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Placental microRNAs (miRNAs) regulate the placental transcriptome and play a pathologi-
cal role in preeclampsia (PE), a hypertensive disorder of pregnancy. Three PE rodent model
studies explored the role of placental miRNAs, miR-210, miR-126, and miR-148/152 respec-
tively, by examining expression of the miRNAs, their inducers, and potential gene targets.
This review evaluates the role of miR-210, miR-126, and miR-148/152 in PE by compar-
ing findings from the three rodent model studies with in vitro studies, other animal models,
and preeclamptic patients to provide comprehensive insight into genetic components and
pathological processes in the placenta contributing to PE. The majority of studies demon-
strate miR-210 is upregulated in PE in part driven by HIF-1α and NF-κBp50, stimulated
by hypoxia and/or immune-mediated processes. Elevated miR-210 may contribute to PE
via inhibiting anti-inflammatory Th2-cytokines. Studies report an up- and downregulation of
miR-126, arguably reflecting differences in expression between cell types and its multifunc-
tional capacity. MiR-126 may play a pro-angiogenic role by mediating the PI3K-Akt pathway.
Most studies report miR-148/152 family members are upregulated in PE. Evidence suggests
they may inhibit DNA methylation of genes involved in metabolic and inflammatory path-
ways. Given the genetic heterogeneity of PE, it is unlikely that a single placental miRNA is a
suitable therapeutic target for all patients. Investigating miRNAs in PE subtypes in patients
and animal models may represent a more appropriate approach going forward. Developing
methods for targeting placental miRNAs and specific placental cell types remains crucial for
research seeking to target placental miRNAs as a novel treatment for PE.

Introduction
Preeclampsia (PE) is a hypertensive disorder of pregnancy, with a global estimated incidence of 3–8%
[1]. Although its incidence varies substantially around the world, it remains a leading cause of mater-
nal and perinatal morbidity and mortality [2]. PE is defined by the presence of new hypertension and
new-onset significant proteinuria or other maternal organ/utero-placental dysfunction occurring at or
after 20 weeks of pregnancy [3]. An effective treatment that leads to resolution of maternal complications
is delivery of the fetus and placenta, contributing to the body of evidence that the placenta is a necessary
and central component of the pathogenesis of PE. As a complex genetic disorder, PE arises from the in-
teraction of environmental and genetic factors, with genetic effects contributing an estimated 50% to its
etiology [4,5]. In attempt to identify potential biomarker candidates and elucidate the molecular mecha-
nisms of PE, a host of genome-wide expression profiling studies has identified hundreds of differentially
expressed genes in the placentas of preeclamptic patients, highlighting the polygenic nature of PE and
essential involvement of the placenta in its pathology [6,7]. Alongside these findings, a number of studies
have identified altered microRNA (miRNA) expression profiles in the placentas of patients with PE [8]. In
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turn, mounting evidence suggests miRNAs precisely regulate the placental transcriptome and alterations in miRNA
expression play a key role in the development of PE.

MicroRNAs in preeclampsia
MiRNAs are a class of short, non-coding RNA molecules, approximately 22 nucleotides in length, involved in
post-transcriptional regulation of gene expression [9]. Single-stranded mature miRNAs harbor a highly conserved
sequence, known as the seed region, which consists of 2–8 nucleotides. The seed region binds via full or partial com-
plementary base pairing to the 3′ untranslated region of messenger RNA (mRNA) of one to hundreds of target genes,
inducing translational inhibition or degradation of mRNA [9]. There are now over 2600 miRNAs annotated in the
human genome (miRBase v22), and it is estimated that 30–60% of protein coding genes may be subject to miRNA
regulation [10,11]. A considerable number of miRNAs are conserved across species [12], indicating their involvement
in essential physiological processes. Inactivation of miRNA machinery in vivo induces placental malformation [13]
and knockdown of miRNA machinery in ex vivo placental explants leads to aberrant trophoblast proliferation [14],
showing the critical role of miRNAs in placental development. Inhibition and overexpression of miRNAs in primary
trophoblasts and trophoblast and endothelial cell lines have further demonstrated the ability of miRNAs to modu-
late placental development and function [15]. In addition, both rodents and primates possess species-specific miRNA
clusters that are expressed primarily or exclusively in the placenta and are essential for placental and fetal development
[16]. For example, knockout (KO) of the rodent-specific chromosome 2 microRNA cluster in mice leads to severely
impaired placental development, embryolethality, and fetal defects [17]. Moreover, members of the primate-specific
chromosome 19 miRNA cluster are significantly differentially expressed in preeclamptic patients [18,19], potential
biomarkers for PE [20,21], and involved in trophoblast function through modulation of target genes [22,23]. Hence,
species-specific placental miRNAs are involved in PE. MiRNAs conserved across species are also dysregulated in the
placentas of patients with PE, and in vitro investigations have begun to elucidate the pathological pathways and down-
stream targets of conserved miRNAs [24–26]. However, studies examining the role of miRNAs in animal models of
PE are limited, with only three studies identified in the literature that investigate the role of miR-210, miR-126, and
miR-148/152, respectively. Preclinical animal models allow molecular and functional analyses of the disease mecha-
nism not possible in humans and are therefore critical for understanding the role of placental miRNAs in the pathol-
ogy of PE. Furthermore, comparing the miRNA expression profiles of animal models of PE to that of patients with
PE permits evaluation of miRNAs as potential targets for novel treatments. This is particularly relevant given the
inconsistency across clinical studies as to which miRNAs are differentially expressed in the placentas of preeclamptic
patients and their direction of expression, which may in part be attributed to patient characteristics (such as ethnicity,
gestational age, presence or absence of labor, and preterm or term delivery) and differences in experimental method-
ologies. Hence, animal models provide crucial insight into the miRNAs modulating altered gene expression in the
placenta in PE and the pathological mechanisms arising from as well as governing their dysregulation.

Rodent models of preeclampsia
Rodents are valuable animal models for studying the genetics underlying the human placenta in health and disease.
The placentas of humans and rodents fall under the same classifications of discoid (referring to its gross morphol-
ogy) and hemochorial (referring to the fetal epithelium bathing in maternal blood). In addition to commonalities
in placental structure and function [27], genome-wide gene expression profiling suggests they share similarities in
terms of placental gene expression patterns across pregnancy [28]. Rodents also undergo similar cardiovascular adap-
tations to those seen in human pregnancies, such as increased glomerular filtration rate and renal plasma flow [29];
reduced sensitivity to Angiotensin II (Ang II) [30]; decreased vascular tone and vasomotion [31]; and elevated cardiac
output, stroke volume, and heart rate [32]. Hence, rodents have been ubiquitously utilized as animal models of PE,
including through utero-placental ischemia, nitric oxide synthase inhibition, angiogenesis antagonism, inflammatory
activation, and renin–angiotensin system stimulation [33]. In support of their use, rodent models commonly display
the hallmark features of PE, namely hypertension and proteinuria, in addition to other PE-like symptoms, such as
endothelial dysfunction, placental abnormalities, and fetal demise/growth restriction [33].

Animal models are essential to studying PE since the disorder presents almost exclusively in humans, with spon-
taneous PE otherwise described in only a handful of non-human primates [34–37]. The occurrence of PE in humans
and non-human primates is in part attributed to extensive trophoblast invasion leading to abnormal remodeling
of maternal spiral arteries that supply the placenta, a pathological process unique to these species [38]. While tro-
phoblast invasion and maternal artery remodeling is common to humans, rats, and mice, trophoblasts invade to a
notably lesser extent in rats and mice compared with humans [39]. This highlights one of the major disadvantages of
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rodent models, namely that PE must be induced, commonly achieved by surgical or pharmacological interventions
[33]. Furthermore, differences in cell types and the ensuing mechanisms regulating placental signaling contribute
to the distinct placental morphology and placental cellular functions between humans and rodents [39]. These dis-
tinguishing features in turn reflect species-specific gene expression patterns in the placenta [28]. Recapitulating the
disease in rodents therefore carries limitations and extrapolating findings to humans must be carefully considered.
Nonetheless, given the ethical implications of conducting research in human pregnancy, rodents represent a valuable
model system for investigating the pathological mechanisms contributing to the development of PE.

Placental microRNAs in rodent models of preeclampsia
Three studies utilizing animal models of PE were conducted in rodents to explore the role of placental miRNAs,
miR-210, miR-126, and miR-148/152 respectively, by examining expression of the miRNAs, their regulators, and
their gene targets [40–42]. The following review examines the role of miR-210, miR-126, and miR-148/152 in PE
by comparing their direction of expression in PE animal model studies to those reported in PE patients. Moreover,
cross-examining the expression of regulators and potential gene targets of miRNAs identified in the PE animal model
studies with evidence from in vitro studies, other PE animal models, and preeclamptic patients offers comprehensive
insight into the genetic components and pathological processes in the placenta that contribute to the disease etiol-
ogy. Overall, preclinical and clinical studies provide unique evidence of the placental genetic factors involved in PE.
Identifying similarities and differences between these studies as well as incorporating evidence from in vitro studies
remains crucial to deepen our knowledge of the genetic pathways contributing to the pathogenesis of PE, with the
potential to identify targets for novel treatments in PE.

MiR-210
MiR-210 has been implicated in a variety of physiological processes, including cell proliferation, differentiation,
metabolism, and apoptosis; cell cycle regulation; mitochondrial function; angiogenesis; neurogenesis; erythropoiesis;
and spermatogenesis (reviewed by [43]). Concurrently, its aberrant expression in a range of disease states, such
as tumorigenesis, cancer, status epilepticus, cryptorchidism, and cardiovascular diseases (CVDs), has prompted
investigations into the role of miR-210 in different pathological processes [43]. MiR-210 is now recognized as a
key hypoxia-response factor both in healthy and disease states, underlying its name as the master ‘hypoxamir’, a
hypoxia-inducible miRNA [44]. The induction of miR-210 in response to hypoxia has been demonstrated in practi-
cally all primary cells and cell lines investigated [45,46], and preclinical and clinical evidence has consistently shown
its upregulation in ischemic tissues and conditions [47–50]. In addition to hypoxia, oxidative stress and inflammation
mediate miR-210 expression, highlighting that hypoxia-independent mechanisms contribute to the role of miR-210
in physiological and pathological processes [51,52]. Likewise, evidence from animal models used to investigate the
role of miR-210 in the pathophysiological processes of PE supports the involvement of both hypoxia-dependent and
-independent mechanisms, findings corroborated by preclinical in vitro and in vivo studies and clinical studies in
preeclamptic patients.

Only a single PE animal model study investigating the role of miR-210 in PE was identified in the literature. The
study utilized mice treated with the toll-like receptor 3 (TLR3) agonist, poly I:C (P-PIC), to induce a preeclamptic
phenotype [40,53]. The study found significantly greater placental miR-210 expression in TLR3-induced PE mice as
compared with wild-type (WT) mice [40]. Two further preclinical studies have provided indirect evidence of miR-210
involvement in PE through examination of the miRNA and its gene targets in models of gestational hypoxia [54,55],
a valuable model for drawing inferences about PE. While gestational hypoxia is not specific to PE and there are differ-
ences in the maternal physiological responses to each, high altitude placentas represent valuable models for studying
PE (reviewed by [56]). High altitude and PE produce similar molecular changes in the placenta [57], and women
living at higher altitudes have an increased risk of developing PE [58–60], highlighting a common pathophysiological
impact. In line with the findings from the TLR3-induced PE mouse model, a significant upregulation of miR-210
was reported in the uterine arteries of pregnant sheep residing at high altitude [55]. An increase in miR-210 in these
models lies in agreement with the consistent upregulation of miR-210 seen in the placentas (16 studies) and blood (6
studies) of preeclamptic patients (Table 1) and in placentas from high-altitude pregnancies [61]. However, it remains
unclear whether altered miR-210 expression is a consequence or cause of PE and a harmful or protective mechanism.
Nonetheless, one study found miR-210 was upregulated as early as 12 weeks of pregnancy in preeclamptic patients
[62], and another study demonstrated its utility as a potential serum biomarker [63] (Table 1).

In contrast with the multitude of studies reporting an upregulation, a reduction in miR-210 expression was noted
in a study of pregnant mice subject to hypoxia, although the study attributed this to moderate hypoxia exposure [54].
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Table 1 Studies demonstrating a significant change in miR-210 expression in PE patients compared with healthy pregnant
women

Study Type of study Type of PE Time of collection Tissue sample Direction of change

Zhu et al. 2009 [19] Microarray
qPCR

Severe
Mild

Delivery
Delivery

Placenta villi
Placenta villi

Up
Down

Enquobahrie et al. 2011
[64]

Microarray and qPCR Diagnosed Delivery 8 maternal and 8 fetal sites Up

Ishibashi et al. 2012 [65] RNA seq and qPCR EO, LO, and
superimposed

Delivery Placenta Up

Muralimanoharan et al.
2012 [66]

qPCR Severe Delivery Placenta villi Up

Zhang et al. 2012 [67] qPCR Mild and severe Delivery Plasma Up

Anton et al. 2013 [63] qPCR Diagnosed Delivery and 15–20 weeks Serum Up

Betoni et al. 2013 [68] Microarray Diagnosed Delivery Placenta Up

Lalevée et al. 2014 [24] qPCR Severe Delivery Placenta Up

Luo et al. 2014 [69] qPCR Severe Delivery Basal plate
Chorionic plate

Up
n.s.

Ura et al. 2014 [62] Microarray and qPCR Severe 12–14 weeks Serum Up

Weedon-Fekjær et al.
2014 [70]

RNA seq EO and LO Delivery Centrally located cotyledon Up

Xu et al. 2014 [71] Microarray
qPCR

Severe
Severe

Delivery
Delivery

15–18 weeks and term

Placenta
Basal plate
Chorionic plate
Plasma

Up
Up
n.s.
n.s.

Jiang et al. 2015 [25] Microarray Severe Delivery 8 maternal and 8 fetal sites Up

Zhang et al. 2015 [72] Microarray Severe Delivery Basal plate Up

Vashukova et al. 2016 [73] RNA seq Superimposed Delivery Placenta villi of 8 maternal
and 8 fetal sites

Up

Zhou et al. 2016 [26] RNA seq and qPCR Diagnosed Delivery Chorionic plate from
quadrants and central
portion in placenta disc

Up

Adel et al. 2017 [74] qPCR Mild and severe Delivery Placenta villi Up

Gan et al. 2017 [75] qPCR Diagnosed Delivery Serum
Urine

Up
n.s.

Jairajpuri et al. 2017 [76] Microarray Mild and severe Delivery Plasma Up

Chen et al. 2019 [77] qPCR LO Delivery Full thickness placental
biopsy

Up

Nejad et al. 2019 [78] qPCR Diagnosed Delivery Plasma Up

Wang et al. 2019 [79] qPCR Diagnosed Delivery 3–5 cm from umbilical cord
attachment site (chorionic
side, full thickness)

Up

EO, early onset; LO, late onset; n.s., not significant; wks, weeks. Time of collection designated ‘delivery’ if not stated in study.

This finding is supported by a study in patients that found a downregulation of miR-210 in patients with mild PE
(Table 1) [19]. Hence, higher levels of hypoxia above a certain threshold may drive up miR-210 expression, providing
an explanation for the consistent upregulation seen in severe PE. Important to note though is that several studies in
mild preeclamptic patients have also observed an increase in miR-210 expression (Table 1) [67,74,76]. Furthermore,
exposure of WT and miR-210 KO mice to moderate hypoxia led to an increase in placental weight, and no histolog-
ical differences were observed between the groups [40]. This demonstrates miR-210 is not essential for normal fetal
placental growth under moderately hypoxic conditions. It also suggests that moderate hypoxia does not induce the
harmful effects potentially associated with an upregulation of miR-210 arising from severe hypoxia.

In a further two further studies in preeclamptic patients, although a significant increase in miR-210 was seen in
the basal plate, a non-significant trend toward downregulation of miR-210 was evident in the chorionic plate [69,71]
(Table 1). Unlike the basal plate, which primarily comprises maternal tissue, the chorionic plate consists solely of fetal
tissue, including fetal blood vessels, trophoblasts, and stroma tissue. Varying proportions of maternal and fetal tissue
underlie the distinct cell types, morphology, and physiological roles of the different layers of the placenta. In turn,
there are variations in gene expression between placental layers [80,81] and trophoblast cell types [82], supporting
the findings of heterogeneous miRNA expression. Site-specific differences in miR-210 expression across the placenta
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therefore probably reflect the unique placenta genome, which consists of maternal and fetal genes and their differ-
ing contributions to each layer as well as a variety of cell types. Overall, despite the diverse genetic makeup of the
placenta, the majority of preclinical and clinical studies point toward an upregulation of miR-210 in PE. While in-
hibiting miR-210 expression in patients with severe PE may therefore represent a potential treatment strategy, precise
targeting may be required to achieve a therapeutic benefit due to varied miR-210 expression across the placenta.

Inducers of MiR-210
To identify drivers of elevated miR-210 expression in PE, the study investigating the role of miR-210 in a
TLR3-induced mouse model of PE examined the expression of transcription factors, hypoxia-inducible factor 1
(HIF-1) α and nuclear factor-κB transcriptional factor (NF-κB) p50, finding significantly increased placental ex-
pression of both factors [40]. HIF-1 is a key mediator of the cellular response to hypoxia. Under hypoxic conditions,
the inducible HIF-1α subunit is stable, allowing it to form a dimer with the constitutive HIF-1β subunit and bind to
hypoxia response elements (HREs) of target genes or miRNAs and regulate their expression [83]. In turn, this affects
a diverse array of physiological and pathophysiological pathways (reviewed by [83]). Although HIF-1α and -2α KO
mice demonstrate the essential involvement of HIFs in placental vascularization and trophoblast differentiation [84],
overexpression of HIF-1 α has been shown to induce a preeclamptic phenotype in pregnant mice [85], supporting its
role in the pathogenesis of PE. A growing number of studies suggest placental hypoxia modulates HIF-1α expression,
mediating downstream targets involved in PE, including soluble vascular endothelial growth factor receptor-1 (sFlt-1)
[86], transforming growth factor beta [87], and endoglin [88]. In addition to hypoxia, immune responses mediated
by toll-like receptors may drive differential gene expression in PE. Kopriva et al. [40] found that, in TLR3-KO mice
treated with the TLR3 agonist, P-PIC, the elevation of miR-210, HIF-1α, and NF-κBp50 was ameliorated, indicating
an important role for TLR3 activation. In addition to stimulation of TLR3 inducing a PE phenotype in mice and rats
[53,89], an upregulation of TLR3 has been observed in PE patients [90], supporting the hypothesis that excessive
activation of TLR3 may play an important role in the development of PE. Double-stranded RNA, arising from virus
replication or necrotic, apoptotic, or stressed cells, leads to TLR3 activation [91]. TLR3 activates two key pathways
involving NF-κB and interferon regulatory factor 3, which subsequently activate pro-inflammatory cytokines and
Type 1 interferons, respectively [92,93]. The NF-κB transcription factor family consists of five members divided into
two subfamilies: the NF-κB proteins, NF-κB1 (p50) and NF-κB2 (p52), and Rel proteins, RelA (p65), RelB, and c-Rel,
which can form homo- and heterodimers that bind to DNA target sites and induce transcription of target genes [94].
In trophoblasts exposed to the TLR3 ligand, P-PIC, and in placental explants subject to hypoxia-reoxygenation, an in-
crease in NF-κBp50 was associated with upregulation of genes known to be involved in PE, namely the anti-angiogenic
factor sFLT-1 [93], pro-inflammatory enzyme cyclooxygenase-2, and pro-inflammatory cytokines, tumor necrosis
factor α (TNF-α) and interleukin 1 β (IL-1β) [95]. Dysregulation of HIF-1α and NF-κBp50 arising from hypoxia
and/or immune- mediated responses and a concurrent modulation of target genes suggests the transcription factors
play a key role in the pathology of PE, with miR-210 representing a potential target (Figure 1).

HIF-1α induces miR-210 expression via binding to a HRE region of the miR-210 promoter, a sequence highly
conserved across species, including mice, rats, and humans [96]. In vitro studies have shown direct regulation of
miR-210 by HIF-1α during hypoxia in trophoblastic JAr cells [67] and human umbilical vein endothelial cells (HU-
VECs) [97,98]. In addition, direct regulation of miR-210 by the HIF-1α isoform, HIF-2α, has been observed in the
trophoblastic BeWo cell line [24]. Studies have also provided broader evidence of a hypoxia-dependent induction of
miR-210 by demonstrating upregulation of the miRNA in response to hypoxia exposure in practically all primary
cells and cell lines, which includes trophoblast-derived cell lines [61,65,99], primary trophoblasts [66,67], and ex
vivo uterine arteries [55]. Collectively, these studies support that hypoxia, potentially through induction of HIF-1α,
stimulates miR-210 expression (Figure 1).

PE animal models and clinical studies in preeclamptic patients reporting an increase in HIF-1α further corroborate
the involvement of hypoxia in PE and explain the consistently observed upregulation of miR-210 in PE patients. Nu-
merous PE rodent models exhibit elevated placental levels of HIF-1α [100–105]. In an Ang II infused superimposed
PE rat model, there was no difference observed in placental HIF-1α in comparison with control stroke-prone spon-
taneously hypertensive (SHRSP) rats [106]. However, elevated levels of HIF-1α in SHRSP placentas have previously
been reported, thus potentially masking increases in HIF-1α levels when used as a control [107]. Finally, overexpres-
sion of HIF-1α in C57BL/6J pregnant mice produced a PE phenotype [85]. With respect to PE patients, a plethora of
clinical studies show higher protein levels of HIF-1α in third trimester placentas [66,108–115]. Significantly greater
levels have also been identified in blood as early as weeks 6–23 of pregnancy [116] and in placentas from high-altitude
pregnancies [117]. In studies that found no significant difference in HIF-1α levels in the placentas of PE patients, a
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Figure 1. Supporting and contradicting evidence of proposed genetic components and pathological processes involved in

PE based on PE rodent model study investigating the role of placental miR-210

miR-210, microRNA 210; HIF-1 α, hypoxia-inducible factor 1 α; HIF-2α, hypoxia-inducible factor 2 α; NF-κBp50, nuclear factor-κB

transcriptional factor p50; STAT6, signal transducer and activator of transcription 6; IL-4, interleukin-4; IL-10, interleukin 10; Th2,

T-helper type 2; PE, preeclampsia; EO, early-onset; LO, late onset; TLR3, toll-like receptor 3; HUVECs, human umbilical vein

endothelial cells; RUPP, reduced uterine perfusion pressure.

significant upregulation of HIF-2α was noted [118,119]. These clinical findings raise the possibility that placental
hypoxia plays a causal role in the development of PE, in part through upregulation of HIF-α proteins, which in turn
leads to dysregulation of downstream targets, including miR-210 (Figure 1).

With regards to NF-κBp50, in vitro studies report the transcription factor binds to the miR-210 promoter in pri-
mary trophoblasts and JAr cells [67,120], supporting the increased NF-κBp50 and miR-210 levels seen in the pla-
centas of the TLR3-induced PE mouse model [40]. N (gamma)-nitro-L-arginine methyl ester (L-NAME)-induced
preeclamptic rats also display enhanced NF-κB activation [121] and lipopolysaccharide (LPS)-induced preeclamp-
tic rats show elevated levels of NF-κBp65 [122,123]. In agreement with the general trend toward an upregulation
of NF-κB transcriptional factors, results of immunohistochemical studies conducted in placentas from pregnancies
complicated with PE show higher expression of NF-κBp50 [124,125] and NF-κBp65 [125–127]. Furthermore, in sil-
ico comparative promoter analyses of data from microarray studies examining altered gene expression in placentas
from PE patients found a greater number of NF-κBp50 transcriptional factor binding sites in the promoter sequences
of dysregulated genes [128,129]. Enhanced NF-κBp50 expression and activation in the placenta therefore probably
plays a role in the pathology of PE and contributes to the upregulation of miR-210 in PE (Figure 1).

Gene targets of MiR-210
Kopriva, et al. [40] examined gene targets of miR-210 in the PE mouse model, namely signal transducer and activator
of transcription 6 (STAT6) and interleukin 4 (IL-4). IL-4 is a cytokine that plays a key role in regulating the immune
system. Binding of IL-4 to its receptor activates STAT6, a mediator of T-helper type 2 (Th2) cell differentiation [130].
Activation of STAT6 by IL-4 promotes expression of GATA binding protein 3 (GATA3), a master regulator of Th2 cell
differentiation, which binds and enhances expression of the anti-inflammatory Th2 cytokines [130]. An imbalance
between T-helper type 1 (Th1) and Th2 cytokines is one theory underlying the pathology of PE [131,132]. Studies have
found elevated levels of pro-inflammatory Th1 cytokines in preeclamptic patients in contrast with the dominant Th2
cytokine profile in healthy pregnancy [133–135]. Modulation of genes involved in Th2 differentiation by miR-210
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provides insight into the mechanisms governing the reported shift in the immune profile of preeclamptic patients
and demonstrates a role for the miRNA in the pathology of PE.

In a trophoblastic Swan 71 cell line transfected with miR-210, STAT6 was identified as a downregulated gene [136].
Previous studies investigating STAT6 expression in the placenta and maternal serum also found a reduction in STAT6
protein levels in preeclamptic patients [115,137]. This is in line with the reported downregulation of the protein lev-
els of the miR-210 predicted target STAT6 in the placentas of TLR3-induced PE mice [40]. In addition to reduced
STAT6 expression, Kopriva et al. [40] observed significantly downregulated placental IL-4 levels. In a separate study,
the group showed IL-4 deficiency in mice produced a mild PE phenotype [138]. Subsequently, they found that IL-4
treatment and IL-4/ interleukin 10 (IL-10) co-treatment was able to significantly reduce blood pressure and prevent
endothelial dysfunction in a TLR3-induced PE mouse model [139]. Another group utilizing IL-10 KO mice exposed
to hypoxia to induce severe preeclampsia showed recombinant IL-10 restored blood pressure, proteinuria levels, and
fetal weight to physiological values [140]. In reduced uterine perfusion pressure rats, another group reported IL-4
supplementation significantly improved blood pressure and normalized uterine artery resistance index [141]. Stim-
ulating anti-inflammatory Th2 cytokines to confer therapeutic benefit in hypoxia- and immune-based preclinical
models of PE suggests their downregulation, in part driven by miR-210 inhibition, may contribute to hypoxia- and
immune-related pathological processes in PE. However, studies investigating IL-4 expression in placentas of PE pa-
tients have produced conflicting results. In support of the findings of Kopriva et al. [40], demonstrating a downreg-
ulation of IL-4 in the TLR3-induced PE mouse model, one study found IL-4 was lower in placental tissue, maternal
serum, and cord blood in PE patients when compared with normotensive controls [142]. These findings stand in
contrast to studies that showed no difference in placental IL-4 expression in preeclamptic patients [143,144] and a
study in which IL-4 could not be detected [145]. However, these studies observed a decrease in other Th2 cytokines
and their transcription factors [144,145]. Altogether, evidence supports a role for reduced Th2 cytokine production
in PE, which may in turn be subject to miR-210 modulation (Figure 1).

MiR-126
MiR-126 is abundantly expressed in endothelial cells (ECs) [146,147] and known to play an important role in vascular
homeostasis through regulation of angiogenesis, vasculogenesis, and inflammation (reviewed by [148]). Deletion of
miR-126 in mice has shown to induce embryolethality in 40–50% of cases, with embryos displaying signs of severe
systemic edema and hemorrhages, and surviving adult mice exhibiting impaired angiogenesis under physiological
conditions and post-injury [146,149]. In zebrafish, knockdown of miR-126 leads to abnormalities in circulation and
vascular morphology [150]. Overall, this demonstrates that miR-126 plays an important role in vascular development
during embryogenesis and subsequently in maintaining vascular integrity in adulthood with respect to endothelial
function and post-injury repair. In further support of its protective and proangiogenic role, the downregulation of
miR-126 has been reported in a number of CVDs, including atherosclerosis [151], ischemic stroke [152], heart failure
[153], atrial fibrillation [153], coronary artery disease [154], and diabetes [155], with growing interest in its role as a
biomarker. However, studies in different cell types, animal models, and diseases, most notably autoimmune diseases
and cancer, show that miR-126 also exhibits antiangiogenic effects [156,157]. MiR-126 appears to play a number of
roles often antagonistic in nature from proatherogenic [158] to antiatherogenic [159], from tumor suppressor [160]
to inducer [161], and from regulator of HSC quiescence to stimulator of HSC activation [162], demonstrating its
multi-regulatory capabilities within specific cell types.

The context-dependent function of miR-126 is reflected by its expression in a range of cell types besides ECs,
with miR-126 identified in endothelial progenitor cells (EPCs) [163], epithelial cells [164], hematopoietic stem and
progenitor cells [162], platelets [165], and several types of cancer [166–168] and immune cells [169,170]. Furthermore,
the diverse roles of miR-126 in part arises from the number of factors regulating its expression. Described by some
as a ‘mechanomir’, miR-126 expression has shown to be downregulated by hypoxia [171] and both stimulated [172]
and inhibited [158] by laminar shear stress. Its divergent properties are also attributable to miR-126 activating the
phosphatidylinositol 3-kinase-protein kinase B (PI3K-Akt) pathway, an intracellular signal transduction pathway
that regulates a host of cellular processes, such as cell metabolism, proliferation, survival, growth, autophagy, and
angiogenesis [173]. Phosphatidylinositol 3-kinase regulatory subunit 2 (PIK3R2) has been validated as a target of
miR-126 using reporter constructs in a number of cells, including ECs [150], cancer cells [174–176], rheumatoid
arthritis synovial fibroblasts [163,177], and EPCs [178,179]. Preclinical studies investigating miR-126 in the placenta
suggest that miR-126 plays an important protective angiogenic role through regulation of the PI3K-Akt pathway in
PE, although studies in preeclamptic patients provide conflicting results regarding its direction of expression (Figure
2).
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Figure 2. Supporting and contradicting evidence of proposed genetic components and pathological processes involved in

PE based on PE rodent model study investigating the role of placental miR-126

miR-126, microRNA 126; PIK3R2, phosphatidylinositol 3-kinase regulatory subunit 2; PI3K, phosphatidylinositol 3-kinase; PI3K,

phosphatidylinositol 3-kinase; Akt, protein kinase B; pAkt, phosphorylated Akt; VEGF, vascular endothelial growth factor; Ang I,

Angiotensin I; sEng, soluble endoglin; sFflt-1, soluble vascular endothelial growth factor receptor-1; PE, preeclampsia; LO, late-on-

set; EO, early-onset; HUVECs, human umbilical vein endothelial cells; L-NAME, N (gamma)-nitro-L-arginine methyl ester; LPS,

lipopolysaccharide.

Two studies identified in the literature have investigated the placental role of miR-126 in vivo. Following in vitro
investigations in EPCs, where overexpression of miR-126 was shown to stimulate EPC proliferation, differentiation,
and migration [163], Yan et al. [163] examined the effects of mimicking or silencing miR-126 in the placentas of
pregnant rats. Administration of agomir-126 led to an increase in microvessel density and an increase in the size
and weight of placentas and fetuses. In agreement, antagomir-126 administration led to a reduction in microvessel
density and a reduction in the size and weight of placentas and fetuses, suggesting a role for miR-126 in placental
angiogenesis. These findings prompted the study that investigates the role of miR-126 in a PE animal model and
examines its potential as a therapeutic target for PE [41]. Administration of L-NAME to induce a preeclamptic phe-
notype, demonstrated by elevated systolic blood pressure (SBP) and higher levels of urinary protein, led to a reduction
in miR-126 [41]. Administration of agomir-126 led to a reduction in blood pressure, significantly greater placental
and fetal weight, enhanced microvessel density, and a higher proportion of live pups, suggesting elevating levels of
miR-126 in PE may represent a therapeutic approach to counteract lower levels of miR-126 in PE. However, clinical
studies provide conflicting results as to the direction of miR-126 expression in the placenta in preeclamptic patients.
While three studies showed a reduction in miR-126 expression in the placentas of preeclamptic patients, two studies
detected an increase in expression (Table 2). These opposing findings are arguably not due to differences between
subtypes of PE since miR-126 was reported as both up- and downregulated in severe PE patients. It is possible though
that the contrasting results reflect differences in expression among different cell types and thus the multi-functional
capacity of miR-126. Furthermore, even within subpopulations, PE patients may display diverse genetic signatures,
highlighting the difficulty in deciphering the genetics of PE [180]. Despite the therapeutic benefit of increasing pla-
cental miR-126 expression in an L-NAME rat model of PE, it remains difficult to discern whether the same therapeutic
benefits would translate to patients. Nonetheless, comparing data from animal models with patients provide insight
into the clinical relevance of miRNAs and genes under investigation.
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Table 2 Studies demonstrating significant change in miR-126 expression in PE patients compared with healthy pregnant
women

Study Type of study Type of PE Time of collection Tissue sample Direction of change

Hu et al. 2009 [181] Microarray Severe LO Delivery Chorionic tissue from the
central part of the placenta

Up

Yan et al. 2013 [163] qPCR Diagnosed Delivery Placenta Down

Hong et al. 2014 [182] qPCR Diagnosed Delivery Chorionic tissue from the
central part of the placental
maternal phase

Down

Ura et al. 2014 [62] Microarray and qPCR Severe 12-14 weeks Serum Down

Jiang et al. 2015 [25] Microarray Severe Delivery 8 maternal and 8 fetal sites Down

Yang et al. 2015 [183] RNA seq Mild and severe Delivery Placenta and plasma Up

Xu et al. 2019 [184] In situ hybridization Diagnosed Delivery Systemic vascular
endothelium from
subcutaneous adipose
tissue

Down

LO, late onset; Time of collection designated ‘delivery’ if not stated in study.

Gene targets of MiR-126
In the study by Yan et. al [41] examining preeclamptic rats with reduced miR-126 expression, mRNA and protein
levels of PIK3R2 were significantly greater while phosphorylated Akt (pAkt) and protein kinase B (PKB), also known
as Akt, were significantly lower in preeclamptic rats compared with rats administered with agomir-126. There are
three classes of phosphatidylinositol 3-kinase (PI3K) enzymes (class I, II, and III). Class IA enzymes consist of two
domains: a catalytic and a regulatory subunit. PIK3R2 encodes the p85β regulatory subunit that represses PI3K activa-
tion by inhibiting its catalytic subunit, p110. PI3K is primarily activated by phosphorylated receptor tyrosine kinases
in response to extracellular signals that abolish p85β inhibition. Activation of PI3K stimulates signal transduction
pathways that lead to phosphorylation of Akt, a serine/threonine protein kinase [185]. Once activated, Akt modulates
the function of a wide variety of target proteins in both the cytoplasm and nucleus and thus a broad array of cellular
functions. Vascular endothelial growth factor (VEGF) mediated angiogenesis has found to be stimulated by miR-126
in endothelial cells through inhibition of sprouty related EVH1 domain containing 1 (SPRED1) and PIK3R2, which
negatively regulate extracellular signal–regulated kinase (ERK) and Akt phosphorylation, respectively [146,150]. In
addition, VEGF and Angiotensin I (Ang I) induction of miR-126 leading to inhibition of PIK3R2 and enhanced phos-
phorylation of Akt has been shown to play a role in promoting endothelial cell survival and sprouting [186]. MiR-126
has also been reported to stimulate VEGF expression in trophoblast cells, and lower levels of placental miR-126 in
PE patients were associated with decreased VEGF placental expression [182]. Hence, the proangiogenic effects of
miR-126 mediated via the PI3K-Akt pathway may be altered in PE (Figure 2).

In an earlier study, Yan et al. [163] utilized miRNA mimics and inhibitors to investigate PIK3R2, PI3K, Akt, and
pAKT as targets of miR-126 in EPCs. A miR-126 inhibitor induced a significant increase in mRNA and protein lev-
els of PIK3R2 and significant decrease in the levels of PI3K, pAkt, and Akt, reflecting the results observed in the
L-NAME preeclamptic rat model with reduced miR-126 expression [41]. A reduction in pAkt was identified in a
different study in L-NAME-induced preeclamptic rats, which found increased sFlt-1 and decreased VEGF placen-
tal expression [187]. Reduced pAkt levels were also reported in a study in LPS-induced preeclamptic mice, which
displayed an increase in pro-inflammatory cytokines, TNF-α, IL-1β and interleukin-6, and placental chemokines
[188]. These findings support involvement of the PI3K/Akt pathway in PE through inhibiting angiogenic and pro-
moting inflammatory processes (Figure 2). It should be noted though that a separate study in L-NAME preeclamptic
rats reported an upregulation of placental PI3K and pAkt [189], suggesting that the PI3K/Akt pathway in PE may be
modulated by an array of factors.

MiR-126 has also been the subject of clinical studies; an initial study by Yan et al. [163] found a decrease in miR-126
levels in the placentas of PE patients as well as an upregulation of PIK3R2 and downregulation of PI3K, Akt, and
pAkt mRNA and protein levels. In agreement, Khaliq et al. [190] reported lower protein levels of placental PI3K, Akt,
and pAkt in preeclamptic placentas and a significant negative correlation between the proteins and several serum
miRNAs, miR-222, miR-29a, and miR-181a, providing supporting evidence of a link between the PI3K/Akt pathway
and miRNAs in PE. Reduced pAkt was seen in a further two studies in PE patients, which showed inhibition of
PI3K/Akt in HUVECs stimulated the release of the anti-angiogenic factor soluble endoglin (sEng) [191,192]. One of
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the studies identified an association between lower pAKT and elevated circulating sEng in patients [191]. Overall,
these findings suggest reduced activation of the PI3K/Akt pathway may contribute to the pathology of PE (Figure 2).

However, in placental explants and primary trophoblasts, inhibition of PI3K/Akt did not induce release of sEng
[192]. Furthermore, in a trophoblastic JEG-3 cell line, inhibition of PI3K/Akt led to decreased expression of the
anti-angiogenic factor sFLT-1 and increased or unchanged expression of the angiogenic factors, VEGF and placen-
tal growth factor [193]. This evidence suggests the PI3K/Akt pathway may exhibit cell-dependent effects, with its
aberrant expression contributing to either pathological or protective processes depending on cell type. In contrast
with the findings of Yan et al. [163], an upregulation of PI3K and Akt has been reported in the placentas of severe
preeclamptic patients [193], indicating that, in addition to cell-dependent effects, genetic diversity in PE may underlie
differences in PI3K/Akt pathway regulation [193]. One study observed a downregulation of Akt only in preeclamptic
patients delivering before 34 weeks but not after [194], and another reported no difference in Akt levels compared
with healthy controls [195]. It should be noted though, basal state was measured, and differences may only occur
when Akt is stimulated [195]. Overall, there is evidence to support that a reduction of miR-126 in PE leading to an
increase in PIK3R2 and decrease in the levels of PI3K, pAkt, and Akt regulates angiogenic and inflammatory pro-
cesses (Figure 2). Evidence contradicting this direction of expression of miR-126 and its gene targets demonstrates
the genetic diversity of PE and again highlights the issue of targeting miR-126 as a treatment for PE, particularly given
the cell-dependent effects of miR-126 and the PI3K/Akt pathway.

MiR-148/152
The miR-148/152 family, consisting of miR-148a, miR-148b, and miR-152, plays an important role in regulating
immune-related processes and is implicated in the development and progression of multiple types of cancer, autoim-
mune disorders, and chronic inflammatory diseases (reviewed by [196]). In their mature form, miRNA family mem-
bers share a common seed sequence and hence target orthologous genes [196]. For example, DNA methyl-transferase
1 (DNMT1) was experimentally validated as a target of miR-148a in gastric cancer cells [197], miR-148b in lung cancer
cells [198], and miR-152 in ovarian [199] and liver cancer cells [200], in each of which overexpression of the miRNAs
induced tumor suppressive effects. In turn, the studies reported a downregulation of miR-148/152 family members
in the cancerous tissues and/or cells, coinciding with the consistently reported overexpression of DNMT1 in each
cancer type [201–204]. In contrast, the miR-148/152 family also demonstrate oncogene capabilities, indicating the
family of miRNAs can modulate targets and processes in a cell-specific manner. For example, miR-148a was found
to be upregulated in patients with hepatocellular carcinoma [205], and in vitro experiments demonstrated its ability
to inhibit a tumor suppressor gene and stimulate cell growth, viability, and migration [205]. In addition to cancerous
tissue, evidence suggests that the miR-148/152 family is involved in regulating placental development during preg-
nancy [206–208]. In trophoblast cells, all three miRNA family members target human leukocyte antigen-G (HLA-G)
[206–208]. HLA-G plays an essential immunosuppressive role in mediating the maternal immune tolerance to the
fetus by acting as an inhibitory ligand of maternal natural killer cells [209]. It is therefore postulated that reduced
expression of miR-148/152 family members in the placenta in a healthy pregnancy may confer a protective effect by
permitting sufficient HLA-G expression [206,208]. Correspondingly, evidence from preeclamptic animal models and
patients points toward an upregulation of miR-148/152 family members inducing dysregulation of target genes and
contributing to the pathogenesis of PE.

The role of miR-148/152 in PE has been investigated in two preeclamptic animal model studies in both of which
Sprague Dawley rats were administered L-NAME [42,210]. Yang et al. [42] found miR-148a and miR-152 were sig-
nificantly upregulated in the placentas of preeclamptic rats, which showed a significant increase in blood pressure
and urinary protein as well as pathological placental changes, although no significant difference in fetal weight was
observed. Zhang et al. [210] also observed that miR-152 was significantly upregulated, though it should be noted that
a PE phenotype was not validated. In terms of miR-152 in preeclamptic patients, two studies reported significantly
increased expression in the placenta [19,25], and one study reported increased expression in serum [62] (Table 3).
For miR-148a, one study found an upregulation [26] and one study a downregulation [211] in preeclamptic placentas
(Table 3). These studies were conducted in the chorionic plate and decidua-derived mesenchymal stem cells respec-
tively, raising the possibility that dysregulation of miR-148a in PE may differ between placental cell types and/or
layers, modulate different gene targets, and therefore contribute to pathological processes and/or confer protective
effects. Although members of the miR-148/152 family share a common seed sequence, differences in their non-seed
sequence may account for targeting of different mRNAs [196]. Hence, the observed upregulation of miR-152 in mild
and severe patients and different areas of the placenta, as well as in animal models of PE, may indicate inhibition of
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Table 3 Studies demonstrating significant change in miR-148/152 expression in PE patients compared with healthy
pregnant women

Study Type of study Type of PE Time of collection Tissue sample Direction of change

miR-148a

Zhao et al. 2014 [211] Microarray Severe LO Delivery Decidua derived MSCs Down

Zhou et al. 2016 [26] RNA seq and qPCR Diagnosed Delivery Chorionic plate from
quadrant and central
portion in placenta disc

Up

miR-152

Zhu et al. 2009 [19] Microarray and qPCR Mild and severe Delivery Placenta villi Up

Ura et al. 2014 [62] Microarray Severe 12–14 weeks Serum Up

Jiang et al. 2015 [25] Microarray Severe Delivery 8 maternal and 8 fetal sites Up

LO, late onset; MSCs, mesenchymal stem cells; Time of collection designated ‘delivery’ if not stated in study.

miR-152 as a potential therapeutic strategy for PE. However, additional studies across PE subpopulations and placen-
tal layers are required to validate miR-152 as an upregulated placental miRNA in PE.

Gene targets of MiR-148/152
The study investigating miR-148/152 in the L-NAME preeclamptic rat model that provides evidence of a PE phe-
notype also examined the expression of DNMT1, a gene target of miR-148/152, and fatty acid-binding protein 4
(FABP4), a gene target of DNMT1 [42]. Trophoblast cells incubated with L-NAME stimulated miR-148/152 and in-
hibited DNMT1 expression [42]. Reduced DNMT1 expression was associated with hypomethylation of FABP4 and
thus increased FABP4 expression [42]. In line with these findings, a significant decrease in DNMT1 and increase in
FABP4 mRNA and protein was observed in the placentas of L-NAME-induced PE rats and higher protein levels of
FABP4 were seen in their sera [42]. DNMT1 belongs to the family of DNA methyltransferase enzymes that estab-
lish and maintain DNA methylation patterns [212]. DNA methylation is a major epigenetic mechanism involved in
regulating gene expression. DNMT1 catalyses the addition of methyl groups to CpG islands located in the promoter
region of a number of genes [212]. This prevents binding of transcription factors to the promoter and therefore pri-
marily leads to silencing of gene expression [212]. Altered DNA methylation in the placentas of PE patients has been
investigated extensively. Studies have examined its potential as a biomarker for PE [213] and the association between
DNA methylation with clinical manifestations of PE [214]. Moreover, novel genes and miRNAs with differentially
methylated regions in PE have been identified, and genes and miRNAs previously detected as differentially expressed
in PE have been validated as differentially methylated [215–221]. Furthermore, an in vivo study investigating two
mouse models of PE found that elevating placental adenosine caused placental DNA hypomethylation and produced
a PE phenotype [222]. When placental adenosine was normalized to physiological levels, placental DNA methylation
was restored and ameliorated the PE phenotype [222]. Collectively, these studies support a key involvement of DNA
methylation and dysregulation of genes and miRNAs in the pathology of PE. One such target may be FABP4, which
belongs to the family of fatty acid binding proteins that play a role in regulating lipid trafficking and cellular responses
to lipids [223]. FABP4 is predominantly expressed in adipocytes and macrophages, in turn mediating inflammatory
and metabolic pathways, such as regulating lipolysis and acting as a fatty acid chaperone [223]. High levels of circulat-
ing FABP4 have been identified in obesity [224], Type 2 diabetes [225], insulin resistance [226], hypertension [227],
and atherosclerosis [228] as well as in gestational diabetes [229], gestational hypertension [230], and PE [231,232].
Hence, the miR-148/152 family may contribute to PE via modulation of DNA methylation patterns that leads to
aberrant expression of downstream targets involved in metabolic and immune pathways (Figure 3).

In agreement with the findings by Yang et al. [42], a separate study in L-NAME-induced PE rats also reported a
downregulation of DNMT1 in placentas and in hypoxia-treated trophoblasts [233]. In contrast, a study examining
PE-like mice exposed to Bisphenol A (BPA) found a significant elevation in DNMT1 placental protein levels and an
increase in DNMT1 expression in HTR-8/SVneo trophoblast cells exposed to BPA [234]. HTR-8/SVneo and JEG3 cells
exposed to hypoxia also exhibited increased DNMT1 mRNA and protein levels [235]. An overexpression of DNMT1 is
similarly seen in several clinical studies in preeclamptic placentas [235–237]. A separate study stratified preeclamptic
patients into early onset (EO) and late onset (LO)PE detected significantly higher DNMT1 expression only in EO
placentas [219]. Furthermore, a study that conducted DNA methylation analysis on candidate genes in preeclamptic
placentas identified two CPG sites within DMNT1, one which differed between EOPE and LOPE patients as compared
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Figure 3. Supporting and contradicting evidence of proposed genetic components and pathological processes involved in

PE based on PE rodent model study investigating the role of the placental miR-148/152 family

miR-148/152, microRNA 148/152; miR-148, microRNA 148; miR-152, microRNA 152; DNMT1, DNA-methyltransferase 1; FABP4,

fatty acid-binding protein 4; L-NAME, N (gamma)-nitro-L-arginine methyl ester; BPA, Bisphenol A; HREs, hypoxia response ele-

ments; HLA-G, human leukocyte antigen-G; HDL, high density lipoprotein.

with a control group and one that only differed between EOPE and controls [238]. This suggests that differences in
DMNT1 expression may be attributed to diverse PE genotypes. As previously identified, differences in the direction
of expression of miR-148/152 family members may account for differences in the expression of DNMT1. Moreover,
given the evidence of hypoxia and BPA exposure inducing DNMT1 expression in trophoblast cells, other factors may
override the inhibitory effects of the miR-148/152 family on DNMT1 expression. In line with this, hypoxia-induced
upregulation of DNMT1 in cardiac fibroblast cells was shown to be regulated by the transcription factor, HIF-1α
[239]. Nonetheless, certain evidence suggests the miR-148/152 family may contribute to the development of PE by
modulating DNA methylation (Figure 3).

Concerning FABP4, a significant increase in mRNA and protein levels was seen in L-NAME- treated HTR-8/SVneo
trophoblast cells as well as in the placentas of L-NAME-induced PE rats [42]. Correspondingly, FABP4 DNA methyla-
tion levels were significantly reduced in L-NAME-treated trophoblast cells as well as in the placentas of preeclamptic
patients [42]. Elevated FABP4 expression in L-NAME-treated trophoblasts led to accumulation of lipids and release
of pro-inflammatory cytokines [42]. A separate study also reported significantly higher FABP4 mRNA and protein
levels in the placentas of PE women [240]. It was found that inhibition of FABP4 in two trophoblast cell lines (Swan
71 and JAr) inhibited the proliferation, migration, and invasion of trophoblasts, indicating a key role for FABP4 in
placental development [240]. Another study observed a significant increase in FABP4 levels in placentas from mild
and severe PE patients, showing a correlation with elevated FABP4 and reduced high density lipoprotein in the sera
[241]. Multiple studies have found higher circulating levels of FABP4, from as early as the first prenatal visit [242] to
8–13 and 24–48 weeks [243], 14 and 26 weeks [244], and the third trimester [231,232]. An in vitro study in BeWo
trophoblast cells exposed to hypoxia validated two HREs in in the promoter of FABP4 [245]. This suggests that, in
addition to the miR-148/152 family inhibiting DNMT1 and reducing methylation of FABP4, other factors may con-
tribute to the elevated FABP4 levels seen in PE patients (Figure 3).

MiRNAs as therapeutic targets
The number of miRNA-based therapeutics in clinical trials has steadily been increasing over the past decade, with
phase I and II trials currently underway [246]. While the majority of miRNA therapeutics under development are
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for the treatment of cancer, researchers have been investigating their utility for viral infections and neurological,
metabolic, inflammatory, and cardiovascular disorders [247]. Strategies to target dysregulated miRNAs are inhibitors
(traditionally anti-miRNA oligonucleotides known as antagomirs that are complementary to the target miRNA) or
mimics (primarily chemically synthesized double stranded RNA molecules) [248]. Use of these hydrophilic agents
however carries disadvantages in terms of nuclease degradation, off-target binding, and poor cell membrane pene-
tration [249]. In turn, a number of strategies have been introduced to enhance the efficiency and specificity of in-
hibiting or restoring miRNAs, including locked nucleic acid anti-miRs and miR-sponges and miRNA vectors and
small molecules, respectively [248]. Furthermore, novel delivery systems using peptides and lipid nanoparticles have
been developed to provide further protection against nucleases, prevent immune attacks, and improve targeted de-
livery [248]. The unique ability of miRNAs to target multiple genes and in turn specific components of a biological
pathway or even entire or multiple biological pathways underlies their potential as therapeutic targets. For example,
MGN-9103, an inhibitor of the cardiac specific miR-208a, has shown to prevent pathological cardiac remodeling in
a heart-failure rat model, leading to improved cardiac function, overall health, and survival [250]. Microarray anal-
ysis revealed 131 genes were significantly differentially expressed in the hearts of treatment mice, of which 31 were
identified as predicted gene targets of miR-208a [250]. Of the predicted targets, 28 genes were significantly increased,
corresponding with an inhibition of miR-208a permitting an upregulation of otherwise inhibited target genes [250].
Although these findings demonstrate the therapeutic benefit of miRNAs’ pleiotropic nature, off-target effects and
unintended toxicity are a key concern among miRNA-based therapeutics. Identifying a suitable miRNA target and
developing efficient delivery systems to achieve therapeutically relevant outcomes therefore remain essential and rep-
resent major hurdles in developing clinically translatable miRNA-based therapeutics. These challenges are mirrored
in research seeking to target altered placental miRNAs in pregnancy disorders.

Given the heterogeneous nature of PE, it is unlikely that a single placental miRNA will present itself as a suitable
therapeutic target. Studies continue to investigate the utility of stratifying preeclamptic patients into distinct subtypes
based on biomarkers, genetics, pathology, and/or clinical phenotypes; however, patients often present with overlap-
ping elements and intermediate phenotypes [180,251–253]. In turn, the International Society for the Study of Hy-
pertension in Pregnancy guidelines recommend classifying PE as with or without severe features or as superimposed
(when pre-eclampsia develops in women with pre-existing chronic hypertension) and restricting the use of ‘mild’, ‘se-
vere’, ‘EO’, and ‘LO’ to research [3]. These classifications highlight the diverse disease presentation seen among PE pa-
tients. Furthermore, microarray and next-generation sequencing studies in the blood [254] and placentas [255–257]
of patients with different PE subtypes demonstrate not only common but also distinct gene expression profiles. Ge-
netic heterogeneity among PE subtypes is similarly evident in terms of placental miRNAs [19,70,183,255,258,259]
and partially explains inconsistencies in their reported direction of expression as previously discussed. However, it
remains to be seen whether a differentially expressed placental miRNA may be restricted to specific subtype and
therefore represent a precision medicine approach to targeting miRNAs in PE. In support of this approach are the
increasing number of studies that show altered miRNAs in the blood early in gestation in preeclamptic patients cor-
respond with differentially expressed miRNAs in preeclamptic placentas at term [260–263] and can therefore act
as non-invasive biomarkers, with a recent study demonstrating their utility as biomarkers for PE subtypes [21]. A
dysregulated blood-based miRNA in a subset of PE patients corresponding with altered expression in the placenta
and therefore representing a therapeutic target conceptually illustrates an ideal scenario. However, altered miRNA
expression profiles in PE subtypes both in maternal blood and the placenta still require validation in larger cohorts
and replication in independent cohorts, presenting a challenge given the difficulty of recruiting pregnant patients for
clinical samples. Hence, a suitable miRNA target for the treatment of preeclampsia, likely restricted to a subset of
patients, remains to be identified.

In the previously mentioned study by Yan et al. [41], rats administered L-NAME showed significantly higher SBP
and urinary protein levels compared with controls, providing evidence of a PE phenotype. Treatment rats went on to
receive an intra-placental injection of Cy3-labeled agomiR-126, a miR-126 mimic [41]. This led to a 4.2-fold increase
in miR-126 expression in treatment rats compared with non-treated PE rats [41]. In the placentas of the treatment
rats, patches of miR-126 were detected by fluorescence microscopy, which were notably absent from PE and control
rats [41]. These findings highlight the potential of intraplacental delivery of miRNA mimics for targeting the placenta,
but investigation of miR-126 expression across other tissues would be required to confirm placenta-specific delivery.
MiR-126 treated rats had significantly higher pup and placenta weights, enhanced microvessel density, and greater
proportion of live pups [41]. Although there was a reduction in SBP by 15% in miR-126 treated rat compared with
PE rats, this was not significant, and urinary protein levels were not reported. These findings support a key role for
miR-126 in contributing to the clinical manifestations of PE even though clinically relevant therapeutic outcomes, in
terms of blood pressure and urinary protein levels, were not achieved. Based on clinical studies reporting both up-
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and downregulation of miR-126, it is unlikely that miR-126 represents a suitable therapeutic target for all PE patients.
This further supports the concept that altered miRNAs may underlie unique signatures of PE subtypes and identifying
these should be the focus of future clinical studies. Accordingly, it may be more valuable to assess the therapeutic effect
of targeting miRNAs in animal models of specific PE subtypes (e.g. EO, LO, mild, severe, and superimposed). Finally,
with cell-dependent expression of miR-126 potentially contributing to inconsistencies in its direction of expression,
targeting at the cellular versus tissue level may be essential for achieving therapeutically relevant outcomes. Both viral
[264] and non-viral [265] delivery systems seeking to attain cell-specific targeting of miRNAs are under development
but remain unexplored in the placenta in vivo, a potential novel avenue for research.

Currently under investigation is tissue-level targeting of placental miRNAs, which in itself represents a challenge. A
recent study by Beards et al. [266] examined the feasibility of placental homing peptide-miRNA inhibitor conjugates
as a therapeutic strategy for pregnancy disorders. A non-targeting miRNA inhibitor was administered to pregnant
C57/BL6J mice intravenously to demonstrate proof-of-concept and assess safety parameters [266]. The inhibitor was
detected primarily in the junctional zone, with lower levels evident in the labyrinth and decidua, and none was de-
tected in vehicle control mice [266]. The miRNA inhibitor was not seen in any fetal organs examined but was detected
in maternal tissue, namely the heart, liver, kidney, and uterus [266]. The study noted the importance of these findings,
indicating systemic delivery of a miRNA inhibitor may lead to off-target effects. No significant difference in median
fetal and placental weights, fetal–placental weight ratio, litter size, or number of resorptions was observed though,
suggesting the miRNA inhibitor had no serious adverse effects in pregnancy [266]. In the second part of the study,
three sequences, namely a scrambled miRNA inhibitor, a miR-145 inhibitor, and a miR-675 inhibitor were conju-
gated to the peptide CCGKRK and injected intravenously into pregnant mice [266]. These miRNAs were selected
since miR-145 and miR-675 have shown to regulate placental growth and function [267–270] and found to be dys-
regulated in the placenta of pregnancies complicated by PE and intra-uterine growth restriction [270,271]. Inhibition
of miR-675 in treatment mice led to a significant reduction in placental miRNA expression and significant elevation
in median placental weight compared with control mice [266]. Inhibition of miR-145 did not induce a significant
change in placental miRNA expression and median placental weight [266]. This may have arisen due to normaliza-
tion of miR-145 expression levels, highlighting the issue of targeting miRNAs for a therapeutically relevant period
of time. Even though pregnancy has a defined timespan, modulating miRNAs for a sufficient period to achieve a
therapeutic benefit is another aspect that must be considered. It should be noted though that both miRNA-inhibitors
did cause a significant increase in median fetal weight, and there was no change in litter size or fetal resorptions, indi-
cating the inhibitors were well-tolerated in pregnant mice [266]. While validation of placenta-specific targeting was
not examined in the study, the group had previously evaluated the placental homing ability of the CGKRK peptide
[272]. The 5[6]-carboxyfluorescein labeled peptide was not detected in the heart, brain, liver, spleen, or lungs, but
was found in the kidney [272]. In the placenta, the peptide was detected in decidual spiral arteries and the labyrinth,
specifically in the endothelium of unremodeled vessels and endovascular trophoblasts of remodeled vessels, while
none was found in the junctional zone [272]. Collectively, these studies demonstrate the potential to target specific
cellular compartments of the placenta but also highlight the difficulty of achieving tissue-specific delivery. While
cell-specific targeting may represent an ultimate goal, efforts to achieve placental-specific targeting should not be
dismissed, particularly given the limited number of in vivo studies examining placental miRNA targeting. Alongside
the development of novel delivery systems targeting placental miRNAs, a growing understanding of the pathologi-
cal role of placental miRNAs in PE underlies their emerging potential as therapeutic targets and as a new form of
treatment for PE.

Conclusion
Animal model studies offer essential insight into the molecular and functional mechanisms underlying PE as they
permit investigations not possible in pregnant women. Three studies utilizing rodent models of PE explored the role of
placental miRNAs, miR-210, miR-126, and miR-148/152 respectively, by examining expression of the miRNAs, their
regulators, and gene targets. A comparison of these findings with evidence from clinical studies, other PE animal
models, and in vitro studies have allowed us to present a comprehensive evaluation of the interaction of genetic com-
ponents and pathological processes in the placenta that underlie PE as well as evaluate their suitability as therapeutic
targets.

Inconsistencies in the direction of expression of miR-210, miR-126, and miR-148/152 across clinical studies high-
light the genetic heterogeneity of PE. It is therefore unlikely that a single placental miRNA may represent a suitable
target for all PE patients. Future studies should focus on elucidating altered blood-based and placental miRNA expres-
sion profiles in PE patient subtypes or identifying an altered placental miRNA characteristic of a subset of patients as
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this will permit undertaking a precision medicine approach to targeting potential therapeutic miRNAs. Investigations
in animal models of PE may in turn benefit from utilizing specific PE subtype models to elucidate the role of placental
miRNAs. Finally, establishing methods for targeting placental miRNAs as well as specific placental cell types remain
cornerstone experiments before placental miRNAs may serve as therapeutic targets for a new form of treatment for
PE.
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