
y
 d

e
cr

e
a
se

d
 r

C
B
F
 a

re
a
s 

in
 

th
e
 i
N

P
H

 g
ro

u
p
 c

o
m

p
a
re

d
 w

it
h
 t

h
e
 

n
o
rm

a
l 
co

n
tr

o
l 
g
ro

u
p
. 

G
e
n
u
in

e
 u

rg
e
 i
n
co

n
ti
n
e
n
ce

 

w
it
h
 r

e
d
u
ce

d
 b

la
d
d
e
r 

fi
lli

n
g
 

se
n
sa

ti
o
n
 a

ss
o
ci

a
te

d
 w

it
h
 

a
 g

lo
b
a
l 
d
e
cr

e
a
se

 o
f 

th
e
 

C
B
F
 

T
a

k
e

u
c
h

i 
e

t 
a

l 

(2
0

0
7

) (
1
4
) 

4
4
 

iN
P
H

 
iN

P
H

 r
C
B
F
 i
n
v
e
st

ig
a
ti
o
n
 p

re
 &

 

p
o
st

-s
h
u
n
ti
n
g
 

S
P
E
C
T
 

2
 c

e
re

b
ra

l 
ci

rc
u
la

to
ry

 d
is

o
rd

e
rs

 i
n
 

iN
P
H

: 
1
)a

t 
th

e
 c

e
re

b
ra

l 
co

rt
ic

a
l 

re
g
io

n
 &

 2
)a

t 
th

e
 t

h
a
la

m
u
s-

b
a
sa

l 

g
a
n
g
lia

  

re
d
u
ce

d
 C

B
F
 p

re
-s

h
u
n
ti
n
g
. 

P
o
st

-s
h
u
n
ti
n
g
 

im
p
ro

v
e
m

e
n
t 

o
f 

C
B
F
 

fr
o
n
to

p
a
ri
e
ta

lly
, 

 

K
o

b
a

y
a

s
h

i 
e

t 
a

l 

(2
0

0
9

) (
1
9
3
) 

1
2
 

iN
P
H

 

C
o
m

p
a
ri
so

n
 o

f 
rC

B
F
 i
n
 n

o
n
-

sh
u
n
te

d
 i
N

P
H

 v
s 

A
lz

h
e
im

e
r’
s 

D
is

e
a
se

 

S
P
E
C
T
 

In
 i
N

P
H

, 
e
n
h
a
n
ce

d
 p

e
rf

u
si

o
n
 i
n
 a

re
a
s 

su
rr

o
u
n
d
in

g
 t

h
e
 c

in
g
u
la

te
 g

y
ru

s,
 

w
h
ile

 n
o
 A

D
 c

a
se

s 
sh

o
w

e
d
 t

h
e
se

 

fi
n
d
in

g
s.

 

T
w

o
-l
a
y
e
r 

a
p
p
e
a
ra

n
ce

  
in

 

S
P
E
C
T
 u

si
n
g
 e

Z
IS

 c
o
u
ld

 b
e
 

a
 m

e
a
n
s 

to
 d

e
te

ct
 i
N

P
H

. 

 



51 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 T
a

b
le

 4
.1

 B
(m

o
d

if
ie

d
):

 c
o

n
ti

n
u

e
s
 f

ro
m

 p
re

v
io

u
s
 p

a
g

e
 

 

R
e

f 
 N

 
iN

P
H

 
S

tu
d

y
 D

e
s
ig

n
 

M
e

th
o

d
 

M
a

in
 F

in
d

in
g

s
 

O
th

e
r 

m
a

in
 F

in
d

in
g

s
 

Y
o

o
n

 e
t 

a
l 

(2
0

0
9

)(
1
6
6
) 

1
0
 

iN
P
H

 

 C
o
m

p
a
ri
so

n
 o

f 
p
re

-s
h
u
n
ti
n
g
 

iN
P
H

 r
C
B
F
 &

 c
o
rr

e
la

ti
o
n
 w

it
h
 

co
g
n
it
iv

e
 d

e
cl

in
e
  
 

S
P
E
C
T
 

rC
B
F
 c

h
a
n
g
e
s 

in
 p

re
fr

o
n
ta

l 
&

 

su
b
co

rt
ic

a
l 
a
re

a
s,

 a
ss

o
ci

a
te

d
 w

it
h
 

fr
o
n
ta

l 
su

b
co

rt
ic

a
l 
ci

rc
u
it
; 

th
e
 l
a
tt

e
r 

m
a
y
 c

o
n
tr

ib
u
te

 t
o
 t

h
e
 c

o
g
n
it
iv

e
 

d
e
cl

in
e
 i
n
 i
N

P
H

 .
  

T
h
e
 r

e
d
u
ct

io
n
 o

f 
rC

B
F
 a

n
d
 

cl
in

ic
a
l 

co
g
n
it
iv

e
 

im
p
a
ir
m

e
n
t 

a
re

 
cl

o
se

ly
 

co
n
n
e
ct

e
d
 i

n
 p

a
ti
e
n
ts

 w
it
h
 

iN
P
H

. 

V
ir

h
a

m
m

a
r 

e
t 

a
l 

(2
0

1
7

)(
1
6
3
) 

2
1
 

iN
P
H

 
rC

B
F
 m

e
a
su

rm
e
n
t 

in
 i
N

P
H

 v
s 

h
e
a
lt
h
y
 c

o
n
tr

o
ls

 
p
C
A
S
L
 M

R
 

re
d
u
ce

d
 P

V
W

M
, 

le
n
ti
fo

rm
 n

u
cl

e
u
s 

&
 

th
a
la

m
u
s 

C
B
F
 c

o
m

p
a
re

d
 w

it
h
 c

o
n
tr

o
ls

 

co
g
n
it
iv

e
 

fu
n
ct

io
n
 

co
rr

e
la

te
d
 

w
it
h
 

C
B
F
 

in
 

P
V
W

M
, 

ce
re

b
e
llu

m
 

a
n
d
 

p
o
n
s 

 

T
a

b
le

 4
.2

 A
(m

o
d

if
ie

d
):

 S
u
m

m
a
ry

 o
f 
st

u
d
ie

s 
o
n
 b

a
se

lin
e
 c

e
re

b
ra

l 
a
u
to

re
g
u
la

ti
o
n
 i
n
 N

P
H

 a
ft

e
r 

2
0
0
1
. 
T
C
D

: 
tr

a
n
sc

ra
n
ia

l 
d
o
p
p
le

r.
 A

st
e
ri
sk

 

d
e
n
o
ti
n
g
 t

h
a
t 

th
is

 p
a
p
e
r 

is
 r

e
p
e
a
te

d
 i
n
 a

b
le

 1
B
 a

s 
w

e
ll 

a
s 

co
n
ta

in
s 

in
fo

rm
a
ti
o
n
 o

n
 p

re
 &

 p
o
st

-o
p
e
ra

ti
ve

 C
B
F
. 
R
cs

f:
 R

e
si

st
a
n
ce

 t
o
 C

S
F
 o

u
tf

lo
w

 

R
e

f 
 N

 
iN

P
H

 
S

tu
d

y
 D

e
s
ig

n
 

M
e

th
o

d
 

M
a

in
 F

in
d

in
g

s
 

O
th

e
r 

m
a

in
 F

in
d

in
g

s
 

C
z
o

s
n

y
k

a
 e

t 
a

l 

(2
0

0
2

) (
1
7
5
) 

  
  

3
5
 

m
ix

e
d
 

G
lo

b
a
l 
a
u
to

re
g
u
la

ti
o
n
 p

re
-

sh
u
n
t 

w
it
h
 p

a
ra

lle
l 
C
S
F
 

d
y
n
a
m

ic
s 

m
e
a
su

re
m

e
n
ts

 

T
C
D

&
C
S
F
 

in
fu

si
o
n
 t

e
st

 

In
cr

e
a
se

d
 r

e
si

st
a
n
ce

 t
o
 C

S
F
 

o
u
tf

lo
w

 a
ss

o
ci

a
te

d
 w

it
h
 

p
re

se
rv

e
d
 a

u
to

re
g
u
la

ti
o
n

 

a
u
to

re
g
u
la

ti
o
n
 

te
n
d
e
d
 

to
 b

e
 w

o
rs

e
 i

n
 p

a
ti
e
n
ts

 

w
it
h
 
is

ch
a
e
m

ic
 
ch

a
n
g
e
s 

in
 M

R
I 

 

M
o

m
ja

n
 e

t 
a

l 

(2
0

0
4

) (
1
6
1
) 

1
2
 

iN
P
H

 

A
ss

e
ss

m
e
n
t 

o
f 
p
re

-s
h
u
n
t 

iN
P
H

, 
p
o
st

-s
h
u
n
te

d
 i
N

P
H

 

&
 c

lin
ic

a
l 
im

p
ro

v
e
m

e
n
t 

m
e
a
su

re
m

e
n
t 

H
2
O

 P
E
T
 a

n
d
 

M
R
I 

T
1
&

T
2
-

w
e
ig

h
te

d
 

P
o
o
re

st
 a

u
to

re
g
u
la

ti
o
n
 a

ss
o
ci

a
te

d
 

w
it
h
 p

ro
x
im

it
y
 t

o
 t

h
e
 v

e
n
tr

ic
le

s 

S
a
m

e
 

a
re

a
 

sh
o
w

e
d
 

g
re

a
te

r 
re

st
o
ra

ti
o
n
 

o
f 

C
B
F
 

a
ft

e
r 

sh
u
n
ti
n
g
 

w
h
ic

h
 

co
rr

e
la

te
s 

w
it
h
 

cl
in

ic
a
l 
im

p
ro

v
e
m

e
n
t 

 

  



52 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

R
e

f 
 N

 
iN

P
H

 
S

tu
d

y
 D

e
s
ig

n
 

M
e

th
o

d
 

M
a

in
 F

in
d

in
g

s
 

O
th

e
r 

m
a

in
 F

in
d

in
g

s
 

C
z
o

s
n

y
k

a
 e

t 
a

l 

(2
0

0
5

)(
1
7
4
) 

  
 

6
8
 

m
ix

e
d
 

 G
lo

b
a
l 
C
A
 w

it
h
 C

S
F
 

d
y
n
a
m

ic
s 

m
e
a
su

re
m

e
n
ts

 &
 

a
ss

o
ci

a
ti
o
n
 w

it
h
 o

u
tc

o
m

e
 

p
o
st

-s
h
u
n
ti
n
g
 

in
fu

si
o
n
 t

e
st

 

+
p
h
o
to

p
le

th
y

sm
o
g
ra

p
h
y
 

D
is

tu
rb

e
d
 C

S
F
 d

y
n
a
m

ic
s 

a
ss

o
ci

a
te

d
 w

it
h
 p

re
se

rv
e
d
 

a
u
to

re
g
u
la

ti
o
n

 

a
u
to

re
g
u
la

ti
o
n
 t

e
n
d
e
d
 

to
 a

ss
o
ci

a
te

 w
it
h
 

o
u
tc

o
m

e
; 

p
re

se
rv

e
d
 

a
u
to

re
g
u
la

ti
o
n
 t

e
n
d
e
d
 

to
 b

e
 a

ss
o
ci

a
te

d
 w

it
h
 

im
p
ro

v
e
m

e
n
t 

p
o
st

-

sh
u
n
ti
n
g

 

H
a

u
b

ri
c
h

 e
t 

a
l 

(2
0

1
6

)(
1
7
6
) 

  
 

2
3
 

m
ix

e
d
 

A
ss

e
ss

m
e
n
t 

p
re

o
p
e
ra

ti
v
e
ly

 

in
 p

a
ra

lle
l 
w

it
h
 C

S
F
 

d
y
n
a
m

ic
s 

C
S
F
 

in
fu

si
o
n
 

te
st

s 
&

T
C
D

 

D
y
n
a
m

ic
 

a
u
to

re
g
u
la

ti
o
n
 

is
 

d
e
p
e
n
d
e
n
t 

o
n
 

p
re

ss
u
re

-v
o
lu

m
e
 

co
m

p
lia

n
ce

 

 

H
a

u
b

ri
c
h

 
e

t 
a

l 
(2

0
1

6
)(

1
7
7
) 

 

2
0
 

m
ix

e
d
 

A
ss

e
ss

m
e
n
t 

p
re

o
p
e
ra

ti
v
e
ly

 

in
 p

a
ra

lle
l 
w

it
h
 C

S
F
 

d
y
n
a
m

ic
s 

C
S
F
 

in
fu

si
o
n
 

te
st

s 
&

T
C
D

 

E
x
h
a
u
st

io
n
 
o
f 

C
S
F
 
co

m
p
e
n
sa

to
ry

 

re
se

rv
e
 c

a
n
 l
im

it
 C

B
F
 r

e
g
u
la

ti
o
n
 

 

 T
a

b
le

 4
.2

 A
 (

m
o

d
if

ie
d

):
 c

o
n

ti
n

u
e

s
 f

ro
m

 p
re

v
io

u
s
 p

a
g

e
 

 T
a

b
le

 4
.2

 B
(m

o
d

if
ie

d
):

 S
u
m

m
a
ry

 o
f 

st
u
d
ie

s 
o
n
 b

a
se

lin
e
 c

e
re

b
ro

v
a
sc

u
la

r 
re

a
ct

iv
it
y
 i
n
 N

P
H

 a
ft

e
r 

2
0
0
1
. 

A
C
Z
: 

a
ce

ta
zo

la
m

id
e
. 

A
S
L:

 a
rt

e
ri
a
l 
sp

in
 

la
b
e
lli

n
g
 p

e
rf

u
si

o
n
 M

R
I.

 T
h
e
 a

st
e
ri
sk

 d
e
n
o
te

s 
th

a
t 
th

e
 a

rt
ic

le
 c

o
n
ta

in
s 

in
fo

rm
a
ti
o
n
 o

n
 p

re
-&

 p
o
st

-o
p
e
ra

ti
ve

 C
B
F
, 
a
n
d
 i
f 
m

a
rk

e
d
 s

o
 m

o
re

 i
n
fo

rm
a
ti
o
n
 

fr
o
m

 o
th

e
r 

se
ct

io
n
s.

  

  
R

e
f 

 N
 

iN
P

H
 

S
tu

d
y
 D

e
s
ig

n
 

M
e

th
o

d
 

M
a

in
 F

in
d

in
g

s
 

O
th

e
r 

m
a

in
 F

in
d

in
g

s
 

K
li

n
g

e
 e

t 
a
l 

(2
0

0
2

) 
(1

5
4
) 

6
0
 

 

iN
P
H

 

 

g
lo

b
a
l 
co

rt
ic

a
l 
C
B
F
 &

 C
V
R

 

b
e
fo

re
 &

 a
ft

e
r 

sh
u
n
ti
n
g
 &

 

b
e
fo

re
 &

 a
ft

e
r 

A
C
Z
 &

 

co
rr

e
la

ti
o
n
 w

it
h
 o

u
tc

o
m

e
 

 

1
5
-O

-H
2
O

 P
E
T
 

L
o
w

e
r 

C
B
F
 i
n
 r

e
sp

o
n
d
e
rs

 v
s 

n
o
n
-

re
sp

o
n
d
e
rs

 p
re

-o
p
e
ra

ti
v
e
ly

. 
C
V
R
 n

o
t 

d
if
fe

re
n
t.

 C
V
R

 i
n
cr

e
a
se

d
 p

o
st

-

o
p
e
ra

ti
v
e
ly

 i
n
 r

e
sp

o
n
d
e
rs

 v
s 

d
e
cr

e
a
se

d
 i
n
 i
n
 n

o
n
-r

e
sp

o
n
d
e
rs

. 

 

 e
a
rl
y
 i
n
d
iv

id
u
a
l 
in

cr
e
a
se

s 

in
 C

V
R

 a
ft

e
r 

sh
u
n
ti
n
g
 

 

 



53 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

R
e

f 
 N

 
iN

P
H

 
S

tu
d

y
 D

e
s
ig

n
 

M
e

th
o

d
 

M
a

in
 F

in
d

in
g

s
 

O
th

e
r 

m
a

in
 F

in
d

in
g

s
 

K
li

n
g

e
 e

t 
a
l 

(2
0

0
2

) 
(1

9
0
) 

5
7
 

 

iN
P
H

 

 

C
B
F
 &

 C
V
R

 i
n
 "

h
ig

h
 r

is
k
" 

a
n
d
 "

lo
w

 

ri
sk

” 
g
ro

u
p
s 

(b
a
se

d
 o

n
 v

a
sc

u
la

r 

ri
sk

 f
a
ct

o
rs

 

 

1
5
-O

-H
2
O

 

P
E
T
 

 

C
B
F
 i
n
 "

h
ig

h
 r

is
k
" 

g
ro

u
p
 d

e
cr

e
a
se

d
 p

re
-

o
p
e
ra

ti
v
e
ly

. 
C
V
R

 i
n
cr

e
a
se

d
 p

o
st

-

o
p
e
ra

ti
v
e
ly

. 
C
V
R

 i
n
 "

lo
w

-r
is

k
" 

g
ro

u
p
 

d
e
cr

e
a
se

d
 i
n
 n

o
n
- 

re
sp

o
n
d
e
rs

 v
s 

in
cr

e
a
se

d
 i
n
 r

e
sp

o
n
d
e
rs

. 

 

C
B
F
 i
n
 “

h
ig

h
-r

is
k
” 

lo
w

e
r 

in
 

re
sp

o
n
d
e
rs

 v
s 

n
o
n
-r

e
sp

o
n
d
e
rs

 

K
li

n
g

e
 e

t 
a
l 

(2
0

0
2

) 
(1

5
3
) 

 

2
7
 

 

iN
P
H

 

 

C
B
F
 &

 C
V
R

 u
si

n
g
 A

C
Z
 b

e
fo

re
 &

 

a
ft

e
r 

su
rg

e
ry

, 
co

m
p
a
re

d
 w

it
h
 

n
e
u
ro

p
sy

ch
o
lo

g
y
 

1
5
-O

-H
2
O

 

P
E
T
 

C
B
F
 &

 C
V
R
 r

e
d
u
ce

d
 i
n
 d

if
fe

re
n
t 

co
rt

ic
a
l 

re
g
io

n
s 

in
 r

e
sp

o
n
d
e
rs

 v
s 

n
o
n
-

re
sp

o
n
d
e
rs

. 
G

a
it
 i
m

p
ro

v
e
m

e
n
t 

re
la

te
d
 

to
 i
n
cr

e
a
se

d
 C

V
R

, 
v
is

u
a
l 
a
tt

e
n
ti
o
n
 a

n
d
 

v
e
rb

a
l 
m

e
m

o
ry

 

n
o
 r

e
la

ti
o
n
sh

ip
 b

e
tw

e
e
n
 

n
e
u
ro

p
sy

ch
o
lo

g
ic

a
l 
te

st
s 

&
 

h
a
e
m

o
d
y
n
a
m

ic
s 

p
re

-

o
p
e
ra

ti
v
e
ly

 

J
a

ru
s
-

D
z
ie

d
z
ic

 e
t 

a
l 

(2
0

0
5

) 

(1
6
9
) 

1
3
 

m
ix

e
d
 

B
F
V
 a

t 
b
a
se

lin
e
 &

 C
V
R
 a

ft
e
r 

A
C
Z
; 

co
m

p
a
ri
so

n
 b

e
tw

e
e
n
 

a
tr

o
p
h
y
, 
N

P
H

 a
n
d
 h

e
a
lt
h
y
 

a
g
e
-m

a
tc

h
e
d
 c

o
n
tr

o
ls

 

T
C
D

 

B
F
V
 

a
t 

b
a
se

lin
e
 

re
d
u
ce

d
 

in
 

b
o
th

 

a
tr

o
p
h
y
 
a
n
d
 
N

P
H

 
b
u
t 

a
t 

th
e
 
lo

w
e
r 

lim
it
 

o
f 

n
o
rm

a
l 

co
m

p
a
re

d
 

to
 

th
e
 

h
e
a
lt
h
y
 

a
g
e
-m

a
tc

h
e
d
 

g
ro

u
p
. 

C
V
R

 

re
d
u
ce

d
 i
n
 a

tr
o
p
h
ic

 v
s 

co
n
tr

o
l 
g
ro

u
p
 

B
F
V
 n

o
t 

d
if
fe

re
n
t 

b
e
tw

e
e
n
 

a
tr

o
p
h
y
&

 N
P
H

, 
h
o
w

e
v
e
r 

C
A
 

b
e
tt

e
r 

in
 
N

P
H

 
v
s 

a
tr

o
p
h
y
 

a
n
d
 

n
o
t 

si
g
n
if
ic

a
n
tl
y
 

d
if
fe

re
n
t 

in
 N

P
H

 v
s 

co
n
tr

o
l 

g
ro

u
p
. 

C
h

e
n

 e
t 

a
l 

(2
0

0
8

)(
1
7
1
) 

2
8
 

iN
P
H
 

C
o
m

p
a
ri
so

n
 o

f 
3
 C

V
R

 

m
e
a
su

re
m

e
n
ts

 w
it
h
 s

u
st

a
in

m
e
n
t 

o
f 

sh
u
n
t 

re
sp

o
n
se

 

X
e
-C

T
, 

M
R

I 

a
n
d
 M

R
S
I 

In
 p

a
ti
e
n
ts

 w
it
h
 r

e
la

ti
v
e
ly

 b
e
tt

e
r 

a
v
e
ra

g
e
 

rC
B
F
 

a
n
d
 

A
C
Z
 

ch
a
lle

n
g
e
, 

rC
B
F
 

co
u
ld

 

h
a
v
e
 

a
 

h
ig

h
e
r 

p
ro

b
a
b
ili

ty
 

o
f 

b
e
tt

e
r 

o
u
tc

o
m

e
. 
 

P
re

o
p
 
rC

B
F
 
re

d
u
ce

d
 
in

 
a
ll.

 
If

 

n
o
rm

a
l 
in

≥
 2

 C
V
R

 p
a
ra

m
e
te

rs
, 

im
p
ro

v
e
m

e
n
t 

is
 

lik
e
ly

&
 

la
st

s 

fo
r 

3
 y

e
a
rs

 

C
h

a
n

g
 e

t 
a

l 

(2
0

0
9

)(
1
6
8
) 

1
6
2
 

iN
P
H

 

C
B
F
 a

n
d
 C

V
R

 i
n
 p

a
ti
e
n
ts

 w
it
h
 f
u
ll 

o
r 

in
co

m
p
le

te
 H

a
k
im

 t
ri
a
d
 p

re
-&

 

p
o
st

-o
p
e
ra

ti
v
e
ly

 

S
P
E
C
T
 

a
n
d
 

X
e
-C

T
 

N
o
 s

ig
n
if
ic

a
n
t 

d
if
fe

re
n
ce

 i
n
 p

re
o
p
e
ra

ti
v
e
 

C
B
F
 

b
e
tw

e
e
n
 

re
sp

o
n
d
e
rs

 
a
n
d
 

n
o
n
re

sp
o
n
d
e
rs

. 
P
re

o
p
e
ra

ti
v
e
 

C
V
R
 

si
g
n
if
ic

a
n
tl
y
 

im
p
a
ir
e
d
 

in
 

re
sp

o
n
d
e
rs

 

co
m

p
a
re

d
 
to

 
co

n
tr

o
ls

, 
b
u
t 

n
o
t 

in
 
n
o
n
-

re
sp

o
n
d
e
rs

  

R
e
sp

o
n
d
e
rs

 w
 i
n
co

m
p
le

te
 

tr
ia

d
:l
o
w

e
r 

p
re

o
p
 C

V
R

, 
b
u
t 

n
o
t 

C
B
F
, 
th

a
n
 c

o
n
tr

o
ls

. 
F
u
ll 

tr
ia

d
:s

ig
n
if
ic

a
n
tl
y
 l
o
w

e
r 

p
re

o
p
 

C
B
F
 &

 C
V
R

 t
h
a
n
 w

it
h
 

in
co

m
p
le

te
 P

o
st

o
p
 C

B
F
 &

C
V
R

 

in
cr

e
a
se

d
 i
n
 r

e
sp

o
n
d
e
rs

 

 T
a

b
le

 4
.2

 B
 (

m
o

d
if

ie
d

):
 c

o
n

ti
n

u
e

s
 f

ro
m

 p
re

v
io

u
s
 p

a
g

e
 

 



54 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

R
e

f 
 N

 
iN

P
H

 
S

tu
d

y
 D

e
s
ig

n
 

M
e

th
o

d
 

M
a

in
 F

in
d

in
g

s
 

O
th

e
r 

m
a

in
 F

in
d

in
g

s
 

Iv
k

o
v

ic
 e

t 
a

l 

(2
0

1
5

) 
(1

7
0
) 

2
5
 

iN
P
H

 
C
B
F
 p

re
-&

 p
o
st

 l
o
n
g
-t

e
rm

 

A
C
Z
 a

d
m

in
is

tr
a
ti
o
n

 
A
S
L
 M

R
I 

In
cr

e
a
se

 i
n
 t

C
B
F
 i
n
 A

C
Z
 

re
sp

o
n
d
e
rs

, 
co

m
b
in

e
d
 w

it
h
 

d
e
cr

e
a
se

d
 w

h
it
e
 m

a
tt

e
r 

h
y
p
e
ri
n
te

n
si

ti
e
s 

 

N
o
n
-r

e
le

v
a
n
t 

fi
n
d
in

g
s 

re
la

te
d
 
to

 
w

h
it
e
 
m

a
tt

e
r 

h
y
p
e
ri
n
te

n
si

ti
e
s 

p
o
st

 

d
ra

in
a
g
e
 

w
it
h
o
u
t 

C
B
F
 

m
e
a
su

re
m

e
n
t 

 T
a

b
le

 4
.2

 B
(m

o
d

if
ie

d
):

 c
o

n
ti

n
u

e
s
 f

ro
m

 p
re

v
io

u
s
 p

a
g

e
 

 T
a

b
le

 4
.3

 (
m

o
d

if
ie

d
):

 R
e
su

lt
s 

o
f 
st

u
d
ie

s 
fo

cu
se

d
 o

n
 C

B
F
 b

e
fo

re
 a

n
d
 a

ft
e
r 

te
m

p
o
ra

ry
 C

S
F
 w

it
h
d
ra

w
a
l.
 p

w
M

R
I:

 p
e
rf

u
si

o
n
-w

e
ig

h
te

d
 M

R
I.

 A
C
Z
: 

a
ce

ta
zo

la
m

id
e
 

 R
e

f 
 N

 
iN

P
H

 
S

tu
d

y
 D

e
s
ig

n
 

M
e

th
o

d
 

M
a

in
 F

in
d

in
g

s
 

O
th

e
r 

m
a

in
 F

in
d

in
g

s
 

M
o

ri
 e

t 
a

l 

(2
0

0
2

) 
(1

8
1
) 

2
2
 

M
ix

e
d
 

 P
re

-&
 p

o
st

 C
S
F
 d

ra
in

a
g
e
 C

B
F
 

in
 s

h
u
n
t 

re
sp

o
n
d
e
rs

 v
s 

n
o
n
-

re
sp

o
n
d
e
rs

 

C
S
F
 r

e
m

o
v
a
l 
&

 

S
P
E
C
T
 

B
a
se

lin
e
 c

lin
ic

a
l 
ch

a
ra

ct
e
ri
st

ic
s 

&
b
a
se

lin
e
 C

B
F
 v

a
lu

e
s 

n
o
t 

si
g
n
if
ic

a
n
tl
y
 

d
if
fe

re
n
t 

b
e
tw

e
e
n
 r

e
sp

o
n
d
e
rs

&
n
o
n
-

re
sp

o
n
d
e
rs

. 
P
o
st

-d
ra

in
a
g
e
 C

B
F
 

ch
a
n
g
e
s 

si
g
n
if
ic

a
n
tl
y
 h

ig
h
e
r 

in
 

re
sp

o
n
d
e
rs

. 

>
 8

0
%

 i
n
cr

e
a
se

 i
n
 C

B
F
 

a
ft

e
r 

C
S
F
 r

e
m

o
v
a
l 
w

a
s 

p
re

d
ic

ti
v
e
 o

f 
re

sp
o
n
se

 t
o
 

sh
u
n
t 

su
rg

e
ry

 w
it
h
 7

7
%

 

a
cc

u
ra

cy
 

H
e

rt
e

l 
e

t 
a

l 

(2
0

0
3

) 
(1

7
9
) 

2
7
 

iN
P
H

 

 P
re

o
p
e
ra

ti
v
e
 S

T
T
 c

o
m

b
in

e
d
 

w
it
h
 C

B
F
 f
o
r 

sh
u
n
t 

re
sp

o
n
se

 

p
ro

g
n
o
st

ic
a
ti
o
n
 

S
T
T
 

&
 

p
w

M
R
I 

/S
P
E
C
T
 

O
p
ti
m

a
l 

re
su

lt
s 

in
 

p
o
st

-s
h
u
n
ti
n
g
 

o
u
tc

o
m

e
 a

ch
ie

v
e
d
 w

it
h
 a

 c
o
m

b
in

a
ti
o
n
 

o
f 

p
re

o
p
e
ra

ti
v
e
 S

T
T
 &

S
P
E
C
T
/p

w
M

R
I 

re
su

lt
s 

o
f 

S
P
E
C
T
 

a
n
d
 

p
w

M
R

I 
co

rr
e
la

te
d
 i

n
 9

2
 %

 

o
f 

th
e
 p

a
ti
e
n
ts

 (
1
1
 o

f 
1
2
) 

D
u

m
a

re
y
 e

t 
a

l 

(2
0

0
5

) 
(1

8
2
) 

  
 

4
0
 

iN
P
H
 

C
B
F
 &

 g
a
it
 m

e
a
su

re
m

e
n
ts

 

p
re

-&
p
o
st

 S
T
T
 &

 i
d
e
n
ti
fi
ca

ti
o
n
 

o
f 

p
o
st

-s
h
u
n
ti
n
g
 C

B
F
 c

h
a
n
g
e
s 

S
P
E
C
T
 

G
a
it
 i
m

p
ro

v
e
m

e
n
t 

a
t 

th
e
 S

T
T
 i

n
 N

P
H

 

a
ss

o
ci

a
te

d
 

w
it
h
 

a
n
 

rC
B
F
 

in
cr

e
a
se

 

lo
ca

liz
e
d
 
in

 
th

e
 
b
ila

te
ra

l 
d
o
rs

o
la

te
ra

l 

fr
o
n
ta

l 
a
n
d
 l
e
ft

 m
e
si

o
te

m
p
o
ra

l 
co

rt
e
x
. 

N
o
 

st
a
ti
st

ic
a
l 

d
if
fe

re
n
ce

 

b
e
tw

e
e
n
 p

re
- 

a
n
d
 p

o
st

-S
T
T
 

S
P
E
C
T
 i
m

a
g
e
s 

 



55 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

R
e

f 
 N

 
iN

P
H

 
S

tu
d

y
 D

e
s
ig

n
 

M
e

th
o

d
 

M
a

in
 F

in
d

in
g

s
 

O
th

e
r 

m
a

in
 F

in
d

in
g

s
 

W
a

lt
e

r 
e

t 
a

l 

(2
0

0
5

) 
(1

8
0
) 

2
8
 

iN
P
H

 

C
B
F
 p

re
-&

 p
o
st

 S
T
T
 v

s 
cl

in
ic

a
l 

te
st

s 
fo

r 
sh

u
n
t 

o
u
tc

o
m

e
 

p
ro

g
n
o
st

ic
a
ti
o
n
 

P
W

 M
R

I 

Im
p
ro

v
e
d
 b

ra
in

 p
e
rf

u
si

o
n
 a

ft
e
r 

S
T
T
 

ca
n
 a

ss
is

t 
p
re

d
ic

ti
o
n
s 

o
f 

th
e
 

p
o
st

o
p
e
ra

ti
v
e
 o

u
tc

o
m

e
, 
a
s 

o
p
p
o
se

d
 

to
 u

si
n
g
 c

lin
ic

a
l 
e
x
a
m

in
a
ti
o
n
 a

lo
n
e
 

 

V
ir

h
a

m
m

a
r 

e
t 

a
l 

(2
0

1
4

) 
(1

6
2
) 

2
0
 

iN
P
H

 

C
B
F
 b

e
fo

re
 &

 a
ft

e
r 

S
T
T
 &

 

co
m

p
a
ri
so

n
 w

it
h
 g

a
it
 

im
p
ro

v
e
m

e
n
t 

a
ft

e
r 

S
T
T
 

p
C
A
S
L
  

In
 p

a
ti
e
n
ts

 w
it
h
 i
n
cr

e
a
se

d
 C

B
F
 i
n
 

la
te

ra
l 
a
n
d
 f
ro

n
ta

l 
w

h
it
e
 m

a
tt

e
r 

a
ft

e
r 

th
e
 C

S
F
 S

T
T
, 
g
a
it
 f
u
n
ct

io
n
 i
m

p
ro

v
e
d
 

m
o
re

 t
h
a
n
 i
t 

d
id

 i
n
 p

a
ti
e
n
ts

 w
it
h
 

d
e
cr

e
a
se

d
 C

B
F
 i
n
 t

h
e
se

 r
e
g
io

n
s.

  
 

N
o
 

si
g
n
if
ic

a
n
t 

in
cr

e
a
se

 
in

 

C
B
F
 

a
ft

e
r 

C
S
F
 

re
m

o
v
a
l 

co
m

p
a
re

d
 

w
it
h
 

b
a
se

lin
e
 

in
v
e
st

ig
a
ti
o
n
s.

 

 T
a

b
le

 4
.3

 (
m

o
d

if
ie

d
):

 c
o

n
ti

n
u

e
s
 f

ro
m

 p
re

v
io

u
s
 p

a
g

e
 

 T
a

b
le

 4
.4

 A
(m

o
d

if
ie

d
):

 R
e
su

lt
s 

o
f 

st
u
d
ie

s 
fo

cu
se

d
 o

n
 C

B
F
 b

e
fo

re
 &

 a
ft

e
r 

sh
u
n
ti
n
g
, 
it
s 

p
o
ss

ib
le

 p
re

d
ic

ti
v
e
 r

o
le

 a
n
d
 i
ts

 b
e
h
a
v
io

u
r 

p
o
st

-s
h
u
n
ti
n
g
. 
  

R
e

f 
 N

 
iN

P
H

 
S

tu
d

y
 D

e
s
ig

n
 

M
e

th
o

d
 

M
a

in
 F

in
d

in
g

s
 

O
th

e
r 

m
a

in
 F

in
d

in
g

s
 

B
a

k
k

e
r 

e
t 

a
l 

(2
0

0
2

) (
3
5
1
) 

  
 

1
0
 

iN
P
H

 
B
F
V
 b

e
fo

re
 &

 a
ft

e
r 

su
rg

e
ry

 
T
C
D

 
H

ig
h
e
r 

B
F
V
 b

e
fo

re
 s

u
rg

e
ry

 i
s 

re
la

te
d
 

to
 c

lin
ic

a
l 
im

p
ro

v
e
m

e
n
t 

a
ft

e
r 

su
rg

e
ry

. 
 

 

D
ie

z
-C

a
s
tr

o
 e

t 
a
l 

(2
0

0
3

) 
(1

5
5
) 

 

2
0
 

 
 

C
o
m

p
a
ri
so

n
 o

f 
p
re

-&
 p

o
st

-

sh
u
n
ti
n
g
 g

lo
b
a
l 
&

 r
C
B
F
 a

n
d
 

co
rr

e
la

ti
o
n
 w

it
h
 i
m

p
ro

v
e
m

e
n
t 

a
ft

e
r 

sh
u
n
ti
n
g
 

S
P
E
C
T
  

 

R
e
d
u
ce

d
 g

lo
b
a
l 
C
B
F
 a

t 
b
a
se

lin
e
 

a
ss

o
ci

a
te

d
 w

it
h
 p

o
st

-s
u
rg

ic
a
l 

im
p
ro

v
e
m

e
n
t 

 

 



56 
 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

R
e

f 
 N

 
iN

P
H

 
S

tu
d

y
 D

e
s
ig

n
 

M
e

th
o

d
 

M
a

in
 F

in
d

in
g

s
 

O
th

e
r 

m
a

in
 F

in
d

in
g

s
 

M
a

ta
ró

 e
t 

a
l 

(2
0

0
3

) 
(3

5
2
) 

  
 

1
5

 
iN

P
H

 

C
o
m

p
a
ri
so

n
 o

f 
p
re

-&
 p

o
st

-

sh
u
n
ti
n
g
 g

lo
b
a
l 
&

 r
C
B
F
 a

n
d
 

co
rr

e
la

ti
o
n
 w

it
h
 

im
p
ro

v
e
m

e
n
t 

a
ft

e
r 

sh
u
n
ti
n
g
 

S
P
E
C
T
 

S
ig

n
if
ic

a
n
t 

rC
B
F
 i
n
cr

e
a
se

 o
f 

b
o
th

 

fr
o
n
ta

l 
lo

b
e
s 

&
 r

ig
h
t 

p
a
ri
e
ta

l 
lo

b
e
. 

T
h
e
 2

 a
re

a
s 

m
o
st

 r
e
la

te
d
 t

o
 c

lin
ic

a
l 

im
p
ro

v
e
m

e
n
t 

w
e
re

 r
ig

h
t 

m
e
d
ia

l 

p
re

fr
o
n
ta

l 
re

g
io

n
 a

n
d
 t

h
e
 f
ro

n
ta

l 

p
a
rt

 o
f 

th
e
 l
e
ft

 l
o
b
u
le

 o
f 

R
e
il 

in
su

la
. 

In
cr

e
a
se

d
 r

C
B
F
 i
n
 l
e
ft

 

p
re

fr
o
n
ta

l 
d
o
rs

o
la

te
ra

l 

a
re

a
s,

 r
ig

h
t 

fr
o
n
ta

l 

p
re

m
o
to

r 
a
re

a
, 
ri
g
h
t 

m
e
d
ia

l 
p
re

fr
o
n
ta

l 
re

g
io

n
, 

ri
g
h
t 

fr
o
n
ta

l 
w

h
it
e
 m

a
tt

e
r 

a
re

a
, 
ri
g
h
t 

b
a
sa

l 
g
a
n
g
lia

 

a
n
d
 i
n
fe

ri
o
r 

p
a
ri
e
ta

l 

lo
b
u
le

. 

T
u

ll
b

e
rg

 e
t 

a
l 

(2
0

0
4

)(
1
8
7
) 

  
2

8
 

m
ix

e
d
 

A
ss

o
ci

a
ti
o
n
 o

f 
w

a
k
e
fu

ln
e
ss

 

w
it
h
 p

re
-&

p
o
st

 s
h
u
n
ti
n
g
 C

B
F
 

&
 o

u
tc

o
m

e
 

S
P
E
C
T
 

Im
p
a
ir
e
d
 w

a
k
e
fu

ln
e
ss

 a
ss

o
ci

a
te

d
 

w
it
h
 r

e
d
u
ce

d
 r

C
B
F
 i
n
 t

h
e
 a

n
te

ri
o
r 

ci
n
g
u
la

te
 c

o
rt

e
x
. 
 I

m
p
ro

v
e
d
 

w
a
k
e
fu

ln
e
ss

 p
o
st

-s
h
u
n
t 

co
rr

e
sp

o
n
d
s 

to
 i
n
cr

e
m

e
n
ts

 i
n
 f
ro

n
ta

l 
a
n
d
 

h
ip

p
o
ca

m
p
a
l 
rC

B
F
. 

Im
p
a
ir
m

e
n
t 

o
f 

w
a
k
e
fu

ln
e
ss

 
is

 
a
n
 

im
p
o
rt

a
n
t 

p
ro

g
n
o
st

ic
 

sy
m

p
to

m
 

in
 

N
P
H

 
th

a
t 

sh
o
u
ld

 b
e
 a

ss
e
ss

e
d
. 

P
ie

c
h

n
ik

 e
t 

a
l 

(2
0

0
5

) 
(1

8
9
) 

  

1
3

 

 

m
ix

e
d
 

 

M
e
a
su

re
m

e
n
t 

o
f 

rC
B
F
 p

re
-&

 

p
o
st

-o
p
e
ra

ti
v
e
ly

 &
 a

n
a
ly

si
s 

o
f 

d
if
fe

re
n
ce

 

S
P
E
C
T
 

N
o
 s

ig
n
if
ic

a
n
t 

ch
a
n
g
e
s 

in
 r

C
B
F
 p

o
st

-

o
p
e
ra

ti
v
e
ly

 
 

M
u

ra
k

a
m

i 
e

t 
a

l 

(2
0

0
7

) 
(1

9
2
) 

2
4

 
iN

P
H

 

P
re

-o
p
e
ra

ti
v
e
 r

C
B
F
 i
n
 s

h
u
n
t 

su
rg

e
ry

 r
e
sp

o
n
d
e
rs

 v
s 

n
o
n
-

re
sp

o
n
d
e
rs

 

3
D

-S
S
P
 S

P
E
C
T
 

+
M

R
I 

lo
w

e
r 

rC
B
F
 i
n
 t

h
e
 b

a
sa

l 
fr

o
n
ta

l 
lo

b
e
s 

&
 c

in
g
u
la

te
 g

y
ru

s 
in

 r
e
sp

o
n
d
e
rs

 

th
a
n
 i
n
 n

o
n
-r

e
sp

o
n
d
e
rs

. 

re
d
u
ce

d
 

rC
B
F
 

in
 

th
e
 

p
o
st

e
ri
o
r 

p
a
rt

 
lim

it
s 

th
e
 

e
ff

ic
a
cy

 o
f 

sh
u
n
t 

B
a

te
m

a
n

 e
t 

a
l 

(2
0

0
8

)(
1
5
6
) 

  
2

0
 

iN
P
H

 

P
re

-o
p
e
ra

ti
v
e
 r

C
B
F
 i
n
 s

h
u
n
t 

re
sp

o
n
d
e
rs

 v
s 

n
o
n
-

re
sp

o
n
d
e
rs

 

1
.5

T
 T

q
-T

2
-w

 

M
R

I 

n
o
rm

a
l/
in

cr
e
a
se

d
 C

B
F
, 
im

p
ro

v
e
d
 

m
o
re

 t
h
a
n
 i
n
 d

e
cr

e
a
se

d
 C

B
F
. 

 

K
li

n
g

e
 e

t 
a

l 

(2
0

0
8

)(
1
8
8
) 

  
 

6
5

 
iN

P
H

 

L
o
ca

l 
a
n
d
 g

lo
b
a
l 
C
B
F
 p

re
-

o
p
e
ra

ti
v
e
ly

 i
n
 c

lin
ic

a
lly

 

im
p
ro

v
in

g
 v

s 
n
o
n
-i
m

p
ro

v
in

g
 

p
a
ti
e
n
ts

 

H
2
O

 P
E
T
 

In
 s

h
u
n
t 

re
sp

o
n
d
e
rs

, 
lo

ca
l 
C
B
F
 

co
m

p
a
re

d
 t

o
 p

re
-o

p
 i
n
cr

e
a
se

d
. 

S
ig

n
if
ic

a
n
tl
y
 d

e
cr

e
a
se

d
 i
n
 t

h
e
 s

a
m

e
 

a
re

a
s 

in
 n

o
n
-r

e
sp

o
n
d
e
rs

. 

G
lo

b
a
l 

b
lo

o
d
 
fl
o
w

 
d
id

 
n
o
t 

sh
o
w

 a
n
y
 c

o
rr

e
la

ti
o
n
 w

it
h
 

p
re

-&
 p

o
st

o
p
 s

ta
tu

s 
b
a
se

d
 

o
n
 t

h
e
 c

lin
ic

a
l 
sc

o
re

 o
f 
g
a
it
 

a
n
d
 c

o
g
n
it
io

n
 

 T
a

b
le

 4
.4

 A
 (

m
o

d
if

ie
d

):
 c

o
n

ti
n

u
e

s
 f

ro
m

 p
re

v
io

u
s
 p

a
g

e
 

 



57 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

R
e

f 
 N

 
iN

P
H

 
S

tu
d

y
 D

e
s
ig

n
 

M
e

th
o

d
 

M
a

in
 F

in
d

in
g

s
 

O
th

e
r 

m
a

in
 F

in
d

in
g

s
 

Is
h

ii
 e

t 
a
l 

(2
0

1
1

) 
(1

8
4
) 

  
 

8
4
 

iN
P
H

 

R
e
co

g
n
it
io

n
 o

f 
C
B
F
 r

e
d
u
ct

io
n
 

p
a
tt

e
rn

s 
ch

a
ra

ct
e
ri
st

ic
 o

f 

N
P
H

 &
 s

h
u
n
t-

re
sp

o
n
si

v
e
 N

P
H

 

S
P
E
C
T
 

3
 d

if
fe

re
n
t 

p
a
tt

e
rn

s 
o
f 

C
B
F
 r

e
d
u
ct

io
n
 

re
co

g
n
iz

e
d
. 

N
o
 p

re
d
ic

ti
v
e
 v

a
lu

e
 o

f 
C
B
F
, 

co
u
ld

 r
e
fl
e
ct

 t
h
e
 s

e
v
e
ri
ty

 o
f 

th
e
 d

is
e
a
se

 a
s 

m
e
a
su

re
s 

b
y
 

M
M

S
E
 

&
 

ra
n
k
in

 
p
re

-

sh
u
n
ti
n
g
 

Z
ie

g
e

li
tz

 e
t 

a
l 

(2
0

1
4

)(
1
5
8
) 

1
8
 

iN
P
H

 

 C
B
F
 i
n
 s

h
u
n
t 

re
sp

o
n
d
e
rs

 v
s 

n
o
n
-r

e
sp

o
n
d
e
rs

 &
 i
n
 l
o
w

 v
s 

h
ig

h
 i
n
te

n
si

ty
 o

f 
sy

m
p
to

m
s 

C
T
-p

e
rf

 

N
o
 C

B
F
 d

if
fe

re
n
ce

 b
e
tw

e
e
n
 

re
sp

o
n
d
e
rs

 &
 n

o
n
-r

e
sp

o
n
d
e
rs

. 
In

 

re
sp

o
n
d
e
rs

, 
C
B
F
 r

e
co

v
e
re

d
 p

o
to

p
 b

y
 

2
.5

-3
2
%

, 
b
u
t 

re
m

a
in

e
d
  

si
g
n
if
ic

a
n
tl
y
 

d
e
cr

e
a
se

d
 i
n
 t

h
e
 P

V
W

M
 o

f 
n
o
n
-

re
sp

o
n
d
e
rs

. 
 

T
h
e
 

p
re

 
&

 
p
o
st

o
p
e
ra

ti
v
e
 

C
B
F
 

o
f 

co
rt

ic
a
l 

a
n
d
 

su
b
co

rt
ic

a
l 

re
g
io

n
s 

co
rr

e
la

te
d
 

w
it
h
 

th
e
 

in
te

n
si

ty
 o

f 
sy

m
p
to

m
s.

 

Z
ie

g
e
li

tz
 e

t 
a

l 

(2
0

1
5

) 
(1

8
6
) 

  

 

3
2
 

 

iN
P
H

 

 

M
e
a
su

re
m

e
n
t 

o
f 

p
re

 &
 p

o
st

- 

o
p
 C

B
F
 c

h
a
n
g
e
s 

in
 s

h
u
n
t 

re
sp

o
n
d
e
rs

 v
s 

n
o
n
-

re
sp

o
n
d
e
rs

; 
m

e
a
su

re
m

e
n
t 

o
f 

C
B
F
 p

re
 &

 p
o
st

 S
T
T
 f
o
r 

sh
u
n
t 

p
ro

g
n
o
st

ic
a
ti
o
n
 

C
S
C
 M

R
I 

 

P
o
st

-o
p
e
ra

ti
v
e
 r

C
B
F
 c

o
rr

e
la

te
d
 w

it
h
 

cl
in

ic
a
l 
im

p
ro

v
e
m

e
n
t 

a
n
d
 w

h
o
le

 

b
ra

in
 C

B
F
 c

h
a
n
g
e
s 

in
 t

h
e
 r

e
sp

o
n
d
e
r 

g
ro

u
p
 w

e
re

 s
ig

n
if
ic

a
n
tl
y
 h

ig
h
e
r 

th
a
n
 

in
 t

h
e
 n

o
n
re

sp
o
n
d
e
r 

g
ro

u
p
  
 

In
cr

e
a
se

 o
f 

m
o
re

 t
h
a
n
 

8
0
%

 i
n
 C

B
F
 a

ft
e
r 

C
S
F
 

re
m

o
v
a
l 
w

a
s 

p
re

d
ic

ti
v
e
 o

f 

re
sp

o
n
se

 t
o
 s

h
u
n
t 

su
rg

e
ry

 

w
it
h
 7

7
%

 a
cc

u
ra

cy
. 

T
u

n
iz

 e
t 

a
l 

(2
0

1
7

) 
(1

9
7
) 

 

2
3
 

 

iN
P
H

 

P
e
rf

u
si

o
n
 m

e
a
su

re
m

e
n
t 

p
re

&
 

p
o
st

-o
p
e
ra

ti
v
e
ly

  
b
e
tw

e
e
n
 

se
le

ct
e
d
 v

s 
n
o
n
-s

e
le

ct
e
d
 f
o
r 

sh
u
n
ti
n
g
 

p
w

&
d
w

 M
R

I 

 

in
cr

e
a
se

d
 p

e
rf

u
si

o
n
 p

o
st

-o
p
e
ra

ti
v
e
ly

 

to
 s

e
le

ct
e
d
 f
o
r 

sh
u
n
ti
n
g
 (

a
ll 

im
p
ro

v
e
d
) 

v
s 

d
e
cr

e
a
se

 i
n
 n

o
n
-

sh
u
n
te

d
. 

p
e
rf

u
si

o
n
 &

 d
if
fu

si
o
n
 

p
o
si

ti
v
e
ly

 c
o
rr

e
la

te
d
 i
n
 

b
a
sa

l 
g
a
n
g
lia

 b
u
t 

n
e
g
a
ti
v
e
ly

 i
n
 P

V
W

M
 

 

T
a

b
le

 4
.4

A
 (

m
o

d
if

ie
d

):
 c

o
n

ti
n

u
e

s
 f

ro
m

 p
re

v
io

u
s
 p

a
g

e
 

 



58 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 T
a

b
le

 4
.4

 B
(m

o
d

if
ie

d
):

 R
e
su

lt
s 

o
f 

st
u
d
ie

s 
fo

cu
se

d
 o

n
 C

V
R
 b

e
fo

re
 &

 a
ft

e
r 

sh
u
n
ti
n
g
. 

X
e
-C

T
: 

xe
n
o
n
-e

n
h
a
n
ce

d
 c

o
m

p
u
te

d
 t

o
m

o
g
ra

p
h
y.

 A
st

e
ri
sk

 
d
e
n
o
ti
n
g
 t

h
e
 a

rt
ic

le
 c

o
n
ta

in
s 

in
fo

rm
a
ti
o
n
 o

n
 b

a
se

lin
e
 C

B
F
 &

 C
V
R
 a

s 
w

e
ll.

  
 R

e
f 

N
 

iN
P

H
 

 S
tu

d
y
 D

e
s
ig

n
 

M
e

th
o

d
 

M
a

in
 F

in
d

in
g

s
 

O
th

e
r 

m
a

in
 F

in
d

in
g

s
 

K
li

n
g

e
 e

t 
a
l 

(2
0

0
2

) 
(1

6
7
) 

6
0
 

 

iN
P
H

 

 

g
lo

b
a
l 
co

rt
ic

a
l 
C
B
F
 &

 C
V
R

 b
e
fo

re
 &

 

a
ft

e
r 

sh
u
n
ti
n
g
 &

 b
e
fo

re
 &

 a
ft

e
r 

A
C
Z
 

&
 c

o
rr

e
la

ti
o
n
 w

it
h
 o

u
tc

o
m

e
 

1
5
-O

-H
2
O

 

P
E
T
 

L
o
w

e
r 

C
B
F
 i
n
 r

e
sp

o
n
d
e
rs

 v
s 

n
o
n
-

re
sp

o
n
d
e
rs

 p
re

-o
p
e
ra

ti
v
e
ly

. 
C
V
R

 n
o
t 

d
if
fe

re
n
t.

 C
V
R

 i
n
cr

e
a
se

d
 p

o
st

-

o
p
e
ra

ti
v
e
ly

 i
n
 r

e
sp

o
n
d
e
rs

 v
s 

d
e
cr

e
a
se

d
 i
n
 i
n
 n

o
n
-r

e
sp

o
n
d
e
rs

. 

 e
a
rl
y
 i
n
d
iv

id
u
a
l 
in

cr
e
a
se

s 
in

 C
V
R

 

a
ft

e
r 

sh
u
n
ti
n
g
 

 

K
li

n
g

e
 e

t 
a
l 

(2
0

0
2

) 
(1

6
8
) 

 

5
7
 

 

iN
P
H

 

 

C
B
F
 &

 C
V
R

 i
n
 "

h
ig

h
 r

is
k
" 

a
n
d
 "

lo
w

 

ri
sk

” 
g
ro

u
p
s 

(b
a
se

d
 o

n
 v

a
sc

u
la

r 
ri
sk

 

fa
ct

o
rs

 

 

1
5
-O

-H
2
O

 

P
E
T
 

 

C
B
F
 i
n
 "

h
ig

h
 r

is
k
" 

g
ro

u
p
 d

e
cr

e
a
se

d
 

p
re

-o
p
e
ra

ti
v
e
ly

. 
C
V
R

 i
n
cr

e
a
se

d
 p

o
st

-

o
p
e
ra

ti
v
e
ly

. 
C
V
R

 i
n
 "

lo
w

-r
is

k
" 

g
ro

u
p
 

d
e
cr

e
a
se

d
 i
n
 n

o
n
- 

re
sp

o
n
d
e
rs

 v
s 

in
cr

e
a
se

d
 i
n
 r

e
sp

o
n
d
e
rs

. 

 

C
B
F
 i
n
 “

h
ig

h
-r

is
k
” 

lo
w

e
r 

in
 

re
sp

o
n
d
e
rs

 v
s 

n
o
n
-r

e
sp

o
n
d
e
rs

 

K
li

n
g

e
 e

t 
a
l 

(2
0

0
2

) 
(1

6
9
) 

 

2
7
 

 

iN
P
H

 

 

C
B
F
 &

 C
V
R

 u
si

n
g
 A

C
Z
 b

e
fo

re
 &

 

a
ft

e
r 

su
rg

e
ry

, 
co

m
p
a
re

d
 w

it
h
 

n
e
u
ro

p
sy

ch
o
lo

g
ic

a
l 
te

st
s 

1
5
-O

-H
2
O

 

P
E
T
 

 

C
B
F
 &

 C
V
R

 r
e
d
u
ce

d
 i
n
 d

if
fe

re
n
t 

co
rt

ic
a
l 
re

g
io

n
s 

in
 r

e
sp

o
n
d
e
rs

 v
s 

n
o
n
-r

e
sp

o
n
d
e
rs

. 
G

a
it
 i
m

p
ro

v
e
m

e
n
t 

re
la

te
d
 t

o
 i
n
cr

e
a
se

d
 C

V
R

, 
v
is

u
a
l 

a
tt

e
n
ti
o
n
 a

n
d
 v

e
rb

a
l 
m

e
m

o
ry

 

 

n
o
 r

e
la

ti
o
n
sh

ip
 b

e
tw

e
e
n
 

n
e
u
ro

p
sy

ch
o
lo

g
ic

a
l 
te

st
s 

&
 

h
a
e
m

o
d
y
n
a
m

ic
s 

p
re

-o
p
e
ra

ti
v
e
ly

 

C
h

a
n

g
 e

t 
a

l 

(2
0

0
3

) 
(1

6
7
) 

  

 

4
8
 

 

S
A
H

 

 

C
o
m

p
a
ri
so

n
 o

f 
C
B
F
 &

 C
V
R
 

m
e
a
su

re
m

e
n
t 

b
e
fo

re
 &

 a
ft

e
r 

sh
u
n
ti
n
g
 

 

te
c9

9
m

 

H
C
M

P
 &

 

A
C
Z
 

 

lo
w

e
r 

C
B
F
&

 C
V
R
 i
n
 3

0
 s

h
u
n
t 

re
sp

o
n
d
e
rs

 c
o
m

p
a
re

d
 t

o
 

n
o
rm

a
ls

. 
P
o
st

o
p
 C

B
F
&

C
V
R
 

in
cr

e
a
se

d
 s

ig
n
if
ic

a
n
tl
y
 i
n
 2

1
 

sh
u
n
t 

re
sp

o
n
d
e
rs

 b
u
t 

n
o
t 

in
 n

o
n
-

re
sp

o
n
d
e
rs

 

re
d
u
ce

d
 C

V
R
 b

u
t 

n
o
t 

C
B
F
 i
n
 

a
sy

m
p
to

m
a
ti
c 

v
e
n
tr

ic
u
lo

m
e
g
a
ly

 c
o
m

p
a
re

d
 

to
 n

o
rm

a
ls

. 
4
 n

o
n
-

re
sp

o
n
d
e
rs

 w
it
h
 r

e
d
u
ce

d
 

C
B
F
 b

u
t 

p
re

se
rv

e
d
 C

V
R
. 

 

C
h

e
n

 e
t 

a
l 

(2
0

0
8

)(
1
7
1
) 

2
8
 

iN
P
H

 

C
o
m

p
a
ri
so

n
 o

f 
3
 C

V
R

 

m
e
a
su

re
m

e
n
ts

 w
it
h
 s

u
st

a
in

m
e
n
t 

o
f 

sh
u
n
t 

re
sp

o
n
se

 

X
e
-C

T
, 
M

R
I 

a
n
d
 M

R
S
I 

In
 p

a
ti
e
n
ts

 w
it
h
 r

e
la

ti
v
e
ly

 b
e
tt

e
r 

a
v
e
ra

g
e
 r

C
B
F
 a

n
d
 A

C
Z
 c

h
a
lle

n
g
e
, 

rC
B
F
 c

o
u
ld

 h
a
v
e
 a

 h
ig

h
e
r 

p
ro

b
a
b
ili

ty
 

o
f 

b
e
tt

e
r 

o
u
tc

o
m

e
. 
 

P
re

o
p
e
ra

ti
v
e
 r

C
B
F
 r

e
d
u
ce

d
. 

N
o
rm

a
l 
re

su
lt
s 

in
 >

2
 C

V
R

 

p
a
ra

m
e
te

rs
 i
n
d
ic

a
ti
v
e
 o

f 

im
p
ro

v
e
m

e
n
t 

w
it
h
 d

u
ra

b
ili

ty
 >

3
 

y
e
a
rs

 

 



59 
 

 

 

 

 

 

 

 

 

 

 

  

R
e

f 
 N

 
iN

P
H

 
S

tu
d

y
 D

e
s
ig

n
 

M
e

th
o

d
 

M
a

in
 F

in
d

in
g

s
 

O
th

e
r 

m
a

in
 F

in
d

in
g

s
 

C
h

a
n

g
 e

t 
a

l 

(2
0

0
9

) (
1
4
7
) 

1
6
2
 

iN
P
H

 

C
o
m

p
a
ri
so

n
 o

f 
b
o
th

 C
B
F
 

&
C
V
R

 i
n
 f
u
ll 

o
r 

in
co

m
p
le

te
 

H
a
k
im

 t
ri
a
d
 p

re
-&

 p
o
st

-

o
p
e
ra

ti
v
e
ly

 

S
P
E
C
T
 a

n
d
 X

e
-

C
T
 

N
o
 d

if
fe

re
n
ce

 i
n
 p

re
o
p
 C

B
F
 b

e
tw

e
e
n
 

re
sp

o
n
d
e
rs

 a
n
d
 n

o
n
re

sp
o
n
d
e
rs

. 

P
re

o
p
 C

V
R

 i
m

p
a
ir
e
d
 i
n
 r

e
sp

o
n
d
e
rs

 

co
m

p
a
re

d
 t

o
 c

o
n
tr

o
ls

, 
b
u
t 

n
o
t 

in
 n

o
n
-

re
sp

o
n
d
e
rs

  

R
e
sp

o
n
d
e
rs

 
w

 
in

co
m

p
le

te
 

tr
ia

d
: 

lo
w

e
r 

p
re

o
p
 C

V
R

, 
b
u
t 

n
o
t 

C
B
F
, 

th
a
n
 c

o
n
tr

o
ls

. 
F
u
ll 

tr
ia

d
:l
o
w

e
r 

p
re

o
p
 

C
B
F
 

&
 

C
V
R

 
th

a
n
 

in
 

in
co

m
p
le

te
. 

P
o
st

o
p
 C

B
F
 &

C
V
R

 i
n
cr

e
a
se

d
 

in
 r

e
sp

o
n
d
e
rs

 

Y
a

m
a

d
a

 e
t 

a
l 

(2
0

1
3

) 
(1

6
5
) 

 

2
5
 

 

iN
P
H

 

 

P
re

-o
p
e
ra

ti
v
e
 C

B
F
 &

 A
C
Z
, 

a
ss

o
ci

a
ti
o
n
 w

it
h
 o

u
tc

o
m

e
 

&
 c

o
m

p
a
ri
so

n
 w

it
h
 h

e
a
lt
h
y
 

in
d
iv

id
u
a
ls

 

 

S
P
E
C
T
 +

A
C
Z

 

<
2
0
%

 i
n
cr

e
a
se

 i
n
 p

re
o
p
e
ra

ti
v
e
 

A
C
Z
 S

P
E
C
T
 p

re
d
ic

te
d
 

im
p
ro

v
e
m

e
n
t 

o
f 
M

M
S
E
 s

co
re

 w
it
h
 

1
0
0
%

 s
e
n
si

ti
v
it
y
 a

n
d
 6

0
%

 

sp
e
ci

fi
ci

ty
. 
C
B
F
 &

 C
V
R
 r

e
d
u
ce

d
 a

t 

b
a
se

lin
e
 c

o
m

p
a
re

d
 t

o
 n

o
rm

a
l.
 

D
if
fu

se
 

re
d
u
ct

io
n
 

in
 

g
lo

b
a
l 

C
B
F
 
p
re

-s
h
u
n
ti
n
g
 

si
m

ila
r 

to
 
p
a
ti
e
n
ts

 
w

it
h
 

v
e
n
tr

ic
u
lo

m
e
g
a
ly

 
d
u
e
 
to

 

a
g
e
. 

 
N

o
 
p
o
st

o
p
e
ra

ti
v
e
 

in
cr

e
a
se

 i
n
 C

B
F
. 

 T
a

b
le

 4
.4

B
 (

m
o

d
if

ie
d

):
 c

o
n

ti
n

u
e

s
 f

ro
m

 p
re

v
io

u
s
 p

a
g

e
 

 



60 
 

4.4 Discussion 

A) Methodologies 

a) Assessment of Cerebral Blood Flow without Cerebral Autoregulation 

As stated in the design of this review, it has not been our current objective to review 

the methodologies used in imaging/measuring or monitoring CBF. The different 

methods of imaging CBF have been previously reviewed(73), although since then 

several new methods have emerged, mainly perfusion MRIs. There are many 

fundamental questions in the subject of CBF/CA that need to be carefully reviewed 

besides methodology: The relationship between CA and age is not well established, 

however this is not the case for CBF, where many studies have addressed this 

question. A synthesis of the evidence related to CBF/rCBF also remains to be 

completed. SPECT, perfusion MRI and PET imaging initially lacked standardisation. 

After several new guidelines, consortiums and reviews of imaging methodology, a lot 

of recent papers have managed to achieve appropriate segmentation and number of 

voxels in defined regions of interest(140–143). However, most studies do not report in 

great detail how they achieved appropriate segmentation and how they avoided 

artefacts and influences of nearby structures. Therefore, a very rigorous review of 

these methodologies is required before assessing the pathophysiological value of these 

findings.  

 

     b) Cerebral autoregulation and cerebrovascular reactivity assessment methods 

     i) Reactivity to Acetazolamide (ACZ) and CO2 

Reactivity to ACZ and to CO2 inhalation can be examined using imaging and TCD. 

Both CO2 inhalation and IV ACZ, with their vasodilatory effect, are expected to cause 

an increase in CBF. These methods had been used more widely in the past for CVR 

assessment and had yielded some interesting results on the state of CVR pre and post-

shunting (144,145).  
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     ii) Cerebral Autoregulation & CSF dynamics assessed using infusion tests 

The CSF infusion test, despite the short time-frame of recording (~45 minutes), 

provide a unique method for measurement of CA/CVR using primarily a static method 

and even dynamic ones if combined with a TCD and any other CBF, CVR and CA 

assessment methods. It is important to remember that reliable ICP monitoring, as 

provided mainly by overnight ICP monitoring or CSF infusion studies is almost a 

requirement when assessing NPH patients, especially when assessing CA in NPH at 

a research if not at a clinical setting in what is so far the most reliable 

methodology(76,79,124,125,146). 

The global autoregulation index, PRx, is thus calculated as the correlation coefficient 

between ICP and MAP, reflecting the reactivity of the vascular bed to changes in MAP 

(50,87,131,147–149). CPP significantly decreases during infusion, mainly because 

MAP stays almost constant and ICP is artificially increased. It is useful to assess CBF 

during infusion studies or other estimates that could reflect ischaemia and the 

reaction of the vascular bed to spontaneous, intermittent ICP increases(140,150).  

 

      B) Discussion of results 

1) Baseline global and regional Cerebral blood flow  

The previous review of the evidence suggested a possible reduction in tCBF at 

baseline in NPH(73,77,78,121,151). Isolated CBF measurements appear to have 

overall produced contradictory evidence and remain difficult to interpret, not only due 

to the variety of imaging techniques but also due to highly contradictory reports. The 

previou(152–155)s review also directed towards more evidence on rCBF patterns in 

NPH compared to normal ageing and Alzheimer’s, shifting priorities towards this 

direction. Some of the rCBF reduction patterns reported already before 2001 were the 

frontal cortex and subcortex and thalamus. We identified 29 studies in total, 

investigating the state of global CBF in NPH at baseline. Most of these studies (17/29), 

were focused on identifying a specific pattern of CBF reduction instead of searching 

for a global reduction of CBF. There were 4 studies(85,156–158) that reproduced 
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previous findings of global cerebral hypoperfusion, however recent original papers 

agree that either CBF is not globally reduced or the degree of reduction is associated 

with clinical severity and vascular factors(140,159–162). Momjian et al 

(161)investigated the white matter regional CBF in 12 iNPH patients using H2(15)-

O PET and discovered a pattern of increasing reduction from distally in the white 

matter to proximally in the lateral ventricles. Owler et al reported hypoperfusion in 

the thalamus, putamen and cerebellum at baseline, as well as no difference in these 

patterns between idiopathic and secondary NPH patients(140,160). Other groups 

agreed(14,163,164), and different patterns included the thalamus and basal ganglia 

region, as well as the hippocampus and the cerebral cortex ; a few studies did not find 

these expected regions to be hypoperfused. (158,162,165,166) Notably, detailed ICP 

or other CSF dynamics monitoring was utilized only in the Momjian and Owler 

studies. 

2) Baseline cerebral autoregulation and cerebrovascular reactivity in NPH 

Already in 1998, the first study on regional CVR had been attempted, with other CVR 

studies around this time adding towards a possibly reduced response to ACZ and CO2 

preoperatively. Overall, very few studies resort to testing CVR anymore. No one 

attempted to use CO2 as a reactivity test in NPH patients, with the 5 studies in total 

testing reactivity to ACZ. 3 of the studies tended to consistently agree that CVR was 

reduced in NPH compared to normal controls, however 2 out of the 3 involved post-

SAH NPH patients, and the results cannot be applied to iNPH(165,167,168). The 

remaining 2 studies indicating preserved baseline CVR involved iNPH and mixed 

iNPH with secondary NPH; furthermore, the iNPH study involved long-term 

administration of ACZ with CBF testing afterwards(169,170). Therefore, results 

remain contradictory and with different aetiologies needing to be studied separately. 

Furthermore, none of the studies report a power analysis, even though they used 

normal controls and there was already similar evidence in the literature that could 

serve as reference(76).  
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Unlike CVR, testing of CA required ICP. Concomitant studies of CSF circulation and 

cerebral metabolism has been shown to be crucial in NPH patients, due to the 

interactions between CSF dynamics, CBF and CBO (131,171–173). Since CSF 

diversion is the main treatment strategy for these patients, it is impossible to ignore 

the CSF dynamics investigations in any effort to produce viable, applicable to the 

bedside methods of CBF/CA investigations.  

To the contrary, the studies that have attempted measuring either global or regional 

CA are sparse.  There have only been 5 studies since 2001 investigating 

autoregulation in NPH, all derived from the same centre in Cambridge, UK(161,174–

177). CA and CVR in NPH probably form pieces of a complex puzzle, as derived by 

different studies showing different patterns of autoregulation depending on the 

presence of white matter lesions, exhausted compensatory reserve, Resistance to CSF 

outflow and other known factors. Adding to this the not very well-explored flow-

metabolism coupling, the field is still under development and will require more 

multidisciplinary, combined investigations and patient stratification in the future.  

3) CVR & CBF as measured by imaging in response to temporary CSF 

withdrawal  

 

 

a) CBF before & after Spinal Tap Test 

Previously, the STT, which consists of removal of 10-60 mls of CSF, was most 

commonly used in order to diagnose and select NPH patients for shunting (11,178). 9 

such older studies had produced conflicting evidence on CBF before&after CSF 

withdrawal, reporting various degrees of increase and even decrease of CBF post STT. 

Differences in the imaging techniques as well as the timing of performing extra tests 

to assess the CBF response were and remain extremely variable among subjects and 

more importantly, the methods and the patterns of CBF reduction/alteration in NPH 

were still not standardised and unknown in many cases. The combination of STT and 

perfusion- weighted MRI or other perfusion imaging methods could have shown 

promise, but the results were inconclusive (179,180). Therefore, these studies inclined 

towards the fact that the change in CBF after CSF removal was not useful in 
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predicting outcome. The study of CBF after 30-50 ml of CSF removal does not appear 

to have clinical utility(181,182) .  

b) CBF before & after Extended Lumbar Drainage 

ELD has recently been implemented as the preferred predictive tool for shunt 

response in NPH, giving rise to new studies being designed around this clinical 

investigation.  A study used MRI in iNPH patients following oral ACZ and ELD and 

mainly concluded that white matter hyper intensities decreased in ACZ & ELD 

responders to a significantly higher degree than in non-responders. While it is useful 

to quantitatively measure response to all these tests, the literature on the correct 

approach appears to be sparse, and sustainable, bedside-oriented approaches appear 

to lack (162,181). ELD remains to be evaluated in clinical practice, and perfusion 

scans concomitantly to ELD have not been performed, most likely due to questionable 

cost-effectiveness of all these implementations.  

 

c) CBF & metabolism 

The reversibility of NPH and possible restoration of CBF/CA could depend on the 

cerebral metabolism. Speculations around NPH involve that it is not a metabolism, 

but a flow disorder and it would be interesting to study this in the context of 

immediate CBF restoration, if it exists, after temporary CSF withdrawal, or shortly 

after shunting. Notably, we found no such published studies and there was only one 

paper that measured both rCBF and metabolism in NPH patients, claiming a 

significant correlation between the two pre-operatively(172). It is generally reported 

that the metabolism, on top of CBF, is reduced in NPH and the above finding should 

prompt more investigations of the flow-metabolism coupling in NPH, as well as its 

behaviour pre- and postoperatively(161,172,183). 

4) Predictive role of CBF pre-operatively 

As mentioned earlier, none of the studies trying to look into the predictive role of pre-

shunting CBF were designed or powered in a systematic way to conclude with some 

degree of certainty on the predictive role of CBF in shunt response. 4 studies 

correlated decreased global baseline CBF with better clinical outcome(152–155), 
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whereas 3 concluded that there is no role of pre-CBF in shunt response(168,184,185). 

12 studies [Table 4.4A accordingly] were able to identify different rCBF patterns 

where reduction was correlated to clinical improvement post-shunting, however there 

was no unified agreement between the different reported findings, since different 

studies used prominently different methodology and looked into different patterns as 

a reference.  

a) CBF in shunt prognostication and its behaviour post-operatively 

Assessment of outcome after CSF diversion is in itself a subject under development. 

Preliminary studies before 2001 had not consistently shown any relationship between 

CBF and outcome. 8 identified studies tend to agree that restored CBF and even rCBF 

in certain regions after CSF diversion surgery could be an objective marker of 

improvement, correlating with clinical improvement when assessed carefully. No 

response to shunting respectively lead to no change in CBF(168,186–188).  On the 

other hand, 5 studies attempted to prove the prognostic role of CBF at baseline, 3/5 

showing a positive correlation between reduced CBF and shunt response and one of 

those identifying specific patterns. From the other 2, one showed no prognostic role 

and one successfully combined rCBF with 2 CVR measurements in order to increase 

its prognostic value(168,171). 3 of the aforementioned studies on CBF restoration also 

showed no prognostic value of CBF pre-shunting(153,186,189)  

b) CVR as predictive marker of shunt response and its post-operative behaviour.  

Preliminary evidence from the previous review were initially pointing towards no 

predictive role of preoperative CVR. We have now reviewed 4 studies reporting that 

worse rather than good reactivity to ACZ predicts a favourable 

outcome(152,153,168,190). One of them (190) interestingly stratified the patients in 

different groups depending on cardiovascular burden, resulting in worse reactivity 

predicting shunt responsiveness for high cardiovascular risk, however better 

reactivity was related to shunt responsiveness  in those with low cardiovascular risk. 

This is an interesting finding that again highlights the importance of consideration of 

the degree of cerebrovascular disease in iNPH. 5 out of 5 studies that measured CVR 
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post-operatively agree it is significantly increased compared to pre-operatively and 

that restoration of CVR is a hallmark of shunt responsiveness(153,154,171,190,191).  

Notably, there haven’t been enough patients in the studies to associate global/regional 

autoregulation alone with outcome yet. CA and outcome after shunting showing 

different patterns of autoregulation depending on the presence of white matter lesions, 

exhausted compensatory reserve and other known factors, that the field is still under 

exploration and will require more investigation and patient stratification in the future.  

c) Cerebral autoregulation and CSF dynamics in relationship with outcome 

There were previously no articles involving monitoring and interpretation of CA in 

NPH. Since 2001, using TCD in a preliminary study with a small sample of patients, 

intact CA was shown in patients with raised Rout, versus impaired autoregulation in 

those patients with a low Rout; CA was measured using Mx.  This inverse correlation 

was replicated in a later study by Czosnyka et al, this time using PRx as an index of 

global CA, with again a small number of patients. Most recently (70), the same 

correlation between PRx and Rout was replicated in a large cohort of NPH patients 

and also correlating the combination of disturbed autoregulation and high MAP with 

worse outcome after surgery. MAP was measured non-invasively in all of the above, 

PRx derived from non-invasive MAP having previously been validated(87). These 

studies highlighted the importance of preserved autoregulation prior to shunting in 

hydrocephalus and are in agreement with the burden of vascular disease on the 

cerebral mantle. Furthermore, they could be in line with the studies that correlate 

the severity of clinical symptoms and the chronic persistence of the disease with worse 

CBF and worse outcome (153,157,187,192,193).  

Early experiments have demonstrated the pattern of increasing ICP in relationship 

to compensatory reserve, when volume is added in the brain known as the pressure-

volume curve.(75,100,112) It is therefore known that, when the compensatory reserve 

is exhausted, CSF dynamics change rapidly compared to a state of normal 

compensatory reserve. It was similarly demonstrated in two papers that vascular 

compliance could be compromised, baring potential weight on the ongoing disease 
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progress. Therefore, there is accumulating evidence that CSF and the vascular bed do 

not react autonomously in the mechanisms of the disease’s pathogenesis and 

pathophysiology(176,177,194,195) .  The loss of compliance of the cerebral 

parenchyma could precede or occur around the same time as CVR dysfunction and 

could have significant diagnostic and other clinical implications.  These reports are 

preliminary and require new studies to validate the compensatory reserve hypothesis. 

 

Overview and grading of evidence 

After carefully reporting and reviewing the past and present research on CA in NPH 

the following could be stated:  

On CBF in NPH:  

1) Based on the previous as well as the current systematic review of the literature, 

there is no clear evidence of decreased, normal or even increased global CBF 

in NPH at baseline(14,157–159,196). Evidence has most likely revealed 

regional CBF patterns in specific regions and some correlation of reduction 

and duration/severity of symptoms (85,196,197). Overall, there is a high level 

of evidence on the presence of periventricular white matter pattern reduction 

of CBF in NPH, with moderate to low evidence of globalised hypoperfusion 

which could depend on different progressions of the burden of the disease. 

2) There is no strong evidence of using imaging of CBF before surgery as a  

prognostic factor for shunt response(157,162–164,186,196). Combined, there is 

a low level of evidence of a specific predictive CBF or rCBF pattern in shunt 

response in NPH. 

3) Post operatively, CBF returns to nearly normal or normal values (as expected 

by age-matched, healthy individuals). This restoration of CBF has been 

associated with clinical improvement after shunting(185–188,197) . This leads 

to a moderate level of evidence pointing towards CBF or even more strongly 

CA increasing after shunting, biologically marking improvement in patients’ 

symptoms. 
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4) Combination of CBF imaging and drainage tests seems promising but 

nowadays the tendency for ELD has not been successfully combined with other 

measurements and is strictly aimed at clinically simulating the shunt’s 

drainage (179,181,182). There is a low level of evidence that measuring CBF 

before and after CSF removal could be assistive in predicting shunt response. 

 

CVR & CA in NPH:  

There have not been enough investigations of CA in order to apply any level of 

clinical useful evidence to its use. However, there are some interesting findings 

associated with CA that could be assistive in designing future investigations 

and trials:  

1) Studies on CA have been few, yet the number of CA investigations in NPH has 

still not increased, but instead has significantly decreased, while CBF studies 

have continued to be carried out in the same pattern (140,161,174). There were 

no prospective or randomised trials on CA. 

2) From the existing studies, CA appears to play a role in investigating the 

mechanisms underlying CSF and CA disturbance(160,161,174,175) . 

3) Global, unlike regional CA could be preserved in shunt responders, in contrast 

to disturbed CA in non-responders, both pre and post shunt insertion(174,175) . 

4) CSF dynamics combined with assessment of CBF and CA/CVR, provide a solid 

ground for the assessment of CA combined with many different techniques, as 

well as the investigation of the relationship and the interaction between CSF 

circulation and CBF (35,73,161,174,175,198).  

 

Bias assessment: Moderate to high risk of selection and prognostic factor 

measurement bias was unfortunately frequent in the current evidence, mainly due to 

the absence of unified criteria on defining and selecting the study participants. 

Furthermore, there are no randomised trials specifically designed to assess outcome 

in the current literature, utilising CBF or CA/CVR as a prognostic factor. As observed 

in the previous systematic review, stricter definition and inclusion criteria require 
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agreement between authors and priority should be shifted towards producing higher 

level evidence, with reduced risk of bias, on this topic.  

 

Future directions 

Autoregulation in hydrocephalus shows a lot of promise, possibly both for diagnostic 

and outcome predictive purposes. 

Continuous ICP recordings combined with CA assessment are needed from more 

neurosurgical patients. 

Different methods of autoregulation combined with brain imaging need to be 

performed and compared. 

Unified consensus on criteria, as well as methods and investigations at a research 

setting, independent of clinical guidelines and criteria, might be helpful in generating 

higher quality of evidence. More randomised controlled trials based on this could 

elucidate the big question of the cerebral circulation in NPH and when its disturbance 

is reversible.  

Conclusions 

Autoregulation, as assessed by imaging, infusion studies and the different existing 

methods, seems to be universally accepted by authors as a key in differentiating NPH 

from the spectrum of “shunt-resistant” dementias, which could involve NPH with 

comorbidities (NPH with cerebrovascular disease, atrophy, etc) or a different disease 

from NPH (atrophy, Alzheimer’s disease, Parkinsonism, etc, alone). 
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CHAPTER 5  
 

GLOBAL CEREBRAL AUTOREGULATION, CSF OUTFLOW 

RESISTANCE AND OUTCOME FOLLOWING CSF DIVERSION 

IN NORMAL PRESSURE HYDROCEPHALUS.   

The results presented in this section have been published in Journal of Neurosurgery: 

Lalou A, Czosnyka M, Garnett M, et al. Cerebral Autoregulation, CSF outflow resistance and outcome 

following CSF diversion in Normal Pressure Hydrocephalus. 2018; 160:1097–103. 

 

5.1 Introduction:  

In the introduction and chapter 3 of this dissertation, I have described what we know 

about NPH and the importance of understanding how to reverse it with shunting. 

Abnormal CBF has been demonstrated on several occasions for secondary and 

idiopathic NPH.  I have briefly discussed reduced cerebral blood volume as a 

pathophysiological mechanism in NPH in chapter 3 and performed a systematic 

review of the literature on CBF, autoregulation and NPH in chapter 4. Despite 

evidence of disturbed CBF, autoregulation in NPH has not been studied in detail. 

Furthermore, causative, diagnostic and outcome implications of those findings have 

not been addressed.  

 

Previous work showed an inverse relationship between Rout and CA in non-shunted 

patients tested for NPH using both a transcranial-doppler derived CA index, as well 

as ICP-derived PRx(174). Using those preliminary results, we were once again able to 

implicate impaired CA in the clinical presentation of NPH, as well as reveal new 

information relevant to differential diagnosis or shunt response for further 

exploration. Since the first two studies were based on small samples, we aimed to 

confirm this inverse relationship between PRx and Rout, and to relate this to outcome 

after shunting.  
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5.2 Materials and Methods 

Patients 

We collected infusion tests from probable and possible NPH patients performed 

between 2003-2015.  The inclusion criteria were: baseline ICP <18 mmHg, age >30 

(both included in the current definition of probable and possible NPH)(3), continuous 

recording of MAP and no use of GA, because its influence on PRx and other CSF 

dynamics calculation has not been determined.  

Data acquisition  

Continuous, non-invasive MAP had been recorded using a photoplethesmographer 

(Finapres®) finger cuff (Ohmeda, Englewood, CO), inputting the signal digitally to 

ICM+. ICP and infusion test parameters were recorded and collected in the same 

methodology as explained extensively in the previous chapters of this dissertation. I 

used ICM+® version 8.3 for all figures and data analysis (University of Cambridge 

Enterprise Ltd).  

Signal processing 

I always remove all artefacts from the raw data manually before data processing, as 

is the necessity in all bedside digitised recordings. AMP, RAP, Heart rate and MAP 

were extracted from the recordings and averaged. Rout was calculated with the same 

method as in all previous studies.  In order to avoid physiologically impossible and 

inaccurate measurement, only static Rout was used for further analysis. The slope of 

the AMP-P line was also calculated as per disclosed methodology in chapter 3. 

The calculations and significance of these parameters has been explained in the 

previous chapters.  

I calculated PRx from standardised methodology as the moving correlation coefficient 

between slow waves of ICP and MAP (30 consecutive 10-second averages, capturing 

the frequency of slow waves of ICP)(199,200). I detrended ICP using a simple moving 

average filter, in order to avoid differences in slow waves due to artificial volume 
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addition and to allow for a wider window of calculation both at baseline and during 

infusion. The filter used was the same as the one used to process slow waves in 

Chapter 9 and explained later more analytically (moving average filter – results of 

detrending shown in Figure 5.1.). 

  

 

 

 

 

 

 

 

 

 

We assessed PRx, HR and MAP during the baseline and plateau phases of the infusion 

test as well as during the entire test (duration 25-60 minutes). We assessed the 

potential differences in those variables at the baseline and infusion phase. Finally, 

we investigated whether a combination of parameters could be contributing to the 

relationship between PRx, Rout and outcome. 

Patient follow-up 

As per clinical routine and as explained in previous chapters, all patients were 

followed-up after their infusion tests to weigh the risks and benefits of shunting and 

propose treatment.  Patients and their immediate family/caretakers were carefully 

informed and offered either a shunt surgery that included a programmable valve or 

an endoscopic IIIrd ventriculostomy (ETV). The criteria used from the consultant 

Figure 5.1 Difference in the trend between the original ICP and PRx (black area on the upper panel l& 

prxnd respectively) and the detrended signal (ICP& PRx respectively); selected calculation periods of PRx 

at baseline and during icpreal: Original ICP signal, ICP: detrended ICP, prxnd: PRx non-detrended, 

prxdma: PRx detrended with moving average filter. 

Area: ICP detrended. Trend line: original ICP [mmHg] 
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neurosurgeon in charge of our NPH patients (JDP until 2013 and MRG after 2013) to 

diagnose NPH and select for shunting were as follows: A) before 2013: The patients 

had to have radiological evidence of hydrocephalus and classical gait disturbance for 

any further consideration. The diagnosis was definitive with proposed CSF diversion 

if the measure Rout from the infusion test was ≥ 13 mmHg*min/ml; If Rout was ≤ 13 

mmHg*min/ml but there were minimal white matter changes on the MRI scan, 

probable NPH was diagnosed, and CSF diversion was offered to the patient with 

communication of the appropriate limitations. B) After 2013, an infusion test to 

measure Rout was still performed, however MRIs to quantify white matter lesion 

were discontinued in light of new evidence and because extended lumbar drainage 

was implemented in our practice for those with an Rout ≤ 13. All those who 

demonstrated gait improvement with lumbar drainage were offered a shunt  

Outcome was determined from the hospital records using a simple 3-level scale(62). 

Outcome of 1 indicated sustained improvement at a 6-month follow up, with objective 

and subjective (patient and those of their immediate surrounding-reported) 

improvement in gait as the main feature. Some patients had improved at 3 months, 

however at 6 months of follow-up they had started to deteriorate, and their outcome 

was marked as 2. Finally, an outcome of 3 signified no response to shunting.  
 

Finally, we performed a preliminary subgroup analysis to compare ETV patients with 

shunted patients based on both the studied parameters and the outcome after 

shunting. Chi-square test was used to compare the outcome in ETV vs shunted 

patients. 

Statistical Analysis  

According to data normality or non-normality, I calculated Pearson’s or Spearman’s 

correlation coefficient as a simple estimator of the correlation between the different 

parameters described above. Paired-sample t-tests were used to compare means and 

between baseline and infusion values. Independent samples t-tests were used to 

compare the different group and subgroup means. Chi-square was used for qualitative 

data. Non-parametric tests (Mann Whitney U and Kruskal-Wallis) were used to 



74 
 

compare results among the three outcomes after shunting or between good (outcome 

1+2) and poor outcome.  

 

5.3 Results 

131 patients met our inclusion criteria. Their mean age was 73 (±7) years and the 

male to female ratio was ~7:5 (77 males, 54 females).  Only 8 patients had secondary 

instead of idiopathic NPH, were below the age of 55 and their identified NPH causes 

were haemorrhage (subarachnoid/intracerebral), aqueduct stenosis, Chiari 

malformation or previously known, congenital hydrocephalus presenting with 

decompensation.  

CSF compensatory parameters, as well as perfusion and autoregulation measures at 

baseline and during the infusion are presented in Table 5.1 

There was a decrease in CPP at plateau compared to baseline (delta = 14.45 mmHg; 

p<0.0001).  PRx showed a tendency but did not appear to increase significantly during 

infusion compared to baseline. As a result, we have used the mean PRx over the entire 

test duration from further analysis now on. 

 

Table 5.1 Patients’ demographics and comparison of their compensatory and autoregulatory 

parameters during the baseline and during infusion. 

 

 

 

Mean Baseline  During infusion  p 

AMP [mmHg] 1.09±0.05 3.55±0.15 < 2.2e-16 

PRx  0.099±0.028 0.11±0.02 NS 

CPP [mmHg] 72.03±2.38 57.63±2.5 3.647e-05 

Slow [mmHg] 0.256±0.038 2.46±0.38 < 2.2e-16 
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Global cerebral autoregulation (PRx). 

30/131 patients had disturbed autoregulation (PRx>0.25), 51 good autoregulation 

(PRx<0) and 50 patients were in the grey zone (from 0 to 0.25). Numerical values for 

autoregulating versus non-autoregulating patients (disturbed (PRx>0.25 and PRx<0) 

are shown in Table 5.2.  Increase in AMP (dAMP) and RAP (dRAP) during infusion 

were significantly higher and lower respectively in the autoregulating than in the 

non-autoregulating group.  

Table 5.2 Comparison of the difference -d- of the plateau and the baseline of autoregulatory and 

compensatory parameters between disturbed (PRx>0.25) and preserved autoregulation (PRx<0). 

MAP: Mean Arterial Blood Pressure, HR: Heart Rate, Slow: Slow waves of Intracranial Pressure,  
 

 

Interaction between PRx, Rout and with other CSF dynamics 

Rout was ≥13 mm Hg*min/ml in 52 patients and within the ‘normal’ range (3.5 to 12.8 

mm Hg*min/ml) in the other 79 patients.  

Rout inversely correlated with PRx, rather weakly but significantly (R=-0.18; p=0.044) 

[Figure 5.2].  

 

Rout also correlated with AMP (R=0.30; p<0.001). The correlation was stronger between 

Rout and the increase in AMP during infusion (dAMP): R=0.46; p<0.001.  

 Mean for PRx>0.25   

(N=30)     

Mean for PRx<0     

(N=51)              

p 

dMAP [mmHg] 2.39±1.76 5.36±1.95 NS 

dHR [c/min] 0.68±0.44 0.04±0.3 NS 

dSlow [mmHg] 2.2±0.55 2.77±0.4 NS 

dAMP [mmHg] 

dRAP 

2.13±0.21 

0.37±0.06 

2.94±0.18 

0.22±0.04 

0.014 

0.05 



76 
 

Correlation coefficients from the regression analyses between PRx and other 

compensatory and compliance parameters (elasticity, ICP, baseline ICP, baseline 

AMP, slope of AMP/P line) were weak and not significant.  Mathematically, the power 

of slow waves and PRx showed a relative correlation (R=-0.19, p=0.025). PRx was not 

dependent on age (R =-0.09; p= 0.3119), while Rout was (R = 0.33; p = 0.00015). 

 

Interaction between PRx, MAP and Rout and impact on outcome. 

The clinical decision on diagnosis and treatment offer was based on the overall 

assessment by the consultant neurosurgeon, which included Rout.  The clinician was 

not aware of any of the other parameters studied, like PRx. Following the infusion 

study, 83 patients were selected for shunt insertion (N=51), or ETV (N=32). 

 The inverse relationship between PRx and Rout was still significant when calculated 

for patients who were surgically-managed (N=83; R=-0.28; p=0.03) [Figure 5.2], 

however notably weak and insignificant in those who were not offered CSF diversion 

(N=48, R= -0.05; p=0.7).  

 

 

 

 

N=131, R=-0.18, p=0.04 N=83, R=-0.28, p=0.01 

Figure 5.2 Relationship between Rout and PRx in possible NPH. Left: Relationship between PRx 

and resistance to CSF outflow in our cohort of 131 non-shunted NPH patients undergoing lumbar infusion 

studies Right: Relationship between PRx and resistance to CSF outflow in patients who were clinically 

managed with ETV or shunted after the infusion studies. 
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After CSF diversion, 64 patients improved at initial assessment (outcome = 1 or 2), 

whereas 19 did not show any improvement (outcome =3). The relationship between 

Rout and PRx for good versus poor outcome are shown in Figure 5.3. We detected the 

above negative correlation in outcomes 1 and 2, (N=64; R=-0.36; p=0.03), however not 

in outcome = 3 (N= 19; R=0.07; p=0.15).  

 

  

 

 

 

  

PRx tended to differ between poor and good outcome (PRx = 0.16± 0.04 vs 0.09 ±0.02; 

p=0.061 respectively) and so did MAP (107.2±8.2 in non-responders vs 89.5±3.5 in 

responders; p=0.195). In exploring these relationships with outcome, combining PRx 

with MAP in the formula MAP* (1+PRx) seemed to significantly correlate with 

outcome. Multiplying MAP with 1+PRx models the interaction between MAP and PRx 

in the negative and positive spectrum and is proposed as a simple measure to quantify 

these combined parameters. 

Figure 5.3 Relationship between PRx and Rout in CSF diversion responders versus non-

responders. Left: Relationship between PRx and resistance to CSF outflow in patients who 

improved sustainably after surgery (N=48, R=-0.43, p=0.002). Right: Relationship between PRx 

and Rout in patients who did not improve after surgery (N=19, R=-0.007, p=0.97).  

N=48, R=-0.43, p=0.002 N=19, R=-0.07, p=0.97 
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MAP * (1+PRx) was significantly associated with outcome (p=0.013). Comparisons of 

autoregulation and MAP parameters in the different outcome groups are further 

presented in Table 5.3. Rout was not different between responders and non-responders.  

Table 5.3 Comparison of autoregulation, Rout and vascular state in patients who improved versus 

the ones that did not improve. MAP: Mean Arterial Blood Pressure,  PRx: pressure Reactivity index, 

Rout: Resistance to CSF outflow 
 

  

 

ETV vs shunting subgroup analysis 

From the 83 surgically treated patients, 27 underwent ETV and 56 were shunted. M

ean age for the ETV group was 55.74 ±3.19 and 66.75 ± 1.53 for the shunted group; p

-value = 0.001625. 
 

Mean AMP differed significantly between the two groups (1.46 ± 0.14 for ETV vs 2.4

1 ± 0.16 for shunted; p=0.0005297), so did PRx (0.17 ±0.039 for ETV vs 0.07 ± 0.02 fo

r shunted; p-value = 0.012). Rout as well appeared lower in ETV (12.0 ± 1.34 mm Hg

*min/ml than in shunted patients (16.3 ± 1.21 mmHg*min/ml; p-value = 0.003). Ther

e was a negative but not significant correlation between Rout and PRx in both group

s (ETV: R= -0.27 p-value = 0.176 vs shunted: R=-0.2555274; p-value = 0.05733). 

 

As to the outcome of ETV versus shunted patients, 21/27 patients after ETV had a p

ositive outcome [≤2,] vs 43/56 shunted patients. 6/19 had a negative outcome after E

TV vs 13/57 shunted individuals. Shunted patients did not show a significantly more

 positive outcome than ETV patients (chi-square = 0.0102; p-value= 0.91). 

 Improved  Not improved P 

 

MAP [mmHg] 83.12±3.08                             91.51±6.29                                 0.195 

PRx 

Rout [mmHg*min/ml] 

0.09±0.02                              

12.61±0.65                             

0.16± 0.04  

11.73±1.17                                                                     

0.061 

0.519   

MAP *(1+PRx) [mmHg] 89.56±3.54 107.21±8.25 0.013 
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5.4 Discussion 

In this paper, we have increased the external validity of the inverse relationship 

between Rout and PRx. This relationship, although not very strong, appeared 

significant. In relationship to outcome however, our study is currently not adequately 

powered to address diagnostic and outcome implications of PRx and MAP. 

Nonetheless, the combination of cerebral autoregulation and mean MAP correlated 

significantly with outcome after CSF diversion and could be a quantitative reference 

in determining outcome based on those parameters.  

 

The state of cerebral blood flow and autoregulation has long been investigated but yet 

to be determined in NPH, especially translated to clinically useful findings or in the 

context of tests applicable at the bedside. It is not often that ICP and cerebrovascular 

reactivity or autoregulation tests have been applied in NPH with scope to apply the 

methods on a large and practical scale and to adopt them into clinical 

practice(168,178,201). Most frequently, imaging of CBF has been used for research 

purposes in small series of patients(14,156–158,162,186,202).  From a research point 

of view, a detailed review of CBF/CA methodology is required, as well as assessment 

of the feasibility of applying them clinically. On the other hand, clinical practice has 

long called for a systematic approach to create a consensus over the very definition, 

ambiguous diagnosis and shunt prognostication in NPH, that used to be strongly 

based on Rout but has recently moved away from it(3,26,178).  

 

CSF dynamics and autoregulation assessment during infusion tests 
 

Despite the long span of recruitment, our methodology, including infusion studies, 

ICM+ software and continuous MAP recording have been the same since 2003, with 

essential upgrades and maintenance. Especially between 2003-2013, diagnosis and 

shunt selection criteria were standardised and homogenous. Even after major 

changes in the lead consultant, the criteria remained fairly stable, except for the 

changes in imaging (discontinuation of MRI) and the introduction of extended lumbar 

drainage. Those changes have no effect on our current report. However, we cannot 

provide a detailed account of all notes and data derived from the clinical evaluation 
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process and decision making of neurosurgical consultants other than the lead 

hydrocephalus neurosurgeon, as well as the results of neuropsychology and gait 

testing. All of the above constitute their own entity and such reporting is outside the 

current aim of our study.  

 

Increased Rout, despite extremely optimistic or extremely pessimistic reports in the 

literature, appears to contain useful information relating to shunt response 

(1,26,45,62,65,91,111,174,203–205). Above all, it seems to be a major component of 

NPH, since it objectively describes disturbed CSF circulation. There are multiple 

ways in which Rout could be used to understand NPH, however when it is used as a 

sole predictor of shunt response in large cohorts of patients, it fails to provide an 

accurate indication for surgery, as the negative predictive value of the traditional 

threshold of 13 remains too low(16,26,62,63). It is therefore becoming increasingly 

evident in the literature that Rout as a sole descriptor of intracranial dynamics is 

missing important information(4,26,62,111,183,206,207). Our current finding of 

decreasing Rout with disturbed autoregulation could be an indicator of part of this 

missing picture.  A closer look at which of those cases are indeed reversible and why, 

related to CBF, CA, Rout and altogether vascular disease burden and magnitude as 

well as length of symptoms could elucidate this picture further.  

Relationship between Rout and PRx 

We detected a negative correlation between Rout and PRx that agrees with the 

previous reported findings suggesting that autoregulation is maintained in patients 

with abnormally high Rout and disturbed in low Rout. On a first glance, this appears 

paradoxical, since abnormal CBF, and therefore a failure of autoregulation, has been 

found in several reports in NPH(14,158,165,180,208).  On closer examination, this 

relationship also re-opens the debate on who could have a diagnosis cerebrovascular 

disease, who could have “pure” NPH and whether some patients have both. It is 

possible that neither failure of autoregulation not Rout >13 are inherent descriptors 

of NPH, and those two parameters should be assessed together in an attempt to 
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achieve both a diagnosis and an outcome association. We did not possess further data 

to support this hypothesis at that time.  

We have observed that when 83 of the patients studied were clinically diagnosed with 

hydrocephalus and underwent surgery, the correlation between disturbed 

autoregulation and lower Rout tended to be stronger. Even more interestingly, in the 

patients in whom the clinical decision was that they would most probably not benefit 

from surgery, no correlation between Rout and PRx was present. This finding could 

possibly suggest a distinction between patients who might benefit from a CSF 

diversion and whose clinical symptoms could be caused by disturbed CSF circulation, 

with or without cerebrovascular disease, and at least not by vascular disease alone. 

Autoregulation appears to have the potential to serve as a supplementary index for 

clinical decision-making. The presence of vascular disease, both as differential and as 

comorbidity in hydrocephalus, constitutes one of the biggest hurdles in clinical 

practice and management(6,59,209–212).  There is still no alternative clinical test and 

consensus to aid the clinical decision whether there is concomitant disturbance of the 

CSF circulation and cerebrovascular disease, or whether the CSF circulation is 

normal, and the problem lies purely in the vasculature.  Since testing of 

autoregulation at the bedside using PRx is cheap and feasible, it would be interesting 

to validate PRx as a method in comparison to CBF imaging, or even develop similar 

simple and safe tests that could bring autoregulation testing to the bedside routinely 

in NPH.  

 

PRx did not show any correlation with age, which is surprising, as significant 

correlation may be seen in anesthetized and ventilated patients after traumatic brain 

injury. A similar correlation was shown between age and dysautoregulation in 

patients undergoing non-neurosurgical elective surgery(213). It appears that the age-

autoregulation relationship (higher age associated with dysautoregulation) may be 

magnified by general anaesthesia, which is used in all studies reporting age 

relationship, and obviously not routinely used during infusion tests(124,213,214).  On 

the other hand, Rout is known to positively weakly correlate with age. This 

relationship was successfully replicated in our cohort of NPH patients; a possible 
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investigation of different Rout thresholds for different ages remains to be performed 

separately, for better future directions. Sex does not appear to have any particular 

influence on Rout.  

As a unique method of monitoring ICP and its dynamics, with opportunities to add 

adjunct modalities, the CSF infusion test seems to provide ideal conditions for 

measurement of cerebral autoregulation. We demonstrated a significant decrease in 

CPP during infusion. Another autoregulation-associated parameter, the magnitude of 

slow waves, correlated weakly but significantly with PRx. Slow waves, in context of 

measurement of PRx or transcranial-Doppler investigation, are carriers of the 

information about autoregulation mechanism. This correlation has not been reported 

before and it is worthwhile to consider its role in NPH patients, since both the 

frequency and the magnitude of slow waves are involved in possibly distinguishing 

NPH patients without vascular problems and predicting their benefit from a shunt 

insertion. 

 

Significance of PRx, MAP and outcome after CSF diversion 

The correlation between Rout and PRx appeared stronger in the patients that improved 

after CSF diversion, and tended to be absent in the patients with no improvement. 

However, there were not enough patients to demonstrate this stronger relationship 

statistically. Outcome after shunting in NPH is very much multifactorial, it requires 

reassurance that the valve indeed opens and drains(48,95,96,215,216). Therefore, 

associating it with one measured parameter is probably naïve. This can be 

demonstrated by the finding that neither PRx nor Rout differed between the outcome 

groups but the correlation between PRx and Rout was found to differ significantly.  

Methodologically, PRx is a global autoregulation index, which means that it reflects 

the state of autoregulation in the entirety of the cerebral parenchyma(148,217). It is 

a continuous index with low values meaning better autoregulation and high values 

denoting impaired autoregulation(218–220). Autoregulation in hydrocephalus is still 

an uncertain territory and this is the first time PRx was used in a large cohort of 

patients. The numerical thresholds for good autoregulation (<0), grey zone (0-0.25) 

and impaired autoregulation (>0.25), were determined in TBI patients and their 



83 
 

applicability in hydrocephalus in unknown and needs to be studied. Over one third of 

the patients (62/131), had a PRx in the grey area: (PR =0-0.25) and we need more data 

in the future to determine the interpretation and the significance of this relationship 

with the Rout and with outcome.  Our results create a new framework of consideration 

for patient outcome, moving further from the unsuccessful attempts to associate a 

single parameter, such as Rout or CBF alone, strongly with shunt response; The 

addition of systemic and cerebral vascular disease markers, joint with autoregulation 

indices would be worth further investigating for outcome consideration in NPH in 

appropriately designed RCTs. 

It was not within the scope of this study to compare ETV versus shunting as a 

treatment option for hydrocephalus, nor did we possess enough patients to conclude 

this. The question of when ETV or shunt should be selected for different 

hydrocephalus patient remains to be answered(221–225). However, there were some 

differences in PRx and Rout between ETV and shunted patients, that we cannot 

interpret at the moment but should be investigated separately at a larger cohort. The 

influence of those differences in our overall results does not appear significant by our 

current number of patients, at least as far as the correlation of PRx and Rout and 

outcome are concerned. Finally, as the guidelines on ETV and shunting in NPH have 

been ambiguous and the reasons for performing an ETV on our patients can vary, it 

is not easy to investigate this matter further as we are not able to report more 

information on the patients’ clinical course, from the first consultation to the final 

decision for surgery. 

 

Finally, perhaps our most significant finding was the quantitative correlation 

between a lack of response to shunting and vascular burden (higher MAP), as well as 

autoregulatory dysfunction combined. There is an abundance of data suggesting an 

interaction between haemodynamics and CSF circulation(6,57,59,210–212). 

Cerebrovascular diseases has always been a major component of the differential 

diagnosis of NPH, and recently has been hypothesised as a pathogenetic mechanism 

for NPH. Strengthening the significant but not quite ideal predictive value of Rout 

could prove valuable in clinical practice and spare patients from undergoing difficult, 
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repetitive diagnostic procedures to determine their further management. Most 

importantly, it would assist us in better defining and diagnosing NPH, regardless of 

outcome after shunting, as well as to understand and map co-existence of NPH with 

other dementias, that would open a new multidisciplinary pathway for the ageing 

brain.  

 

Limitations 

MAP was not monitored via an invasive arterial line as is the gold standard, but non-

invasively using a Finapres® finger cuff photoplethesmographer, and while this has 

been shown to be accurate compared to invasive methods its accuracy in this 

particular patient group (elderly with comorbidities) is unclear. This limits mainly 

the absolute value of MAP but not PRx, which was calculated from the MAP waveform. 

On this latter point, infusion studies have a limited duration and do not always allow 

optimal calculation of PRx, which ideally require longer calculation windows.   

In this group of patients, we had not obtained any measurements of cerebral blood 

flow via PET scan or other imaging means during the infusion studies. Furthermore, 

we have assessed autoregulation through PRx, which is a global and indirect index of 

autoregulation that has not been validated yet in NPH.  Predominantly, we have not 

explored the meaning of “inconclusive” PRx in hydrocephalus or whether the same 

threshold of 0.25 applies as in TBI. Further work is required on autoregulation in 

NPH, validating and comparing different methods. We did not possess an adequate 

number of patients with MRIs in order to quantify white matter lesions and compare 

them with Rout and PRx, however a study designed to address this question would be 

useful to address the question of the causality of our reported correlation. 

 

Even though there is a lead consultant on hydrocephalus referring and assessing the 

bulk of cases, a number of other hydrocephalus patients are referred from all 

neurosurgical consultants. We have designed a retrospective study with a long 

recruitment timeframe, that makes it impossible and off our aim to report and analyse 

all the clinical information and further testing of patients, including the exact gait 
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and cognitive scores. Based on evaluation from a multitude of clinical specialists, all 

of these patients were possible or probable NPH cases.  

Finally, our cohort was large in order to validate a significant linear relationship with 

PRx and Rout, however our numbers that could correlate parameters or combinations 

of parameters with outcomes were relatively small, especially for the patients with 

poor outcome. Unfortunately, we did not have enough patients to make stronger 

outcome inferences and appropriate methodology should be used to design and 

perform studies that would generate higher levels of evidence.  
 

CONCLUSION 

We have provided a quantitative reference to explore vascular disease, autoregulation 

and CSF circulation in hydrocephalic patients. The association between Rout and PRx, 

although present, appears rather weak and factors influencing this interaction should 

be explored. Prospective trials should be conducted, quantitatively assessing 

cerebrovascular disease, cerebral blood flow and autoregulation, as well as systemic 

hypertension on the symptomatology and CSF dynamics in NPH. Outcome 

implications of such findings could then be assessed further and more objectively.  
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CHAPTER 6  

CSF DYNAMICS IN NORMAL PRESSURE HYDROCEPHALUS 

 

6.1 Davson’s equation in Normal Pressure Hydrocephalus 

The results presented in this section have been published in Acta Neurochirurgica: 

Lalou A, Levrini V, Garnett M, et al. Validation of Davson ’s equation in patients suffering from idiopathic 

normal pressure hydrocephalus. 2018; 160:1097–103. 

 

6.1.1 Introduction  

NPH is a complex syndrome characterised by semi-quantitatively by the finding of 

ventriculomegaly, and the variable clinical triad of gait ataxia/gait disturbance, 

dementia and urinary incontinence(3,12,65). It is most likely a CSF circulatory 

disorder, since high Rout has been described as a diagnostic and shunt 

prognosticating factor(4,62,65,66). However, recent clinical studies have questioned 

this traditional concept of high Rout(26,226), creating further need to elucidate the 

pathophysiology of this disorder.  

 

It is nowadays almost established that the CSF circulation is not the only contributor 

to the processes underlying the clinical manifestations of NPH. A variety of 

interacting endocranial factors, possibly including tissue distortion, cerebral 

ischaemia and other damage in the vasculature, could contribute and interact with 

the CSF circulation(1,80,174,227). Unlike some causes of secondary NPH, where the 

hydrodynamic disturbance is clearly attributed to a cause, in idiopathic NPH (iNPH) 

the aetiology leading to poor CSF circulation and ventricular dilatation is not yet 

clear. There is accumulating evidence highlighting the importance of systemic 

vascular disease, implicating cerebrovascular disease, in NPH causation, however 

high grade evidence demonstrating vascular disease as a causative rather than a co-

existing parameter is yet to be generated(6,16,59,210,211).  

 

In 1970, Hugh Davson, using an experimental set-up of both constant-flow and 

constant-pressure infusion in rabbits, described the now called “Davson’s equation”, 
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used as a fundamental equation in the perception and study of CSF hydrodynamics 

in physiological individuals7. It expresses baseline intracranial pressure (ICP) as a 

linear function of Rout, formation of cerebrospinal fluid (If) and sagittal sinus pressure 

(SSP), as shown below(113): 

 

ICP = Rout * If + SSP 

 

The above relationship is true when ICP is greater than SSp and CSF circulates 

freely. Below SSp, ICP may have any value, the description of which is more difficult 

and related to the pressure-volume compensation ‘exponential’ curve(228) .  

  

The detection of Rout from linear regression between ICP and formation rate was also 

validated by later measurements in human from Ekstedt(229) on 58 normal subjects. 

To the best of our knowledge, the relationship between Rout and ICP in NPH has not 

been validated, and if anything has been negated by Eide et al when investigated in 

16 NPH patients, comparing Rout from lumbar infusion test with overnight ICP, as 

well as 28 children(102,226,230). This is another finding that possibly contradicts the 

theory that disturbance of Rout is the main marker of NPH and whether Davson’s 

equation is applicable to patients with NPH. Nonetheless, shunt surgery is aimed at 

draining CSF controllably, but also reducing Rout to very low 

values(40,42,43,45,48,96,216). It is therefore not surprising that older studies had 

replicated the finding that this reduction in Rout, from around 12-18 to below 6, 

reverses NPH(40,44,63,65,192,216,231) and that a short 2018 cohort analysis on Rout 

thresholds for predicting shunt responsiveness concluded that a Rout of 

12mmHg/ml/min is most appropriate for accurate prediction. On the opposite end, the 

latest multi-centre European iNPH study found that in 115 patients Rout had no 

correlation to clinical outcome and unacceptable NPV(26).  

 

Finally, if Davson’s equation is not detected and Rout is not the disturbed CSF 

dynamic component in NPH, this could raise a lot of questions and opportunities on 

an alternative explanation, such as pathology in the venous compartment or 

abnormally increased formation rate. No such findings exist that have described the 
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presence of such disturbances in NPH or iNPH. We have therefore aimed to 

investigate the relationship between ICP baseline and Rout in a large cohort of 

patients with infusion studies. We have also investigated other parameters related to 

ICP and Rout, such as age and the fundamental amplitude of ICP.  

 

6.1.2 Materials and Methods 

Patient selection 

We retrospectively recruited from our database patients undergoing investigation for 

possible iNPH via a lumbar infusion test. All patients had documented and reported 

radiological evidence of ventriculomegaly on CT and/or on MRI scans, without any 

signs of global atrophy. All brain imaging is reviewed by expert neuroradiologists and 

neurosurgeons. Baseline CSF pressure had to be below 18 mmHg and at least two of 

or a complete symptom triad (gait disturbance, cognitive impairment, urinary 

incontinence).  They attended Cambridge University Hospital Hydrocephalus Clinic 

between 2009-2013 and the lumbar infusion test formed part of their clinical 

investigations, according to hospital guidelines and in line with the National Institute 

for Health and Clinical Excellence (NICE) guidelines(232). Dementia had been 

diagnosed byneuropsychologists and gait was assessed by physiotherapists. 

Unfortunately, the data for cognition and gait were not available for analysis. 

 

There is some data overlap between this study and previous publications from our 

group, with patients recruited from the same database in overlapping time 

periods(62,70). 
 

Infusion test 

We used the established technique of ‘computerised infusion test’(64,66)  which has 

been introduced to clinical practice in 1988 in Poland(25). The procedure takes place 

as described in Chapter 3.  

 

Patient follow-up & outcome assessment 

After undergoing all desired clinical investigations, the patients are booked for a final 

follow up by the clinical team in order to evaluate all results, weigh the risks and 
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benefits of shunting and discuss with the patient and family. The clinical criteria 

established in our Cambridge centre until 2013 to make the final diagnosis and offer 

a shunt included the Rout (threshold of ~13 mmHg/min/ml) and the proportion of deep 

white matter lesions (low degree was best for shunt response). Outcome was assessed 

using a simple scale, as reported in Chapter 5(62).  

 

Statistical Analysis 

All computerised data are recorded and processed using ICM+ software. There are 

multiple independent studies in the literature in agreement for using Rout estimators 

derived from the computerised CSF infusion test, with values appearing to correlate 

very well(228,233,234). When analysing infusion-derived Rout numerical values, 

there are two modes of calculation, static and dynamic mode, the principles of each 

have been introduced in Chapter 3. ICM+ allows for calculation of Rout using both 

methods, depending on how clean of artefacts the acquired data are and whether the 

acquired pressure-volume curves deviate from the expected models. As such, the 

dynamic calculation is almost always preferred, unless those latter reasons yield it 

unreliable or incalculable. 

We performed simple linear regression between variables to calculate Pearson or 

Spearman product correlation coefficients and p-values. Between-group differences 

(e.g. different outcome groups) were tested using the Wilcoxon signed rank test or the 

student t-test, after checking for normality and confirming parametric assumptions. 

Given the large sample, our data met all required criteria for normal distribution. For 

colinear parameters we performed multiple linear regression to correct the detected 

relationships and include the influence of other variables. ADL and VL performed 

statistical analysis independently and compared for accuracy and errors. 

 

 

6.1.3 Results 
 

During the selected time frame, 229 patients had undergone infusion tests for possible 

iNPH: 137 males and 92 females, male-to-female ratio of approximately 1.5:1. Their 
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age ranged from 36 to 96 years [median age 75years, mean age of the cohort was 70.4 

(± 13.82)] at the time of the infusion test.  

Numerical values for the infusion test parameters as mean ± SD are represented in 

Table 6.1.  

 

Table 6.1: Demographics and mean values of CSF test parameters for male versus female 

patients. Values are represented as mean ± the standard deviation.  
 

 

The correlation between Rout and ICP/CSFp baseline is shown in Figure 6.1 A. When 

investigating male versus female subjects, the same correlation was absent in females 

but present in males (r=0.26, p=0.002). Rout was also positively correlated with AMP 

(R=0.27, p=3.577e-05), as shown in Figure 6.1 B.  

Lastly, Rout appeared to increase with patients’ age (r=0.16, p=0.01306) – Figure 6.1 

C. The correlation between Rout and age was also absent in the male subgroup, but 

present and strong in the female subgroup (R=0.33, p=0.001). ICP decreased with age 

(R=-0.22; p=0.0006238) 

When we integrated age in a multilinear regression model as an influencing parame

ter, the correlation improved in strength (R=0.31, p= 5.935e-06). 

 

 

 

 

 

 iNPH (N=229) Male (N=137) Female (N=92) p-value 

Age [years] 70.4 ± 13.82 71.6 ± 11.9 68.69 ± 16.07 0.5737 

Rout 

[mmHg*min/ml] 
13.18 ± 5.53 13.48 ± 5.5 12.7 ± 5.57 0.33 

CSFp baseline 

[mmHg] 
9.0 ± 3.64 9.28 ± 3.57 8.59 ± 3.74 0.1449 

AMP [mmHg] 1.01 ± 0.62 0.98 ± 0.58 1.06 ± 0.68 0.4469 
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Figure 6.1: Relationship between Rout and different parameters: A: Scatter plot showing 
resistance to CSF outflow versus baseline CSF pressure. B: scatter plot showing resistance to CSF outflow 
(Rout) versus amp at baseline.  
 
 

Relationship in different diagnosis & outcome groups. 
 

ADL (author) collected the electronic records for surgery and outcome after surgery. 

From the patients investigated, 149 patients received a final diagnosis of NPH and 51 

did not, whereas the rest of the patients (total of 29) were lost in follow up. 143 

underwent surgery and we could trace and assess their follow up records from the 

A B 

C 
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hydrocephalus clinic (6 declined surgery or had other health issues that prevented 

them from having the surgery or died before they could have it). 5 patients underwent 

ETV and the remaining 138 shunt insertion (various valves used). Each pre-operative 

decision and post-operative assessment was made on a case-by case basis, and from 

the consultant neurosurgeons attending to the patients. 119 of those responded well 

to the CSF diversion (outcome =1 or 2) versus 15 who did not demonstrate any 

improvement (outcome=3). 9 patients were lost in follow-up or their records were not 

available in the electronic database due to changes from paper to electronic records, 

with the paper records being stored in a not easily accessible location. The CSF 

infusion studies parameters calculated for different outcome groups are demonstrated 

in Table 6.2  
 

 

TABLE 6.2  CSF dynamic parameters in patients who received a clinical diagnosis of iNPH versus 

those who did not, and patients who responded favourably to shunting/ETV (outcome =1 

represents sustained clinical improvement for >6 months and outcome =2 represents temporary 

improvement after 3 months but deterioration after 6 months in our reported scale) vs those who 

did not respond .  
 

 

 

The correlation between Rout and CSFp baseline (CSFpb) was initially insignificant in the 

group of patients with a final clinical diagnosis of NPH without considering the effect of age 

(R=0.1; p=0.0533). When we used a multilinear regression to correct for age, their relationship 

became stronger and significant (R=0.3993; p=3.095-06). Furthermore, the relationship was 

absent in the patients who did not receive an NPH diagnosis. Finally, a positive relationship 

was only present when the interaction between Rout and Age was considered in patients with 

 

Diagnosed 
N=149 

Not 
Diagnosed 
N=51 

p-value 

 

Responders 
(outcome = 
1,2) N=119  

Non -

responders 
(outcome = 3) 
N=15 

p-value 

Rout 
(mmHg*min/ml) 

14.49 ± 5.45 10.03 ± 3.63 
 

1.377e-07 
 

 

14.63 ± 5.32 

 

15.26 ± 5.5 

 
0.8434 

CSFp baseline 
(mmHg) 

9.42 ± 3.74 8.92 ± 3.07 0.3363 9.87 ± 3.69 8.96 ± 3.57 0.4215 

AMP (mmHg) 0.97 ± 0.62 1.018 ± 0.66 0.3413 0.99 ± 0.60 0.90 ± 0.58 0.6242 

Age (years) 69.05 ± 12.72 74.75 ± 10.11 0.00018 68.57 ± 12.89 71.4 ± 10.83                    0.1261 
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favourable outcome, -outcome=1 or outcome=1 or 2- (R=0.43; p = 6.302e-06) while being 

absent in the non-responders (outcome =3). CSFpb decreased with age in those with outcome 

1 or 2 (R= -0.36; p=6.129e-0.5) but not in those with poor outcome (R= 0.20; p=0.465). 

 

6.1.4 Discussion 

 

We have, to the best of our knowledge, reported for the first time a weak but 

significant correlation between Rout and CSFp in a large cohort of iNPH patients. 

This result validates the presence of a linear relationship between CSFp at baseline 

infusion tests and Rout, that overtakes the negative mathematical relationship 

between them [Rout = (CSFpplateau – CSFpbaseline)/Infusion rate]. However, this 

was not a holistic experimental set-up, and therefore the formation rate and SSp of 

those patients remains unknown. A possible positive association between Rout and 

CSFp baseline provides evidence supporting Rout as a valid measure and possibly key 

disturbance in NPH and causative factor in intermittently raised ICP, as seen in 

overnight monitoring. Comparison of Rout and ICP from overnight monitoring is also 

still pending and not performed in this study.  

 

Relationship between CSFp, AMP, Age and Rout 

We detected a significant, however weak linear relationship between Rout and CSFp 

at baseline in these patients. This constitutes a counter-intuitive finding, however 

there are many possible interpretations behind this. Firstly, as derived from the 

equation itself, variable pressure in the sagittal sinus and CSF formation rate could 

account for some of these cases. In particular, these subjects could have a baseline 

CSFp that was lower or equal to SSp, due to reasons that could not be elucidated in 

such cases, where Davson’s equation is not valid at all(228). Unfortunately, it is 

currently rare and challenging to measure SSp directly in our patients, at least 

simultaneously to an infusion test. We are aware of a few cases from our material 

where CSFp behaved as such in relationship to SSp (see Chapter 7.1), however such 

relationships should be evaluated in vivo anew(32,194,203,228,235).. However, SSp 

and the entire cerebral venous system are known to vary significantly even amongst 

healthy individuals. Ekstedt et al initially reported important normative data for 
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SSp , where it ranged from 0.7 to 1.35kPa (5.25 – 10.13 mmHg)(228,229). If has 

recently been a subject of significant controversy and not fully established in 

NPH(236–238). Even though If is traditionally presumed as stable at 0.35 ml/min, we 

are not aware of any studies with reliable If measurements for NPH/hydrocephalus. 

Combined with the issue there are no standardised animal models and the variable 

use of MRI techniques to quantify CSF flow, there is a lot of unexplored ground in 

investigating CSF formation in the context of normal and disturbed pressure-volume 

characteristics(212,239,240). Phase-contrast MRI is a promising technique that could 

allow measurement of CSF and cerebral blood flow, and can easily be combined with 

infusion tests(159,161,208).  

We also demonstrated an increase of Rout with age, confirming such a reporting in a 

variety of previous publications(226,241). Therefore, as a co-linear variable, we 

considered age in a multivariable model and indeed uncovered a stronger and more 

significant relationship between Rout and CSFp, despite what appeared initially as 

weak coefficients. If age is one of the factors that influences this relationship, all the 

factors mentioned above could similarly have influenced the regression in several 

ways. Furthermore, the influence of age itself on If and SSp renders us into an 

unexplored territory. Paradoxically though, ICP appeared to decrease with age, which 

explains the importance of age correction in detecting the relationship. Moreover, this 

decrease in ICP with age could be a cause or effect for the increased Rout. The 

causality of this phenomenon needs to be elucidated with appropriate methodology.  

 

 

The significantly higher percentage of males (59.82%) versus females (40.18%; 

p<0.001) prompted us to investigate the difference between those two groups. 

Although none of the originally calculated CSF infusion parameters differed 

significantly between the two groups, there were significant differences in the 

correlation coefficients between Rout and CSFp, AMP and age. The male and female 

subgroups each contain a different number of patients, and further power analysis to 

elucidate this lack of correlation could confirm or refute this difference.  
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Values of ICP baseline 
 

It arises from our results that nearly half of our iNPH patients have a baseline 

pressure between 0 and 4 mmHg. As 4mmHg is currently considered the threshold 

below which intracranial hypotension is suspected(242), it raises some questions. The 

explanation for this arises from 3 main underlying possibilities: 1) There could be a 

mild zeroing error when the reference pressure level is introduced in the machine – 

however this is only hypothetical as the zeroing process and level are standardised. 

2) Our elderly patients can be challenging technically when performing an LP, 

especially as junior, inexperienced members of staff are often involved in performing 

them. It is frequently that multiple attempts can be made and given the larger 

diameter of the needle we use combined with the multiple attempts that often involve 

puncturing the dura more than once, CSF leak could be accounting for the low 

pressure readings. 3) It has recently been shown from a retrospective cohort of 

patients treated at a spontaneous intracranial hypotension centre that Rout with a 

cut-off of 5mmHg*min/ml is a more reliable marker of CSF leak whereas the opening 

CSF pressure, even though significantly lower in patients with leak, was not <4mmHg 

and ranged from -1 to as high as 12.8 mmHg in 14 patients with proven leak (mean 

pressure 5.26 mmHg)(243). It is unfortunately not possible to currently understand 

which of the possibilities represents the truth.  

 

Shunt responders vs non-responders 
 

Rout and CSFpb appeared to not correlate in shunt responders, unless age was used 

again to model all interactions and correct the linear regression. When we applied 

this expanded linear model, the correlation appeared stronger than in the overall 229 

patients with mixed features and diagnoses. The age-dependence of Rout is a subject 

of discussion in itself, however the main interest in this relationship would be whether 

it improves our understanding of NPH and whether it is important in attempting to 

predict outcome(241,244–246).  A strong age-dependence of Rout in shunt responders 

could highlight the importance of such an evaluation in future attempts to utilise Rout 

in the clinical setting.  
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Limitations 

 

It is difficult to define and include only definite NPH. As a result, our patients were 

probable NPH with clinical and radiological features strongly suggestive of NPH. 

Despite clinical manifestations, we currently do not possess or have used any tools to 

establish whether a patient has NPH, pure NPH or NPH plus other co-morbidities. 

Response to shunting is an indication, however, remains relatively subjective or semi-

quantitative.  What is more, the influence of alternative of comorbid diagnoses on 

Rout is naturally unknown and almost impossible to determine unless there is a 

future vastly more widespread use of infusion tests in all dementias. Finally, as 

expected, the majority of our shunted patients responded to the surgery, and there 

were very few patients with no response to shunting  (N=15), so the results from this 

analysis are subject to the relevant limitations. In the end, the objective truth on the 

diagnosis of iNPH is unfortunately still open for debate.  

As previously reported, the patients referred for infusion studies are referred from a 

multitude of neurosurgical consultants(70). Therefore, we are unable to report clinical 

information, pre-and post- operative assessment of the magnitude of the symptoms 

and the patients’ improvement in great detail. This is due to a great loss of data that 

is part of the retrospective nature of the study. However, every patient undergoes 

thorough investigations by specialists before diagnosis and outcome classifications 

are made. Furthermore, our simple, 3-level scale does not report in detail the 

magnitude of improvement of the patients’ symptoms, despite that the patients have 

been investigated, monitored and followed-up closely in order to determine their 

management and outcome reflected in our scale. 

  



97 
 

6.2 CSF dynamics in post-traumatic ventriculomegaly  

This chapter includes work in press by Fluids and Barriers of the CNS. 

Lalou AD, Levrini V, Czosnyka M et al: CSF dynamics in non-acute post-traumatic ventriculomegaly.  

 

6.2.1 Introduction 

In this chapter, I have started exploring potential influences on Rout as well as their 

subsequent diagnostic and clinical applications. To the best of our current knowledge, 

there are no detailed accounts of Rout dependent on different aetiologies of NPH or 

secondary NPH overall versus iNPH(69,119). Traumatic brain injury (TBI) is a well-

known cause of hydrocephalus, acute or chronic. External hydrocephalus after TBI, 

presenting with an enlargement of the subarachnoid space instead of 

ventriculomegaly, has been frequently described in children but scarcely recognised 

in adults(247). Unlike iNPH, not many centres have utilised infusion tests and CSF 

dynamics as a tool to investigate the chronic form of post-traumatic hydrocephalus 

(PTH) that could develop after several months or years after the initial injury. There 

are conflicting studies on the incidence of both acute and chronic PTH(247–250). The 

evidence though does seem overall to suggest that chronic PTH is underdiagnosed and 

undertreated and could be one of the causes of poor outcome post TBI(247–249,251). 

Infusion studies could serve as a useful tool for investigating possible PTH, similarly 

to their routine use in iNPH, if the latter could be related to a CSF circulatory issue 

with increased Rout(4,105,215,252,253).  

PTH has been described in previous reports, mainly diagnosed through clinical 

presentation and imaging(248) . Lumbar manometries could not be useful, as the ICP 

is within the normal range, however risk factors such as decompressive craniectomy, 

age and subarachnoid haemorrhage have maintained clinical suspicion raised and 

shunting is often performed without additional testing(248,249,254,255). Marmarou 

et al (252) designed and carried out a prospective study on CSF dynamics in patients 

post TBI with repeated CSF infusions, demonstrating how they could aid in the 

detection of PTH over CT scans alone. They concluded with a recommendation for 
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shunting in patients with opening pressures greater than 15 mmHg or Rout greater 

than 6 mmHg/ml/min and called for a multi-centre randomised trial to confirm such 

findings. However, studies comparing the various infusion study methods (bolus vs. 

constant rate vs. constant pressure infusion) have found that Rout is calculated as 

significantly lower in the bolus-injection method compared to the other methods(233) .  

In the context of a CSF dynamics disorder, a longer recording of baseline ICP is 

required in order to properly estimate CSF parameters. ICP monitoring would be a 

useful tool for reliable estimation of ICP and CSF dynamics analysis, though 

invasive(52,56,256–258).  We have aimed to re-examine the use of CSF infusion tests 

for the diagnosis of non-acute PTH using further parameters besides Rout, including 

AMP and compensatory reserve. Furthermore, by comparing TBI patient to a group 

of  iNPH shunt-responders, we aimed to investigate if the “traditional” threshold of 

Rout 13mmHg*min/ml, as well as other reported CSF dynamics thresholds in iNPH 

apply to PTH, since a lower threshold of 6 mmHg*min/ml has been proposed by 

Marmarou(252).  

 

6.2.2 Methods 

 

Patient selection 

We retrospectively recruited from our infusion study database at Cambridge 

University Hospital. All subjects had undergone infusion studies between January 

2011 and February 2019, on clinical request, with possible features of PTH and 

ventriculomegaly reported by expert neuroradiologists on CT/MRI. We excluded all 

patients that had undergone decompressive craniectomy (DC) and or had a 

cranioplasty in situ inserted very recently (less than around 1 month)(105,253,259).  

Patients with low Rout (<6 mmHg*min/ml) and clear signs of global atrophy were also 

excluded from the group. We used a group of iNPH shunt responders to compare 

possible differences between iNPH and PTH. iNPH patients were selected based on 

the following criteria: 1) presence of at least two of the three cardinal symptoms from 

the NPH triad, ventriculomegaly on CT or MRI scanning 2) positive response to 
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shunting (clinical documentation of improvement of symptoms at 6-month follow-up) 

and 3) youngest patients of the available cohort, in order to achieve a slightly better 

age match for young TBI patients. They had undergone infusion studies between 2003 

and 2018. A few of the patients in this cohort have been previously reported (70,259).  

Infusion study 

Infusion studies were carried out as per standard clinical procedure, as described 

analytically in Chapter 3.  
 

Data Collection & Analysis  
 

CSF dynamics parameters were collected from our stored ICM+ files and included 

ICP baseline (ICPb), ICP at plateau (ICPp), Rout, AMP, RAP and Elasticity. Elasticity, 

as calculated from the pressure-volume curve, is inversely related to brain compliance 

from the formula compliance =1/(elasticity*ICP)(109). Infusion test parameters, such 

as Rout, AMP and RAP have been extensively reported before in normal subjects, TBI 

(from neurocritical care long-term monitoring) and 

hydrocephalus(50,75,100,103,105,260). The slope of the amplitude-pressure linear 

regression line correlates with Elasticity and is expressed as a combination of 

elasticity * cerebral blood volume(107).   

ADL and VL (authors) used our local EPIC software or its older version eMR and 

collected patient demographics (age, gender) and all the available clinical information 

as following: date of TBI, date of infusion study, decompressive 

craniectomy/cranioplasty date, severity of TBI and brain imaging. Follow-up and 

shunting information, as well as outcome after shunting were also extracted. 

Comparisons between groups were tested using non-parametric tests, mainly the 

Wilcoxon test for independent samples.  

6.2.3 Results 

Patient Population and classification 

We identified a total of 46 infusion test recordings from 44 unique patients during the 

selected time period. 10 cases were excluded due to suspected global atrophy. The 
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remaining 36 patients were included (Group A), of which 12 females and 24 males. 

The average age was 53.17 ± 17.05 years. 26 tests were done via LP and 10 via 

ommaya. The time interval between the TBI and infusion study varied widely 

amongst subjects, with the minimum interval of 10 days and maximum interval of 

33.5 years. For 11 subjects, the TBI date could not be retrieved. Of the remaining 24 

subjects, the average time interval between TBI and infusion study was 56 months.  

From the available data, 19 patients had been classified as having ‘severe’ and 6 ‘mild’ 

TBI according to GCS on initial presentation. 5 tests had been performed under GA.  

An example of the CSF dynamics of a possible PTH (Group A) patient is shown in 

Figure 6.2. Numerical results for the CSF dynamics in Group A are shown in Table 

6.3  

 

 

 

 

 

 

 

 

 

 

 

 

 

The comparison group B had 45 iNPH shunt responders. We selected 45 of the 

youngest available patients in order to approximate a similar number to Group A, 

Figure 6.2 Representative example of CSF dynamics in a patient tested for Post Traumatic 
Hydrocephalus CSFp increasing briskly after start of infusion, with an Rout around 11-13 mmHg*min/ml. AMP at 
baseline ~1mmHg, also reacting briskly to infusion until a plateau of 5.6 mmHg. RAP at baseline ~0.6, clearly 
increasing to almost 1 after infusion of only a few mLs, indicating exhaustion of compensatory reserve.  

CSFp 

[mmHg] 

 

HR 

[bpm] 

AMP 

[mmHg] 

RAP 
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Their average age was 66.16 ± 12.80 years and there were 19 females and 26 males.  

Numerical results of CSF dynamics comparison between group A and B are shown in 

Table 6.3.  

Table 6.3 Comparison of CSF dynamics in Groups A (Post traumatic hydrocephalous) and B 

(idiopathic NPH).  

 

 

Shunt surgery and follow-up 

After completing all assessments for PTH, 16/36 patients were shunted with a 

ventriculoperitoneal shunt. There were 5 clearly documented cases of improvement 

after shunting on follow-up, two documented cases of complications post shunting (one 

case of haemorrhage and one of infection) and one documentation of shunt 

malfunctioning. In 7/36 cases, we could not find further follow-up documentation. In 

the remaining 13/36 cases, a decision against shunting was made after clinical 

consideration. 

Mean Group A 
 (N = 36) 

Group B 
(N = 45) 

                p-value 

ICPb [mmHg] 

Rout [mmHg*min/ml] 

AMPb [mmHg] 

dAMP [mmHg] 

9.31± 4.12 

13.53 ±5.21 

0.55±0.39 

1.58 ±1.21                       

9.48 ±4.57 

19 ±8.91 

1.02±0.72 

2.76 +/ - 1.50 

0.6933 

2.91e-11 

0.001944 

0.0002139 

Slow [mmHg] 0.66 ± 0.68 1.26 ± 1.5 0.2505 

AMP-P slope 0.09 ± 0.05 0.14 ± 0.08 0.01267 

Elasticity [1/ml] 0.19 ± 0.13 0.19 ± 0.1 0.5487 

RAPb 0.57±0.18 0.38 ±0.21 0.5338 

RAPinf 0.95±0.07 0.92 ± 0.075 0.5058 
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Results from comparing shunted versus non-shunted PTH patients, shunted PTH 

with 45 iNPH shunt responders are shown in Table 6.4. 

 

Table 6.4 Comparison of CSF dynamics in the shunted versus not shunted patients of Group A 

(Post traumatic hydrocephalous) with the shunt responders of group B (idiopathic NPH).  
 

 

 

Relationship with imaging 

We reviewed the reports from CT/MRIs closest to the infusion date (maximum time 

difference 2 months). Encephalomalacia or ex vacuo ventriculomegaly had been 

reported in 12/36 cases in Group A. Ventriculomegaly, with no clear description of 

hydrocephalus or the degree of hydrocephalus, was the main finding in all patients, 

with only three cases reported as having a mild to moderate degree of hydrocephalus 

and one case of major lateral ventriculomegaly. 

6.2.4 Discussion 

We have given a preliminary account of Rout, pulse amplitude, compensatory reserve 

and compliance in possible PTH.  

 

Rout and AMP were significantly lower in PTH compared to iNPH and did not always 

reflect the degree of hydrocephalus or atrophy reported on CT/MRI. 

 

In patients with symptoms and radiological signs of PTH, there was a variable Rout, 

as well as other dynamic parameters such as AMP and RAP. We have not studied 

Mean PTH shunted 
     N=16 

 PTH no shunt    p-value 
      N=13           (col. 1&2)  

      iNPH  
  (Group B) 

   p-value          p-value  
    (1&B)            (2&B) 

ICPb [mmHg] 

Rout [mmHg*min/ml] 

AMPb [mmHg] 

dAMP [mmHg] 

 8.79 ±4.47 

16.69 ±5.87 

 0.53 ±0.41 

 1.78 ±1.56                                                                              

 9.91 ± 3.6 

 10.56± 3.06 

 0.59± 0.43 

 1.35±0.66                       

  0.7551         9.48 ±4.57 

0.003094        19 ±8.91 

  0.7143          1.02±0.72 

  0.8291        2.76 +/ - 1.50                                                                             

    0.579             0.9154 

 6.104e-05    0.0004883 

 
   0.0204         0.04915 

   0.02764        0.02188 

RAPb  0.6 ± 0.16  0.54±0.2   0.4015           0.38±0.21        0.418           0.6698 
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atrophy in this cohort, and excluded all patients that could fall into this category, 

based on results of Rout <6 as per  Marmarou et al(252) and imaging.   

Regarding comparing patients tested for PTH with those tested for iNPH, we found 

significant differences in AMP and dAMP. Rout also differed significantly in these 

groups.  It is possible that a generally lower AMP in the TBI group could reflect a 

different reactivity of the vascular bed and vascular damage sustained as a result of 

the injury(107,261). Such a hypothesis could also be investigated by testing cerebral 

autoregulation in PTH patients. Since both possible iNPH and possible PTH 

constitute very heterogeneous and complex pathologies, future randomised trials 

could assist in defining the significance of those findings. Infusion tests appear useful 

as an additional test for PTH with normal baseline ICP and could also further be 

explored to validate a high ICP baseline versus LP manometry or overnight 

monitoring. A lower Rout , similarly to lower AMP in PTH, could direct towards 

findings of impaired cerebral compliance and possibly cerebral blood flow and 

autoregulation(45,73,150,161). 

Regarding pressure-volume compensation, this appeared depleted in both iNPH and 

PTH, as demonstrated by RAP ≥0.6 in both groups. Elasticity was also increased in 

both groups, also indicating decreased cerebral compliance. On the other hand, the 

AMP-P slope, which is related to elasticity, appeared decreased in PTH compared to 

iNPH. Such a relationship could be attributed to the second descriptor of the slope, 

which is the cerebral blood volume. A decreased AMP-P finding, with increased or 

even normal elasticity, could therefore underpin decreased cerebral blood volume in 

PTH.  

Interestingly, the main difference we could find between those selected for shunting 

and those where the clinical decision was not to proceed to shunting, due to resolution 

of symptoms or other reasons, only a significant difference in Rout. This difference 

could however also be due to a performance bias linked to the fact that the consultants 

also make the decision to shunt based on Rout, at least partially. Furthermore, this 
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finding appears preliminary since we did not have enough patients in these groups to 

conclude on the presence or absence of these differences adequately.  

The strong difference in AMP and dAMP seemed to be maintained when shunted PTH 

patients were compared to iNPH shunt responders. In addition, Rout did appear to 

differ significantly between these two groups, however we did not have enough 

shunted PTH patients to determine whether this finding could also be random. The 

pathophysiological processes between increased Rout in iNPH and PTH however, 

would potentially differ and could merit as an explanation for a possible difference in 

Rout. Obstruction of the lumen of the cortical subarachnoid space was a hypothesis 

from Czosnyka et al (259)for the increased Rout in PTH patients after cranioplasty, 

as a result of an irreversible ventricular enlargement cause by the missing bone flap. 

We have not checked in our dataset whether there was indeed any difference in Rout 

between those who never required craniectomy and those who had, as well as the 

length of time with craniectomy. It could be worth, at a future study, to select more 

patients with post traumatic ventriculomegaly and attempt to validate a potential 

influence of craniectomy on Rout, however this was not possible or within the aims of 

our current study.  

We could not find enough patients with MRI that could characterise atrophy in better 

resolution than a standard CT, as those are not routinely performed for PTH patients 

in our hospitals. Nonetheless, when encephalomalacia or ex vacuo ventriculomegaly 

were reported from expert neuroradiologists for our patients, we could not always 

detect atrophy based on the CSF dynamics results and if anything, some of those 

patients did have PTH. Atrophy versus PTH, and even atrophy versus iNPH, 

constitute ongoing subjects of investigation and debate in the radiological and 

neurosurgical fields(252,262). A localised instead of a generalised degree of 

encephalomalacia in PTH patients, e.g. from previous sources of bleeding, could be an 

area of slightly increased compensatory space and could be contributing to lower Rout 

in PTH patients vs iNPH. It would be desirable to validate such a hypothesis utilising 

both appropriate imaging and infusion tests, with or without assessment of regional 

cerebral blood flow. We are unable to propose a threshold of Rout for shunting in PTH 
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patients with normal baseline ICP, however it appears that Rout could be lower than 

patients without previous TBI, and therefore Rout <13 should not be used to exclude 

patients from shunting. Finally, repeated infusions through time were not performed, 

in contrast to Marmarou et al(252), and we could not explore whether GOS related 

with Rout and how this relationship changed with time. 

 Limitations 

We have selected a heterogenous group of TBI patients, with different types of injuries 

(SDH, SAH, contusion) and different severity of injuries (mild-severe). Furthermore, 

the timeframe post TBI varied from weeks post trauma to years. In some cases, the 

exact date of the TBI date was not available.  

Unfortunately, due to lack of an organised medical database before 2014, it was 

difficult to retrieve some patients’ notes, and this resulted to patients being lost to 

follow up. Subsequently, documentation and association to improvement post-

shunting was not possible for many patients.  

There is currently no definitive data demonstrating the effects of GA on compensatory 

reserve and CSF dynamics, other than it suppresses slow waves, which were not used 

here as a descriptive parameter.   
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CHAPTER 7 

CSF DYNAMICS IN PSEUDOTUMOUR CEREBRI 

 

7.1 COUPLING OF CSF AND SAGITTAL SINUS PRESSURE IN ADULT PATIENTS WITH 

PSEUDOTUMOUR CEREBRI.  

 

The results presented in this section are published in Acta Neurochirurgica: Lalou A, Czosnyka M, Czosnyka 

Z, et al. Coupling of CSF and sagittal sinus pressure in pseudotumour cerebri.  

 

7.1.1 Introduction 

In section 1 of this chapter, I have introduced PTCS. The name Pseudotumour Cerebri 

Syndrome perhaps best describes the disorder, including most of its complex 

pathogenetic, pathophysiological mechanisms and clinical presentation(29,34,39). 

Despite uncertainty on its probable cause, its underlying mechanism has been shown 

to be abnormalities of the venous system leading to impaired CSF drainage, therefore 

classifying the condition as a syndrome, the Pseudotumour Cerebri 

Syndrome(34,35,39). Early MR and CT venographies suggested fixed stenosis of the 

sinuses not amenable to CSF withdrawal with a CSFp -  sagittal sinus pressure (SSp) 

gradient,  which lead to the use of stenting as a management option in PTCS(33,35). 

When investigating CSF and venous circulation in PTCS, little is known about the 

relationship between CSF and sagittal sinus pressures (SSp).  In this study, we aimed 

at demonstrating this relationship and the coupling between CSFp and SSp 

waveforms in adults suffering from PTCS by using lumbar infusion studies to 

measure CSFp with simultaneous direct measurements of their SSp. 
 

CSF dynamics investigations, in parallel with cerebral haemodynamics (arterial and 

venous circulation), demonstrate great interest in understanding CSF 

disorders(1,66,80,263). Davson’s equation(113), as analysed in section 5.1 describes 

the relationship between SSp and CSFp.  
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This equation has been described and validated in normal individuals, detected in 

patients with symptoms of normal pressure hydrocephalus(264), however requires 

investigation in other CSF disorders.  

Our aim was to show the interactions between CSFp and SSp at steady-state 

(baseline), during infusion, and during/after CSF drainage in PTCS. There appears to 

be a constant, positive feedback loop between increased CSFp and SSp in patients 

with PTCS and MRV findings of venous narrowing, that we think could assist in 

understanding the disease pathophysiology and in improving management and 

treatment(32,265). With such a combination of CSFp and SSp monitoring, we aimed 

to firstly understand why and perhaps which patients improve with CSF drainage, 

whereas some do not.  Secondly, to assess the significance of the venous sinus stenosis, 

the gradient between CSFp and SSp and therefore to better determine the 

management of these patients. Finally, we are proposing a re-arrangement of 

Davson’s equation for PTCS patients based on our findings. 

A preliminary report of this study has been previously published (32) 

 

7.1.2 Patients and methods 

 

We tested the intracranial circulation of 10 selected patients (9F:1M) presenting or 

referred to Cambridge University Hospital in the time period between 2004-2006. 

They all had clinical features of PTCS who fulfilled the modified Dandy criteria [signs 

and symptoms of raised ICP (including papilloedema and headaches in all patients), 

no focal neurological signs, normal neuroimaging apart from MR venography, raised 

CSFp >20 mmHg and normal CSF composition](29,34,36,38,39,266).  

 

Such patients with identified cerebral venous stenosis and no other abnormality 

undergo two standardised clinical investigations in our centres, that we combined in 

one: constant-rate lumbar CSF infusion studies, to assess the CSFp and CSF 

dynamics, and direct retrograde cerebral venography (DRCV) whereby a catheter was 

placed within the sagittal sinus under fluoroscopic guidance, in order to assess the 

significance of the stenosis.  
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As mentioned above, we had selected those particular 10 patients because they would 

benefit the most from more thorough investigations with both procedures, in order to 

establish a diagnosis and plan treatment(33,35,267) NJH (senior author, 

neuroradiologist) and JDP (co-author, neurosurgeon) collaborated clinically to 

perform these tests simultaneously, as part of a multidisciplinary care approach.  

 

Lumbar infusion studies 
 

The procedure for lumbar infusion tests was identical to what has previously been 

described in Chapter 3, with the difference that two 21 gauge Quincke needles were 

used, as a preferred means to separate the monitoring from the infusion line(45,48). 

The protocol includes a safety measure that require the infusion to stop if ICP 

increased to 40mmHg or above. After the end of the infusion test, pressure-controlled 

withdrawal of CSF was carried out whilst continuing to record the pressure.  

Lumbar infusion studies, methodology and result interpretation have also been 

reported in the literature extensively(75,92,268). Our pressure monitoring equipment 

Edwards LifesciencesTM consists of fluid-filled manometry lines 180 cms long and 1.2 

mm wide (internal diameter).  

 

Direct retrograde cerebral venography  
 

The venography technique and measurement of venous pressures in our hospital has 

been previously described in detail(35,36,269). Using the monitoring and sampling 

equipment of the infusion test, we recorded and extracted the mean pressure level, 

slow vasogenic waves and fundamental amplitude of the SSp waveform, (AMSSPp), 

all identically to those processed from CSFp. The venography catheter used however 

was longer and narrower (specific diameters unavailable retrospectively). 

Data points of all parameters were distributed normally, and therefore we used paired 

student t-test for statistical difference in mean pressures. We explored that 

relationships between parameters with simple linear correlation.  
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7.2.3 Results 

Mean age of the patients was 41 years (range 22-55). CSFp and SSp showed a strong 

coupling both statically as mean pressure averages (Figure 7.1a), as well as 

dynamically in their content of slow waves (Figure 7.1b) and pulse waveforms. Pulse 

waveforms increased as expected during an increase in both pressures provoked by 

infusion. We could not detect AMPSSp in 3/10 cases. In the 7 cases where AMSSpp 

was visible, both waveforms were closely linked in their diastolic phases and 

divergent during systole (Figure 7.1c).  

 

Statistically, mean SSp values correlated very strongly with mean CSFp at baseline: 

R=0.94; p < 0.00005; N=10 (Figure 7.2a). The pulse amplitudes of CSFp and SSp at 

baseline(N=7) were also strongly and significantly correlated (Figure 7.2b). 

 

The coupling was also present during infusion, with SSp rising in parallel to CSFp 

(R= 0.92 ; p<0.003 ; n=7, and the changes of both pressure correlated strongly (R=0.97; 

p=0.0007; N=7) (Figure 7.3a). The slopes of the amplitude – pressure lines, as 

mentioned in Chapter 3 (slopes of the linear regression between AMP of CSFp and 

CSFp versus SSp and AMP of SSp), also correlated strongly during infusion (R = 

0.97;p<0.005;N=7)(Figure7.3b).  
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Figure 7.1: Observational demonstration of the static and dynamic coupling between CSFp and 

SSp. A: Static coupling between the mean CSFp (upper,darker trend) and mean SSp (lower, dotted trend) values 

at baseline, during and after the end of infusion (the infusion period is marked as an event represented by the 

white area in the graph). B: Dynamic coupling between the slow vasogenic waves of CSFp (upper, darker trend) 

and SSp (lower, dotted trend). C: Coupling between the pulse amplitudes of CSFp and SSp at baseline and during 

infusion.  
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Figure 7.2: Coupling of CSFp and SSp at baseline. A: Linear regression demonstrating the coupling 
between CSFp and SSp at baseline B: Coupling between the pulse amplitude of CSFp and SSp at baseline. 
Recording of the amplitude was only possible in 7 out of the 10 cases.  
 

A 
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* N = 7 



112 
 

 
 

Figure 7.3: Coupling between CSFp and SSp during infusion. A: Linear regression demonstrating 

the maintenance of the coupling between CSFp and SSp during infusion B: Strong correlation of the changes 

between CSFp and SSp during infusion, when CSFp is increased artificially using Hartmann’s solution. 
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Table 7.1. Mean values of pressures during baseline, infusion and drainage. 

CSFp: Cerebrospinal Fluid Pressure. SSp: Pressure of the Sagittal Sinus 

 

 

* In 3 patients only drainage was performed, as baseline CSFp was >40 mm Hg   

 

We obtained a Jugular Venous Pressure (JVP) measurement in 5 patients, measuring  

on average 10.43 ± 3.8 mmHg. JVP during one of the infusion tests is shown in Figure 

7.4a. Central Venous Pressure (CVP) was measured on one patient and was relatively 

stable during infusion and on average 11.6 ± 2.2 mmHg. 

 

During drainage the overall correlation between the 2 pressures was R=0.78; p=0.065, 

N=6 (Figure 7.4b). While draining down to a certain CSFp and SSp, SSp appeared to 

stabilize at a level close to JVP, while CSFp naturally continued to decrease.  

 

 

 

 

 

 

 

 

 

 

 

 

 CSFp 

[mmHg] 

SSp [mmHg] p-value CSFp – SSp 

[mmHg] 

p-value 

Baseline 27.0±2.3 25.2±7.5 0.026; N=10 2.34±2.72 0.01953 

Infusion  38.0±8.0 33.1±12.0 0.01; N=7* 4.9±4.0 0.026; N=7* 

Drainage 12.7±5.6 16.0±2.7 0.02; N=8 -3.2±3.9 0.0097; N=8 
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Figure 7.4: Correlation between CSFp and SSp during CSF drainage. A: Overview of CSFp and SSp 

and JVP during infusion and during drainage of CSF JVP is projected as a dotted line on the CSFp and SSp 

(SSp) panels, demonstrating that CSFp continues to drop after reaching JVP; in contrast, SSp reaches values 

close to JVP (CVP) and remains stable at this value as CSFp continues to decrease. B: Correlation between 

CSFp and SSp during drainage of CSF. JVP: Jugular Venous Pressure 

 

A 

B 

          5 mins        ➔ 



115 
 

 

Table 7.2 summarises the differences between CSFp, SSp and JVP at the end of drainage 

 

Table 7.2. Differences between CSFp, SSp and JVP at the end of drainage in N= 5 

patients 

 

 

 
 

Davson’s equation re-visited for PTCS 
 

After investigating the results of SSp and CSFp coupling in PTCS, we sought to 

simplify Davson’s equation in these patients  

As a result of their linear relationship, SSp could be replaced with a function of CSFp 

in the format SSp = a* CSFp +b. An example of the performed linear regression is 

given in Figure 7.5. In the one patient where CVP was measured and was found 

around 11 mmHg, the intercept of the correlation was 9.21, which is within limits for 

measurement error (zeroing of external transducers). 

The average slope of all linear regressions, a, was calculated as 0.70 ± 0.14 for N=9 

patients and the intercept b were calculated as 6.3 ±3.53 mmHg and appeared to 

physiologically correspond to the measured CVP. 

 

 

 

 

 

 

 Difference [mmHg] Significance of difference 

CSFp -JVP[mm Hg] -2.2±3.4 P=0.026; 

SSp –JVP [mmHg] 4.27±3.0 P=0.004; 
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Figure 7.5: Example of the linear regression analysis between CSFp (ICP in the figure) and SSp 
(Venous in the figure) for 1 out of the 9 studied patients. The slope and the intercept of the 
regression for each patient were averaged and were used to express SSp as SSp = a*CSFp + b, a = slope 
and b = intercept. SSp, expressed this way, can be used in Davson’s equation to simplify the calculations 
of its parameters in PTCS patients. Notice that below CSFp 10 mmHg, SSp stopped to decrease further, 
while CSFp was easily drawn down by further drainage (JVP was 8 mm Hg in this patient, CVP was ~ 11 
mmHg).  
  

Therefore, Davson’s equation could be rewritten for PTCS as:  

CSFp = Rout *If + a*CSFp + b 

and subsequently:  

CSFp = (Rout * If +b)/ (1-a), 

The average product of Rout*If is 3 mmHg(229) 1.5 in PTCS with the corrected Rout 

(see below), therefore the average CSFp= (1.5 + 6.3) / 0.3  = 26 mmHg.   

Corrections needed to estimate Rout in PTCS 

In hydrocephalus, when SSp is not coupled to CSFp, constant rate infusion study 

enables calculation of Rout as: 

R = 0.9962; Slope = 0.7763; Intercept = 8.969 

S
S

p
[m

m
H

g
] 

CSFp[mmHg] 
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Rout=(CSPpplateau-CSFpbaseline)/Infusion rate 

This is a simple use of Davson’s equation under the assumption that SSp remains 

constant. 

In PTCS SSp increases with CSFp. Rout calculated as above is therefore 

overestimated. It should be decreased by a correcting factor equal to: 

(SSpplateau- SSpbaseline)/Infusion rate. 

In our material, Rout calculated without correction was 16.1± 2.1 mmHg/ (ml/min), 

while after correction 5.2 ±1.4 mmHg/ (ml/min) (p<0.001), therefore approximately 67% 

lower.  

 

Discussion 

We have presented physiological data that show pathophysiological and therapeutic 

understanding of CSF dynamics and CSF drainage in PTCS. In addition, we showed 

that: 

• Davson’s equation can be simplified in PTCS, by expressing SSp as a function of 

CSFp with our proposed formula 

• Rout calculated during infusion test without measurement of SSp is overestimated, 

and does not have the same meaning like in hydrocephalus 

 

Our results demonstrate a direct coupling between the CSFp and SSp not only in 

static, mean values but also in their dynamic contents of the two pressures, mainly 

the pulse amplitude and the slow waves. Thus, we can confirm the role of venous sinus 

collapsing in generating significantly raised CSFp, or at least contributing to the 

pathophysiology of PTCS via a circular coupling between CSFp and SSp.  

Traditionally, SSp in normal individuals is perceived as constant, with many 

variations(114,194,235). However, in PTCS, SSp and CSFp exhibit remarkable 

parallel variability and are more than a single number.  
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There are known conditions where SSp does not remain constant during infusion or 

other causes of CSFp rise, among which are an open fontanelle, the presence of a 

myelomeningocoele, Chiari malformation and individual variations(35–38,156,194). 

On the other hand, secondary thrombosis and narrowing of the cerebral venous 

sinuses that in turn are recognised causes of PTCS have been shown to increase SSp 

without any changes during infusion(35,235)( & brain physics laboratory unpublished 

material). 
 

The direct and significant coupling between changes in CSFp and SSp was 

maintained during infusion, however the two pressures appeared to diverge compared 

to baseline (as shown in Figure 7.6). This increase in distance between waveform peak 

of the two pressures is most likely caused by the fact that initially all the infused fluid 

is stored in the intracranial compliant space, and within the time closer to plateau, 

absorbed to the sagittal sinus through Rout(48,75). Baseline pulse amplitude was well 

correlated in CSFp and SSp (as shown in Figures 7.6 and 7.8). During infusion, both 

amplitudes increase proportionally and linearly. Similarly, there was a proportional 

rise in respiratory amplitude in CSFp and SSp. From the correlation of the two 

pressures, it is not possible to conclude on causation, i.e. mainly whether raised SSp 

is the result of raised CSFp as a primary cause, or vice versa, as is the case e.g. in 

venous sinus thrombosis.  

 

Stenting versus shunting in PTCS 

 

High CSFp is clinically observed in PTCS and can range from 20 to 40 mm Hg. Our 

study indicates also that ‘low CSFp’ steady - state may be achieved by draining CSF 

until CSFp falls below central venous pressure. Theoretically, ventriculo-atrial shunt 

should be sufficient to control CSFp below CVP. However, in PTCS, where ventricles 

are usually small, placement of a ventricular drain may be disputable. If a shunt is 

used, it should have hydrodynamic resistance greater than classic differential shunts 

(3-4 mm Hg/(ml/min)   – e.g. the Orbis-Sigma valve can be considered (41). In our case, 

we have demonstrated how CSF drainage, represented in neurosurgical treatment by 

shunting, can help reduce and stabilise SSp in PTCS by interrupting a “positive 
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feedback loop” of increases in CSFp causing increases in SSp and vice versa. During 

drainage, both pressures decreased until a certain point (most probably JVP ) when 

CSFp can decrease further while SSp  remained constant. This CSFp level could 

possibly be targeted therapeutically when attempting medical or surgical treatment. 

Unless this decoupling is achieved with treatment, it is possible that symptoms and 

syndrome activity will persist. 

Another concept was proposed in the early 2000s and incorporated in clinical practice: 

to stent the transverse sinus, when MRI venography demonstrates its  collapse(33). 

But if the whole sinus system is collapsible, narrowing may ‘travel’ along the section 

of stented sinus and it may collapse in most distal non-stented part of the vessel. 

Furthermore, it is not certain if the decrease in venous pressure can equivocally 

promote a decrease in CSFp. We do not have such corresponding data to support what 

happens to CSFp and venous pressure after stenting. The response of our patients to 

CSF drainage could mean that our selected patients may be successfully treated with 

shunting. Further investigations related to persistent venous stenosis and CSFp-SSp 

gradient after CSF drainage could elucidate the pressure correlation in relationship 

to management outcome.  

Elucidating the pathophysiology of PTCS 

 

Finally, from the simplification of Davson’s equation in PTCS, CSFp is 

mathematically increased and is estimated to be around 26 mmHg. This number is 

almost identical to the mean baseline CSFp in our patients, which was 27 mm Hg. 

Subsequently, both theoretically and from in vivo data, this formula may explain why 

in PTCS with CSFp- SSp coupling the baseline intracranial pressure is elevated. 

Additionally, since Rout reported until recently could only be estimated through the 

classical Davson’s equation, we are able to report a new estimation of Rout in PTCS: 

in our patients, this was on average <7 mmHg*min/ml and perhaps this is the case 

for many similar patients. Based on observation from our experience with most of our 

other PTCS patients, that unlike hydrocephalus patients CSFp plateaus relatively 

close to the baseline value, signifying normal CSF circulation,. Empirically though, 

we have also observed a few exceptional cases, where a higher rise in CSFp is observed 
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and therefore especially for these, knowledge of the SSp could provide valuable 

information on disease activity and differential diagnosis.  

If part of the transverse sinus is compressible, any rise in CSFp can decrease its lumen, 

increase the hydrodynamic resistance for sinus blood flow, increasing in the same way 

the SSp (if cerebral blood flow stays constant), which in turns increases CSFp, 

according to Davson’s equation. This mechanism works as a ‘vicious circle’ until CSFp 

and SSp reach an elevated state of equilibrium. This has been previously numerically 

simulated using an elegant mathematical model.  The model forecasted that the 

system with collapsible transversal sinus (represented as a ‘Starling Resistor’)(270) 

has two steady states: at low and at high CSFp.  

 

Generalisability of these findings in PTCS & other cerebral venous pathologies 

Furthermore, an important question that arises from our study is, whether the direct 

coupling of CSFp to SSp is limited to PTCS with particular underlying pathology, all 

PTCS patients or may also play a role in acute intracranial hypertension seen during 

cerebral oedema (head injury, stroke, meningitis, etc.).  Studies in TBI from  early 

work  suggested that >60% of ICP should be directly related to vascular mechanisms, 

rather than CSF circulatory component.(57,211,271–273) We have previously 

investigated SSp and  CSFp during infusion on a single case of a  post-TBI patient 

(case not published). SSp appeared to stay constant despite rises in CSFp. This 

interesting finding potentially indicates that the coupling does not exist in every 

condition involving raised ICP.    

Finally, even though our results involve only 10 patients, we obtained quite strong 

and significant findings that could potentially be translated to some or the majority 

of PTCS patients, both in the adult and paediatric populations. Prospective studies 

leading to randomised controlled trials should be designed, aiming at investigating 

the mechanisms of SSp and CSFp, effect of stenting versus shunting and at 

generalising these current findings and at stopping the reported pathophysiological 

coupling of the two pressures. 
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Limitations 

We did not record or collect any information about arterial pressure waveforms and 

therefore its potential influence on the interaction between the CSF and SSp. Detailed 

analysis of the frequencies of the CSFp and SSp/JVP was not possible using these 

retrospective data, as the predominantly clinical design of the tests did not permit us 

to ensure we obtained all required information of frequency properties of the two 

pressure measurement setups: in CSFp, as mentioned in methods, a shorter (180cms 

only) and wider monitoring line connected to its own transducer was used, however 

in SSp a longer, thinner catheter was used connected to and external transducer. This 

makes accurate spectral analysis on CSFp-SSp questionable. 

 

 

Conclusion 

CSFp and SSp are coupled in at least some cases of PTCS, both at baseline and during 

infusion. CSF drainage can lead to uncoupling of the two pressures, terminating this 

pathological positive feedback loop. Rearranging Davson’s equation according to an 

increasing SSp may explain why in PTCS baseline ICP is elevated and 

usually >20mmHg. 
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7.2 CSF dynamics in paediatric pseudotumour cerebri syndrome 

The results presented in this section have been published in Child’s Nervous System: 

Lalou AD, McTaggart JS, Czosnyka ZH, Garnett MR, Krishnakumar D, Czosnyka M. Cerebrospinal fluid 

dynamics in pediatric pseudotumor cerebri syndrome. Child’s Nerv Syst. 2020;36(1):73–86.  

7.2.1 Introduction 

In chapter 6, I have reported the results from examining CSF dynamics in NPH. 

Pseudotumour cerebri syndrome (PTCS) differs in many ways from NPH, and has 

been traditionally known as a disease of post-pubertal biological females, most 

commonly with raised BMI(29,34,39). After many reports for over 120 years, different 

names and nomenclature including benign and idiopathic intracranial hypertension, 

the syndrome has also been established as a cause of headaches and papilloedema in 

pre-pubertal children. PTCS is diagnosed clinically using the modified Dandy criteria 

(see above section 7.1, patients and methods paragraph for the criteria) (31,274) or by 

using the recent Friedman classification [papilloedema, normal neurologic 

examination except for cranial nerve abnormalities, CSFp>20 mmHg (28 cmH2O), 

normal brain imaging and CSF composition] (29)Lumbar puncture (LP) has been 

utilised clinically in order to obtain CSF pressure (CSFp) measurements and establish 

normative thresholds both for adults and for children. The most recent evidence and 

guidelines report a threshold of 28cm CSF for obese and/or sedated children and 25cm 

CSF for normal weight and non-sedated children, in order to meet one of the criteria 

for a diagnosis of definite PTCS (29,30,266). Those thresholds have been derived from 

years of “snapshot” measurements of CSFp, utilising data from paediatric populations 

distributed at the higher percentiles (30). Neither has ICP monitoring methodology 

been used to validate the accuracy of such values, nor have there been randomized 

studies to reliably confirm that the thresholds are clinically relevant (29,30,55,56).  
 

Years of continuous monitoring and analysis of intracranial pressure (ICP) has shown 

that ICP should be monitored using appropriate materials and methods, that do not 

include “snapshot” manometry. LPs are prevalent and useful in everyday clinical 

practice, however it is well-known that the measurements can be affected by posture, 

movement, pain/stress, sedative/anaesthetic agents etc, which can lead to unreliable 



123 
 

estimation of CSFp . It is also important to consider in everyday clinical practice that 

ICP levels are dynamic (50,52,56,115), which creates a lot of pitfalls for accepting 

“normal” and “raised” values based on a random and single datapoint measurement. 

This is one of the principal reasons why overnight ICP monitoring remains the gold 

standard for understanding and interpreting ICP (52,56,114,131,220,275). A shorter 

and more practical recording with an infusion test, with baseline ICP for around 20 

minutes, together with infusion of artificial CSF to unravel any disturbances that 

would need long-term monitoring to be otherwise detected, is reported to be more 

reliable than a single opening pressure measurement (25,45,118,139) (Figure 7.6).  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7.6 Variability of CSF pressure. Upper panel: Paediatric patient after a LP and connection to the 

computer for monitoring, showing initially raised CSFp of 32 mmHg, spontaneously receding to 20 mmHg 

after 20 minutes of monitoring.  
 
 

For the sake of clarity and accuracy, we refer to CSFp when connection for pressure 

manometry is obtained through the spinal canal via LP, and ICP when the connection 

is directly intraventricular or intraparenchymal. 
 

At Cambridge Paediatric Neurology in collaboration with Academic Neurosurgery, we 

accept referrals of children with suspected PTCS, that under our service routinely 

CSFp 

[mmHg] 

AMP 

[mmHg] 

HR 
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                             20 mins baseline monitoring                               ➔ 
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undergo a lumbar infusion study(276,277), with recording, storage and analysis of 

CSFp and its dynamics, including AMP, vasogenic waves (b-waves), elasticity and 

RAP (24,100,278–280). As such, they can be accurately diagnosed with a raised CSFp 

(definite PTCS) and “normal” CSFp (probable PTCS more reliably than with standard 

LP, but also investigate the CSF dynamics of each child.  

 

Since clinical testing of CSF dynamics has been so far mainly applied to paediatric 

and adult hydrocephalus, there is little reported information on CSF dynamics PTCS, 

especially in paediatric patients. In adults with PTCS and venous stenosis, a coupling 

between CSFp and sagittal sinus pressure (SSp), at baseline and during infusion has 

been shown (32) and is described analytically in section 1 of this chapter. Our previous 

paper (276), constitutes to the best of our knowledge, the only preliminary account of 

CSF dynamics in paediatric PTCS. We have aimed to investigate the CSF dynamics 

of paediatric PTCS patients and what information they offer compared to established 

guidelines and investigations. For this purpose, we performed a retrospective review 

for all patients referred to our tertiary paediatric services (≤16 years old) for 

consideration of a diagnosis of PTCS from 2006-2016.  

 

 

7.2.2 Methods 

Patient selection 

We selected 31 children that underwent infusion test due to clinical necessity in our 

centre for primary PTCS.  40/72 of the total children referred to our specialist service 

from 2006-2016 had undergone an infusion test, however 9 of these had an 

identifiable, possible cause for PTCS that could further confound our findings. We 

therefore analysed the results of the remaining 31, all of whom underwent CSFp 

monitoring via LP connection, with or without infusion. The results of 7 of these 

patients have been published previously (276).  

 

 

Patient classification 
 

We have not analysed clinical, papilloedema and neuroimaging correlates. 

Papilloedema had been confirmed or excluded by a neuroopthalmologist and 
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neuroimaging reported by a neuroradiologist. Further investigations and clinical 

evaluation by DK (one of the authors) led to the final Friedman classification: 5/5 

criteria required for definite PTCS: 1) Papilloedema. 2) Normal neurological 

examination except for cranial nerve abnormalities 3) Neuroimaging: Normal brain 

parenchyma on MRI for typical patients (female and obese), and MRI ± magnetic 

resonance venography for others. 4) Normal CSF composition 5) CSFp >25 cm H2O 

(20 mmHg) of 28 cmH2O if obese/anaesthetised.  

 

13/31 children fulfilled criteria 1-5 were classified as Definite PTCS [Group A], 13/31 

only had criteria 1-4 and were therefore classified as Probable PTCS [Group B], and 

5/31 classified as Not PTCS since none of them had papilloedema and did not meet 

the criteria for PTCS without papilloedema either [Group C] (29).  

 

Infusion Test 

The infusion test procedure, exactly as performed in Cambridge,  has been thoroughly 

described in multiple publications(25,48,66,71,97,112,268), as well as in Chapter 3.  

 

We always aim, as per local protocol, to perform the procedure on awake children with 

local anaesthetic (lidocaine and prilocaine cream). We also use Entonox (50% nitrous 

oxide 50% oxygen mixture) until intrathecal access is assured. For children with high 

BMI and/or non-compliance, GA and/or x-ray guidance, with MAP, ETCO2 and 

temperature maintained stable and within the recommended normal ranges.  GA is 

induced by standard procedure of our paediatric anaesthesiologists (propofol, 

remifentanil, rocuronium). We also compared GA versus non-GA children. MC and 

ADL re-analysed all raw infusion test data using ICM+ as shown in chapter 3. 

 

Some children had undergone a standard LP at their local centre of referral before 

our infusion test, and we used linear correlation to investigate how similar these 

values were.  

 

We used the thresholds for CSF test parameters from previously suggested thresholds 

in hydrocephalus patients, keeping in mind that those could be altered in PTCS. The 

calculated SSp is a derivative of a theoretical model and does not necessarily reflect 
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the individual’s real SSp.  Thresholds for SSp, and AMP have been reported as 

7mmHg and 2mmHg respectively(107,229).  For PTCS, infusion test cannot reliably 

estimate resistance to CSF outflow, as SSp usually rises with CSF pressure, making 

the value of this parameter overestimated (see section 7.1). The lower breakpoint 

(LBP) of the amplitude-AMP-P linear regression line has mainly been described in 

NPH, defined in Chapter 3 and the slope of AMP-P has a threshold of >0.16(233,261). 

The upper breakpoint (UBP) of the same line has been reported in TBI patients and 

experimental animal models of intracranial hypertension as the breakpoint above 

which the AMP-P relationship becomes negative. It probably represents a critical 

point of CSFp, above which cerebral perfusion pressure has reached the lower limit of 

autoregulation and approaches the level of critical closing pressure of cerebral 

arterioles(281), therefore ischaemia develops with passive arteriolar collapse, 

resulting in decreased pulsatility in the cerebrovascular bed(94,100,282,283). 

 

Statistical analysis 

ADL performed all statistics. After testing for a normal distribution, parametric or 

non-parametric tests were used accordingly to compare differences in CSF dynamics 

parameters between the paediatric PTCS groups. Single-sample Wilcoxon test and t-

test were used to compare parameter means to their reported normative values from 

the literature. We used the Kruskal-Wallis test followed by pairwise Wilcoxon test to 

analyse differences among 3 groups. The correlations between different CSF 

dynamics parameters were sought using Pearson’s or Spearman’s correlation 

coefficient. Multiclass ROC was performed to test the diagnostic value of CSF 

dynamics versus the 3 clinical groups using the package pROC(284). 

 

 

7.2.3 Results 

Demographics 

Ethnicity, BMI and other characteristics not of significance for our current analysis 

were not included. Female: male ratio was approximately 5:1 and mean age around 

12 ± 3 years in all 3 groups. BMI did not differ significantly between the analysed 

groups.   
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Infusion test CSFp and LPs 
 

10 children had a CSFp measured using traditional LP manometry columns on a 

timeframe of 2 weeks – 3 months prior to the infusion. The correlation between the 

LP CSFp and infusion-derived averaged, baseline CSFp was weak and non-significant 

(R=0.30; p=0.3977, Figure 7.7.  
 

 

 

 

Fig. 7.7 Discordance between CSFp derived from LP performed either right before the CSF 

infusion study or within 3 months before the infusion study 
 

CSF dynamics in definite, probable and excluded PTCS diagnosis  

3/13 Definite PTCS children only had baseline CSFp monitoring followed by CSF 

drainage, due to significantly raised CSFp (≥40 mmHg).  

None of the parameters, except for SSp, were distributed normally. CSFp was de facto 

increased in definite PTCS (29.18 ± 7.72 mmHg), and significantly higher than the 

probable (15.31 ± 3.47 mmHg; p=1.644e-05) and not PTCS (17.51 ± 5.87; p=0.014) 

groups. AMP was also higher in the Group A (2.18 ± 2.06 mmHg) than in Group B 

(0.68 ± 0.37; p=0.014). However, there was no difference in either CSFp or AMP at 

baseline between Groups B & C (p=0.70 and p=0.77 respectively). Figure 6.8 depicts 

N = 10 ; R = 0.30 ; p = 0.3977 
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a representative example of a CSF infusion test results in Definite PTCS vs probable 

and not PTCS.  

 

 

 

 

 

Fig.7.8 Representative example of a CSF infusion study on a paediatric patient with definite 

PTCS. A 10-15 minutes baseline is monitored to ensure stable baseline pressure. The start of infusion is 

indicated with an arrow and the infusion period is highlighted after the start on the right end.  CSFp is 

elevated, usually >20 mmHg, with low resistance to CSF outflow demonstrated from the generally low 

plateau of CSFp during infusion.  

 

 

 

Numerical values of CSF dynamics in the 3 groups are shown analytically in Table 

7.3. 

 

 

 

 

C
S

F
p

 [
m

m
H

g
] 

A
M

P
 [

m
m

H
g

] 
R

A
P

 

Start of infusion 



129 
 

Table 7.3: Baseline and infusion-based CSF dynamics CSF dynamics parameters of the 

3 clinically classified paediatric PTCS groups. Values are represented as mean ± SD. A 

different Number of patients (N) is shown in each row for Group A, since only baseline parameters 

were monitored in 3/14 patients. RAP: index of compensatory reserve, from the correlation of 

AMP and ICP.  

 

 

The LBP of the AMP-P line could not be detected in any of the patients in Group A, 

and it was present in 2/13 and 2/5 patients in Groups B and C respectively. An UBP 

was present in all groups, however not in all patients. In 2 of the children with definite 

PTCS, the UBP was observed at baseline (UBP at 36.36 ± 5.01 mmHg), a phenomenon 

not occurring in the other 2 groups. The observed pattern of CSF dynamics in these 2 

cases, is demonstrated for one of the patients in Figure 7.9.  

 

 

 

 

Variable A: Definite PTCS  B: Probable PTCS 
(N=13) 

p-value 
A- B 

C: Not PTCS 
(N=5) 

p-value A 
- C 

p-value 
B - C 

Baseline CSFp 
[mmHg] 

29.18 ± 7.72 (N=13) 15.31 ± 3.47 1.644e-05 

 

17.51 ± 5.87 0.01368 0.7028 

AMPb [mmHg] 2.18 ± 2.06 (N=13) 0.68 ± 0.37  0.01382 0.89 ± 1.03 0.1433 0.7673 

Baseline RAP  0.58 ± 0.3 (N=13) 0.46± 0.18 0.2813 0.37 ± 0.12 0.2075 0.4016 

Elasticity [1/ml] 0.36 ± 0.19 (N=10) 0.39 ± 0.26   0.9505 0.15± 0.06   0.002671 0.1031 

SSp [mmHg] 18.99 ± 4.08 (N=10) 9.55 ± 11.9  0.0014 8.65 ± 1.17 0.007992 0.6928 

CSFpp [mmHg] 32.89 ± 2.92 (N=10) 25.42 ± 4.47 0.0002243 25.25 ± 6.1 0.03996 0.775 

AMPp [mmHg] 2.1± 1.11 (N=10) 1.55 ± 0.86 0.2264 2.13 ± 1.86 0.953 0.8436 

CSFpp – CSFpb 
[mmHg] 

7.44 ± 2.73 10.11 ± 4.06 0.1661 7.74 ± 2.9 0.953 0.3873 

AMPp – AMPb 
[mmHg] 

0.93 ± 0.7 0.88 ± 0.7 0.99 1.24 ± 1.15 0.6787 0.775 

Amp-p slope 0.15 ± 0.09 (N=10) 0.09 ± 0.05 0.1621 0.13 ± 0.08 0.8539 0.3233 

LBP [mmHg] NA (N=0) 10.5 ± 2.12 (N=2) NA 15.5 ± 3.53 
(N=2) 

NA 0.3333 

UBP [mmHg] 36.36 ± 5.01 (N=8) 34.5 ± 11.39 (N=4) 0.99 29.5 ±7.78 
(N=2) 

0.5714 0.8 

Slow waves at 
baseline [mmHg] 

1.16 ± 1.43 (N=13) 0.83 ± 0.85 0.8798 0.79 ± 0.56 0.99 0.99 

Slow waves at 
plateau [mmHg] 

3.21 ± 2.51 (N=10) 4.9 ± 7.07 0.7501 1.5 ± 1.33 0.2828 0.5427 
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Figure 7.9: Upper panel: Critically high CSFp (42 mmHg), monitored in operating theatres under general 
anaesthesia. Initially, ischaemia is possible, caused by low cerebral perfusion pressure (CPP): mean arterial 
blood pressure was 65 mmHg, therefore CPP was 23 mmHg. During drainage, the positive correlation 
between AMP and CSFp was restored (RAP positive). It can be observed that CSFp, AMP and HR after the 
start of drainage contain a lot of artefacts. Lower panel: The transition point between low CPP and 
restoration of normal CPP represents the upper breakpoint of the Amplitude-pressure regression line, above 
which the linear correlation between AMP and CSFp tends to turn negative. 
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In Group A, SSp and elasticity were the only ones above their reported threshold  

(thresholds 7 mmHg; p = 4.2e-06 and 0.18 1/ml; p= 0.001953 

respectively(48,110,215,285–287). AMPb was not higher than 2 mmHg (p=0.6848).  

 

In Group B, only the Elasticity was significantly higher than the threshold 

(p=004257). For Group C all values were not significantly different from the published 

normal range. These main CSF dynamic parameters of the 3 groups are illustrated in 

Figure 7.10.  

 

Relationship between the CSF dynamics parameters in Groups A-C 

SSp correlated with baseline CSFp in Group B (R = 0.59; p-value = 0.03403) and 

tended towards the same correlation in Group A (R = 0.60; p-value = 0.05034), with 

no correlation in Group C (R = -0.016; p-value = 0.9833). Similarly, elasticity showed 

a significant correlation with SSp in Groups A (R = 0.67; p-value = 0.02807) and Group 

B (R = 0.59; p-value = 0.03193), and not in Group C (negative correlation, not 

significant). There was no correlation between CSFp and RAP or AMP with SSp and 

Elasticity.  
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Figure 7.10: CSF Infusion Study parameters versus thresholds. Summary data of CSF Infusion Study 
per clinical diagnosis. Normal thresholds for each parameter are indicated with the horizontal black lines. A: 
Pressures: CSFp at baseline and plateau and SSp, as calculated during infusion. B: AMP at baseline and 
plateau, as well as compensatory reserve coefficients RAP and Elasticity. The threshold for AMPp, 4mmHg, is 
not shown as it is much higher than the average in the figure. 
 

* indicates significantly higher mean than the other groups and from the normal threshold, ** indicate    
significantly higher than the other groups but not from the threshold, *** denote the difference in the number 
of patients in Group A (N=14 vs N=11), because 3 patients only had baseline values; hence AMPb is higher 
than AMPp in that group. 
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ROC Analysis between clinical classification and CSF dynamics  

No single baseline or infusion-derived parameter could yield a satisfactory AUC from 

multiroc analysis of the 3 groups (AUCs <70%). However, given the significant 

differences among the 3 groups in mean CSFpb, SSp and Elasticity the best AUC was 

when the correlation between CSFpb, SSp and Elasticity were integrated into a linear 

model, with a resulting AUC 93.8%, with 84.8 – 100% CI (95% CI) in multiclass ROC 

analysis among the 3 different groups (Figure 7.11).  
 

  

Figure 7.11: Area under the curve (AUC) and 95% CI among Friedman classification of Groups A-C and 

CSF dynamics, in particular the linear model of interaction of CSFp at baseline, Elasticity and Sagittal Sinus 

Pressure.  

Influence of GA 

11/31 (35%) children in total had received GA: 6/13 patients in group A had required 

GA, 4/13 in group B: and 1/5 in group C.  

CSFpb was higher in the definite PTCS group that received GA (34.8 ± 7.44 vs 23.06 

± 5.43; p = 0.0452). When the 3 children with critical CSFpb and no infusion were 

removed from this subanalysis, the difference appeared to no longer exist. No other 

parameter differed within group A in GA versus no GA. In the probable PTCS group, 

only SSp and Elasticity appeared to possibly be lowered by GA (0.12 ± 3.48 vs 13.16 ± 

Linear model formula = 

CSFpb*SSp*Elasticity 
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6,59; p= 0.006851 and 0.11 ± 0.08 vs 0.53 ± 0.16; p = 0.006774. The amplitude of slow 

waves was consistently suppressed by GA at baseline and plateau within all groups.  

7.2.4 Discussion 

In this section of chapter 6, we have reported in depth the CSF dynamics of paediatric 

PTCS. This has been, to the best of my knowledge, the first study to describe such 

parameters in the paediatric population. We have emphasised the importance of using 

precise methodology for measuring CSFp, which is crucial in this condition, as well as 

the importance of monitoring CSFp and not just measuring a momentary value. 

Secondly, we have underpinned possible diagnostic implications of monitoring the 

pressure and its dynamics in paediatric PTCS, in order to provoke further 

investigation and implementation to clinical practice.  

 

Monitoring CSFp with infusion test vs Measuring CSFp via LP 

It is known that CSF disorders hide a complicated circuit of dynamic disturbances, 

including an interaction between the CSF circulation and the cerebral blood 

circulation  . It is also known that a single value of raised CSFp does not give a 

diagnosis or understanding of the patient’s disorder, however knowledge of the CSF 

circulation is a criterion and assists in diagnosing the disease. Therefore, obtaining a 

reliable CSFp measurement remains essential to clinical practice. Unfortunately, a 

lot of CSFp readings from single manometry can often prove unhelpful or even 

misleading, since methodologically a proper average CSFp and/or view into the CSF 

circulation cannot be obtained without a longer-term monitoring . Furthermore, even 

if we treat a baseline value of CSFp derived from manometry as adequate, there are 

a lot of factors influencing the number shown on a manometer, such as stress, 

position, sedation etc. Even these parameters and how they influence the CSFp 

cannot be studied and comprehended without cerebral multi-modality monitoring . 

Studies in adults and children have already indicated that lumbar manometry is not 

always reliable for CSFp . Therefore, a lack of correlation between manometry and 

baseline CSFp from infusion tests in our cohort would be adding to this pool of 

evidence.  Unfortunately, these readings were not taken at a very close time, but on 

1-3 months apart on average. Nonetheless, they represent a clinical routine and the 
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execution of current guidelines of attempting diagnosis, classification and treatment 

from separated LPs and/or drainages.  

 

“Critical” CSFp in PTCS 

Raised CSFp (>20 mmHg) at baseline was used as one of the criteria for definite 

paediatric PTCS. Interestingly, in this group, there were 3 children with a CSFp 

even >30 mmHg, 2 of them already reaching critical levels of CSFp with compromised 

cerebral perfusion, therefore “dangerous” levels of intracranial hypertension, 

compatible clinically and radiologically with the syndrome. These are unique 

opportunities to learn about what could CSF dynamics monitoring could reveal for 

their CSF circulation, even if infusion is not possible. Indeed, a pattern of negative 

AMP-CSFp relationship was observed, overlapping with the idea of low cerebral 

perfusion pressure. We know from the literature in TBI and experimental intracranial 

hypertension that, when ICP reaches upper thresholds for ischaemia (usually >20-

25mmHg in TBI), the AMP-ICP relationship becomes negative (100,283), which 

appears to also be the case with these two patients. However, more patients are 

needed in order to confirm this pattern and association. In only one of the patients, 

MAP was measured and it was 65mmHg, therefore this patient had a CPP of 23 

mmHg, which is below the physiological values for the lower limit of 

autoregulation(124,288,289), likely exposing this patient to ischaemic insults. These 

cases, although seemingly rare, highlight the importance of multi-parametric 

monitoring of the cerebral circulation, including systemic arterial pressure and 

possibly cerebral autoregulation, blood flow and oxygenation. 

 

CSF dynamics in definite, probable and not PTCS 

It was interesting to show that in Group B, where the CSFp wasn’t raised (average 

15mmHg), the mean value of CSFp did not appear to differ to Group C. In such cases, 

it could be of significance to investigate the dynamics of the CSFp. AMP baseline did 

not seem to be the parameter that separated the 2 groups, however both elasticity 

and SSp were significantly lower in Group C and could potentially provide this 

separation. Elasticity and SSp were also elevated in both definite and probable PTCS, 
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showing further potential markers of the disease besides CSFp. On the other hand, 

they could be erroneously calculated with lack of understanding of the analysis, and 

SSp is calculated from a theoretical model and does not represent the patient’s actual 

SSp. With our current data, it is not possible to clearly pinpoint what CSF dynamics 

each of the three groups is comprised of, without further patients, as well as follow-

up related to treatment response. Lower SSp as well as elasticity could possibly 

represent a “lighter” pathology or an earlier manifestation and presentation of the 

syndrome, that hasn’t evolved to the severity of the definite group. Duration and 

severity of symptoms are not routinely documented and have not been reported, 

therefore leaving ground for the natural progression of the disease to be explored, 

perhaps in relation to the above. 

Unlike elasticity, RAP was not >0.6 in any of the three groups, however for a lowered 

threshold of 0.4, Group A showed a tendency for increased RAP and therefore depleted 

compensatory reserve. No other parameters were above the previously reported 

thresholds (0.16 for the amp-p line, 4 mmHg for AMPp), except for slow waves at 

plateau the magnitude of which exceeded 1.5 mmHg in groups A&B, but not in group 

C. There are no established thresholds for slow wave magnitude (24,27,278). It is 

possible that the highest magnitude of slow waves could be found in Group A 

decreasing in Groups B and even further in group C, however this could not be 

demonstrated statistically.  It would possibly be of interest to explore slow wave 

magnitude alongside the concept of depleted compensatory reserve in PTCS. The 

absolute rise in CSFp during infusion was the same in all groups. As denoted in 

section 1 of this chapter, there is a likely overestimation of Rout, however the average 

calculated Rout was <10 mmHg*min/ml.  Finally,  the presence or absence of a LBP 

in the AMP-P line could also contain reliable information on the state of pressure-

volume compensation(149). None of the children in the definite group presented with 

such a breakpoint, again likely signifying exhausted compensatory reserve, whereas 

it was observed in 2 children for each of the other groups.  

 

CSFpb was positively correlated with SSp. Although, as discussed above, this SSp 

value is not derived from in vivo monitoring, it could also approximate a similar 
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coupling between the two pressures, as in adults with PTCS (32). Careful weighing of 

risks and benefits of exposing paediatric patients to SSp measurements would be 

required to attempt SSp monitoring in the future.  A positive correlation between SSp 

and Elasticity was more prominent in the definite group as opposed to the others and 

could also be part of the pathophysiology of PTCS, whereby an abnormal and 

compressible venous system allows passive transmission of the CSF pressure and 

initiation of a CSFp-SSp positive feedback loop. It might as such be that in children 

with CSFp anywhere in the “normal range” of 10-19mmHg but abnormal 

haemodynamics or compliance (290) could lead to disease and symptoms. 

 

Finally, we have shown that no singular CSF pressure or dynamics parameter at 

baseline or during infusion could accurately differentiate among the 3 groups with an 

AUC >0.80. It is the combination of a few parameters, CSFpb, SSp and elasticity, that 

describe the clinical syndrome and agree with the classification. This once again 

highlights the importance of monitoring the CSF circulation and the use multiple 

parameters, whilst infusion is essential to calculate these. We did find a discordance 

in CSF dynamics and the Friedman classification in Group C, in one patient without 

papilloedema and not adequate radiological criteria for a diagnosis of PTCS without 

papilloedema. This patient demonstrated disturbed CSF dynamics, identical to those 

in Group A. It is not easy to speculate on this case without further information. It is 

likely that confirmed intracranial hypertension could not automatically translate to 

PTCS, and hence the venous compartment in addition to CSFp contents could 

mandate more testing. Moreover, PTCS without papilloedema and its differentiation 

from migraines remain controversial subjects(29,291–293). In Group B, where there 

is a lot of heterogeneity among the patients, we could not conclude on similarities and 

differences.    

Utility of CSF infusion tests in paediatric PTCS 

Overall, we could not show the added value of using infusion tests in addition to 

clinical classification. More patients for groups B and C are required, as well as 

randomised and blind methodology in order to eliminate circularity and bias from our 

sample selection. We were able to detect a slight discrepancy between clinical 
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radiological classification and CSF dynamics in Groups B and C that would merit 

further exploration. Furthermore, the use of infusion tests in those patients could 

assist in understanding the limitations of certain criteria (such as opening CSFp as 

an isolated measurement) and how these could be improved by using 

alternative/additional parameters. 

With reference to what is known for adult PTCS and what I have mentioned in section 

6.1, paediatric PTCS remains a challenge. Adult PTCS is an uncommon condition on 

its own, with paediatric patients representing an even smaller demographic and one 

that would be very challenging to investigate with tests such as venography and long-

term ICP monitoring. Diagnostic criteria for adult and paediatric PTCS are currently 

the same, however whether the condition is exactly the same in both age groups will 

require further investigation and long-term follow-up of those paediatric patients in 

adulthood.  

 

Lastly, we have performed a preliminary exploration on the effect of GA on CSFp and 

CSF dynamics. Our percentage of children with GA (35%), was lower compared to a 

reported national average of 45% (294), and we also recorded a longer-term average 

CSFp monitored continuously. It has been reported in NPH and TBI patients that GA 

possibly has no effect on baseline CSFp or elasticity, but significantly dampens the 

magnitude of slow waves (214). This study was derived from the same centre (our 

centre in Cambridge) and therefore included a similar GA protocol as the NPH group 

(propofol +remifentanil/fentanyl infusions and a muscle relaxant, usually rocuronium, 

naturally with different doses in adults versus paediatric patients). Since this study 

was not designed and powered to address this question, the fact that CSFpb was 

increased in definite PTCS under GA versus non-GA could be insignificant. It could 

be possible that anaesthetic agents somehow contribute to a raised CSFp in paediatric 

PTCS, however this is not justified from the evidence on the influence of GA on 

cerebral blood flow and metabolism. Another study and the guidelines commenting 

on CSF threshold in GA, could have similarly found that children requiring GA tend 

to have a higher BMI, rendering them less likely to tolerate a LP. It could also perhaps 

validate the correlation with increased BMI and worse PTCS symptoms, as well as 
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potentially increased abdominal pressure in those patients. Lower SSp and elasticity 

in anaesthetised probable PTCS patients from our current data would require a power 

calculation for future studies to verify or refute this finding. 

 

Limitations 

Although our recruitment timeframe spans 10 years already, due to the rarity of the 

disease in the paediatric population and the careful selection of children to undergo 

infusion tests, we were not able to collect a large cohort with enough patients in each 

group and subgroup. Analysis of a larger cohort is needed to generalise these results 

to all children with PTCS. Despite the fact that we tried to keep the selected cohort 

relatively homogenous, e.g. by not including the children with secondary PTCS, there 

seems to be significant heterogeneity within our cohort as well as the groups.   

 

Furthermore, we are currently unable to utilise normal controls as comparisons, since 

no such data exist, and no “normal”, asymptomatic children would undergo these 

tests. If we were to consider group C as the “normal” group, firstly we do not have 

enough such patients, and secondly, they do not always appear to be completely free 

of CSF dynamics disturbances. Current parameter thresholds have been validated 

only in hydrocephalus and TBI. From our analysis, thresholds appear similar but will 

require validation with appropriate design and methodology.  

 

One of the limitations when performing infusion tests instead of overnight ICP 

monitoring, is the small duration of monitoring. RAP standard calculation window is 

4 minutes, and in the short time of the infusion test the smallest artefacts could make 

the calculation unreliable; however, we obtained a good value without noise in 31/31 

patients. Compensatory reserve can also be estimated in various ways, as reported 

above, and the most reliable for infusion test can be selected. Slow waves also have a 

similar window and could be calculated both through overnight and during infusion 

tests (see Chapter 9), however there has been no direct comparison between the two 

methods, however many studies have utilised infusion tests to assess slow 

waves(21,23,101). Additionally, the effect of GA on slow waves(214) paediatric PTCS patients is 

awaiting exploration.  
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Conclusion 

 

We have shown a CSF picture in PTCS that could be characteristic: an elevated 

baseline CSF pressure (although precise threshold remains to be determined), with 

depleted pressure-volume compensation and increased estimated sagittal sinus 

pressure. CSF circulation, as estimated by the difference between plateau and 

baseline pressure, appears normal. “Critically” High CSF pressure (>30 mmHg) may 

contribute to low cerebral perfusion pressure, exposing patients to chronic sub-acute 

ischaemia.   
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CHAPTER 8  

SHUNT TESTING IN VIVO 
 

8.1 Outcome and financial implications of shunt testing in vivo: a single-centre 

study 
 

The results presented in this section are published in Acta Neurochirurgica 

Lalou A, Czosnyka M, Garnett MR, Nabbanja E, Petrella G, Hutchinson PJ, et al. Shunt infusion studies : 

impact on patient outcome , including health economics. Acta Neurochir (Wien). 2020;  

8.1.1 Introduction 

In my introduction, Chapter 2 of this dissertation, I have begun to lay out the main 

principles behind shunt properties and shunt testing in vitro and in vivo. There is an 

increasing need for developing better and less invasive methods of monitoring 

intracranial pressure (ICP) to quantitatively assess shunt function in shunted 

patients(40,75,295,296), especially in cases where the ventricular size and the clinical 

presentation do not suffice. Infusion tests have been a reported as a minimally 

invasive, low risk and potentially useful diagnostic tool for testing shunts’ function in 

vivo. They have been described and implemented in clinical practice since over 45 

years ago(64,66,91,95,112). Despite many publications on their methodology and 

utility(66,71,91,95,97,112,297), there have not been enough studies of the health and 

financial benefits derived from that implementation.  In this study we aim to show 

that the logic and logistics behind the shunt infusion test constitute it to be highly 

accurate as well as cost-effective.  

 With reservoir or shunt pre-chamber infusion studies in shunted patients, infusion 

tests assist in   differentiating between a correctly functioning shunt from a shunt 

with possible problems like under- , over-drainage or blockage(41,74,298). It is hence 

possible to facilitate the decision to perform an emergency or elective revision on a 

malfunctioning shunt, or to manage the patient conservatively when the shunt 

appears to be patent and/or functioning as it should(44,299,300).  It has been 

suggested(40,44,299,300) and experienced routinely in our hospital that it is possible 
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to provide patients with effective management for their symptoms without revising a 

well-functioning or requiring a change of shunt setting , when there is no clear test-

derived  evidence of any shunt malfunction. We aimed to investigate how many 

revision surgeries are avoided in our hospital and the outcomes and progress of 

patients after infusion studies. Primarily we sought to provide evidence of preserving 

good quality of life and relief of symptoms in patients without neurosurgical 

intervention. Our secondary aim was to determine the financial benefit derived from 

sparing shunt revision surgery when there is no actual need for them. 

   

8.1.2 Materials and Methods 

Patient Data 

From January 2013 to December 2015, ADL (the first author) identified the results of 

infusion tests from shunted individuals. We chose a 3-year period in order to be able 

to analyse a significant amount (>300) of tests as well as be able to follow them up for 

at least 12 months (the work was carried out between January and May 2017). During 

this timeframe, we had performed 280 infusion tests to 210 different shunted patients. 

Patients who presented acutely with clinically obvious raised ICP and an unequivocal 

CT scan do not form part of this study as they would have had an urgent shunt 

revision. All of them had received a previous diagnosis of hydrocephalus of various 

aetiologies. In addition, we evaluated 85 tests on previously shunted pseudotumour 

cerebri (PTCS) patients [including idiopathic intracranial hypertension (IIH)] and 

considered their care separately because it is often more complex than in 

hydrocephalus patients. We collected the results of the computerised CSF infusion 

test and assessed whether the conclusion was normal function of the shunt or possible 

problem detected. All patients have consented on using their data recordings for 

research purposes.  

The infusion studies results had been reported independently by a clinical scientist at 

the time of the clinical request and were not altered for this analysis. The criteria 

used for reporting infusion studies involve analysing the shunt properties, primarily 

the shunt critical pressure and its resistance(44,96,301); when these are exceeded, a 
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distal obstruction is expected. When there is no ICP pulse waveform detected when 

connecting the needles to the reservoir or prechamber, a proximal obstruction is 

suspected. Analysis may also suggest other problems associated with a shunt 

functioning, such as underdrainage, overdrainage, slit ventricles etc(43,44,48,97).  

Follow-up and Outcome assessment 

Using the electronic hospital records (e-MR and Epic), ADL (author) followed-up the 

course of the patients at 6 months and 12 months from the time of the test. Based on 

the clinical evaluation and relief of symptoms at follow-up, patients were classified as 

improving or non-improving.  

Financial analysis  

All financial data were provided by the hospital finance department and were all in 

pound sterling (GBP). Fixed tariffs have been set and updated in our hospital for 

many years for infusion tests, and the tariffs for shunt revisions and ICP monitoring 

were derived from the national tariffs for 2017/18.  

As this was a single-centre study and infusion test have been a routine practice in 

Cambridge for over 25 years, it was not possible currently to compare the cost-

effectiveness of infusion tests with other protocols and methods, such as overnight 

ICP monitoring or MRI.  

We have approached the financial analysis in two separate ways: 1) we assumedthat 

all our patients had presented with signs and symptoms that would have merited 

admission, observation and/or ICP monitoring/ shunt revision surgery, if access to 

infusion tests had not been possible and 2) based on our outcome cohort and on data 

the UK shunt registry , we used the percentage of patients requiring revision and/or 

further investigations, to design decision trees showing the comparison of patient flow 

and resulting costs in a general neurosurgical protocol without infusion studies 

integrated, versus when infusion studies are used.  

We have selected to include both hydrocephalus and PTCS patients (including IIH), 

as shunts are one of the main treatments of choice in both diseases. However, since 
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there are important differences in their clinical course and management, we have 

investigated the outcomes of the two cohorts separately. We did not perform a 

separate financial analysis for the hydrocephalus and PTCS groups, because the costs 

related to their shunt management (infusion test/overnight ICP monitoring/shunt 

revision) are the same.  

8.1.3 Results 

Patient demographics and general characteristics 

The mean age was 45 years and the male to female ratio was ~ 0.84 (127males /152 

females). The ages of the patients ranged from 4 months old to 90 years old. 47 were 

paediatric cases (under 16 years of age). Overall, more than half of the tests (~55%, 

155 out of 280) found no indication for shunt malfunction versus 125 detected a 

possible malfunction (over/underdrainage, blockage, etc). There were 24 patients both 

in the malfunctioning and functioning group, because they had repeated test over 12 

months after their first infusion test. Results are discussed as unique cases, not 

unique individuals.   

Outcome for hydrocephalus patients with normal-functioning shunt 

Overall, the outcomes for Hydrocephalic patients are summarised in Figure 8.1.  
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Figure 8.1: 1-year outcome of patients with diagnosed Hydrocephalus of multiple aetiologies undergoing 
CSF infusion studies for shunt function assessment in vivo.  

*1: Not improved after revision: One patient came back with new blockage confirmed with infusion study, but improved 
after the second revision.  One had a wound breakdown with CSF leak and improved after system and wound revision. 
Another patient developed significant scarring with cheloids that required revision. 3 more patients remained quite 
unwell, with long-term ongoing investigations between neurology and neurosurgery. 2 more were discussed in MDT 
meeting due to some osseous and venous lesions in further imaging. One deteriorated neurologically but the 
deterioration was most likely due to a spinal cord syrinx, but further follow up is not available yet.  A NPH patient with 
complicated post shunting history never recovered and was placed in a nursing home. Finally, there was a very complex 
patient with very prolonged hospital stay that required multiple revisions and eventually died after years of intermittent, 
very long hospitalisations and very heavy problems related to her hydrocephalus.  

*unclear CT + signs & 

symptoms of shunt 

malfunction 
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6-month outcome  

140 of the patients in total with no malfunction detected with infusion improved with 

conservative management at 6 months of follow-up.  

Out of the initial 155 patients with no signs of malfunction, only 4 ended up needing 

a revision before a 6-month follow-up period, due to random events shown in Figure 

8.2A. Three patients were lost in follow up and three died of causes unrelated to 

intracranial hypertension or shunt complications (hip fracture, recurrence of 

aneurysmal bleeding and a complex epilepsy syndrome). There were 3 patients who, 

even though their shunt was patent, their ongoing symptoms required a different 

approach and had to be discussed in the Multidisciplinary Team meeting. 

The remainder of 142 patients were either discharged from neurosurgical care with 

instructions. 140 improved with conservative management, including shunt 

adjustment or headache management. Two of 142 patients remained unwell; one had 

never been well before or after shunting for NPH and had previously have serious 

issues with overdrainage and evacuation of subdural haematomas bilaterally. The 

other had refractory headaches but no major incident that required hospitalisation or 

surgery; a change of setting did not help them.  

12-month outcome  

136 cases out of the 140 that had done well at 6 months continued to not require 

neurosurgical care for at least 12 months, with the exception of 4 patients who 

required revision within 12-14 months after their initial infusion test. 3 of the patients  

required a new infusion test that showed slight underdrainage that improved with 

shunt adjustment.  

The reasons for revision in all these patients are illustrated in Table 8.1  
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Outcome of hydrocephalus patients with evidence of shunt malfunction 

In 125 patients, underdrainage, overdrainage, or distal/proximal blockage was 

described.   

Specifically we detected: 27 with underdrainage, 33 with overdrainage and 48 

obstructed shunts, 14 with some inconclusive disturbance of CSF dynamics (e.g. 

increased resistance, possible overdrainage or blockage, slit ventricles or blockage and 

2 with burr hole valves in situ which makes the interpretation of the results difficult 

due to the construction of the device), 1 elevated abdominal pressure 2 slit ventricles  

and. 

Outcome after revision - 6 months and 12 months 

43 revision surgeries were performed in patients who had evidence of blockage or 

other malfunction on infusion studies; 2 revisions as well as 2 infusions back to back 

were performed in 2 patients who required revision and their new shunts blocked 

shortly after surgery; for 33 of them the infusion study had indicated blockage 

(proximal, distal or both catheters), 6 underdrainage, 2 overdrainage and 2 had mild 

disturbances of their CSF dynamics but had to undergo a revision due to different 

reasons (one had an incision breakage a few days after the study for unrecorded 

reasons and one and the other one had no record of the reason for the revision due to 

a gap in transferring from our old to a new clinical database). 

32/43 improved sustainably at 6 months and 12 months, 5 requiring shunt adjustment 

post-operatively; for some of the rest it could be possible that their setting was 

changed but it was not noted in our records and some of them were discharged or 

referred to neurology. 

11/43 patients remained symptomatic, with persisting headaches dominating in all of 

them. 6 had to be discussed in our MDT meeting. Unfortunately, 5 showed no 

improvement even after their shunt setting was adjusted post surgically (for a long 

time of follow-up, 6-12 months, even after neurology referral).  

The reasons for revision in this group of patients are illustrated in Table 8.1. 
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Table 8.1: Reasons for revision: Reasons for revision in the 8 patients with infusion test not indicating 

shunt failure, who required revision within a year of the test. 1 patient had an accident that exposed the 

shunt tubing, in 2 patients the distal catheter migrated, and one patient was clinically diagnosed with 

overdrainage and had an antisyphon device only inserted. 4 people were not improving with conservative 

management (turning down their setting) and further investigations showed underdrainage, with the 

neurosurgeon selecting to proceed with a revision. B: Reasons for revision in the group with evidence of 

shunt malfunction. Most revisions (34) were performed due to evidence of proximal or distal blockage after 

clinical review and decision. 6 patients had evident overdrainage that required an antisyphon device (2 

cases) or even removal of the entire system (4 cases, due to desire to change the fixed valves with 

programmable ones). 

 

Outcome of patients with shunt malfunction but without revision 

From the rest of the patients (81), 1 was lost in follow-up. 4 patients were classified 

as non-improving; Two presented with new episodes of epileptic seizure and had to be 

managed for those and the other 2 were discussed in a MDT meeting and selected for 

venous stenting or styloidectomy with appropriate indications(33,267). 

76 patients with no revision and some alternative management of setting 

manipulation or discharge/neurology referral had no change or worsening of their 

symptoms and did not require additional care for at least one year after their initial 

encounter for infusion studies. Two of these cases had evidence of proximal shunt 

obstruction but clinical indications of improvement soon after the infusion study, 

sustained for at least a year, indicating resolution of the blockage, most likely from 

flushing the proximal catheter during infusion. One also had radiological evidence of 

significantly smaller ventricles. 

Reason for revision Functioning shunts Malfunctioning shunts 

Accident 1 0 

Distal catheter migration 2 0 

Overdrainage  1 6 

Underdrainage 4 3 

Obstruction 0 34 
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The PTCS patients’ CSF test results were as follows: 85 studied, 47 with possible 

problems and 38 without any indication for shunt malfunction. Some patients 

required more than 1 study within the selected period, therefore from the 85 studies 

there were 56 different individuals aged 10 to 77 years old.  

Outcome of PTCS patients 

In 47 patients, malfunction had been detected, versus 38 with normal function. 46/85 

PTCS patients were successfully managed with no neurosurgical intervention, with 

either normal shunt function or malfunction that did not include obstruction. These 

patients likewise remained well with no further care needs for at least one year of 

follow-up.  

12 patients in total had revision, after which 11 of them improved. 

The 27 other patients investigated were found either as non-improving, requiring 

multiple revisions or different surgeries (usually venous stenting) and closer medical 

attention and discussions. 

The overall outcome of PTCS patients is illustrated in Figure 8.2. 
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Figure 8.2: 1-year outcome of patients with diagnosed Pseudotumour Cerebri Syndrome undergoing CSF 
infusion studies for shunt function assessment in vivo.   

 

*unclear CT/ophthalmology + 

signs & symptoms of shunt 

malfunction 
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Further investigations and complications 

4 hydrocephalus patients underwent overnight ICP monitoring, two due to suspected 

but not definitive evidence of overdrainage and two because a proximally obstructed 

shunt catheter did not allow reading and recording of the ICP during the infusion test.  

5 PTCS patients required overnight monitoring due to ongoing symptoms that 

suggested disturbed CSF circulation.  

There were no infections associated with any of the 365 infusion tests, based on the 

patients’ medical records and revision requirement.  

Health economics analysis 

Cost of and Income received for shunt reservoir infusion studies 

An elective day admission for a shunt infusion test in total included: 

• transport expenses,  

• staff: nursing, medical physics and medical staff involved,  

• cost of the shunt infusion studies equipment (including medical equipment for 

shunt tapping and for the computerised infusion study).  

The total cost of each reservoir infusion study for our local Trust was 844 GBP and 

had been tailored to match the income received.  

Tariff for a shunt revision 

Shunt revision surgery tariffs have been formed nationally to include:  

• anaesthetic and theatre time 

• medical and nursing staff involved, 

• theatre equipment and consumables including the cost of the valve and shunt 

catheters, 

• total length of hospital stay, and 

• the management of any related complications.   

The total cost of a shunt revision procedure ranged from 9,437 GBP to 12,436 GBP 

(average of 10,937 GBP). The wide range in costing was due to different comorbidity 
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scores that affected the cost of the surgery, as well as perioperative complications, 

care needs and length of stay. 

Overall financial benefit of CSF infusion studies 

From the total patients in our cohort, we could calculate that: 

 (A) The total cost of 365 CSF infusion studies was £308,060 (365×844).  

(B) The actual number and cost of shunt revision operations was 64x£10,937 = 

£699,968. 

(C) The total cost to the Trust of 365 studies plus actual number of Shunt revisions = 

£1,008,028 (A+B). 

(D) The cost of shunt revision operations avoided was 281x£10,937 = £3,073,297. 

(E) The total cost to the trust if no infusion test available = ~£3,992,005 (365*10,937). 

From A-E, it is derived that a CSF infusion service potentially saved our local trust ~ 

£2,766,081 over 3 years, or ~£922,027 per annum. 

On a different approach, comparing infusion studies to a common national and 

international protocol, using only ICP monitoring and exploratory surgery, the overall 

financial benefit could be approximately £442,710 per 100 patients admitted with 

possible shunt malfunction. An analytical decision tree showing a comparative cost 

analysis between using infusion studies versus no infusion studies is presented in 

Figure 8.3.  
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        (Figure 8.3 continued in next page) 
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Figure 8.3: Elementary decision tree analysis of A) costs of shunt malfunction management without infusion 
studies B) costs of shunt malfunction management as derived from our infusion study patients. Data derived from 
national reference costs 2017/18 and hospital income/outcome records. On average, as derived from our dataset 
illustrated in Figure 6.2, around 35% of possible shunt malfunctions are due to shunt obstruction or are not 
amendable with shunt reprogramming.  Around half of the patients do not require revision, with good resolution of 
symptoms. This rationale was used to calculate costs of managing patients without shunt infusions. The benefit of 
diagnostic information derived by infusions, allows routine instead of close monitoring and facilitation of differential 
diagnosis of symptoms. The cost of saving follow-ups could not be approximated with the current design and 
dataset from our hospital. Furthermore, Figure 6.4A cannot approximate the cost of extra hospital days in those 
receiving overnight monitoring with or without revision, as it is not common or standard practice in our centre. 

 

8.1.4 Discussion 

We have provided the first large cohort of patients managed with the help of infusion 

tests to include long-term outcomes and health economics.  Our data shows the 

potential of infusion tests in providing safe evidence to avoid on average over 130 

unneeded operations per year. Approximately 86% of these patients sustained 

improvement in follow-up for over 12 months. The financial benefit of about £922,027 
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per year is an important reference estimator for cost-saving in neurosurgical centres 

worldwide.  

It appears that the management of non-obvious blockage can be complex and requires 

attention and careful selection between simple shunt manipulation and more invasive 

management. Shunt infusions are a reliable and safe diagnostic tool to achieve this. 

The use of infusion studies in diagnosing shunt malfunction 

Throughout our experience with infusion studies, it has been evident that we are most 

probably able to provide patients with effective management for their symptoms 

without revising a well-functioning shunt when not required(216,255,302). Despite 

the fact that infusion studies offer a minimally invasive, highly sensitive diagnostic 

technique for shunt malfunction, they are not performed in many centres worldwide; 

furthermore, we are not aware of an optimal, alternative tool to assist in resolving the 

ongoing clinical dilemma of whether or not to proceed to a revision surgery 

(44,228,302–305).   

Infusion tests can potentially support everyday neurosurgical practice due to the two 

important pieces information they yield: A) Reliable evidence of low ICP at baseline, 

therefore it reassures against acute intracranial hypertension(44,95,216) B) Reliable 

evidence that the shunt is not obstructed and does not allow ICP to exceed a desired 

range (44,95,215,293). Patients can therefore safely be discharged home and be 

booked for a routine follow-up, that will allow more time and better planning to be 

invested into their review and care.  

Furthermore, a shunt in situ does not mean that it will be the only source of a patient’s 

symptoms and a reassurance against shunt malfunction provides value, evidence and 

time to the patients’ differential diagnosis. As such, unnecessary and prolonged 

admissions, as well as more invasive tests such as overnight ICP monitoring, are also 

avoided if not necessary. In underdraining patients who later required revision, it is 

disputed that an early revision without evidence of obstruction or acute/subacute 

intracranial hypertension would be of benefit, especially with the use of a 

programmable valve and margin to increase drainage.  
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Hydrocephalus patients 

Infusion tests appeared quite accurate and efficient in directing away from shunt 

malfunction in hydrocephalus, as demonstrated by the 212 cases that were managed 

conservatively without further hospitalisations.  Shunt testing in vivo appears to be 

most valuable to our selected cases, that did not have a radiological signs 

substantiative of shunt malfunction and were not acutely unwell.  This can often be 

the case with NPH patients, as well as younger patients with chronic or neglected 

hydrocephalus(44,306–311).   

PTCS patients 

Despite PTCS and hydrocephalus being different entities, with many differences in 

their presentation, diagnosis, and management, shunts are their common 

denominator. Venous stenting also constitutes one of the mainstay treatments for 

PTCS, however shunts, not only lumboperitoneal but also ventriculoperitoneal, are 

being used more and more frequently (32,35,48,198). In both cases, objective 

confirmation that a previously implanted shunt is patent can direct uni or 

multidisciplinary care. Therefore, despite the fact that there were 15 patients with 

presumably working shunts whose symptoms could not be relieved with conservative 

management, they were also able to move forward to a MDT pathway in order to 

undergo further investigations and seek alternative treatments, without being 

subjected to a revision that would most likely not have benefitted them and would 

have delayed their referral to a more appropriate service.  

Value and accuracy of shunt infusion studies 

Based on our clinical experience and our current data, shunt infusion tests are safe. 

Not a single patient presented with acute/severe problems after being discharged and 

no one was infected as a result of the test. It is our hospital’s policy to remove shunt 

systems completely if there is a CNS infection. If any of the above patients had an 

infection attributed to their shunt infusion, either a severe one or a silent infection, 

they would have been sent to the hospital and the relevant team for review and 

management.  
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Additional clinical evidence and other paraclinical investigations can lead the clinical 

team to decide differently from an infusion result. The above is demonstrated in 

Figures 1 and 3, where we show cases of patients where the results of the infusion 

tests pointed away from shunt malfunction, yet the clinical decision was to proceed to 

a revision. Such was the case mostly in PTCS patients and not frequently in 

hydrocephalus.  

Impact of avoiding shunt revisions on patient outcomes.  

Shunt revision surgery can be lifesaving, however when inappropriately performed, 

could lead to devastating financial and health costs, including serious complications 

and multiple revisions (44,45,302,305,312). It has been highlighted by large cohorts 

of patients derived from the UK shunt registry, as well as from multiple reports of 

paediatric hydrocephalus patients, that an increased number of revision operations is 

a negative predictive factor for cognitive outcome and overall disability and quality of 

life for paediatric patients (44,302–304,312–315). For adults, this increased number 

also is a predictor of further shunt revision surgery requirements in the future and 

therefore constant care needs, many hospitalisations and low quality of life 

(216,302,314,316).  We were therefore more than pleased to see >89% of our patients 

leading a symptom-free and neurosurgically uneventful life for at least 1 year of 

follow-up. A recent report from the UK shunt registry has indicated the revision rates 

in all UK centres, where our centre holds a lower revision rate compared to the 

average, especially after first implantation(300).   We are not aware of an alternative, 

more accurate diagnostic method to achieve this. Furthermore, patients avoid longer 

hospital stays and additional complications of a shunt revision surgery, whose rates 

and sequelae have been reported extensively in the literature (305,314,316). 

Financial impact of avoiding shunt revisions on the NHS  

As expected, avoiding surgical revisions in shunted patients seems to be of 

considerable financial benefit to the NHS. However, as stated in the methods, it is not 

possible to know exactly how many of these patients would have been selected for 

shunt revision, if infusion studies weren’t available. There are other methods that are 
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used worldwide in order to diagnose shunt malfunction. Overnight ICP monitoring 

remains the gold standard, but it is also quite invasive, involves cranial surgery and 

has its own cost implications. Other methods, less invasive, involve radiation (such as 

radio-contrast shuntograms, radioactive flow studies) or no radiation (MRI/ high 

resolution MRI, optic sheath diameter measurements etc). However, they all 

implicate the cost of a radiologist or other highly specialised clinical staff, expose the 

patient to radiation and even endanger the functionality and/or patency of the shunt 

(44,306,309,317,318). In addition, measurements of steady-state ICP cannot exclude 

shunt malfunction, nor does the detection of flow or lack thereof. No flow through a 

shunt does not automatically mean obstruction, but many other things, including 

inadequate pressure to open the valve or even collapsed ventricles (slit ventricles) 

around the proximal catheter, among others (44,309,311,313,317–320). Last but not 

least, our current protocol for performing shunt infusion studies, that includes strict 

aseptic technique and proper cleaning and disinfection, appears to be 100% effective 

in avoiding additional costs related to infections from the procedure. 

Additionally, in our centre, the neurosurgeon performing the revision is made aware 

of the site of the shunt obstruction, since shunt infusion tests can detect proximal 

catheter obstruction versus distal obstruction (valve or distal catheter). A proximal 

catheter obstruction is detected when there are not pulsations detected from the ICP 

and confirmed with an attempt of retrograde flushing towards the ventricles(320). A 

distal catheter or valve obstruction can be differentiated from a proximal catheter 

obstruction, due to excessive rise of the ICP with increased Rout (44,48,309,318–323). 

The interpretation of shunt infusion tests has been thoroughly described before by 

other authors and is not the subject of this dissertation. This most probably decreases 

the cost of the revision surgery, since either the skull of the abdomen can be left intact, 

decreasing surgical time, use of equipment, complications and post-operative hospital 

stay. However, investigating this point in detail was not within the scope of our 

current paper and could be the subject of a different study, including more patient 

costing data than we were able to collect.  
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Limitations 

Our main limitation is that this is a single-centre study; In order to compare the 

overall clinical and patient benefits, together with the cost-effectiveness of shunt 

infusion studies versus other methods, as well as the overall practice in our centre 

versus other centres, a different analysis involving at least another major 

hydrocephalus centre is required.  We also could not report financial benefits from 

improving patient flow, follow-up appointments and additional monitoring. These 

would all be highlighted better when other centres are involved in the analysis. 

A shunt infusion study ideally requires the shunt valve to be positioned after the 

proximal catheter. This shunt anatomy is present in most valves in the market, with 

the exception of the fixed-pressure burr hole valve(44). However, the distal catheter 

can still be tested and, if the valve is open, even the proximal part.  

In the presence of a proximal shunt obstruction, the ICP cannot be determined via a 

shunt infusion. In such cases, that appear rare, a lumbar infusion study or overnight 

ICP monitoring to determine ICP and its dynamics are indicated. Similarly, and also 

rarely, other technical difficulties during the infusion test (needle positioning or 

patient tolerance) could lead to incomplete results or challenging cases, where longer-

term monitoring with an ICP wire is required.  
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8.2 Value of infusion studies in the assessment of paediatric 

hydrocephalus shunt function: a two-centre observational study 

The results presented in this section have been published in Child’s Nervous System: 

Dias S*F, Lalou AD*, Spang R, Haas-Lude K, Garnett M, Fernandez H, et al. Value of computerized shunt 

infusion study in assessment of pediatric hydrocephalus shunt function—a two center cross-sectional study. 

Child’s Nerv Syst. 2020;36(1):59–71.  

8.2.1 Introduction 

 

In section 1 of this chapter, I have discussed the utility of CSF infusion tests in 

detecting shunt malfunction versus normal function in a mixed cohort of paediatric 

and adult hydrocephalus when ventricle size and symptoms are insufficient. As 

mentioned in this chapter, avoiding revisions of well-functioning shunts could be of 

most significance in developing children. Since we previously only studied 47 

paediatric patients from a single centre, we aimed to further explore the usefulness 

of shunt testing in vivo for the paediatric hydrocephalus population in two different 

centres, Cambridge University Hospital and University Hospital of Tübingen.  For 

this purpose, we performed a retrospective analysis of shunt infusion data from 

children (<16 years of age) from these two centres with long- term experience in 

infusion studies. We quantified the infusion test methodology for children in a 

comprehensive study of differentiating between patent and an obstructed distal 

catheter or valve. As in section 1, we have descriptively reported the clinical progress 

and outcome of the children after infusion tests. 

 

8.2.2 Patients and methods 
 

Patient selection 

We retrospectively included all paediatric patients aged under 16-years, that 

underwent a shunt infusion study between January 2003 and August 2017 in both 

centres – department of neurosurgery from the university hospital of Tübingen 

(Germany) and department of neurosciences Addenbrooke’s hospital in Cambridge 

(United Kingdom). The study was approved by the institutional ethics review board 

of Tübingen and was in accordance with the ethical standards laid down in the 2013 

Declaration of Helsinki for research involving human subjects. For Cambridge, the 
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ethics statement for infusion tests as in Chapter 3 applies. Informed consent was 

obtained by the children and parents in all cases.  

In Cambridge, as described in chapter 3, the criteria for selection involve any clinical 

doubt on shunt function with normal imaging (CT). In Tübingen, selection for infusion 

test is more rigorous, and an infusion is performed after the shunt pre-chamber fails 

to empty and fill as expected, whereby a distal obstruction is suspected. 

Sedation and Anaesthesia  

In Tubingen, usually children under the age of 8 years or who are unable to tolerate 

the test awake receive mild sedation with propofol (initial bolus of 2-4 mg/kg) at a rate 

of 1-4 mg/kg/h. All others are studied fully alert. Leisure activities, such as listening 

music or audiobooks were sometimes provided. 

In Cambridge, as described also in methods (Chapter 3) shunt infusions can be done 

with the child fully conscious, mild sedation with chloral hydrate/entonox or under 

GA. 

 

Shunt infusion study technique & shunt testing in vivo 

Shunt testing in vivo has been introduced in Chapter 3(43,324)  including clinical 

utility and translatability described in the previous section of this chapter. The main 

procedural difference with the lumbar infusion technique is that the shunt pre-

chamber/ separate reservoir is tapped, after cleaning and disinfection, using two 25-

gauge hypodermic butterfly needles. 

 

 
 

Result interpretation follow – up and classification of shunt function  

As mentioned in section one, the interpretation of a shunt infusion test is mainly 

based on the presence of an ICP waveform and whether it allows ICP to exceed the 

Critical shunt Pressure (CSP). The resistance to CSF outflow (Rout) should be as close 

to its manufactured and tested values (44).  

 

In terms of follow up, we classified shunts as blocked (shunt revised with 

intraoperatively confirmed distal obstruction), borderline (not revised but 

underdraining as evidenced from symptoms, imaging and response to shunt 
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adjustment or revised but shunt was patent) and functioning (no revision, 

improvement at follow-up, alternative cause of symptoms identified), depending on 

whether the patient was revised and of the intra-operative revision findings. Children 

that were not surgically revised, received a clinical follow up in outpatient clinic at 3 

and 6 months (or even longer, depending on their needs).  

We compared the findings of intraoperative obstruction, functioning shunt on follow 

up and borderline functioning shunt with the results from CSF infusion tests and 

investigated the cut-off values and predictive values of CSF dynamics from shunt 

testing in vivo that corresponded to the state of the shunts in our paediatric cohort.  

 

Statistical analysis 

We checked for normal distribution. Non-parametric tests (Mann Whitney U and 

Kruskal-Wallis)  or one-way ANOVA and t-test were used to compare differences 

between the different groups. All values are presented as mean ± standard deviation 

unless stated otherwise.  Finally, we performed a ROC analysis using the pROC 

package (325) in order to assess the accuracy of infusion tests in detecting malfunction 

and to calculate the cut-off values that describe malfunction for ICPplateau, 

AMPplateau , and Rout, ICPplateau-CSP and other parameters. 

 

 

8.2.3 Results 
 

During our set timeframe, 203 infusion tests had been performed (164 in Cambridge 

and 39 in Tübingen) on 166 unique children. Mean age was 8.05 ± 4.94 years, ranging 

from 1 month to 16 years. 52% (n= 86) were female and 48% (n= 80) male.  23 of the 

children had undergone two infusions on separate occasions, and 14 three or more.   

The following valves had been implanted and tested with infusion: 51.7% Strata, 

13.3% proGAV, 12.3% Hakim, 7.4% CSF flow control burr hole medium, 6.9% Strata 

NSC, 3.4% Delta, 1.5 % PaediGav, 1.5% CSF flow control valve contoured medium 

and 1% Sophysa Polaris. The detailed distribution of shunt valves according to each 

institution can be observed in Table 8.2.  
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Table 8.2. Shunt valve distribution according to institution. 

 
 

 

 

 

 

 

 

 

 

 
 

 

 

 

A flowchart of the patient classification based on follow-up and revision criteria is 

shown in Figure 8.5. 

 

Functional shunts (Group A) 

In 136 (67 %) cases the children hadn’t required a revision and were doing well on 

follow-up with conservative management or different diagnosis. In all of them, the 

shunt had been reported as functional from the infusion test report. the ICPplateau was 

below the critical shunt pressure (CSP) with a mean difference to critical shunt 

pressure (∆CSP) of -4.68 ± 4.07 mmHg ICPbaseline was close to the expected operating 

ICP (ICPop), thus ∆ICPop  (deviation of baseline to operating ICP ) was small with -

1.15 ± 3.88 mmHg. ∆ICP (the difference between ICPbaseline and ICPplateau) was 6.19 ± 

3.35 mmHg. AMP at baseline was 0.49 ± 0.39 mmHg and Rout 4.42 ± 2.0 

mmHg*min/ml. 

Shunt Valve Cambridge Tübingen Total 

CSF flow control valve 
- burr hole medium pressure 
- contoured medium pressure 

 
15 
3 

  
15 
3 

Delta Valve 7  7 

Medos Hakim Progr. Valve  16 9 25 

paediGAV 1 2 3 

proGAV 1 26 27 

Sophysa Polaris  2 2 

Strata 107  107 

Strata NSC 14  14 

Total 164 39 203 
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Figure 8.6 illustrates a clinical case of a patent shunt, performing within the expected 

parameters. 

 

Figure 8.5. Flow diagram on the selection and categorisation of paediatric patients’ shunt 
infusion studies. Group A included patients who didn’t require revision and were still well on follow-up. Group 
B included patients whose shunt function appeared questionable and who required a shunt adjustment, but the 
shunt was not blocked in short-term follow up or revision. Group C included patients who underwent revision 
soon after the infusion and the shunt was confirmed to be obstructed intraoperatively. 
 

 

 
 

Figure 8.6. Shunt infusion study of a functioning shunt. A) CT-scan of a 4- years old child presenting 

with enlarged ventricles after VP-Shunt placement and valve replacement for a ProGav 4/29 (initially Hakim Medos 

10) due to hydrocephalus after AVM-bleeding. Clinically they were improving and had no complains. B) Infusion 

test revealing a gradual increase of the ICP, with the plateau being reached below the shunt critical pressure 

     Data from follow-up/revision 

 *Artefact,  
 discarded 

automatically 
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(upper panel); amplitude variation below 1mmHg (panel below) – indicating normal functioning shunt with 

adequate brain compliance. No VP-Shunt revision was performed and the child kept improving its clinical condition 

and development. 

Borderline Shunts (Group B) 

Twenty-six (12.8 %) SISs had borderline function and required adjustment. One child 

underwent shunt revision since the responsible consultant paediatric neurosurgeon 

decided on revision. In this case, the shunt was found not obstructed, but the child 

improved clinically on follow-up. The rest of the children had clinical signs that were 

indicative of underdrainage and shunt adjustment resulted to improvement at follow-

up.  

 

All parameters were significantly elevated compared to group A (see Table 8.2). The 

infusion report had detected underdrainage or severe underdrainage. ICPplateau was ≤ 

5 mmHg above the critical shunt pressure, and ∆ICPop was 4.77 ± 3.87 mmHg. ∆ICP 

(ICPplateau minus ICPbaseline) was 8.69 ± 3.29 mmHg, with AMPbaseline 0.68 ± 0.47 mmHg 

and Rout 6.80 ± 2.67 mmHg*min/ml.  

 

Obstructed shunts (Group C) 

We placed 42 children (20.7 %) in this group, since a shunt obstruction was found at 

surgical revision, either of the valve or the distal catheter, with replacement of the 

respective non-functional part. Figure 8.7 illustrates a case of distal obstruction. 

All infusion parameters were significantly higher than both Group A and B. ICPplateau 

was above CSP on average by 13.97 ± 9.49 mmHg (significantly higher than in groups 

A & B, see Table 2). ICPbaseline was not different to Group B, but significantly higher 

than Group A, as was ∆ICPop of 4.76 ± 5.82 mmHg. 

 

In rare cases of occlusion, there was no real ICP plateau, as the pressure continued to 

rise to unsafe values (>40mmHg), and 40mmHg was consider the plateau.  

AMPplateau was 2.76 ± 2.04 mmHg. Increase in ICP during infusion was 18 ± 8 mmHg, 

and Rout 14.82 ± 6.39 mmHg*min/ml. (Table 8.3). 
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Figure 8.7. Shunt infusion study of a distally obstructed shunt. A) Head-circumference graph of 5-

month-old child presenting with macrocephaly and diagnose of a Blake´s pouch (B). C) 4 years after VP-

Shunt implantation, despite normalization of the head circumference, the ventricles remained enlarged and 

the child presented with developmental delay. D) Infusion test showed a significant increase of the ICP, 

reaching values of 35 mmHg and clearly above the shunt critical pressure (15 mmHg). The shunt was 

revised and during surgery, a kink of the connecting catheter between the burr-hole reservoir and valve 

was found which was invisible on the pre-operative skull X-ray. This explained the largely increased shunt 

resistance demonstrated by SIS. 
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Table 8.3. Results of cerebrospinal fluid dynamics as derived from the shunt infusion 

study in the 3 different groups. CSP: critical shunt pressure; Rout: resistance to CSF outflow; 

ICP: intracranial pressure; AMP: fundamental amplitude of ICP; ΔICP: ICP plateau - ICP 

baseline; ΔAMP: AMP plateau - AMP baseline; ΔICPop: ICP baseline-shunt operating ICP; ΔCSP: 

ICP plateau - shunt CSP. 
 

 

 

 

 

 

 

Cut-off values and ROC analysis 

The cut-off values from the ROC analysis (group A versus Groups B& C -functioning 

versus malfunctioning shunts) were 11.74 mmHg for ICP plateau, 1.25 mmHg for 

AMP plateau, and 8.07 mmHg*min/mL for Rout. The accuracy of ICPplateau, 

ICPplateau-CSP and Rout was very high for separating functioning to malfunctioning 

shunts and are shown in Figures 8.8 and 8.9. 

 
Functioning          

(Group A, 

N=136) 

Borderline 

(Group B, 

N=26) 

p-value 

(Group 

A&B) 

Blocked 

(Group C; 

N=41) 

p-value 

(Group 

B&C) 

p-value 

(Group 

A&C) 

Operating pressure [mmHg] 7.22 ± 2.07 6.95 ± 2.20 0.709 6.65 ± 2.33 0.572 0.7091 

CSP [mmHg] 16.94 ± 2.77 16.67 ± 2.34 0.757 15.45 ± 3.18 0.053 0.0048 

Shunt Rout [mmHg*min/ml] 3.20 ± 0.81 3.49 ± 0.82 0.014 3.49 ± 0.93 0.865 <0.0001 

ICPbaseline [mmHg] 6.07 ± 3.85 11.71 ± 4.47 < 0.0001 11.41 ± 5.89 0.430 < 0.0001 

ICPplateau [mmHg] 12.26 ± 4.31 20.40 ± 3.67 
<0.0001 29.42 ±10.22 < 0.0001 < 0.0001 

AMPbaseline [mmHg] 0.49 ± 0.39 0.68 ± 0.47 0.032 0.93 ± 0.61 
0.045 < 0.0001 

AMPplateau [mmHg] 0.79 ± 0.62 1.17 ± 0.82 0.011 2.76 ± 2.04 0.0002 < 0.0001 

Rout [mmHg*min/ml] 4.42 ± 2.00 6.80 ± 2.67 < 0.0001 14.82 ± 6.39 < 0.0001 < 0.0001 

ΔICP [mmHg] 6.19 ± 3.35 8.69± 3.29 0.0002 18 ± 8 < 0.0001 < 0.0001 

ΔAMP [mmHg] 0.3 ± 0.4 0.49 ± 0.56 0.0073 1.83 ± 1.8 < 0.0001 < 0.0001 

ΔICPop [mmHg] -1.15 ± 3.88 4.77 ±3.87 < 0.0001 4.76 ± 5.82 0.5701 < 0.0001 

ΔCSP [mmHg] -4.68 ± 4.07 3.73 ± 2.95 < 0.0001 13.97± 9.49 < 0.0001 < 0.0001 
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Figure 8.8. SIS results analysis between functional (Group A) and non-functional (Groups B&C) 
shunts. A) Delta operating ICP: ICPbaseline - Shunt operating pressure. B) Delta critical ICP: Shunt critical 
pressure - ICPplateau. C) Delta Rout: CSF resistance outflow - Shunt outflow (tested in Lab).  
 
  
 
 
 
 
 
 
 
 
 
 
 

 

 

*p < 0.0001 

*p < 0.0001 

*p < 0.0001 
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Figure 8.9. Receiver operating characteristics curves for Rout (left panel), delta ICP (middle) 

and AMP plateau (right panel) between functional and non-functional shunts. The respective 

cutoff-values, so as sensitivity, specificity, negative predictive value (NPV) and area under the curve (AUC) 

are given within the graphics. 

 

 

Delta ICP (ICPplateau – ICP baseline) Rout 

Cutoff: 8.07 mmHg*min/ml 
Sensitivity: 88% 

Specificity: 93% 

NPV: 97% 

  

 Cutoff: 11.74 mmHg 

Sensitivity: 81% 

Specificity: 93% 

NPV: 95% 

AMP plateau 

Cutoff: 1.26 mmHg 

 Sensitivity: 76% 

Specificiy: 80% 

NPV: 93% 
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Tübingen ventricular size analysis  
 

We were able to obtain and analyse only the radiological and clinical follow-up data 

from the 30 children from Tübingen that had been subjected to 39 infusion tests. In 

Cambridge a vast majority of the CTs/MRIs was not accessible at the time of analysis 

due to some technical difficulties with the database the patient records were kept, as 

well as the lack of adequate follow-up documentation. 

 

Clinical symptoms  

Improvement was assessed based on clinical assessment by a paediatric neurologist, 

neurological development and feedback from the parents.  

 

All 16 children with 19 infusion tests in Group A had remained stable or improved 

their neurological abilities according to their expected natural development during 

follow-up time, which was 33 ± 24 months. One child had a new infusion test showing 

obstruction at a later time point, after some new but inconclusive symptoms appeared.  

 

Two of the three borderline children clinically after shunt adjustment (lower setting) 

and one child was monitored only and remained clinically stable. 

 

10 of the 14 children (71%) with obstructed shunts that all underwent shunt revision 

improved in their clinical condition and neurological development at 6 months, while 

the remaining 4 children remained unchanged according to their previous status.  

 

Radiological features  

Radiological follow-up by MRI is usually undertaken and was available following in 

37 of 39 infusion tests (95%), with a mean follow-up of 37± 29 months after the initial 

test.  

 

In the Group A, 10/16 children (62%) had at last follow-up smaller and 5 unchanged 

ventricles (one child did not attend follow-up), with ∆FOHR and ∆EI (between last 

follow-up and pre-infusion) being 0.046 ± 0.0; p=0.014 and 0.037 ± 0.07; p=0.029 

respectively.  

 

The 14 children of Group C were submitted to 17 SIS and respective surgical revision 

due to shunt obstruction (3 children had 2 obstructions at different time points).  9 of 
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14 (64%) showed on last MRI follow-up after last revision smaller ventricles, and 5 

children (31%) presented with unchanged ventricles. The ∆FOHR was 0.049 ± 0.097; 

p=0.03, and ∆EI 0.043 ± 0.097; p=0.023.  
 

Numerical values of radiological features and statistical comparison between pre and 

post-infusion are shown in Table 8.4.   

 

Table 8.4. Results of ventricle measurements on MRI of the 3 different groups in subgroup 

analysis from Tübingen (N=39). FOHR: frontal and occipital horn ratio; EI: Evan’s index; Δ: 

follow-up measurements – pre-infusion measurements. p-value: difference between pre-SIS and 

follow-up within group. 
 

 

Complications observed  

There were no complications associated with the infusion test, neither directly nor at 

long-term follow-up at 6 months, as well as no further records after that of a low-grade 

infection.  

 
Functioning 

(Group A; 

N=19) 

p-

value 

(A) 

Borderline  

(Group B; 

N=4) 

p-value 

(B) 

Blocked (Group 

C; N=16) 

p-value 

(C) 

Follow–up 

MRI 

(months) 

36.5 ± 26.19  50.33 ± 37.65  39.3 ± 33.8  

FOHR pre-

infusion 
0.49 ± 0.1  0.5 ± 0.11  0.46 ± 0.08  

FOHR 

follow-up 
0.45 ± 0.1  0.43 ± 0.059  0.42 ± 0.062  

ΔFOHR 0.046 ± 0.08 0.014 0.073 ± 0.087 0.371 0.049 ± 0.097 0.03 

Evans’ pre-

infusion 
0.37 ± 0.1  0.31 ± 0.11  0.38 ± 0.084  

Evans’ 

follow-up 
0.34 ± 0.1 

 
0.3 ± 0.07 

  

0.33 ± 0.079 
 

ΔEvans’ 

index 
0.037 ± 0.07 0.029 0.047 ± 0.063 0.25 0.043 ± 0.097 0.023 
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8.2.4 Discussion 

 

We have presented a clinically-oriented, methodological, diagnostic and treatment 

approach using infusion tests for paediatric shunts that appear insidiously obstructed 

or are functioning, but the patients are symptomatic. Infusion tests can provide 

valuable and accurate, objective information in order to optimize the care of children 

with non-specific symptomatology and unchanged ventricles, or children with no 

symptoms and enlarging ventricles discovered in routine imaging. We have also for 

the first time reported quantitative thresholds that assist in differentiating between 

a patent and an obstructed distal catheter or valve, values that can be used to adapt 

and replicate our methodology with relative ease.  

 

Regarding the shunt valves, in Cambridge there was a preference for Strata and CSF 

flow control burr hole valve, whereas proGAV and paediGAV were preferred in 

Tubingen. However, for Cambridge, burr hole valves are usually implanted in 

different centres. Nonetheless, we had selected the valves included in the study on 

the premises that they had similar shunt properties, and therefore would not 

influence our final analysis(44).  

 

The patency of the proximal catheter is confirmed by visualisation and objective fast 

Fourier transformation analysis of the ICP pulse waveform, thus confirming 

communication with the ventricles. Even though gentle pressing on the pre-chamber 

with evident emptying and refilling can also indicate this patency, one should bear in 

mind that repetitive pre-chamber pumping may produce acute intracranial 

hypotension, dependent on the type of valve and as severe as -100mmHg, with all 

possible adverse consequences(326). Sometimes, partial obstruction of the proximal 

catheter can be suspected, when low AMP (< 0.5 mmHg) is detected, and/or the 

response to infusion is a decrease in AMP. Those cases had all been excluded from our 

cohort, and therefore there is no accounting for proximal obstruction at all. 
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The decision to perform shunt revision was based on infusion results in conjunction 

with the clinical symptoms and radiology, weighing down to the consultant’s final 

opinion.  

In section 6.1 and in the introduction, we have discussed the history and rationale of 

infusion tests, as well as the other methods used to assess shunt function and their 

limitations. We have also described how infusion tests constitute an important tool in 

the care of shunted patients, especially in avoiding revisions of patent shunts. With 

this article we have stressed their significance in the paediatric population in 

particular. Without the use of infusion tests, it is possible that 161/203 children (79%) 

would have been subjected to longer-term hospitalisation, invasive ICP monitoring, 

or even shunt surgery, without real justification, since their entire shunt system was 

unobstructed or slightly underperforming. Hence, infusion tests could support clinical 

decisions and can be easily performed in everyday neurosurgical care, with important 

implications. 

Infusion test interpretation and accuracy 

The methodology and clinical implications of shunt infusion studies have been 

reported extensively before, in mixed adult and paediatric populations. The 

understanding and performance of infusion studies can have some limitations and 

requires expertise when interpreting the results. We have therefore collected and 

retrospectively analysed data from two centres with a long-term experience in 

infusion studies.  

Infusion rates were performed at both 1mL and 1.5mL per hour. Even though tests 

that were performed with infusion rates 1.5mL/h could implicate a higher plateau, all 

shunt critical pressure were adjusted to values previously calculated in laboratory 

settings(44,48).  

As derived from shunt testing in vitro, ICPbaseline and ICPplateau are expected to match 

the shunt operating pressure, ICPop, and CSP accordingly (41,45). In order to translate 

those values from the laboratory to patients, the influence of the abdominal pressure 

(normally below 5 mmHg in non-obese children) is accounted for at around ± 5 mmHg 
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as the normal limits for ICP.  A distal obstruction would therefore be predicted to 

cause an elevation > 5mmHg above those pressure, which was the finding from our 

analysis. However, the baseline ICP, as derived from out ROC analysis, should not be 

used as a reliable predictor for distal shunt obstruction. As a results, baseline or 

steady-state values, especially with a manometer, should never be used for insidious 

shunt obstruction. Infusion or overnight ICP remain the most accurate methods for 

interrogating shunts.  

Other parameters, such as AMPbaseline and AMPplateau could also give some indication 

for malfunction, however they were not as reliable. AMP at baseline was lowest in the 

functional group, indicating that the intracranial compliance was normal and the 

intracranial compartment physiologically relaxed. Notably, while ICPbaseline and its 

difference from ICPop were not different between borderline and obstructed shunts, 

AMPbaseline as a marker of compliance in the resting state was significantly higher in 

the obstructed shunts, indicating that compliance is more sensitive to insidious shunt 

underdrainage than pressure. Although it was increased in Groups B and even 

further increased in Group C, its low accuracy compared to Rout and ICPplateau could 

not justify its usage to detect shunt issues. Pathophysiologically though, it could 

indicate that shunt failure is associated with decrease of intracranial compliance and 

increased intracranial pulsatility. The compensatory reserve index RAP has 

previously been linked with imminent shunt failure (103). Increased Rout and 

pathological increase of ICP above CSP remain the most accurate descriptors of shunt 

malfunction, with thresholds of 1mmhg above CSFp and 4.5 mmHg*min/ml above the 

shunt’s inherent Rout respectively. Those thresholds alert to underdrainage, and a 

combination of increased Rout with further increased ICPplateau could differentiate 

clear obstruction. 
 

Clinical safety 
 

An internal audit performed between 2007 and 2009 (unpublished results) at the 

department of neurosurgery in Cambridge revealed a low rate < 1% of CSF infection 

following SISs if care is taken during the entire procedure – in particular what 

concerns skin disinfection and filling of the manometer lines and transducer(48). As 
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derived from section 6.1, we have also reported a 0% incidence of infection after shunt 

infusion tests in our series of 365 patients. This 0% infection rate was also replicated 

in our current study, therefore providing assurance that, when the appropriate 

standards are kept, infection risk could be practically eliminated. 
 

Financial implications 
 

We have not performed a health economics analysis on those patients, as it was not 

within the scope. Using the methodology, feasibility and safety data we provide here, 

perhaps a detailed evaluation of the overall financial benefit of infusion tests on the 

paediatric population might be of interest. Since saving shunt revisions early in life 

could prevent further revisions, perhaps the financial impact could be even more 

pronounced in young ages. Furthermore, a potential influence on developmental 

outcomes and continuity of care in this population could account for important 

financial benefits for the community, adding QALYs for the young, active population. 

 

Tübingen sub-group analysis 
 

All children in Tübingen were tested for suspicion of under-drainage or shunt 

blockage, as the presence of a gravitational ventil, protected them from developing 

over-drainage syndrome. 

One third of the patients that had functioning shunts presented a low compliance. 

This can be in part explained through the contribution of the venous system and 

displaceable volume of venous blood. Even though the shunt is opened, a reduced 

venous outflow may increase the resistance parameters, therefore contributing for the 

hydrocephalus pathophysiology.  Under the same principle, but in an opposite 

mechanism, increased venous outflow may compensate the higher intracranial 

pressure in non-functioning shunts, therefore explaining why 1/3 of the patients with 

non-functioning shunts showed a good compliance. Other adaptive mechanisms 

during brain development, or even the underlying disease that lead to hydrocephalus 

(e.g. children who suffered from post-haemorrhagic hydrocephalus with smaller 

brains) may also contribute to it.  
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Limitations 
 

Our study, as a first of its kind, has been retrospective in nature. What is more, data 

collection involved two different centres with different standards of practice, with 

Cambridge showing a relatively low threshold for infusion tests whereas Tubingen a 

relatively higher one, although this has not been cross-checked with the centres’ 

catchment areas, caseloads, and complexity of caseloads. 

 

As far as other practice differences between the centres are concerned that could be 

raising questions on clinical implementation, children that are not cooperative do 

need to be sedated or studied under GA. This certainly brings in some additional 

“invasiveness”, however, this is still drastically more invasive and more beneficial in 

the long-term compared to open shunt revision or routine insertion of ICP wires.  
 

Unfortunately, an infusion test cannot differentiate between an obstruction within 

the valve or of the abdominal catheter, or in both, since it only detects increased Rout 

distally to the needles. If the valve is found unobstructed, then revision of the 

abdominal catheter can be performed without further concerns. On the other hand, if 

the flow through the valve is satisfactory, the abdominal catheter will most likely also 

be tested, to confirm or exclude the possibility that both the valve and the distal 

catheter could be blocked. 
 

Finally, it is preferable to use a software (not necessarily ICM+) in order to 

continuously record ICP. The economic benefits associated with computerised 

infusion tests would significantly outweigh expenses related to software and expert 

expenses.  

 

Conclusions 
 

Shunt infusion tests are accurate, safe, feasible, minimally invasive and radiation 

free. They can be easily used for quantitative shunt assessment in children of all ages 

to exclude or confirm insidious shunt malfunction. They could be the gold standard 

for assessing complex hydrocephalus cases, when nothing else could direct 

management. If we consider the benefit versus the potential detrimental effects to the 

development and lifelong quality of such young children, infusion tests are an 
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important and currently unique tool for the paediatric neurosurgeon and perhaps 

even neurologist.  Objectively and subjectively, a clinical and family-reported benefit, 

accompanied by radiological improvement has been preliminarily illustrated by the 

Tübingen cohort that should be followed by the larger cohorts in Cambridge and by 

prospective data. 

 

After revealing several potential clinical, practical and outcome advantages, 

combined with the health economic advantages reported in section 8.1 and implied on 

this analysis, we suggest that shunt testing in vivo could become routine in 

neurosurgery units, especially centres specialising in hydrocephalus and complex 

cases. 
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CHAPTER 9  

SLOW WAVES OF INTRACRANIAL PRESSURE  
 

Influence of general anaesthesia on slow waves of ICP 

The results presented in this section have been published in Acta Neurochirurgica Suppl: 

Lalou A, Czosnyka Z, Lavinio A et al. Are slow waves of intracranial pressure suppressed by general 

anaesthesia? 2018; 126:129-132. 

A previous version of the paper also exists in Neurological Research: Lalou, DA. Czosnyka, M. Donnelly, J., 

Lavinio, A. Pickard, JD. Garnett, M. Czosnyka Z, Lalou DA, Czosnyka M, Donnelly J, Lavinio A, Pickard JD, 

et al. Influence of general anaesthesia on slow waves of intracranial pressure. Neurol Res . 2016;38(7):587–

92.  
 

9.1 Introduction 

Slow waves of ICP, also known as ‘b waves’, were first described by Lundberg in his 

1960 dissertation (327) where he also named the previously discovered by Janny (328) 

plateau waves (A waves). They are observed as rhythmic fluctuations of ICP and are 

characterised by a low frequency of 0.3 to 4 cycles per minute (22,24,278,279,329). 

Unlike plateau waves, that have been shown to be caused by a drop in arterial blood 

pressure (MAP) that triggers a vasodilatory cascade, the physiological origin has not 

been definitively shown(22,23,329). During simultaneous recordings, slow wave 

oscillations appear concomitantly with those of CBF, which justifies the postulation 

that they are also vasogenic in origin, following the changes in cerebral blood volume 

caused by vasodilation and vasoconstriction (329–331). Besides this observed 

vasogenic correlation, other causations suggested have been a brainstem neuro 

pacemaker controlling cyclical electrical activity, as well as CO2 changes during 

respiration have been implicated as causative agents(273,332) .  

Plateau waves also usually last over 5-10 minutes (if uninterrupted by medical 

intervention) and ICP typically exceeds 40-50mmHg, whereas B-waves are short-

lasting, and typically remain <40-50 mmHg) and constitute pathological events.  On 

the contrary, slow waves of ICP have also been described in healthy individuals, and 
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the exact thresholds of frequency and magnitude that differentiate them with disease 

have yet to be quantified, especially in hydrocephalus(27,280). Hence, due to lack of a 

clear distinction between physiological and pathological waves, as well as uncertain 

linical significance, diagnostic and prognostic exploration of b waves in hydrocephalus 

and TBI have nowadays obsolete. In TBI, the higher magnitude of B-waves has been 

associated with survival and low magnitude with a fatal outcome. However, they are 

no longer analysed towards this purpose and have since been replaced with different 

and more sophisticated methods of outcome classification and prognostication 

(220,256,258,260).  In hydrocephalus, the magnitude (or amplitude) of B-waves has 

been shown to be inversely correlated with compensatory reserve and positively 

correlated with Rout(67) . Increased magnitude or frequency of slow waves, either 

during CSF infusion tests or from overnight ICP monitoring, has been contradictorily 

correlated with clinical improvement after shunting in normal pressure 

hydrocephalus (27,67,280). To the best of our knowledge, no specific numerical 

thresholds have been accepted for the frequency and magnitude of slow wave that 

described NPH or other CSF disorders.  

GA is routinely used for ICP monitoring in TBI patients, as well as hydrocephalus 

patients that do not tolerate awake infusion tests, are agitated and difficult to comply, 

or for other clinical indications. Through our experience, we have macroscopically 

observed that slow waves are dampened or absent in patients studied under GA. Sleep 

studies have provided us with information on physiological frequency, magnitude, and 

the morphology or variation of B-waves during different sleep stages, however not 

during GA (22,332).  We have hence aimed to quantitively investigate the influence 

of GA on the magnitude of B-waves during wakefulness, by comparing awake and 

anaesthetised NPH patients undergoing infusion tests, as well as awake NPH 

patients with TBI long-term ICP recording. 

9.2 Materials and methods 

We formed two cohorts of 30 non-shunted patients each, undergoing computerised 

CSF infusion studies for possible NPH. Their clinical presentation was the usual for 



180 
 

NPH, and as has been described in our previous NPH cohorts used in this dissertation. 

A few patients overlap with those studied in previous chapters. Patients in GROUP 

A had undergone infusion tests awake, whilst GROUP B under GA. The later was 

used either because the patient was unable to fulfil the required 30 minutes to one 

hour of monitoring and stay still throughout the test, or as a perioperative technique 

of testing CSF dynamics followed by shunting within the same surgical session 

(24,110,233,333). GA was induced as per local standard protocol, using propofol, 

fentanyl and atracurium or vecuronium and maintained with either propofol infusion 

3-6 mcg/ml alone or combined with remifentanil 0.05-0.2 mcg/kg/min (132,334–337). 

Central temperature and PaCO2 levels were recorded and maintained stable at 36-

37oC and 4.5-5.0 kPa respectively. 

We expanded our study to ICP monitoring, using two further cohorts of 30 age-

matched patients each, undergoing overnight ICP monitoring. GROUP C included 

naturally asleep patients investigated for hydrocephalus, with or without a shunt in 

place. GROUP D included the overnight part of the continuous monitoring of severe 

TBI patients. They were selected on the premises of having relative normotension 

(mean ICP < 18 mmHg), and during the first night of ICU stay, in order to eliminate 

the devastating effects of secondary insults (217,256,257). These patients were 

managed according to our Neurosciences Critical Care Unit (NCCU) protocol, which 

for an ICP <20mmHg without other evidence of evidently disturbed dynamics, 

consists of deep sedation with propofol and fentanyl or remifentanil, with or without 

neuromuscular blockade. We did not include patients with primary decompressive 

craniotomy. Body temperature and CO2 levels were recorded and controlled at 36-

37oC and 4.5-5.0 kPa, as part of standard clinical protocol and international 

guidelines(49). 

Monitoring and use of recorded signals in TBI patients were approved by the relevant 

research ethics committee (29 REC 97/291).  
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Data analysis 

ADL [author] removed artefacts manually in all groups prior to signal analysis and 

manually calculated slow wave magnitude [SLOW] using spectral analysis of the ICP 

signal recorded from the infusion tests and calculated as the root of the power of the 

signal in the frequency bandwidth 0.3 to 4 cycles/min (101,278,285). This calculation 

was imported to an automatic analysis profile in ICM+ in order to calculate SLOW 

from the longer recording in groups C&D. In Groups A&B, ICP required de-trending 

prior to calculation of slow wave magnitude. This was achieved with a moving average 

filter, enabling to efface the effect of a pronounced, artificial increase of slow wave 

amplitude due to fluid infusion.  

Baseline ICP, Rout, elasticity and RAP were extracted as described in several 

previous chapters.  Results are presented as mean ± SEM. A one-way ANOVA was 

used to examine between group differences in examined parameters. Spearman rank 

correlation coefficient was used to examine the relationship between descriptors of 

slow waves and CSF compensatory parameters.  

9.3 Results 

The mean age was 73±7 and 75±8 years for Groups A& B respectively with a male to female 

ratio in both approximately 4:3. Illustrative cases of a conscious versus an anaesthetised 

possible NPH patients are presented in Figure 9.1A and B, respectively. Numerical results 

of slow waves and other infusion test parameters for the two groups are presented in Table 

9.1.  
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Figure 9.1: Influence of General Anaesthesia on slow waves of intracranial Pressure during infusion. 
Upper panel: Typical infusion study performed in conscious patient with ICP oscillations visible. Lower panel:  
patient under GA, ICP oscillations almost completely disappear. Slow: magnitude of slow waves 
 
 

 

 

Table 9.1 Infusion test and slow wave analysis results from the first two groups; conscious patients with 
NPH (Group A) and under GA (Group B). SLOW: Slow wave magnitude 
 

 Conscious  

(Group A) 

Under GA  

(Group B) 

 

p-value 

Age [years] 73±7 75±8  

Male/female ratio ~4:3 ~4:3  

SLOW [mm Hg] 0.23±0.16 0.15±0.11 <0.0023 

SD of 10 sec averages of ICP  

[mm Hg] 

1.41±0.24 0.61±0.28 <0.0001 
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Mean age in Group C was 23±8 years and 29±7 years for Group D.  Illustrative 

examples of an overnight monitoring recording in a naturally asleep, possible 

hydrocephalus patient versus a d\\\\eeply sedated and ventilated patient are shown 

in Figure 9.2A and 2B, respectively. Numerical results from Groups C&D are 

presented in Table 9.2.  

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 9.2 Influence of General Anaesthesia on slow waves of intracranial Pressure during 
overnight monitoring: Upper: Overnight ICP monitoring in conscious patient ICP= 17.5; slow= 4.2; 
Lower: monitoring of TBI patient ICP=13.5 , Slow=0.2  

 Conscious  

(Group A) 

Under GA  
(Group B) 

 

p-value 

Baseline ICP [mm Hg] 9.56±4.1 5.04±3.87 NS 

AMP [mm Hg] 1.82 ±1.7 1.91±1.41 NS 

Rout [mm Hg/(ml/min)] 13.6±5.2 19.5±11.1 0.011 

Elasticity [1/ml] 0.17±0.14 0.22±0.17 NS 

Production of CSF [ml/min] 0.30±0.21 0.21±0.28 0.022 

      1hr     → 

          2hrs        → 
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Table 9.2 CSF dynamics & slow wave analysis results from the second cohort groups 

(conscious patients with overnight ICP monitoring (Group C) & sedated TBI patients (Group D) 

 

 

The average SLOW and SD of 10 sec-averaged ICP was significantly lower in the 

anaesthetised patients (Groups B and D) compared with the alert/naturally asleep 

patients (Groups A and C). In the infusion patients, there was no correlation between 

compensatory reserve and the power of slow waves. There was no significant 

correlation between power of slow waves and Rout or elasticity either. In group A 

only, the magnitude of B waves was positively correlated with baseline ICP (R=0.48; 

p=0.0067).  
 

From the nature of measurement, there was a significant difference in the total 

duration of ICP monitoring between the infusion groups and the overnight ICP groups. 

There was no statistical difference between slow waves in Group A (baseline values, 

before start of infusion) and C, and respectively B and D (p>0.05). 

 

 Conscious  

(Group C) 

Sedated  

(Group D) 

p-value 

Age [years] 23±8 29±8  

Male/Female ratio ~2:1 ~2:1  

SLOW [mmHg]   0.196±0.13 0.11±0.091 0.0024 

SD of thirty 10 sec averages  

of ICP [mm Hg] 

1.42±0.64 0.71±0.42 <0.0001 

Mean ICP [mmHg] 7.7±4.9 13.6±5.91 0.001 

AMP [mmHg] 3.21±1.18 3.41±1.43 NS 

RAP index 0.44±0.17 0.3±0.18 0.045 
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9.4 Discussion  

Our current findings are the first quantitative demonstration of the degree slow 

waves are suppressed by GA. They only represent a statistical estimate, and in order 

to assess the clinical utility and application of such a finding further studies are 

required. 

 

It has been routine in our centre and many centres worldwide to anaesthetise animals 

and patients for ICP and CSF dynamics studies. Since different anaesthetic agents 

are available, their effects on ICP, CBF and metabolism are known and have been 

studied extensively. Propofol is among the most common agents used in brain injury 

and general anaesthesiology worldwide, and provides a flexible pharmacokinetic 

profile combined with a desired, profound suppression of cerebral metabolic rate, 

whilst preserving cerebral autoregulation (147,335,338). Fentanyl and remifentanil 

are known as safe, however as they are adjunct agents, a detailed effect on 

intracranial dynamics has not been elucidated yet (334,338–340) and neuromuscular 

blockers are considered to have negligible effects (49).  

Nonetheless, propofol-based anaesthesia appears to suppress slow waves by 

approximately 50% wakefulness or natural sleep, evident in both the average SLOW 

and 10 second SD of mean ICP, that were significantly lower in patients under GA 

than in those in fully conscious state. It would be difficult to hypothesise on the nature 

of this effect, as a combination of pharmacological, vascular and metabolic effects are 

related to the GA itself, on top of the influence of mechanical ventilation and relatively 

restricted changes CO2(148,201,341). Baseline ICP is known to correlate with slow 

wave power, probably reflecting the fact that increased ICP is associated with poor 

intracranial compliance, which in turn increases pulsatile components of ICP and 

slow wave magnitude (114,330). However, from our current results, baseline ICP did 

not appear reduced by GA, and therefore slow waves are most likely not dependent 

on mean ICP under GA circumstances. On a similar note, intracranial elasticity, as a 

measure of compliance, did not differ between groups. Alternatively, slow wave 

changes could be linked with lower brain metabolism rate and CBF. Indeed, as there 
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is strong evidence that b-wave oscillations occur in response to those of MAP and/or 

cerebral oxygenation, changes in CaBV could account for those changes in magnitude 

(342–344). Finally, Rout was significantly higher in the GA group (group B). This 

could represent selection bias due to the fact that patients selected for GA present 

with more severe symptoms and are more likely to not cooperate or to be a candidate 

for shunting (280). Furthermore, there is no known physiological mechanism for GA 

to cause higher Rout, at least under stable haemodynamic conditions. 
 

Separately to CaBV changes, arterial CO2 could be one of the contributing factors to 

ICP fluctuations. The haemodynamic effects potentiated by the vasodilative 

properties of CO2 are widely known under physiological circumstances. Under 

pathophysiological circumstances, such as sleep apnoea, changes in CO2 and 

breathing patterns have been described in association with CBF and systemic MAP 

disturbances (90,345). A recent study has shown that hypocapnia also decreases the 

amplitude of slow waves in TBI patients (346). Whether relevant abnormal or 

mechanical ventilation changes could also apply to the detected differences is 

unknown. We have not performed such multimodal analyses for our current 

investigation. A further modality not monitored or interpreted on this paper is MAP 

slow wave power.  As mentioned above on several occasions, slow waves in MAP are 

transmitted to the cerebral vasculature and, depending on the state of autoregulation, 

to ICP (256,271,347,348). Continuous monitoring of MAP intraoperatively, in order to 

determine an effect of GA on slow waves of MAP has not yet been attempted. 
 

Regarding the innate complexities of TBI and the potential influence this could have 

on slow waves, those patients were carefully selected to fit the purpose of this study, 

by excluding anyone with ICP>18 mmHg as well as beyond the first day of their 

admission. B waves are dampened or effaced in cases of an unreactive vascular bed, 

where a pressure-passive system suffers severe and steep rises in ICP. Therefore, in 

our selected patients, a lower slow wave magnitude cannot be directly attributed to 

the trauma more than the GA. Similarly, for our naturally asleep NPH patients, no 

significant effect or REM or non-REM sleep has been determined on the amplitude of 

b waves compared to wakefulness (22,90,349). Our study could not reveal a 
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pronounced effect of natural sleep on slow wave magnitude, as there was also no 

significant difference between Group A (daytime, awake) and Group C (night-time, 

asleep). 

The global appeal slow waves have in disease has recently resurfaced due to the surge 

of research into the glymphatic system and the role that peaks of CSF production and 

ICP during slow-wave sleep have been postulated to have in clearing cerebral amyloid 

and therefore have been implicated in the pathogenesis of dementias.These reports 

have subsequently sparked new controversies in the field of CSF dynamics, 

redemonstrating the importance of investigating such important phenomena of the 

cerebral vasculature and fluid dynamics in relationship to natural sleep as well as 

induced sleep and pathophysiology. 

 

There could be possible clinical implications of these reported findings. In the context 

of performing and interpreting ICP monitoring and CSF infusion test, it would be 

important to be aware of and consider the use and effect of GA, especially if slow 

waves consist part of the experimental or diagnostic/prognostic process. Alternative 

methods are taking over Rout and slow waves in identifying shunt responders and to 

indicate surgery in patients with a diagnosis of NPH. Despite this, ICP monitoring 

and infusion tests still provide objective assessment tools, and slow waves are yet to 

be rendered obsolete, especially since a threshold for their magnitude has not been 

described from a large enough cohort. Should this be attempted, the knowledge that 

slow waves are almost halved in magnitude by GA may prevent significant 

interpretation errors. 

 

Limitations of the study  

Our data is derived from an adequately powered cohort of unique individuals, and 

does not represent paired values within the same individuals, as attempting an 

experimental protocol of repeated infusion tests/ICP monitoring with and without GA 

on the same individuals would be harmful to the patients.  
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Since the overnight monitoring comparison group consisted of TBI patients, 

limitations arise from comparing different conditions, even though as mentioned 

above we tried to exclude most possible confounding parameters of disturbed CSF 

dynamics in those patients.  

As this was a retrospective study reliant on monitoring performed for clinical reasons, 

CBF and/or metabolism were not assessed in any patient group and therefore cerebral 

vasodilation and CBF fluctuations cannot be confirmed with the current study.  

Similarly, MAP and PaCO2 were not measured in order to address the 

aforementioned discussion points. It was not within the purpose of the study to 

compare CSF and slow wave dynamics with the use of different types of anaesthetics. 

Even though it is reasonable to assume that there may be a dose-dependent 

association between the depth of anaesthesia and the suppression of vasogenic ICP 

waves we are unable to explore this question with the dataset available.  

Finally, previous studies have found that the amplitude of b waves probably increases 

during REM sleep, although results remain contradictory. In such case, REM sleep 

could account for another possible interpretation of the difference between Groups C 

and D. However, we could not monitor sleep phases in order to determine this.  

Further studies need to be performed to confirm our findings, extend our speculations 

and provide practical information on how to interpret slow wave analysis derived from 

anaesthetised patients.  
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CHAPTER 10  

CONCLUSIONS AND FUTURE DIRECTIONS 

10.1 Conclusions 

Through the works included in my dissertation, I have explored new insights into the 

clinical utility of CSF dynamics. I have highlighted how an understanding of the CSF 

and cerebral blood circulation could advance all combined pathways of 

pathophysiological knowledge, diagnosis and treatment of CSF disorders. 

The main findings of each chapter and section are summarised in Table 10.1. 

Table 10.1: Synopsis of the main findings per chapter of this dissertation. 

Research question Main findings   Section 

Resistance to CSF 
outflow (Rout) in 
NPH  

• Significant correlation of Rout with age, as well as Rout with ICP 
baseline (derived from infusion tests). The later validates Davson’s 

equation in NPH 

• Rout and fundamental amplitude of ICP (AMP), as well as the slope 
of the AMP-ICP regression appear to be decreased in post-

traumatic hydrocephalus versus idiopathic NPH 

 

5.1 

 
 

5.2 

CSF dynamics in 
Pseudotumour 
cerebri syndrome 
(PTCS) 

• CSF pressure is coupled with sagittal sinus pressure in certain 
adults with PTCS. This coupling is resolves with CSF drainage. 

• Increased CSFp with depleted compensatory reserve is 
characteristic in paediatric PTCS. However, there is 
heterogeneity in the elevation of CSFp and disturbance of 
CSF dynamics, as well as clinical presentation. 

6.1 
 

6.2 

Value of shunt 
testing in vivo 

• Shunt testing in vivo, both for hydrocephalus and for PTCS 
and across all ages, is an accurate tool for diagnosing shunt 
malfunction.  

• Unnecessary admissions, more invasive monitoring and 
operations can be avoided when infusion tests are used 
routinely, with significant cost-effectiveness 

• In paediatric hydrocephalus, shunt infusion tests accurately 
reflect clinical follow-up and intraoperative shunt testing 
findings, and also contribute to saving unnecessary revisions 
in developing children. 

7.1 

 
 

7.1 
 
 

 

7.2 
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Research question Main findings Section 

Slow waves of ICP 
• Slow waves of ICP are most likely significantly suppressed by 

general anaesthesia, both in NPH and in TBI. Clinical and 
physiological applications of such a finding are awaited. 

8 

Autoregulation in 
NPH 

• A combination of arterial hypertension and impaired 
autoregulation is a negative predictive factor for shunt 
response.  

9 

 

 

Contributions to new knowledge 

The new knowledge that is derived from my current work potentially is centred 

around paediatric PTCS and paediatric hydrocephalus, as we are one of the only 

centres performing infusion tests in such patients, and the safety as well as the utility 

of those procedures in the paediatric population has remained unknown. The financial 

impact of infusion tests has also not been demonstrated before, to the best of my 

knowledge, neither has the effect of GA on slow wave amplitude. The rest of my 

findings have mainly confirmed or expanded on previous work, I have therefore not 

broken academic ground with them but have  to the existing pool of evidence in order 

to stimulate future leading-edge research.  

 

Overall, I have attempted to revisit Rout. Using the recent findings that Rout could 

not predict outcome as reliably as first reported during the first works of Borgensen 

et al(67) and Boon et al(63) in the 1980s and 1990s, I have attempted to explain why 

Rout is lacking predictive value in NPH. As this is a multifactorial question, I have 

started by exploring which factors influence Rout, and have discovered that age, 

cerebral autoregulation, systemic arterial blood pressure and finally aetiology (TBI) 

are only a few of such factors. Perhaps this could be the beginning of understanding 

the variability and the limited predictive value of Rout.  

In some cases of PTCS, a concomitant increase of CSFp and SSp can be seen during 

infusion, that results to Rout overestimation. The coupling is reversible with CSF 
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drainage. Increased CSFp (>20 or 15 mmHg) with depleted compensatory reserve can 

be identified in paediatric PTCS, albeit significant variability in several cases. 

I have also managed to analyse large cohorts of shunted patients, including a two-

centre paediatric study, to show the clinical value of shunt infusion tests; Shunt 

infusion tests contribute to avoiding long hospitalisations, surgeries for revising 

functional shunts, as well as being short-term and having practically zero 

complications.  

Lastly, slow waves of intracranial pressure are of importance, as they carry 

information related to cerebral autoregulation. As they are suppressed by general 

anaesthesia, this could have an influence on to-date and future interpretation of slow 

waves in CSF disorders. PRx, calculated by slow waves of ICP and MAP, indicates 

disturbed global cerebral autoregulation in NPH and therefore used as a predictive 

parameter for shunting, combined with MAP as well as possible Rout.  

10.2 Future directions 

CSF dynamics in NPH 

The puzzle of NPH in relationship with healthy ageing and other dementias is slow 

to unravel, unless a meticulous assembly of the cumulative knowledge acquired after 

many decades of research is performed. This should be used to design targeted 

research for further physiological understanding of cerebral circulation in 

physiological and pathophysiological ageing; Cerebral circulation per definition 

includes CSF, venous and arterial blood flow, and all relevant findings should be able 

to be translated to useful clinical information.  

Given that a lot of centres have abandoned the clinical use of infusion tests, mainly 

due to limitations in shunt prognostication, there might be less opportunities to 

progress quickly in the field of testing CSF dynamics in NPH. However, there is a lot 

of information available to explore and validate a new reality for Rout: correction with 

age, association with depleted compensatory reserve and stiffer ageing brains to begin 

with. In addition, understanding of aetiology, comorbidities, vascular disease, 
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autoregulation, white matter hyperintensities and white matter tract distortion: all 

this information is readily available and requires proper testing and validation, since 

the next step should be adapting these findings clinically, after building the evidence 

for well-designed clinical trials. 

Thorough mapping of a vascular disease morbidity score, together with imaging for 

CBF, white matter hyperintensities, white matter tracts with diffusion tensor 

imaging, and everything in the context of CSF circulation (with appropriate review of 

Rout) is required. In continuity with how all these are amenable or not to shunting or 

other treatment(s), the above appears as a step towards the right direction at this 

given moment. Post-shunting testing of CSF dynamics and cerebral circulation is vital 

and should not be neglected, especially in cases of no improvement. 

CSF dynamics in PTCS 

The coupling of CSFp and SSp could be used to explore therapeutic possibilities; it is 

likely that a resolution of the pathophysiological positive feedback loop between 

increased CSFp and SSp could correlate with resolution of clinical symptoms, as it is 

an interruption of the disease at its pathophysiological or pathogenetic process. A 

CSFp<20mmHg alone does not guarantee this uncoupling, and therefore adequate 

drainage to achieve reversal could be required. In cases of normal SSp, a different 

pathophysiological route has been considered(350), and it would be of significance to 

explore the same relationships between CSFp, SSp and compensatory reserve in 

different PTCS patients. 

For paediatric patients specifically, a coupling between these two pressures has not 

been described yet, and the cohort of 31 patients I have currently reported remains 

small and heterogeneous. As more patients are being tested and further follow-up and 

treatment outcomes become available for our studied patients, the limitations of 

currently available clinical, imaging and CSF dynamics criteria should be weighed. 

In selected cases, further testing, perhaps with consideration of invasive with scope 

of non-invasive monitoring could be considered. ICP monitoring, together with SSp 
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continuous recording could be the start to enhance diagnosis of such patients, and the 

basis to build a non-invasive suite of tools for the paediatric and adult population.  

Shunt testing in vivo 

Testing the function of shunts with infusion tests presents with less challenges. On 

the contrary, an understanding of the entire cerebral circulation after shunting, 

especially in relationship with improvement and no improvement, poses similar 

challenges as a shunt-naïve brain. Firstly, the mere requirement that a shunt opens 

and closes as it is expected to, is difficult to ascertain. Shunt infusion tests are a very 

accurate and valuable tool to exclude obstruction, however the fine-tuning of CSF 

drainage through a shunt is a complicated process, with no objective tests on how to 

achieve this yet. 

Further tools could assist in assembling the vignette of post-shunting circulation: 

concomitant assessment of the blood flow, as well as a combination of testing the 

presence of regular, spontaneous flow through the shunt combined with CSF infusion 

test to assure patency could show some promise. As NPH patients tend to gain only 

1-2 quality life years, with obstruction of shunts being a rare issue compared to other 

age groups and types of hydrocephalus, it is a matter of wonder whether those 

patients are receiving adequate CSF drainage and have the right type of valve 

implanted for their needs.  

No new devices could be required to monitor pressure and to flush the shunt system 

if infusion tests are available. There appear to add no new information to what is 

already available with infusion tests, besides increasing care costs and technical 

difficulties. Smarter approaches related to improving existing shunt valves or 

creating a single shunt valve could yield more effective results. At the same time, 

cogitation on the causes of shunt failure and the reasons behind deterioration of 

patients with patent shunts could easily reveal missing information that will assist 

in improving current care. 
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