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Abstract: This work is an extension of the discrete unified gas kinetic scheme (DUGKS) from rarefied 

gas dynamics to strongly inhomogeneous dense fluid systems. The fluid molecular size can be ignored 

for dilute gases, while the nonlocal intermolecular collisions and the competition of solid-fluid and 

fluid-fluid interactions play an important role for surface-confined fluid flows at the nanometer scale. 

The non-equilibrium state induces strong fluid structural inhomogeneity and anomalous fluid flow 

dynamics. According to the previous kinetic model [Z. L. Guo et al., Phy. Rev. E 71, 035301 (2005)], the 

long-range intermolecular attraction is modeled by the mean-field approximation, and the volume 

exclusion effect is considered by hard-sphere potential in the collision operator. The kinetic model is 

solved by the DUGKS, which has the characteristics of asymptotic preserving, low dissipation, second 

order accuracy and multidimensional nature. Both static fluid structure and dynamic flow behaviors 

are calculated and validated with Monte Carlo or molecular dynamics results. It is shown that the flow 

of dense fluid systems tends to that of rarefied gases as the dense degree decreases or the mean flow 

path increases. The DUGKS is proved to be applicable to simulate such non-equilibrium dense fluid 

systems. 
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Introduction  

The hydrodynamics of nanoscale fluid systems exhibit many peculiar behaviors 

comparing to that at the macroscopic level [1], which has drawn growing interests in the 

research of lab-on-a-chip [2], storage, conversion and exploitation of energy [3-6], water 

purification [7,8], nano-manufacturing [9,10], carbon sequestration in Metal Organic 

Frameworks [11], gas separation [12,13] and so on. Although the particle-based molecular 

dynamics (MD) and direct simulation of Monte Carlo (DSMC) have been commonly used to 

study such systems, these techniques are usually computationally intensive [1], and suffer huge 

statistical noises, especially for flows near the equilibrium state [14] or in the high density 

regime [15]. Therefore, a numerical scheme with high accuracy and applicability to a wide 

range of flow regimes is desirable for the study of nanometer scale fluid flows. 

The Knudsen number (Kn), which is defined as the ratio of fluid molecular mean free path 

(MFP) to the characteristic length of flow field [14], is normally taken as the criterion number 

to characterize flow regimes from the continuum flow (Kn < 0.001) to the free molecular flow 

(Kn > 10) in rarefied gas dynamics. The Navier-Stokes (NS) equation can be adopted to 

simulate fluid flow in the continuum flow regime, while the NS equation with slip boundary 

condition is usually employed in the slip flow regime (0.001 < Kn < 0.1), where the rarefaction 

effects can no longer be neglected [5,16-18]. However, the NS equation (with slip boundary 

condition) fails to capture the non-equilibrium effects in more rarefied flow regimes, e.g., the 

transition and free molecular flow regimes, where the continuum assumption becomes totally 

invalid [15]. Besides, it also fails when fluid properties or transport coefficients vary 

significantly over a molecular size [19]. Consequently, the NS equation cannot be employed to 
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capture nanoscale fluid behavior, since both the cases may happen in a denes fluid system at 

the nanometer scale. 

The Boltzmann equation is well-recognized to work in all the flow regimes ranging from 

continuum flow to free molecular flow [20,21]. However, it is only valid for dilute gases with 

homogeneous properties, i.e., satisfying the following conditions: (1) ignorable molecular size; 

(2) localized binary collision between molecules; (3) molecular chaos hypothesis [1,15,22]. For 

a dense fluid system at the nanometer scale, molecular size cannot be ignored since it is 

comparable to the characteristic length or the MFP. Thus, the Boltzmann equation breaks 

down for such systems.  

The Boltzmann equation was extended into dense gas system by Enskog [23] and later 

modified by van Beijeren and Ernst [24], known as the Enskog theory and revised Enskog 

theory, respectively. Although molecular size and the collisional transfer of momentum and 

energy (non-local collisions) are considered in such theory, it still assumes molecular chaos and 

uses the rigid spherical model [23]. In addition, molecular interactions (fluid-fluid and 

fluid-solid) become predominant on dynamical and structural properties of dense fluids in the 

nanoscale fluid flows. Therefore, the Enskog theory is also not sufficient to describe the state 

of dense fluids system at the nanometer scale. To overcome this limitation, the effects of a 

long-range smooth attractive tail is added to the hard-core repulsion of the Enskog equation, 

known as the Enskog-Vlasov equation [25-27], to model the intermolecular potential effects in 

dense fluids, where the long-range interactions are dealt with by a collective meanfield. 

Based on the Enskog-Vlasov equation, the nanoscale fluid flow is studied by Davis [28] 

and Vanderlick [29,30], where the kinetic equation yields the exact Yvon-Born-Green 
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equations for the density distributions at equilibrium. The molecular size, non-local collisions 

and molecular interactions (fluid-solid and fluid-fluid) were simultaneously considered. 

However, the collision operator in their theory is quite difficult in practical applications. Later, 

a tractable kinetic model was proposed by Guo et al. [22] to account for the strong 

inhomogeneity in dense fluid systems. Following the Chapman-Enskog analysis, the original 

kinetic equation was employed to study the equilibrium and dynamic behaviors of confined 

fluids on the macroscale level. However, only the no-slip cases were studied in their paper. 

Besides, the hydrodynamic equation [22] is only applicable to continuum flows, since it retains 

up to the first order terms in the Chapman-Enskog series. Thus, the non-equilibrium effects 

are not properly captured. In this study, the discrete unified gas-kinetic scheme (DUGKS) [31] 

is extended to solve the kinetic model [22] for strongly inhomogeneous confined fluid systems, 

which can capture the rarefaction effects as well.  

Combining the advantages of the lattice Boltzmann method (LBM) [32] and the unified 

gas kinetic scheme (UGKS) [15], the DUGKS [31] was proposed recently for rarefied gas flows, 

which is applicable to the entire flow regimes. It has been successfully applied to low-speed 

isothermal flows ranging from the continuum to free molecular flow regimes [31], compressible 

flows considering heat transfer and shock discontinuity [33], flows of binary gas mixtures [14], 

Boussinesq flows [34], multiscale heat transfer [35-37], thermally induced non-equilibrium 

flows [38], rarefied gas flow in micro-channels [39], solid-liquid phase change problems [40], 

immiscible two phase flows [41] etc.. The capability of the DUGKS to tackle multiscale 

problems has been thoroughly discussed in these studies, and a rigorous theoretical analysis of 

its unified preserving properties was also made recently [42]. However, the DUGKS is based on 
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the Boltzmann equation, which is not sufficient for dense fluid systems with strong 

inhomogeneity at the nanometer scale [1,4,9,22].  

The purpose of this paper is to extend the DUGKS to non-equilibrium dense fluid systems 

with strong inhomogeneity at the nanometer scale based on the kinetic model [22], where the 

effects of volume exclusion and long-range fluid-fluid and fluid-wall interactions are 

simultaneously taken into account. 

1 Kinetic model for nanoscale dense fluid system 

The Enskog theory considers the effects of finite size of molecules and non-local collisions 

of hard-sphere fluids [4,23], which are ignored in the Boltzmann equation. Combining the 

Enskog equation and the mean-field theory to account for the volume exclusion effects and the 

long-range intermolecular attractions, respectively, the evolution of velocity distribution 

function for a dense fluid can be described by the following kinetic equation [22] 

    1 ,t ext mf f m f f         r r    (1)  

where f (r, , t) is the velocity distribution function of molecular velocity  at spatial position 

r and time t, t represents partial derivative in terms of time t, m is the molecular mass, r 

and  represent gradient operators in terms of space r and velocity , respectively; ext is the 

external potential term, m relates to the attractive part of the fluid-fluid potential, and ( f ) 

is the extended Enskog collision operator. Following the projection method for hard-sphere 

fluids [9,43], ( f ) can be further divided as the superposition of a Boltzmann collision term 

B and an excess collision term E. The Boltzmann part B is modeled by the 

Bhatnagar-Gross-Krook relaxation process [22], 
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where  is the relaxation time, and eqf is the Maxwellian local equilibrium distribution function 
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where n is the number density, R is the gas constant, T is the constant temperature of the 

isothermal system, u is the flow velocity. The macro flow variables can be calculated from the 

moments of the distribution function, 

 1, .n fd n fd    u   (4)  

Note that only the isothermal case is considered in this paper, and the temperature is given as 

a constant. The excess collision term E accounting for volume exclusion effects of 

intermolecular repulsion is expressed as [22] 

    0 2 ,eq
E V f n n        u A B   (5)  

where V0 is related to molecular diameter , i.e., V0 = 2 3/3 [23,44]; 

   n w n d    r r r r  is the local average density (LAD) with w(r) being a weight 

function [45], which was commonly used in the free energy density functional theory (DFT) to 

study inhomogeneous fluid systems [29,45];  is the radial distribution function (RDF) for 

homogenous hard-sphere fluids [46]. To account for the inhomogeneity of dense fluid system, 

the RDF  in Eq.(5) is evaluated with the LAD, rather than the local density n. Meanwhile, 

the parameters A and B are two gradient operators defined by [22] 

  
| | /2

1 ,n d
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where  is effective molecular diameter, and D is equal to  5/120.  

The external potential ext includes all external potentials, such as the wall potential w 

and that driving the fluid to flow. The wall potential can be represented by the 10 – 4 – 3 

potential for a planar wall [29] 
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or the 10 – 4 potential [47] 
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  (9)  

where wf and wf are the energy and range parameters of wall-fluid interactions, respectively; 

and z is the perpendicular distance from the wall. Note that the 10 – 4 – 3 wall potential is a 

result of the integration of a continuous distribution of all the solid molecules interacting with 

gas molecules through the 12 – 6 L-J potential. Consequently, the 10 – 4 – 3 wall potential is 

approximately equivalent to the 12 – 6 potential of fluid-solid molecules in the MD simulations. 

For more general geometrics, the potential at a position can be measured from those of all solid 

molecules. The empirical parameters between the interactive molecules are chosen exactly the 

same as those in the MD simulations.  

The mean-field theory is adopted to account for the long-range intermolecular attraction, 

where a gas molecular is considered to move under the average attraction of molecules in the 

system [48]. According to the decomposition principle of the pair-wise intermolecular potential 

[49], the molecular interaction part acts when the distance between molecules is larger than 



 

8 
 

effective diameter , and thus, m in Eq.(1) can be expressed as 

       ,m attn d


 
 

   r
r r r r r   (10)  

where att is the attractive part of the Lennard-Jones (LJ) fluids, which can be represented as 

  
12 6

4 ,ff ff
att ffr

r r
 

 
                       

  (11)  

where ff and ff are the energy and range parameters of fluid-fluid interactions, respectively; 

and r is the distance between two fluid molecules. Meanwhile, the interaction range of wall 

atoms and fluid atoms can be represented by the effective diameter  as [9,50] 
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  (12)  

where Tr = kBT/ is the reduced temperature, with a1 = 0.2977, a2 = 0.33163 and a3 = 

0.00104771. 

2 DUGKS for the kinetic model 

In this section, the DUGKS will be employed to solve the kinetic equation (1). Before 

implementation, a transformation is conducted on Eq.(1) for convenience 

 ,t Bf f      r G   (13)  

where G is a total force term as a combination of volume exclusion effects, long-range 

intermolecular attraction, surrounding wall potentials and other outside forces, which in the 

current work can be expressed as 

   0 2 ,eq
ext m V RT n n f

RT
            

uG A B    (14)  

where the derivative of distribution function f in terms of particle velocity f was 

approximated by its equilibrium state eqf , due to the fact that f eq is the leading part of the 
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distribution f and the gradient of f eq has the most important contribution to the gradient of f 

[48], especially for high fluid density cases as in the current work 

 .eq eqf f f
RT
     u

 
   (15)  

Since the original DUGKS does not include the external force term G, we will update the 

Eq.(13) by two steps: (1) employ the standard updating rules as originally described in 

[14,31,33], see sections 2.1 and 2.2; (2) treat the external force term G by the Strang splitting 

technique [51-53], see section 2.3. 

2.1 Updating in the standard DUGKS 

For the original DUGKS without considering the external force term G, Eq.(13) can be 

written as 

 .t Bf f     r   (16)  

Adopting the midpoint rule for time integration of the convection term, and the trapezoidal 

rule for the collision term of evolution equation Eq.(16), we can discretize it into the following 

form for cell j (rj is the cell center) from time tn to tn+1 as 

  1 1/2 1 ,
| | 2

n n n n n
j j j j

j

t tf f F
V

           (17)  

where the superscript (n+1) and n represent time tn+1 and tn, respectively; the subscript j 

represents space rj at the cell center, F n+1/2 is micro flux across the cell interface, i.e., 

    1/2
1/2, ,

j

n
nV

F f t d


  n r S   (18)  

where jV  and |Vj| are cell surface and cell volume of the cell Vj, respectively; n is the 

outward unit vector normal to the surface. 

By introducing two auxiliary distribution functions fand f  as 
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  (20)  

the Eq.(16) can be rewritten as 

  1 , 1/2.n n n
j j

j

tf f F
V

      (21)  

Since the BGK collision operator B satisfies the following conservative laws 

 0, 0,B Bd d         (22)  

the evolution can be done explicitly according to Eq.(21) by tracking auxiliary distribution 

function f, instead of the original distribution function f. The density and velocity can be 

calculated as 

 , .n fd n fd   u     (23)  

2.2 Flux evaluation 

In order to update f  from tn to tn+1 according to Eq.(21), the micro flux across the cell 

interface Vj needs to be evaluated first, the key point of which is to reconstruct the original 

distribution function f n+1/2 at time tn+1/2 on cell interface. Similar to the treatment in the above 

updating rule, we integrate Eq.(16) along the characteristic line within a half time step, i.e., h 

= ∆t/2 with the trapezoidal rule for the collision term 

        , , , , , , , , ,
2ij n ij n ij n ij n
hf t h f h t t h h t           r r r r        (24)  

where rij is the center of cell interface between cell i and cell j. 

By introducing two auxiliary distribution functions f  and f   expressed as 

 
2 ,

2 2 2
eq

B
h h hf f f f

 
       (25) 
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  (26)  

the Eq.(16) can be transformed into the following form 

    1/2, , , , .ij n ij nf t f h t
  r r     (27)  

According to Eqs.(22) and (25), the density and velocity can also be obtained from f , i.e., 

 , .n fd n fd  u     (28)  

Meanwhile, f  and f  satisfy the following relationship, which will be used to evaluate the f   

in Eq.(21) 

  4 1 .
3 3

f f f     (29)  

Once  1/2, ,ij nf t r  is evaluated from Eq.(27), the original distribution function

 1/2, ,ij nf t r  at interface center rij can be calculated according to the relationship between f

and f in Eq.(25), after which the micro flux is obtained according to Eq.(18). Thus, the main 

task is to construct the  , ,ij nf h t r   in Eq.(27), and to obtain  1/2, ,ij nf t r  consequently. 

Generally,  , ,ij nf h t r   can be expanded around  , ,ij nf t r  [31] or  , ,i nf t r  [33] by 

assuming a linear relationship. Considering a significant density oscillation may occur in a 

nanoscale dense fluid system, we will expand it around the cell center value and employ the 

van Leer limiter [54]. The linear relationship and limiter can be expressed as 

        , , , , , ,ij n j n ij j j ij jf h t f t h h V                 r r r r r   (30)  

where j is the corresponding slop at the cell Vj. Taking the component in the x direction for 

example, the slope can be written as 

     1 2
, 1 2

1 2

,j x

s s
sign s sign s

s s
      

  (31)  

where 
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  (32)  

Up to now, all the variables needed for the evolution equation, i.e., Eq.(21) are solved, 

where the external force term G is not included. The Strang splitting algorithm [51] will be 

introduced below on how to couple the external force term G into the standard DUGKS 

evolution [52,53] as described above. 

2.3 Strang splitting method for external force 

In the Strang splitting method, a half time step integration is implemented on 

distribution functions before and after the standard DUGKS procedure, which is called 

pre-forcing and post-forcing step, respectively. The pre-forcing step, the standard DUGKS and 

the post-forcing step can be respectively written as 

 0.5 ,t f  G   (33)  

 ,t Bf f     r   (34)  

 0.5 .t f  G  (35)  

The evolution from time tn to tn+1 in the Strang splitting algorithm can be seen in Figure 1. 
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Figure 1: The evolution procedure from time tn to tn+1 in the Strang splitting method. f n* and f n** represent the 

solutions from the pre-forcing step and the standard DUGKS, respectively. 

In the pre-forcing and/or post-forcing step, integrate Eqs.(33) and/or (35) over a time step 

∆t, we have 

  * , ,
2
tf f n  G u   (36)  

where f* is a solution from the pre-forcing or post forcing step. 

According to Eq.(19), we have the following relations 

  2 , ,
2 2

eqt tf f f n
 
   u   (37)  

  2* * *, * ,
2 2

eqt tf f f n
 
   u   (38)  

where the density and velocity can be calculated as 

 * , * 0.5 .n n t   u u G   (39) 

Coupling Eqs.(36), (37) and (38), *f  can be calculated from f by the following equation 

        2
* , *, * , .

2 4
eq eq

t ttf f f n f n n


 
         

  u u G u   (40)  

 

2.4 Relaxation time 

Based on the LAD method [55], the relaxation time τ in the collision operator ΩB of Eq.(2) 

is determined by 

  
,

B

n
nk T


    (41)  

where kB is the Boltzmann constant,  n  is the viscosity of homogeneous dense fluid 

evaluated at the LAD n  expressed as [23] 
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where the parameter Y and the radial distribution function  is calculated by [44-46] 
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  (43)  

2.5 Boundary condition 

In the kinetic models, appropriate boundary conditions should be given for the 

distribution functions at the solid walls [31]. The surface slip significantly depends on the 

relative strength between fluid-wall and fluid-fluid interactions, which can be characterized by 

the ratio of energy parameter wf to ff [56]. With the decrease of the ratio wf / ff , the 

boundary transforms from wetting to non-wetting, and the slip increases correspondingly. In 

this study, the bounce-back boundary condition is employed for a no-slip boundary condition 

to simulate the wetting cases, where gas molecules adsorb on the wall and form an adsorption 

layer when hitting the solid molecules, rather than the usual diffuse or specular reflection. The 

slip boundary condition for the non-wetting cases can also be achieved by the bounce back 

boundary condition with a slip velocity, which is determined by the fluid-solid interactions. 

Note that, even in the non-wetting case, weak adsorption layers may form near the wall, as 

shown in Figure 8b. In this paper, we mainly focus on the wetting case with a no-slip boundary 

condition, and the detailed bounce back scheme can be referred to Guo et al. [31]. 

2.6 Algorithm 

The standard procedure of the DUGKS from time tn to tn+1 is the same as the previous 

study [33]. The difference lies in how to couple the external force G by Strang splitting 

technique with the standard DUGKS [52,53], as shown in Figure 1. Detailed computational 
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procedures can be summarized in the following steps: 

(1) Pre-forcing step calculation with a half time step h = ∆t/2. 

① Determine the local average density n , which can be referred to Bitsanis et al. [57], 

Tarazona [45] or Vanderlick et al.. [29]; 

② Calculate the radial distribution function  according to Eq.(43); 

③ Compute the gradients of the radial distribution function and local average density 

according to Eqs.(6) and (7), respectively; 

④ Coupling the force term G into the Strang splitting algorithm according to Eq.(40). 

(2) The standard DUGKS evolution from time tn to tn+1. 

① Calculate f  from f at cell interface according to Eq.(26); 

② Compute the gradient of f  in each cell according to Eq.(31); 

③ Calculate the distribution function f  at (rij –  h) according to Eq.(30); 

④ Determine the distribution function f at cell interface and time tn+1/2 according to 

Eq.(27); 

⑤ Calculate the conserved flow variables from f according to Eq.(28); 

⑥ Determine the original distribution function f at cell interface and time tn+1/2 from

 1/2, ,ij nf t r and  1/2, ,eq
ij nf t r according to Eq.(25); 

⑦ Calculate the flux F n+1/2 through each cell interface from f n+1/2 according to 

Eq.(18); 

⑧ Determine f  at cell center and time tn according to Eq.(29); 

⑨ Update the cell-averaged f in each cell from tn to tn+1 according to Eq.(21); 

(3) Post-forcing step (the same as the pre-forcing step). 

3 Model validation 

In this part, the static fluid structure and flow behaviors of dense fluid systems confined 

between two plates with a separation of H at the nanometer scale, as sketched in Figure 2, are 

studied. For such a system, the fluid molecular size can no longer be neglected comparing to 

the channel width H, which means that the Boltzmann equation fails under this circumstance. 
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Figure 2: Fluid molecules confined between two paralleled plates at the nanometer scale. 

3.1 Static fluid structure 

The equilibrium structure of the LJ fluids with three different channel widths are first 

tested. In the simulation, the 10 – 4 – 3 LJ potential is exerted on the fluid molecules by the 

top and bottom plates, while the 12 – 6 LJ potential is employed for fluid molecular 

interactions. The channel widths and pore averaged density, which is defined as 

 0 0
/

H
n n y dy H  , are displayed in Figure 3, while the fluid system temperature is taken as 

Tr = 1.2 for all the three cases. Meanwhile, the solid-fluid energy parameter wf equals 

fluid-fluid energy parameter ff, meaning the strength of solid-fluid interactions and fluid-fluid 

interactions is approximately the same. 
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Figure 3: Density distributions of LJ fluids confined between two paralleled plates with 10 – 4 – 3 LJ potential at 

the temperature of T = 1.2 ff/kB; Monte Carlo results can be referred to [58] 

As shown in Figure 3, the density profiles in all the cases oscillates significantly across the 

channel due to the combined effects of external wall potential, volume exclusion effects and 

long-range intermolecular interactions. The unique density structures agree well with the 

Monte Carlo results [58] in all the three cases, including the magnitudes and locations of peaks 

as well as their oscillation tendency. No bulk regions appear for these narrow channels, i.e., H 

= 2.5  (Figure 3a) and H = 3.6  (Figure 3b), while the fluid will become homogeneous near the 

center region with the increase of channel width (Figure 3c). Due to the strong repulsion from 

the solid molecules, it is hard for fluid molecules to approach the boundary and there will be 

a vacuum layer between the first fluid layer and the wall, with the thickness equaling to δ. The 
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capability of capturing the critical changes in fluid structure reveals the applicability of the 

present DUGKS in predicting the fluid structure induced by external wall potential and fluid 

molecular interactions. 

3.2 Dynamic behaviors 

3.2.1 Couette flow 

The second test case is the Couette flow, with the top and bottom plates moving with a 

velocity of 0.5 /BU k T m  in the x and – x directions, respectively, as shown in Figure 2. In 

the computation, the grid size in the y direction is set to be Δy = 0.01 H, which is fine enough 

to produce grid independent solutions. Meanwhile, 8 Gauss-Hermit discrete velocities 

distributed in [ 4 2 /Bk T m  , 4 2 /Bk T m  ] are used to discretize the velocity space in each 

direction. Although the local Knudsen number can be very high, as will be discussed later, the 

set of 8 × 8 discretized velocities is sufficient to capture the non-equilibrium effects of the 

current problem, as we have tested. The CFL number is set to be 0.1. The fluid is confined 

between two 10 – 4 walls with a separation of H = 7.178 σ, in which the pore average density 

of the confined fluids is n0 = 0.593  -3 with the temperature of Tr = 1.0.  
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Figure 4: Density (a) and velocity (b) profiles of Couette flow for LJ fluids in confined plates with 10 – 4 potential. 

MD results can be referred to [55]. The dotted line in the bottom panel represents the linear distribution of the 

velocity profile predicted by the conventional hydrodynamic model, which ignores the competition between the 

fluid-fluid and fluid-solid interactions. 

The static structure and dynamic behaviors of the LJ fluids for Couette flow are also 

satisfactorily captured by the current DUGKS comparing to the MD results [55], as shown in 

Figure 4. Three adsorption layers with decreasing intensity are observed in the vicinity of each 

wall, while there is no obvious bulk region near the center of the channel (Figure 4a). As shown 

in Figure 4b, the velocity distribution of Couette flow deviates from linearity, as a result of fluid 

inhomogeneity induced by the competition of the wall-fluid and fluid-fluid interactions. Thus, 

it is essential to take the wall potentials and fluid molecule interactions into account at the 

nanometer scale, which greatly affects the density (Figure 4a) and velocity (Figure 4b) 

distributions across the channel. 

The effects of flow channel widths on density and velocity distribution of Couette flow are 

also investigated. In the simulation, the top and bottom plates move with a velocity of 
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0.01 /BU k T m  in opposite directions. The confined fluids, with an averaged density of n0 

= 0.561 -3 at the temperature of Tr = 1.2, are simulated with the 10 – 4 – 3 potentials from the 

top and bottom walls, respectively. Meanwhile, the energy parameter of the wall-fluid 

interactions wf is four times of that for fluid-fluid interactions ff. As is shown in Figure 5, there 

are two obvious adsorption layers in the vicinity of each wall, after which a slightly third 

adsorption layer occurs. All the three adsorption layers coincide together, indicating a similar 

effect is exerted on fluid molecules from the wall. The bulk region increases with the channel 

width H increasing. The velocity profile tends to be linearly distributed across the channel 

with the increase of the channel widths H (Figure 5b). This is because the inhomogeneity of the 

fluid system becomes weaker in larger scale systems. It also means that there is a critical value 

for the channel width, over which the inhomogeneity of the system can be ignored. The 

determination of the critical value will be studied in the future. 
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Figure 5: Effects of channel width on density (a) and velocity (b) profiles of Couette flow with the 10 – 4 – 3 wall 

potential 

3.2.2 Poiseuille flow 

Finally, we take the Poiseuille flow as our third test case. Adopting the same parameters 

as presented in Figure 3b and exerting a driving force of Gx = 0.02 ff /  in the x direction, the 

previous static problem transforms into the Poiseuille flow. According to the dense gas theory 

[23], nV0 in Eq.(43) is a parameter reflecting the denseness of the fluids. In our simulation, the 

pore averaged density is kept constant at 3
0 0.476n  , while V0 is changed to control the 

denseness of the confined fluids.  
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Figure 6: Density (a) and velocity (b) profiles for Poiseuille flow, nV0 is used to control the dense degree, and L 

= H - 2δ. 

As we can see from Figure 6a, the flow does not affect the density distribution across the 

channel, and the denser the fluids, the more oscillatory the density distribution. In Figure 6b, 

the velocity is normalized by the maximum velocity umax and the distance is normalized by 

effective flow domain length L = H - 2δ. As shown in Figure 6b, the velocity profiles at the 

nanometer scale (for nV0 ≈  1.04308) also deviate from the analytical solution of the 

Poiseuille flow governed by the classical Navier-Stokes equation significantly, due to the 
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combined effects of wall-fluid and fluid-fluid interactions. The velocity tends to the parabolic 

as the fluid becomes more dilute with decreasing nV0, and recovers exactly the analytical 

solution when nV0 decreases to 0.052154, without considering the effects of wall potential. 

 

 

Figure 7: Density (a) and velocity (b) profiles under different channel-width conditions for Poiseuille flow, where 

L = H - 2δ. 

The above Poiseuille flow is also studied under different channel-width conditions. As 

shown in Figure 7a, the density fluctuates across the whole flow domain as H = 3.6 , while a 
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between the solid-fluid and fluid-fluid interactions becomes weaker near the center region of a 

larger channel, and the influences from the wall are limited. Similarly, the velocity profile 

approaches to the Navier-Stokes solution with the increase of the channel width, which further 

supports our assessment that the fluid system becomes more homogeneous in large systems. 

 

 

Figure 8: The density and velocity profiles for Poiseuille flow in confined 10 – 4 – 3 LJ channels at the 

temperature of Tr = 1.2: (a) wetting case, wf / ff = 1.0; (b) non-wetting case, wf / ff = 0.25. The velocity profiles 

were normalized by the external driving force Gx. The pore averaged density is 0.561  -3 and the channel with is 

7.5 . The locations were normalized by the length of the flow domain L = H - 2δ. 
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The density and velocity profiles for Poiseuille flow with the wall separation of H = 7.5 σ 

at the temperature of Tr = 1.2 are shown in Figure 8, where the velocity is normalized by the 

external driving force Gx and the location is normalized by the flow domain L. For the wetting 

case (wf / ff = 1.0), fluid molecules accumulate near the wall due to the strong solid-fluid 

interactions, and the velocity is much smaller than the analytical Poiseuille solution across the 

channel. When the ratio wf / ff decreases to 0.25, the walls become non-wetting, and the 

density oscillation becomes much flatter, comparing to the wetting case in Figure 8a. However, 

the adsorption layers near the wall still exist, but with much smaller magnitude. Meanwhile, 

the velocity becomes much higher than that under wetting conditions, implying a significant 

effect of wettability on flow velocity. 

We want to point out that the computational efficiency of the DUGKS is much higher 

than that of the MD simulations. In one of our test cases of the Poiseuille flow under the same 

working condition, the computing time of the DUGKS running with single core is about ten 

minutes, while it is more than seven hours of MD simulations running with 24 cores to obtain 

satisfactorily stable results. 

3.2.3 Multiscale characteristics of dense fluid system 

The Knudsen number is commonly used as a key criterion number in multiscale analysis 

from continuum flow to free molecular flow in rarefied gas dynamics. However, fluid molecular 

movements are frequently disrupted by the walls or other molecules due to the small 

dimension of the flow path or the dense arrangements of the fluid molecules in the case we 

study, which means that the molecules cannot move freely. Thus, the Knudsen number in this 

paper is actually the effective Knudsen number, which is borrowed from rarefied gas dynamics 
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for the current dense fluid system. According to the difference in defining the characteristic 

lengths, the average effective Knudsen number Kn and local effective Knudsen number Kn* 

can be defined as 

 *, ,
/

Kn Kn
H
 

 
 


  (44)  

where  is the gas mean free path, and ρ / |ρ| is the local characteristic length. According to 

dense gas theory [4,23], the mean free path is determined by 

 
2

1 .
2n


 

   (45)  

On one hand, the average effective Knudsen number is calculated as Kn = 0.06, according 

to Eq.(44) and the parameters in Figure 3b, from which we may deduce that the 

non-equilibrium effects are not very obvious; on the other, the density varies sharply near the 

wall, resulting an enormous local characteristic length, where the local effective Knudsen 

number can be as high as 106.976. Beyond that, it is almost smaller than 0.5 near the center 

region, and even as small as 0.00058 in certain places. The violent fluctuation of the local 

effective Knudsen number, as shown in Figure 9, implies the strong inhomogeneity of the dense 

fluid system across the channel.  

Meanwhile, the mechanism of rarefaction effect in a dense fluid system may be very 

different from that in a rarefied one. For the Poiseuille flow of rarefied gases, the rarefaction 

effect mainly occurs at gas-solid interface showing as a velocity slip, which is attributed to the 

infrequent collisions between the gas and solid molecules. However, the density is strongly 

inhomogeneous in dense fluid systems, which means the amount of gas molecules between the 

adjacent adsorption layers is very small, even close to the vacuum, where the rarefaction effect 
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may occur, rather than at the fluid-solid interface. The detailed mechanism of rarefaction 

effect in dense fluid system is very complicated, which needs deeper investigation in the future. 

According to our test cases, the velocity profile does not converge using lower-order 

Gauss-Hermite quadrature of velocity space, for example, 4 discretized velocity points in x and 

y direction, respectively. This phenomenon suggests rarefaction effects do exist in dense fluid 

system and the system is a multiscale one. The numerical results demonstrate the capability of 

the DUGKS in simulating fluid flows for all the effective Knudsen numbers. 

 

Figure 9: The variation of local effective Knudsen number across the channel with the 10 – 4 – 3 potential, where 

H /  = 3.6, n  3 = 0.476, Tr = 1.2 and wf = ff. 

4 Conclusions 

It is a challenging task to capture the non-equilibrium effects of dense fluid flows at the 

nanometer scale. In this paper, the DUGKS is extended to strongly inhomogeneous fluid 

systems, where the external wall potential, volume exclusion effects and long-range 

intermolecular attractions are simultaneously taken into account. These non-equilibrium 
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effects are coupled into a unified force term, which is conveniently incorporated into the 

DUGKS by the Strang-splitting method. The time step of the DUGKS is not limited by 

particle collision time in multiscale flow regimes, which indicates that the DUGKS is an ideal 

tool to simulate dense fluid flow dynamics, since the effective Knudsen number may vary 

significantly under different conditions. 

The static fluid structures and dynamic flow behaviors agree well with Monte Carlo 

simulation and/or MD results, which proves the capability of our model in capturing the 

non-equilibrium effects of dense fluid systems at the nanometer scale where the local effective 

Knudsen number can vary from the order of 0.0001 to the order of 100. There will be a vacuum 

between the first fluid layer and the wall due to the strong repulsion, while several adsorption 

layers may occur due to the competition of solid-fluid and fluid-fluid interactions. It is also 

found the density distribution across the channel is not affected by the fluid flow. The velocity 

profile of the Couette flow deviates from the linear distribution, while the velocity profile of 

Poiseuille flow deviates from the Navier-Stokes solution significantly as a result of 

inhomogeneous nature of the dense fluids at the nanometer scale. 

In our future work, more practical boundary conditions will be considered in 

establishment, which may serve as a powerful tool between the connections of MD simulation 

and the Navier-Stokes equation. 
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