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We propose new massive gravity theories with 5 dynamical degrees of freedom. We evade uniqueness
theorems regarding the form of the kinetic and potential terms by adopting the “generalized massive
gravity” framework, where a global translation invariance is broken. By exploiting the rotation symmetry in
the field space, we determine two novel classes of theories. The first one is an extension of generalized
massive gravity with a nonminimal coupling. On the other hand, the second theory produces a mass term
that is different from de Rham, Gabadadze, Tolley construction and trivially has 5 degrees of freedom. Both
theories allows for stable cosmological solutions without infinite strong coupling, which are free of ghost
and gradient instabilities.
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I. INTRODUCTION

Whether a consistent Lorentz-invariant massive gravity
theory exists or not has been a long-standing issue for more
than seven decades, starting with the pioneering work by
Fierz and Pauli [1]. The Fierz-Pauli theory of a massive
spin-2 field is constructed by choosing a specific combi-
nation of the mass terms to have 5 physical degrees of
freedom, but a naive massless limit does not reduce to the
massless theory, i.e., linearized general relativity [2,3]. This
discontinuity was realized to be an artifact of the linear
theory and can be solved by taking into account nonlinear
completions of the Fierz-Pauli mass term [4]. Despite this
elegant solution, an unwanted sixth ghost degree of free-
dom called the Boulware-Daser (BD) ghost appears at the
nonlinear level [5], and thus nonlinear massive gravity was
thought to be unstable [6]. Relatively recently, it was shown
that the cure to this ghost problem is supplied by adding
infinite nonlinear corrections to potential terms [7,8]. This
ghost-free massive gravity called de Rham-Gabadadze-
Tolley (dRGT) theory admits an open-FLRW solution,
where the dRGT mass terms exactly behave as the
cosmological constant [9], but the scalar and vector kinetic
terms of perturbations around this background unfortu-
nately vanishes, which is a signal of a strong coupling
problem [10] and worse, a nonlinear ghost instability [11].
Thus, further extensions of the nonlinear massive gravity
should be necessary to accommodate a stable cosmological
solution.
Although one can simply extend the dRGT theory by

introducing other fields such as the quasidilaton theory
[12], mass-varying massive gravity [13], and Hassan-Rosen
bigravity [14], it might be more interesting if the massive

gravity can be further generalized without invoking addi-
tional degrees of freedom. So far, such extensions have
been intensively investigated with the various approaches,
but none of them are successful at this point [15–19]. All of
the above investigations rely on theories invariant under the
Poincaré symmetry in the internal field space consisted of
the Stückelberg fields ϕa, which are responsible for
restoring the general covariance [20]. However, once we
abandon the translation invariance while keeping the global
Lorentz invariance, a natural extension of the dRGT theory
can be accessible [21]. In this theory called the generalized
dRGT theory, the constant parameters in the graviton
potential are promoted to be arbitrary functions of four
auxiliary fields ϕa, and the total number of physical degrees
of freedom remains the same as the dRGT theory; i.e., the
BD ghost is absent. Furthermore, it has been recently
shown that all perturbations around the open-FLRW back-
ground are free from any instabilities [22].
Now, it is interesting to know how far we can generalize

(global) Lorentz-invariant massive gravity theories. In any
massive gravity theory with 5 degrees of freedom, there
exists the Hamiltonian constraint in unitary gauge, and this
guarantees the absence of the BD ghost [23]. In the
Stückelberg language, the degeneracy of the kinetic matrix
of four scalar fields ϕa leads one of them to be non-
dynamical, implying that the would-be BD ghost is
successfully eliminated [24]. Therefore, imposing the
degeneracy of the four scalar fields ϕa, one should be able
to explore new theories of massive gravity. In the present
paper, we investigate the possibility of extending massive
gravity theory which preserves the global Lorentz sym-
metry and derive two distinct classes of ghost-free theories.
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To derive these novel theories, we make use of two
specific properties of these field theories that become
available once translation invariance is dropped. First,
introducing the matter fields after performing conformal
transformation of the physical metric generates a non-
minimal coupling of the Stückelberg fields to the curvature.
Second, we show that conformal and disformal deforma-
tions of the fiducial metric may evade the reappearance of
the BD mode under certain conditions, which only leave
the two unconnected theory classes that we present here.
The first theory is a direct extension of generalized massive
gravity with modified fiducial metric and nonminimal
coupling. The derivation of this theory also reveals how
one can generate the original generalized massive gravity
action starting from constant parameter dRGT theory. The
second theory is different from dRGT type constructions by
directly projecting out 1 degree of freedom and is thus
closely linked to Lorentz breaking theories.
This paper is organized as follows. In Sec. II, we briefly

review the dRGT massive gravity and discuss the impli-
cations of breaking the translation invariance, which allows
a conformal transformation of the physical metric. In
Sec. III, we generalize the dRGT mass terms by using
disformal transformation acted on the fiducial metric and
summarize necessary conditions to eliminate the would-be
BD ghost. In Sec. IV, we investigate a kinetic Lagrangian
including a nonminimal coupling and derive a degeneracy
condition by using 3þ 1 decomposition. In Sec. V, we
derive background equations and quadratic actions for
perturbations in the two theories obtained in Sec. IV and
show that all perturbations around Friedmann-Lemaître-
Robertson-Walker (FLRW) background are free of ghost
and gradient instabilities. Section VI is devoted to
summary.

II. BREAKING TRANSLATION INVARIANCE
AND NONMINIMAL COUPLING

In this section, we briefly introduce the ghost-free
massive gravity and argue the existence of a nonminimal
coupling in a global Lorentz invariant massive gravity. Let
us start with the ghost-free dRGT massive gravity, which is
given by [7,8]

SdRGT ¼
Z

d4x
ffiffiffiffiffiffi
−g

p M2
p

2

�
R − 2m2

X3
n¼0

βnen
� ffiffiffiffiffiffiffiffiffiffi

g−1f
q ��

þ Sm½g;ψ �; ð1Þ

where βn are constant parameters, Sm is the matter action,
and the dRGT potential terms are built out of en,

e0ðQÞ ¼ 1; ð2Þ

e1ðQÞ ¼½Q�; ð3Þ

e2ðQÞ ¼ 1

2!
ð½Q�2 − ½Q2�Þ; ð4Þ

e3ðQÞ ¼ 1

3!
ð½Q�3 − 3½Q�½Q2� þ 2½Q3�ÞÞ; ð5Þ

e4ðQÞ ¼ 1

4!
ð½Q�4 − 6½Q�2½Q2� þ 3½Q2�2

þ 8½Q�½Q3� − 6½Q4�Þ: ð6Þ

Here, ½Q� denotes the trace of the matrix Q, a square
root of the matrix represents the matrix satisfiesffiffiffiffi
Q

p
μ
ρ

ffiffiffiffi
Q

p
ρ
ν ¼ Qμ

ν, and fμν is the fiducial metric, which
is defined through

fμν ≡ ηab∂μϕ
a∂νϕ

b; ð7Þ

and ηab is the Minkowski metric with a, b ¼ 0, 1, 2, 3. The
action (1) is manifestly invariant under the Poincaré
symmetry in the internal field space. Once we abandon
the global translation invariance ϕa → ϕa þ c, the scalar
function X ¼ ηabϕ

aϕb ¼ ϕaϕa can promote the constant
parameters βn to be functions of X, and the resultant theory,
i.e., the generalized massive gravity, still enjoys a global
Lorentz invariance [21]. In the present paper, we seek
further extensions to such a global Lorentz invariant
massive gravity.
Let us first consider the conformal transformation

utilizing the scalar X,

g̃μν ¼ GðXÞgμν: ð8Þ

Performing this transformation to the action (1), the
gravitational part of the Lagrangian becomes

S ¼
Z

d4x
ffiffiffiffiffiffi
−g̃

p �
M2

p

2
R½g̃� −M2

pm2
X3
n¼0

βnen
� ffiffiffiffiffiffiffiffiffiffi

g̃−1f
q ��

¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
M2

p

2
G

�
Rþ 3

2
∇μ logG∇μ logG

�
−M2

pm2
X3
n¼0

β̃nðXÞen
� ffiffiffiffiffiffiffiffiffiffi

g−1f
q ��

; ð9Þ
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where we defined the rescaled parameters as

β̃nðXÞ≡ βnGðXÞ4−n2 : ð10Þ

The kinetic part of the Lagrangian contains the nonminimal
coupling with the conformal factor and its counterterm,
which can be rewritten as

3

2
∇μ logGðXÞ∇μ logGðXÞ¼

6G2
X

G2
ϕaϕbgμν∂μϕ

a∂νϕ
b: ð11Þ

Thus, once the translation invariance is broken, the
Einstein-Hilbert term can be nonminimally coupled with
ϕa with a suitable counterterm. Furthermore, the parameters
β̃n after the transformation are the arbitrary functions of X,
and this is reminiscent of the generalized massive gravity.
The conformal scaling in the mass terms can be interpreted
as a redefinition of the fiducial metric, g̃−1f → g−1ðG−1fÞ.
This implies that the fiducial metric no longer needs to be of
the form (7), and one can deform the fiducial metric by
appropriately contracting the Lorentz indices by ηab and ϕa
and introducing arbitrary functions of X.

III. DISFORMAL DEFORMATIONS
OF THE FIDUCIAL METRIC

As we have seen in the previous section, a conformal
transformation of the physical metric would lead us to a

new extension of massive gravity including a nonminimal
coupling. Another effect of the conformal transformation is
to rescale the fiducial metric by a conformal factor that
depends on the Stückelberg fields. In this section we
explore this option further by starting with the most general
deformation of the fiducial metric,

f̃μν;I ¼ Lab;I∂μϕ
a∂νϕ

b; ð12Þ

with

Lab;I ¼ CIðXÞηab þDIðXÞϕaϕb; ð13Þ

where I is a label that will be assigned to each mass term.
We then construct the following square-root matrix:

Qμ
ν;I ≡

� ffiffiffiffiffiffiffiffiffiffiffi
g−1f̃I

q �
μ

ν
: ð14Þ

Here, if all CI ¼ 1 and DI ¼ 0, this reduces to the square-
root matrix in dRGTmassive gravity. Then, we consider the
action with the Einstein-Hilbert term and mass terms,

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p M2
p

2
½R½g� − 2m2Lmass�; ð15Þ

where

Lmass ¼ βðXÞ½Qβ� þ γ1ðXÞ½Qγ1 �2 þ γ2ðXÞ½Q2
γ2 � þ δ1ðXÞ½Qδ1 �3 þ δ2ðXÞ½Qδ2 �½Q2

δ2
� þ δ3ðXÞ½Q3

δ3
�

þ σ1ðXÞ½Qσ1 �4 þ σ2ðXÞ½Qσ2 �2½Q2
σ2 � þ σ3ðXÞ½Q2

σ3 �2 þ σ4ðXÞ½Qσ4 �½Q3
σ4 � þ σ5ðXÞ½Q4

σ5 �: ð16Þ

In general, the four scalar components in the Stückelberg
fieldsϕa bring an extra degree of freedom, i.e., the BDghost.
To avoid this, the action should be arranged such that one of
the component has no dynamics. This can be actually
realized by the degeneracy of the kinetic matrix of the
Stückelberg fields [24]. Then, it generates a primary and
subsequent constraints, and theBDghost can be successfully
eliminated.We here adopt this approach to obtain BD ghost-
free conditions rather than the decoupling limit approach [7].
The majority of the nonperturbative proofs of the

absence of ghost in dRGT theory relies on the unitary
gauge.1 There are several nonperturbative proofs of the
absence of the BD ghost in the presence of the Stückelberg
fields [24–29], but these rely on specific techniques not
applicable to the case at hand. Due to the square-root form
of the building block tensor (14) it is highly challenging to

derive the degeneracy conditions exactly. However, around
fixed backgrounds we can obtain necessary (but not
sufficient) degeneracy conditions as follows.2 In the mass
term, we introduced 20 arbitrary functions to represent the
10 disformal transformations. The following conditions
reduce the number of independent functions down to 4:

Dβ

Cβ
¼ Dγ1

Cγ1

¼ Dγ2

Cγ1

¼ Dδ1

Cδ1

¼ Dδ2

Cδ1

¼ Dδ3

Cδ1

¼ Dσ1

Cσ1

¼ Dσ2

Cσ1

¼ Dσ3

Cσ1

¼ Dσ4

Cσ1

¼ Dσ5

Cσ1

;

Cγ1 ¼ Cγ2 ;

Cδ1 ¼ Cδ2 ¼ Cδ3 ;

Cσ1 ¼ Cσ2 ¼ Cσ3 ¼ Cσ4 ¼ Cσ5 ; ð17Þ

1When translation invariance is broken, the unitary gauge,
ϕa ¼ δaμxμ, is no longer a convenient choice. Instead, the gauge
fixing with ϕ0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t2 þ xixi

p
and ϕi ¼ xi so that ϕaϕa ¼ −t2

would be convenient as introduced in [21].

2These conditions were derived by combining the degeneracy
conditions around Bianchi type Vand a static nondiagonal metric
with a preferred direction. The details of the calculation can be
found in Appendix A.
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which implies that all mass terms are built out of a universal
field space metric ηab þ D

C ϕaϕb with three independent
conformal factors for each orders. Using these relations, the
conditions that the mass functions need to satisfy can be
written as

ðCγ1 þ XDγ1Þðγ1 þ γ2Þ ¼ 0;

ðCδ1 þ XDδ1Þ3=2ðδ1 þ δ2 þ δ3Þ ¼ 0;ffiffiffiffiffiffiffi
Cδ1

p ðCδ1 þ XDδ1Þð3δ1 þ δ2Þ ¼ 0;

ðCσ1 þ XDσ1Þ2ðσ1 þ σ2 þ σ3 þ σ4 þ σ5Þ ¼ 0;ffiffiffiffiffiffiffi
Cσ1

p ðCσ1 þ XDσ1Þ3=2ð4σ1 þ 2σ2 þ σ4Þ ¼ 0;

Cσ1ðCσ1 þ XDσ1Þð6σ1 þ σ2Þ ¼ 0;

Cσ1ðCσ1 þ XDσ1Þð3σ1 þ σ2 þ σ3Þ ¼ 0: ð18Þ

There are two ways to satisfy these conditions. For
ð1þDIX=CIÞ ≠ 0, the first solution is

γ1 ¼ −γ2; δ1 ¼ −
δ2
3
¼ δ3

2
;

σ1 ¼ −
σ2
6
¼ σ3

3
¼ σ4

8
¼ −

σ5
6
; ð19Þ

which simply is the dRGT tuning with mass term,3

Lmass ¼ β1ðXÞe1ðQÞ þ β2ðXÞe2ðQÞ
þ β3ðXÞe3ðQÞ þ β4ðXÞe4ðQÞ; ð20Þ

where Q≡ ηab þDðXÞϕaϕb and by absorbing the con-
formal factors at each order into the mass function, we
reduce the number of arbitrary functions down to 4 with the
following definitions:

β1 ≡ Cββ; β2 ≡ 2Cγ1γ1; β3 ≡ 3!C3=2
δ1

δ1;

β4 ≡ 4!C3=2
σ1 σ1; D≡Dγ1

Cγ1

: ð21Þ

In other words, there can only be one field space metric,
disformally related to the original Minkowski metric. The
case with a field space-metric that can explicitly depend on
the ϕa was already argued to be ghost-free in [26]. Thus,
starting from dRGT theory (1) with constant mass param-
eters, one can consider deformations of the field space
metric with different conformal coefficients at different
orders and generate the generalized massive gravity action.
The second option for satisfying Eq. (18) is to fix the

disformal term in the field space metric as

Dγ1

Cγ1

¼ −
1

X
; ð22Þ

which leaves all of the mass functions unconstrained. This
condition is equivalent to having a field space metric
proportional to a projection tensor Pab defined as

Pab ≡
�
ηab −

ϕaϕb

X

�
; ð23Þ

which projects onto surfaces in the field space defined by
normal vector ϕa, while the conformal factors can be
absorbed in the individual mass functions. This precise
combination guarantees that the derivative of one of the
directions is absent in f̃μν. The mass term constructed with
this projection tensor cannot be combined with (unpro-
jected) dRGT-type terms where the degeneracy disagrees
with the one imposed by the projection. As we will see in
the next section, the projected mass terms naturally lack the
BD mode, and are reminiscent of some of the Lorentz
violating massive gravity theories [30,31]. The difference
however is that the time direction in our theory remains
unspecified, thanks to the explicit dependence on ϕa

allowed by the broken translation invariance.

IV. EVADING BD GHOST IN 3+ 1
DECOMPOSITION

In this section, we extend the previous analysis to include
a nonminimal coupling. To see the kinetic structure of the
nonminimal coupling, we consider the following action:

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p M2
p

2
½GðXÞR½g� þ FðXÞ½Y� þ AðXÞ½W��;

ð24Þ

where we defined W and Y as

Wμ
ν ¼ ðg−1fÞμν; Yμ

ν ≡ gμνϕaϕb∂μϕ
a∂νϕ

b: ð25Þ

These two terms are responsible for the degeneracy of the
kinetic matrix with the nonminimal couplingGðXÞR. Other
higher order candidates such as ½W2� and ½Y2� as well as the
terms involving the square-root tensor cannot be counter-
terms for the nonminimal coupling. This is because the
nonminimal coupling term is quadratic in the extrinsic
curvature and contains a linear mixing between _ϕa and the
extrinsic curvature [see (27) below]. Thus the counterterms
need to be quadratic in _ϕa. The F term is the one that arises
from the conformal transformation of the physical metric
(11). F and A terms can be included in γ2 term of (15), and
these terms can be generated by the conformal and
disformal transformation of the fiducial metric.
We investigate the degeneracy using a 3þ 1 decom-

position. This is similar to the analysis performed to find

3With this tuning, the quartic mass term
ffiffiffiffiffiffi−gp

β4ðXÞe4ðQÞ ¼ffiffiffiffiffiffi
−f̃

p
β4ðXÞ becomes a boundary term, similarly to constant mass

dRGT.
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degenerate higher order scalar tensor theories [32–34], but
the difference is that we are interested in finding degen-
eracies between metric variables and four scalar fields ϕa in
our case.
Let us define normal vector nμ of each spacelike

hypersurface Σt, which satisfies nμnμ ¼ −1. The induced
metric γμν on a spacelike hypersurface Σt is then defined by
γμν ¼ gμν þ nμnν. The derivative of the normal vector can
be expressed as ∇μnν ¼ −nμaν þ Kμν, where aμ is the
acceleration vector, aμ ≔ nν∇νnμ, and Kμν is the extrinsic
curvature, Kμν ≔ γμ

ργν
σ∇ρnσ. By using the normal vector

and the induced metric, the partial derivative of four scalar
fields can be decomposed as

∂μϕ
a ¼ −nμ _ϕa þDμϕ

a; ð26Þ

where we defined _ϕa ≔ nμ∂μϕ
a and Dμϕ

a ≔ γμ
ν∂νϕ

a.
Then the kinetic part of the Lagrangian (24) can be

expressed as

Lkin ¼ Aab _ϕa
_ϕb þ Caμν _ϕaKμν þ F μνρσKμνKρσ; ð27Þ

with

Aab ¼ −Aηab − Fϕaϕb; Caμν ¼ −4ηabGXϕbγ
μν;

F μνρσ ¼ GðγμðργσÞν − γμνγρσÞ; ð28Þ

where we have used R ¼ ð3ÞRþ KμνKμν − K2 −
2∇μðaμ − KnμÞ, and ð3ÞR stands for the three-dimensional
Ricci scalar composed by the spatial metric, γμν. Now the
canonical momenta are given by

πa¼ δL

δ _ϕa

¼2Aab _ϕbþCaμνKμνþðno time derivative termsÞ; ð29Þ

πμν ¼ δL
δKμν

¼ Caμν _ϕa þ 2F μνρσKρσ þ ðno time derivative termsÞ:
ð30Þ

The existence of a primary constraint is ensured if and only
if the linear combination of the canonical momenta,

Ψ≡ α1ϕ
aπa þ α2γ

μνπμν; ð31Þ

where α1 and α2 are constants, is independent of the
velocities Kμν and _ϕa, i.e.,

∂Ψ
∂ðϕa

_ϕaÞ ¼ 0;
∂Ψ
∂K ¼ 0: ð32Þ

These equations provide the degeneracy condition,

GAþ GFX − 6G2
XX ¼ 0: ð33Þ

As long as this condition is satisfied, the primary (and
subsequent) constraint should exist, and the absence of the
BD ghost is ensured. One should note that this agrees with
the condition (A10) in Appendix A, in the absence of γ1
and γ2.
We now discuss how to include the mass terms obtained

in the previous section to this construction. We start with
the first option (19). After solving the degeneracy condition
(33) in terms of F, the kinetic Lagrangian can be written as

Lkin ¼ F μνρσ

�
Kμν þ

GX

G
ϕa

_ϕaγμν

��
Kρσ þ

GX

G
ϕb

_ϕbγρσ

�
− A _ϕa

_ϕa: ð34Þ

Therefore, in the absence of A, the F term can be absorbed
into the extrinsic curvature by a field redefinition, and we
can safely add the mass terms of the generalized massive
gravity with disformal field space metric, as discussed in
the previous section. On the other hand, in the presence of
A term, the degeneracy condition is not compatible with the
dRGT potential terms since A term can be included in γ2 in
(15), and it changes the ratioD=C. Therefore, A ¼ 0 should
be required under the condition γ1 þ γ2 ¼ 0 to ensure the
absence of the BD ghost. Therefore, the ghost-free exten-
sion of generalized massive gravity with the nonminimal
coupling is given by

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p M2
p

2

�
GR½g� þ 6G2

X

G
½Y�

− 2m2
X3
n¼0

βnðXÞenð
ffiffiffiffiffiffiffiffiffiffi
g−1f̃

q
Þ
�
þ Sm½g;ψ �: ð35Þ

Let us now discuss another option (22) obtained in the
previous section. As mentioned in the previous section, this
is nothing but the projection onto the ϕa direction. With this
projection operator, Pab ¼ ηab − ϕaϕb=X, one can con-
struct the following fiducial metric f̄μν and the building
block tensor Zμ

ν:

f̄μν ¼ Pab∂μϕ
a∂νϕ

b; Zμ
ν ¼ ðg−1f̄Þμν: ð36Þ

With the trace of this tensor Zμ
ν and the degeneracy

condition (33), we can rewrite the Lagrangian as

GRþ F½Y� þ A½W� ¼ GRþ 6G2
X

G
½Y� þ A½Z�; ð37Þ

where we have used the relation Z ¼ W − Y=X. The
potential term [Z] can be further generalized, and we arrive
at ghost-free massive gravity, which is distinct from (35),
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S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p M2
p

2

�
GRþ 6G2

X

G
½Y�

þm2UðX; ½Z�; ½Z2�; ½Z3�Þ
�
þ Sm½g;ψ �; ð38Þ

where U is now an arbitrary function of X; ½Z�; ½Z2� and
½Z3�. Note that higher order terms ½Zn� with n ≥ 4 can be
also included in U, but they can be always reduced to lower
order terms by Cayley-Hamilton theorem. The absence of
the BD ghost can be simply understood as follows. The
contribution to the momenta πa from the potential U is
proportional to the projection tensor Pab, and thus U does
not contribute to (31) automatically. Thus, it is manifest that
the potential U including higher order is still compatible
with the condition (31), and the action (38) is therefore
ghost-free. In the Appendix B, we show an explicit
derivation of (38) starting with the most general mass
terms up to quadratic order composed of W and Y. Finally,
let us mention the relation between the action with (22) in
the previous section and the action (38). The trace of any
square-root tensor can be written in terms of one without
square-roots (see Ref. [35] for details). This allows us to
rewrite (15) in terms of ½Zn�, and the theory (15) with (22) is
manifestly included in (38).

V. COSMOLOGICAL BACKGROUND
AND PERTURBATIONS

In the previous section, we have proposed two distinct
types of the extended theories (35) and (38). It is now
interesting to ask whether all the polarization modes are
healthy or not on physically relevant backgrounds. To this
end, we study FLRW cosmologies in the obtained theories
(35) and (38) and derive the conditions for avoiding the
ghost and gradient instabilities. Following [9], we choose
the Stückelberg fields as4

ϕ0 ¼ fðtÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ κðx2þ y2þ z2Þ

q
; ϕi ¼ fðtÞ ffiffiffi

κ
p

xi; ð39Þ

and the physical metric is chosen to be compatible with this
choice, i.e., an open FLRW metric. We remark that due to
the explicit dependence on ϕaϕa in the action, the require-
ment of homogeneity allows only for an open universe
solution. Including perturbations, the physical metric is
given by

ds2 ¼ −ð1þ 2ΦÞdt2 þ aðtÞð∂iBþ BiÞdtdxi
þ aðtÞ2ðΩij þ hijÞ; ð40Þ

where Ωij is the spatial metric with a constant curvature
−κ < 0,

Ωij ¼ δij −
κxixj

1þ κxkxk
; ð41Þ

and we decompose spatial components of metric perturba-
tions as follows:

hij ¼ 2ψΩij þ
�
DiDj −

1

3
ΩijDkDk

�
E

þ 1

2
ðDiEj þDjEiÞ þ γij: ð42Þ

Here, Di is the covariant derivative compatible with the
Ωij metric. The vector perturbations are divergence-free
DiEi ¼ DiBi ¼ 0, and the tensor perturbation is diver-
gence and trace-free Diγij ¼ Ωijγij ¼ 0. For the four
scalar fields ϕa, we fix the gauge such that ϕa ¼ hϕai,
i.e., no perturbation. As for the matter sector, we introduce
a k-essence field to mimic an irrotational perfect fluid,

Sm ¼
Z

d4x
ffiffiffiffiffiffi
−g

p
PðΘÞ; Θ≡ −

1

2
∂μχ∂νχ; ð43Þ

where χ is a scalar field, which can be decomposed into the
background χ0 and perturbation δχ as

χ ¼ χ0 þMpδχ: ð44Þ
Throughout this section, we use the equivalent energy
density, pressure, and the sound speed of the k-essence
field, defined as

ρχ ¼ 2PΘΘ−P; pχ ¼P; c2χ ¼
PΘ

2PΘΘΘþPΘ
; ð45Þ

where PΘ ¼ ∂P=∂Θ and PΘΘ ¼ ∂2P=∂Θ2. Then the
equation of motion for χ0 is given by

_ρχ þ 3Hðρχ þ pχÞ ¼ 0: ð46Þ
Hereafter, we also use

ξ≡
ffiffiffi
κ

p
f

a
; ð47Þ

in replacement of f. In deriving second order actions in
each sector, we expand tensor, vector, and scalar perturba-
tions in terms of harmonics, for example,

γij ¼
Z

k2dkγjk⃗jYijðk⃗; x⃗Þ; ð48Þ

Bi ¼
Z

k2dkBV;jk⃗jYiðk⃗; x⃗Þ; ð49Þ

Φ ¼
Z

k2dkΦS;jk⃗jYðk⃗; x⃗Þ; ð50Þ

4The requirement of homogeneity and isotropy constrains the
Stückelberg configuration uniquely. However, if one relaxes the
requirement, it is possible to realize backgrounds that are
approximately FLRW within the observable patch [36], which
allows more general configuration of the scalar fields.
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with DlDlYij ¼ −k2Yij and DiYij ¼ ΩijYij ¼ 0 for tensor
harmonics, DlDlYi ¼ −k2Yi and DiYi ¼ 0 for vector
harmonics, and DlDlY ¼ −k2Y for scalar harmonics.
Other perturbations, Ei, B, ψ , and E are defined in a
similar manner.

A. Nonminimal generalized massive gravity

In this subsection, we focus on the nonminimally
coupled generalized massive gravity (35), with the general
reference metric,

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p M2
p

2

�
GR½g� þ 6G2

X

G
½Y�

− 2m2
X3
n¼0

βnðXÞen
� ffiffiffiffiffiffiffiffiffiffi

g−1f̃
q ��

þ Sm½g; χ�; ð51Þ

where Y is defined in Eq. (25) and the disformal fiducial
metric is

f̃μν ¼ ðηab þDϕaϕbÞ∂μϕ
a∂νϕ

b: ð52Þ

For the field configuration (39), the background line
element for the fiducial metric is given by

f̃μνdxμdxν ¼ − _f2ð1 − f2DÞdt2 þ κf2dxiΩijdxj; ð53Þ

so the disformal part of the field space metric D shifts the
lapse function of the fiducial metric to _f → _f

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − f2D

p
,

while the scale factor in the fiducial metric continues to
be

ffiffiffi
κ

p
f.

1. Background equations

We define the following functions which will be useful
later on:

ρm;g ≡ β0 þ 3ξβ1 þ 3ξ2β2 þ ξ3β3;

J ≡ β1 þ 2ξβ2 þ ξ2β3;

ρm;f ≡ 1

ξ3
ðβ1 þ 3ξβ2 þ 3ξ2β3Þ;

Γ≡ ξβ1 þ ξ2β2 þ rξ2ðβ2 þ ξβ3Þ; ð54Þ

where r quantifies the alignment of the light cone defined
by the f̃–metric with respect to g,

r≡ _f
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −Df2

p
ξ

: ð55Þ

With this definition, we can also express the time derivative
of the ratio of the two scale factors as

_ξ ¼ ξ

" ffiffiffi
κ

p
r

a
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − a2ξ2D

κ

q −H

#
: ð56Þ

We now calculate the background equations of motion
by varying with respect to N (which can be reintroduced by
rescaling all time derivatives as well as the volume
element), a, f and matter perturbations, obtaining

3G

��
H þ

_G
2G

�2

−
κ

a2

�
¼ ρχ

M2
p
þm2ρm;g; ð57Þ

− 2G

�
∂t

�
H þ

_G
2G

�
þ κ

a2

�
þ _G

�
H þ

_G
2G

�
¼ ρχ þ pχ

M2
p

þm2Jξð1 − rÞ; ð58Þ

_ρχ ¼ −3Hðρχ þ pχÞ; ð59Þ

where ρχ and Pχ are the energy density and pressure of the
matter fluid. We also defined cs as the propagation speed of
the fluid. The equation of motion for the Stückelberg fields
on the other hand is given by

3m2Jξð1 − rÞ
�
H þ

_G
2G

�
þm2 _ρm;g

−
_G
2G

�
ρχ − 3pχ

M2
p

þ 4m2ρm;g

�
¼ 0: ð60Þ

In standard dRGT, the analogue of this equation forces the
function J to vanish around self-accelerating backgrounds.
In our case, this is no longer true. In addition to the effect of
the conformal factor _G, there is also the effect of the
generalized mass terms encoded in _ρm;g. To make the latter
effect explicit, we rewrite Eq. (60) in terms of derivatives
with respect to ϕaϕa,

3m2Jrξ

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−

a2ξ2D
κ

r
H −

ffiffiffi
κ

p
a

�
þ 2m2arξ2ffiffiffi

κ
p ρð1Þm;g

−
arξ2G0ffiffiffi
κ

p
M2

pG
½ρχ − 3pχ þm2M2

pð3Jξðr− 1Þ þ 4ρm;gÞ� ¼ 0;

ð61Þ

where G0 ¼ G0ðϕaϕaÞ, and we defined

ρð1Þm;g ≡ β00 þ 3Xβ01 þ 3X2β02 þ X3β03: ð62Þ

From Eq. (61), we see that in standard dRGT, D ¼ 0, both
G and βn are constant; thus we either have H ¼ ffiffiffi

κ
p

=a (i.e.,
physical metric is Minkowski in open chart) or J ¼ 0 [9].
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In the perturbation calculation, we solve the set of
background equations (57)–(60) for ρm;g, _H, _ρ and _ρm;g
and evaluate the quadratic action on shell.

2. Tensor sector

For the tensor modes, one can obtain the action quadratic
in perturbations as (after expanding in harmonics)

Sð2Þ ¼ M2
p

8

Z
d3k dt a3G

�
j_γj2 −

�
k2 − 2κ

a2
þm2Γ

G

�
jγj2
�
:

ð63Þ
The dispersion relation for the canonical mode is

ω2
T ¼ k2 − 2κ

a2
þm2Γ

G
−
3H _G
2G

þ
_G2

4G2
−

G̈
2G

: ð64Þ

In contrast to the Horndeski theory in which the first
derivative of the scalar field is nonminimally coupled to
gravity [37,38], the propagation speed of the tensor mode is
the same as the speed of light, and the nonminimal coupling
simply shift the mass of graviton.

3. Vector sector

For the vector modes, we first solve for the shift
perturbations,

Bi ¼
�
1þ 2a2ξ

Gðk2 þ 2κÞ
m2J
1þ r

�−1 a _Ei

2
: ð65Þ

Substituting it back to the action, we find the following
form for the reduced action:

Sð2Þ ¼ M2
p

8

Z
d3k dt a3T V

×

�
j _Eij2 −

�
c2V

k2 þ 2κ

a2
þm2Γ

G

�
jEij2

�
; ð66Þ

where the kinetic term is

T V ≡
�

2

Gðk2 þ 2κÞ þ
rþ 1

m2a2ξJ

�
−1
; ð67Þ

and the propagation speed is given by

c2V ¼ Γð1þ rÞ
2ξJ

: ð68Þ

In the UV, the kinetic term is

T V

			
k→∞

¼ m2a2ξJ
rþ 1

: ð69Þ

In the dRGT limit, i.e., G → 1, J → 0,D → 0, the sound
speed reduces to

c2v
			
dRGT

¼ 3m2M2
pH2Γ

2ξ2½G0ðρχ − 3Pχ þ 4m2M2
pρm;gÞ − 2m2M2

pρ
ð1Þ
m;g�

→ ∞; ð70Þ

where we assumed

O
�
GðnÞ

G

�
∼O

�
ρðnÞm;g

ρm;g

�
∼O

�
ΓðnÞ

Γ

�
≪ 1; for n≥ 1; ð71Þ

and H ≫
ffiffiffi
κ

p
=a.

4. Scalar sector

Finally, we calculate the quadratic action for scalar
perturbations ðΦ;ψ ; B; E; δχÞ. Two of these scalar pertur-
bations are nondynamical, and we can integrate out Φ and
B. One of the remaining variables corresponds to the BD
ghost. Then, one can check that the determinant of the
remaining kinetic matrix composed of ψ , E, and δχ
vanishes, and this implies the absence of the BD ghost.
We then introduce the new variable eδχ to remove the
would-be BD ghost,

eδχ ≡ ψ þ k2

6
E −

Mp

_χ0

�
H þ

_G
2G

�
δχ: ð72Þ

Replacing δχ in favor of eδχ, the resulting action becomes
independent of _ψ . We then integrate out ψ and end up with
an action containing only 2 degrees of freedom eδχ and E.
One of these corresponds to the matter perturbations while
the other is the scalar polarization of graviton. Then, the
quadratic action in the scalar sector can be formally
written as

Sð2ÞS ¼M2
p

2

Z
d3kdta3

×

�
_Ψ†K _Ψþ1

2
_Ψ†GΨþ1

2
Ψ†GT _Ψ−Ψ†MΨ

�
; ð73Þ

where Ψ≡ ðE; eδχÞ and K, G and M are the real 2 × 2
kinetic, mixing, and mass matrices, and K and M are
symmetric. The eigenvalues of the kinetic matrix in the
subhorizon limit k → ∞ yield the conditions to avoid
ghostlike instability. These can be determined as

κ1 ¼ K11; κ2 ¼
detK
K11

: ð74Þ

The eigenvalues of the kinetic matrix in the subhorizon
limit yield the conditions to avoid ghostlike instability.
The first eigenvalue in this limit is simply
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κ1 ¼
ρχ þ Pχ

c2χðH þ _G
2GÞ2

þO
�

k
aH

�
−2
; ð75Þ

and it can be identified as the matter perturbation. It is not a
ghost as long as the null energy condition is satisfied. The
second eigenvalue is more complicated, but in subhorizon
limit it can be written as

κ2 ¼
m2rJ2ξ2

2G
þ κJrξ

a2
þ
�
Hþ

_G
2G

�2

ð2ΓþJξÞ

þ ρχ þPχ

2m2M2
p

�
m2Jrξ
G

þð1−3c2sÞ
_G
G

�
Hþ

_G
2G

��
−ξ

�
Hþ

_G
2G

��
4HJþJ_ξ

ξ
þ _J

�
þO

�
k
aH

�
−2
: ð76Þ

At this point, we see that the subhorizon limit and dRGT
limit do not commute. Sending J, _J, _G → 0,

κ2

			
k→∞;dRGT

¼ 2H2Γ: ð77Þ

If we reverse the order of the limits, we then get

κ2

			
dRGT;k→∞

→ 0: ð78Þ

This is compatible with what was found in the generalized
dRGT without conformal transformation [22].
Finally, we calculate the sound speeds of the scalar

degrees of freedom. Unlike the minimally coupled case
where one sound speed coincides with cs, this is no longer
true when nonminimal coupling is introduced. The full
expression for the scalar sound speeds are reported in
Appendix C. As in the vector sector, in the dRGT limit,
these reduce to

C2
1jdRGT ¼ c2s ;

C2
2jdRGT ¼ 2m2M2

pH2Γ

ξ2½G0ðρ − 3Pþ 4m2M2
pρm;gÞ − 2m2M2

pρ
ð1Þ
m;g�

¼ 4

3
c2v
			
dRGT

→ ∞: ð79Þ

As expected the strong coupling problem of the constant
mass theory manifests itself as sound speed that diverge in
the exact dRGT limit.
All of the expressions for this theory recovers the results

of Ref. [22] in the limit G → 1 and _ξ → ξð ffiffiffi
κ

p
r=a −HÞ (or

equivalently, D → 0).

B. Projected massive gravity theory

In this subsection, we study the action (38) up to the
quadratic mass terms,

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p M2
p

2

�
GRþ 6G2

X

G
½Y�

þm2ðA½Z� þ B1½Z�2 þ B2½Z2�Þ
�
þ Sm½g; χ�; ð80Þ

where G, A, B1, and B2 are functions of X.

1. Background equations

The background equations for gravity are given by

3G

��
H þ

_G
2G

�2

−
κ

a2

�
¼ ρχ

M2
p
þ ρg
M2

p
; ð81Þ

− 2G

�
∂t

�
H þ

_G
2G

�
þ κ

a2

�
þ _G

�
H þ

_G
2G

�
¼ ρχ þ pχ

M2
p

þ ρg þ pg

M2
p

; ð82Þ

where we introduced the effective density and pressure for
the mass terms as

ρg ¼ −
3

2
M2

pm2ξ2ðAþ ð3B1 þ B2Þξ2Þ; ð83Þ

pg ¼
1

2
M2

pm2ξ2ðA − ð3B1 þ B2Þξ2Þ: ð84Þ

The equation of motion of the Stückelberg fields is given by

_ρg þ 3Hðρg þ pgÞ −
_G
2G

ðρg − 3pg þ ρχ − 3pχÞ ¼ 0: ð85Þ

Again, three of these equations are independent, and we
solve these equations (46), (82), and (85) for _H, _ρg, and ρχ
for deriving the quadratic action.

2. Tensor sector

For the tensor modes, one can obtain the action quadratic
in perturbations as

Sð2ÞT ¼ M2
p

8

Z
d3k dt a3G

�
j_γj2 −

�
k2 − 2κ

a2
þM2

GW

G

�
jγj2
�
:

ð86Þ

The dispersion relation for the canonical mode is

ω2
T ¼ k2 − 2κ

a2
þM2

GW

G
−
3H _G
2G

þ
_G2

4G2
−

G̈
2G

; ð87Þ

where we defined the mass of the tensor modes in the
minimal coupling case,
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M2
GW ¼ 2ðρg þ pg − 2m2M2

pB2ξ
4Þ

M2
p

: ð88Þ

As in the theory (51), the propagation speed of the tensor
mode is exactly the same as the speed of light.

3. Vector sector

Next, we expand the action up to quadratic order in the
vector sector. Since the shift perturbation is nondynamical,
we first solve the constraint equation as

Bi ¼
M2

pGðk2 þ 2κÞ
2M2

pGðk2 þ 2κÞ þ 4a2ðρg þ pgÞ
a _Ei: ð89Þ

Plugging this back into the action, we find the following
form for the reduced action:

Sð2ÞV ¼ M2
p

8

Z
d3k dt a3T V

×

�
j _Eij2 −

�
c2V

k2 þ 2κ

a2
þM2

GW

G

�
jEij2

�
; ð90Þ

where the kinetic coefficients is given by

T V ≡ a2Gðk2 þ 2κÞðρg þ pgÞ
M2

pGðk2 þ 2κÞ þ 2a2ðρg þ pgÞ
; ð91Þ

and the propagation speed for the vector mode is given by

c2V ¼ M2
pM2

GW

2ðρg þ pgÞ
: ð92Þ

The propagation speed of the vector polarization modes can
in general differ from the speed of light. From this
expression, we find that the ghost instability can be avoided
when ρg þ pg > 0. In addition, the gradient instability in
the vector sector is absent ifM2

GW ≥ 0, and it coincides with
the condition for avoiding the tachyonic instability in the
tensor modes, when _G ¼ 0.

4. Scalar sector

Now, let us move on to the scalar perturbations. As in the
case of the previous theory class (51), we can integrate out
the nondynamical variables Φ, B, and ψ by using the sameeδχ defined by (72), and the reduced action can be written in
the form of (73). The eigenvalues are given by

κ1 ¼
1

ðH þ _G
2GÞ2

�
2c2χ

ρχ þ Pχ
−
ð1 − 3c2χÞ2 _G2

G2ðH þ _G
2GÞ

�
_G
G
½9c2χρχ − 3ð4 − 3c2χÞPχ þ ρg − 3Pg� þ 2½Hðρg þ 9PgÞ þ 3 _Pg�

�
−1
�
−1

þO
�

k
aH

�
−2
;

κ2 ¼
a2ðρg þ PgÞ

8
k2 −

3a4ðρg þ PgÞ2
16M2

pG
þO

�
k
aH

�
−2
: ð93Þ

The first eigenvalue κ1 can be identified as the matter
perturbation which can be easily seen when G ¼ 1,

κ1 ¼
ρχ þ pχ

2c2χH2
þO

�
k
aH

�
−2
: ð94Þ

Therefore, the scalar graviton is free from ghost when
ρg þ pg > 0. The full expression of the propagation speeds
are summarized in the Appendix C.

5. Concrete model

In this subsection, we give a concrete model in the
projected theory (38). Let us first choose the simplest
functions,

G ¼ 1; A ¼ a1; B1 ¼ b1; B2 ¼ b2; ð95Þ
where a1, b1, and b2 are constants. Then, the equation of
motion for f gives the constraint equation,

ξðHξþ _ξÞ½a1 þ 2ð3b1 þ b2Þξ2� ¼ 0: ð96Þ

Assuming that ξ is nonzero, the first solution Hξþ _ξ ¼ 0
gives ξ ∝ 1=a. In this case, ρg behaves as the sum of the
spacial curvature and the radiation, so we do not discuss
this solution here. The second one gives

ξ ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

−a1
2ð3b1 þ b2Þ

r
: ð97Þ

In order for ξ to be real, we impose a1=ð3b1 þ b2Þ < 0.
Since ξ is a constant, ρg and pg now becomes constants,

ρg ¼ −pg ¼
3a21m

2M2
p

8ð3b1 þ b2Þ
: ð98Þ

Since the mass term exactly behaves as a cosmological
constant, the kinetic terms of the vector and scalar graviton
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modes vanish in this case (ρg þ pg ¼ 0). This strong
coupling behavior can be avoided once the X-dependence
in the arbitrary functions G, A1, B1, or B2 is taken into
account. Here, let us consider the nonminimal coupling
case,

G ¼ 1þ gm2X; ð99Þ

where we assume g ≪ 1. Then, we expand ξ in terms of this
small parameter g,

ξ ¼ ξ0 þ gξ1 þOðg2Þ: ð100Þ

Here, ξ0 is given by the positive sign of (97),

ξ0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

−a1
2ð3b1 þ b2Þ

r
: ð101Þ

From the equation of motion for f, we obtain

ξ1 ¼ −
a2ξ0

6a1κM2
p
ðρχ − 3pχ − 3a1m2M2

pξ
2
0Þ; ð102Þ

and the energy density and pressure can be then
expressed as

ρg ¼ −
3

4
a1m2M2

pξ
2
0 þOðg2Þ; ð103Þ

pg ¼
3

4
a1m2M2

pξ
2
0 þ 2a1m2M2

pξ0ξ1gþOðg2Þ: ð104Þ

Then, the background equations become

3

��
1 − 3gm2ξ20

a2

κ

�
H2 −

κ

a2

�
≃

ρχ
M2

p
þ ρ̃g
M2

p
; ð105Þ

− 2

��
1 − 2gm2ξ20

a2

κ

�
_H þ κ

a2
− gm2ξ20

a2

κ
H2

�
≃
ρχ þ pχ

M2
p

þ ρ̃g þ p̃g

M2
p

; ð106Þ

where

ρ̃g ¼ ρg − 3gm2M2
pξ

2
0; ð107Þ

p̃g ¼ pg þ gm2M2
pξ

2
0: ð108Þ

Now we would like to derive the conditions for avoiding
ghost and gradient instabilities. As mentioned the above,
the positivity of the cosmological constant requires that
ρg > 0, and ξ0 has to be real,

a1 < 0; 3b1 þ b2 > 0: ð109Þ

All modes are ghost-free when ρg þ pg > 0, which gives

ξ1g < 0: ð110Þ

Substituting the background solution, the propagation
speed of the vector mode is given by

c2V ¼ −
b2ξ30
a1ξ1g

þOðg0Þ; ð111Þ

and the propagation speeds of the scalar modes can be now
simplified as

c21 ¼ c2χ ; c22 ¼ −
4b2ξ30
3a1ξ1g

þOðg0Þ: ð112Þ

Combining these conditions, we obtain

a1 < 0; 3b1þb2 > 0; ξ1g< 0; b2< 0: ð113Þ

Therefore, all modes are free of ghost and gradient
instabilities when the conditions (113) are satisfied.

VI. SUMMARY

In the present paper, we studied a generalization of
massive gravity with the broken translation invariance.
Introducing a deformation to the fiducial metric f̃μν ¼
ðηab þDϕaϕbÞ∂μϕ

a∂νϕ
b is essential to find extended

theories beyond the dRGT massive gravity. Starting with
arbitrary mass functions, we found two potential ways to
avoid the BD ghost. The first case is the extension of the
generalized massive gravity and any detuning of the
quadratic dRGT potential requires a nonminimal coupling
with curvature. The action for this theory is given by

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p M2
p

2

�
GRþ 6G2

X

G
½Y�

− 2m2
X3
n¼0

βnðXÞen
� ffiffiffiffiffiffiffiffiffiffi

g−1f̃
q ��

þ Sm½g;ψ �: ð114Þ

The second theory can be constructed using the fiducial
metric f̄μν ¼ Pab∂μϕ

a∂νϕ
b, where we use the projection

tensor Pab ¼ ηab − ϕaϕb=X, which manifestly eliminates
one of the Stückelberg fields along ϕa. The action for the
projected theory is given by

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p M2
p

2

�
GRþ 6G2

X

G
½Y�

þm2UðX; ½Z�; ½Z2�; ½Z3�Þ
�
þ Sm½g;ψ �; ð115Þ

where Y and Z are defined in (25). In the form that we
proposed, this theory can also have the same nonminimal
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coupling, but the mass term is no longer of the form of the
dRGT potential terms. In addition, the potential term is an
arbitrary function of X and ½Zn�. We have systematically
proved the absence of the BD ghost in this theory. The
projected theory action (115) is actually not the most
general, since there remains some freedom to include
further nonminimal coupling without generating the BD
ghost. For instance, the term Gμνf̄μν was considered in
Ref. [30]. The possibility of other nonminimal coupling
terms can be easily seen by considering general disformal
transformations of the metric tensor gμν → g̃μν ¼
Cgμν þDZμν þ EðZ2Þμν þ FðZ3Þμν, where all coefficients
are functions of X, [Z], ½Z2�, ½Z3�. Such a transformation
would generate the Gμνf̄μν coupling, as well as many
others, and we will report this in a later study.
We have then studied open-FLRW cosmologies of these

obtained theories. In both cases, all perturbations are free of
ghost and gradient instabilities. In addition, we have found
that the structure of the nonminimal coupling does not
change the propagation speed of the tensor modes while the
vector and scalar graviton propagates either subluminal or
superluminal speed.
These new theories are the first ones where the kinetic

term of a massive graviton is no longer Einstein-Hilbert
term due to the nonminimal coupling, and it might bring a
new phenomenology of large scale structure. For instance,
the translation breaking will be manifested as time variation
in coupling constants. For solar system tests, we expect that
the theory (35) exhibits Vainshtein mechanism due to its
connection to generalized Galileon theories in the decou-
pling limit. The phenomenology of this theory will be
investigated in a future publication [39]. Conversely, the
theory (38) is disconnected from the dRGT construction,
thus the existence and/or necessity of a screening mecha-
nism needs to be confirmed.
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APPENDIX A: DEGENERACY CONDITIONS
AROUND FIXED BACKGROUNDS

Due to the complexity of the action (15), we here
simplify the derivation of degeneracy conditions, instead
of using 3þ 1 decomposition. An obvious first choice is
the homogeneous and isotropic background. However,
even for constant mass parameters, one cannot even deduce

the full degeneracy conditions that yield the dRGT form. In
this appendix, we instead consider two backgrounds that
have fewer symmetries than the cosmological background.
We first consider a homogeneous background with broken
isotropy, which yields explicit necessary conditions. We
next study an inhomogeneous background, which gives
tighter degeneracy conditions that we could not write down
explicitly. However, we are able to check some options for
the relations between functions. We summarize our find-
ings at the end of the appendix, which form the basis of the
conditions (17)–(18) quoted in the main text.
The action we consider in this appendix is

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p M2
p

2
½GðxÞR½g� þ FðXÞ½Y�

þ AðXÞ½W� − 2m2Lmass�; ðA1Þ

where we definedW and Y in Eq. (25), while Lmass is given
in Eq. (16).

1. Degeneracy around anisotropic background

We first start with the Bianchi type-V spacetime, which
is the simplest anisotropic background that is compatible
with uniform ϕaϕa. The physical metric is given by

ds2¼−dt2þaðtÞ2dx2þ e2αxðbðtÞ2dy2þcðtÞ2dz2Þ: ðA2Þ

The scalar field configuration is chosen to be

ϕ0 ¼ fðtÞ
�
coshðαxÞ þ α2ðy2 þ z2Þeαx

2

�
;

ϕ1 ¼ fðtÞ
�
sinhðαxÞ − α2ðy2 þ z2Þeαx

2

�
;

ϕA ¼ fðtÞαxAeαx; ðA3Þ

where A ¼ 2, 3. With this choice, we have X ¼ ηabϕ
aϕb ¼

−f2 and

fμνdxμdxν ¼ − _f2ðtÞdt2 þ α2fðtÞ2dx2
þ α2fðtÞ2e2αxðdy2 þ dz2Þ: ðA4Þ

This is simply the Minkowski metric written in a chart that
is compatible with the Bianchi type-V form. We can also
define the fiducial metric obtained from a transformed field
space metric (12),

f̃μν;Idxμdxν ¼ −ðCI − f2DIÞ _f2dt2 þ α2CIfðtÞ2dx2
þ α2fðtÞ2CIe2αxðdy2 þ dz2Þ: ðA5Þ

Then, we have the diagonal matrix,
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ðg−1f̃IÞμν ¼

0BBBBB@
ðCI þDIXÞ _f2 0 0 0

0 α2CI
f2

a2 0 0

0 0 α2CI
f2

b2 0

0 0 0 α2CI
f2

c2

1CCCCCA:

ðA6Þ

We can then evaluate the action (15) for this background.
We vary the action in the minisuperspace approximation S
with respect to the variables a, b, c and f, and obtain four
dynamical equations,

En ≡ ðEa; Eb; Ec; EfÞ; Ea ≡ δS
δa

; Eb ≡ δS
δb

;

Ec ≡ δS
δc

; Ef ≡ δS
δf

: ðA7Þ

Since these equations of motion contain the second time
derivative of fðtÞ, to ensure the absence of the BD ghost,

fðtÞ should be nondynamical. Therefore, we require that
the kinetic matrix,

Kmn ¼
∂Em

∂q̈n ; ðA8Þ

is degenerate. Here we have defined the variables as
qn ≡ ða; b; c; fÞ. Assuming G ≠ 0, the determinant of
the kinetic matrix is given by

detK ¼ D1 þ 6_f2D2 − 2m2αf

�
1

a
þ 1

b
þ 1

c

�
ð3_fD3 þD5Þ

− 6m2 _fD4

− 4m2α2f2
��

1

ab
þ 1

ac
þ 1

bc

�
D6

þ
�
1

a2
þ 1

b2
þ 1

c2

�
D7

�
; ðA9Þ

where

D1 ¼ Aþ FX − 6X
G2

X

G
− 2m2½ðCγ1 þ XDγ1Þγ1 þ ðCγ2 þ XDγ2Þγ2�;

D2 ¼ X2B1 − 2m2½ðCσ1 þ XDσ1Þ2σ1 þ ðCσ2 þ XDσ2Þ2σ2 þ ðCσ3 þ XDσ3Þ2σ3 þ ðCσ4 þ XDσ4Þ2σ4 þ ðCσ5 þ XDσ5Þ2σ5�;
D3 ¼ 4

ffiffiffiffiffiffiffi
Cσ1

p ðCσ1 þ XDσ1Þ3=2σ1 þ 2
ffiffiffiffiffiffiffi
Cσ2

p ðCσ2 þ XDσ2Þ3=2σ2 þ
ffiffiffiffiffiffiffi
Cσ4

p ðCσ4 þ XDσ4Þ3=2σ4;
D4 ¼ ðCδ1 þ XDδ1Þ3=2δ1 þ ðCδ2 þ XDδ2Þ3=2δ2 þ ðCδ3 þ XDδ3Þ3=2δ3;
D5 ¼ 3

ffiffiffiffiffiffiffi
Cδ1

p ðCδ1 þ XDδ1Þδ1 þ
ffiffiffiffiffiffiffi
Cδ2

p ðCδ2 þ XDδ2Þδ2;
D6 ¼ 6Cσ1ðCσ1 þ XDσ1Þσ1 þ Cσ2ðCσ2 þ XDσ2Þσ2;
D7 ¼ 3Cσ1ðCσ1 þ XDσ1Þσ1 þ Cσ2ðCσ2 þ XDσ2Þσ2 þ Cσ3ðCσ3 þ XDσ3Þσ3: ðA10Þ

For the kinetic matrix to be noninvertible, all seven of these
functions should be zero,

D1 ¼ D2 ¼ D3 ¼ D4 ¼ D5 ¼ D6 ¼ D7 ¼ 0: ðA11Þ

Here, the tadpole term, βðXÞ½Qβ�, in (16) does not con-
tribute to the kinetic matrix since it is linear in _f in this
background. One can confirm that when the above con-
ditions are imposed, the study of linear perturbations does
not reveal any new information on degeneracy. Note that
we can obtain the dRGT tuning in the translation invariant
case, F ¼ A ¼ DI ¼ 0 and G ¼ CI ¼ 1. In a FLRW
background, where α ¼ 0 and a ¼ b ¼ c, the conditions
D6 ¼ 0 and D7 ¼ 0 are combined into a single condition,
that is, D6 þD7 ¼ 0. This demonstrates that the FLRW
background is not adequate to reveal all of the dRGT
tuning. Although these conditions are sufficient to elimi-
nate the BD ghost in the Bianchi type-V background, the

BD ghost reappears in more general backgrounds as we
show in the next subsection.

2. Degeneracy around inhomogeneous background

So far, we have considered degeneracy conditions
around a homogeneous but anisotropic background. It is
therefore a legitimate question whether these conditions are
sufficient to ensure nonlinear degeneracy (or equivalently,
degeneracy around arbitrary backgrounds). We here con-
sider a fixed physical metric given by [24,29]

gμνdxμdxν¼−dt2þhijðdxiþNidtÞðdxjþNjdtÞ; ðA12Þ

where we use spherical coordinates dxi ¼ ðdr; dθ; dϕÞ and
consider flat hypersurfaces hij ¼ diagð1; r2; r2 sin2 θÞ. We
also use a shift vector that is aligned with the radial
direction Ni ¼ ðl; 0; 0Þ. As for the scalar field configura-
tion, we consider
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ϕ0 ¼ fðtÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ κr2

p
þ δϕ0;

ϕ1 ¼ fðtÞ ffiffiffi
κ

p
r sin θ cosϕþ δϕ1;

ϕ2 ¼ fðtÞ ffiffiffi
κ

p
r sin θ sinϕþ δϕ2;

ϕ3 ¼ fðtÞ ffiffiffi
κ

p
r cos θ þ δϕ3; ðA13Þ

where δϕa are perturbations. With this choice, the back-
ground f̃μν is diagonal

f̃μν;I ¼ diag

�
−ðCI − f2DIÞ _f2;

κCIf2

1þ κr2
;

κCIr2f2; κCIr2f2sin2θ

�
þOðδϕaÞ; ðA14Þ

while the physical metric has a 2 × 2 nondiagonal block in
the ðt; rÞ space. This example, although not necessarily
corresponding to any solution of the equations of motion,

nevertheless provides a background which is minimally
nondiagonal, potentially revealing new degeneracy con-
ditions not covered by (A10). Since the background is not a
consistent parameterisation of the degrees of freedom, we
need to look at the action quadratic in perturbations to
deduce the conditions on degeneracy.
At the background level, we have

ðg−1f̃IÞμν¼

0BBBBB@
ðCI−f2DIÞ _f2 κlCIf2

1þκr2 0 0

−lðCI−f2DIÞ _f2 κð1−l2ÞCIf2

1þκr2 0 0

0 0 κCIf2 0

0 0 0 κCIf2

1CCCCCA
þOðδϕaÞ: ðA15Þ

We start by diagonalizing this tensor. The background
eigenvalues for the ðt; rÞ nondiagonal block are

λI1;2 ≡ 1

2

�
κð1 − l2ÞCIf2

1þ κr2
þ ðCI − f2DIÞ _f2

� 
1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

4κð1þ κr2ÞCIf2ðCI − f2DIÞ _f2
½κð1 − l2ÞCIf2 þ ð1þ κr2ÞðCI − f2DIÞ _f2�2

s !
: ðA16Þ

We can find perturbation corrections to the eigenvalues of
g−1f̃ by solving

detðg−1f̃I − 1lÞ ¼ 0; ðA17Þ

perturbatively up to second order in perturbations.
Unfortunately, this process is rather bulky for presentation.
To simplify the process, we fix the angles θ ¼ π=2, ϕ ¼ 0
and assume all perturbations are time dependent only, since
we are eventually interested in terms quadratic in time
derivatives. In the end, we formally have

ðRTg−1f̃RÞμν ¼ lðμÞδνμ; ðA18Þ

where R is an orthogonal matrix and lðμÞ denotes the μth
eigenvalue. Then, observing that

RT
ffiffiffiffiffiffiffiffiffiffi
g−1f̃

q
R ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
RTg−1f̃R

q
; ðA19Þ

we deduce that
ffiffiffiffiffiffiffiffiffi
lðμÞp

are the eigenvalues of
ffiffiffiffiffiffiffiffiffiffi
g−1f̃

p
, so

they can directly be used when calculating the various
traces.
Using Mathematica, we calculate the kinetic matrix and

degeneracy conditions generated by only the mass terms,
and hereafter we thus set _G ¼ F ¼ A ¼ 0. Note that the
inclusion of the nonminimal coupling is justified by 3þ 1
decomposition in Sec. IV. The expression of the degeneracy
conditions is cumbersome, and it is difficult to solve these
equations exactly in general. Thus, we here systematically

assign random values to the function, and then we can
confirm the degeneracy or nondegeneracy of the system to
obtain the conditions.5 Using this approach, we find that the
following conditions complement (A11):

Cγ1 ¼ Cγ2 ; Cδ1 ¼ Cδ2 ¼ Cδ3 ;

Cσ1 ¼ Cσ2 ¼ Cσ3 ¼ Cσ4 ¼ Cσ5 ; ðA20Þ

and

DI

CI
¼ DðXÞ for any label I; ðA21Þ

where D is a single function. These conditions imply that
only a single field space metric is allowed, whilst the
conformal factors CI can be absorbed in the definitions of
the mass function. This can be seen as generalizing the
original field space metric ηab to η̃abðϕaÞ.

APPENDIX B: DERIVATION OF THE GENERAL
ACTION FOR THE PROJECTED THEORY

In this appendix, we derive the action (38) in a
systematic way. In contrast to the square root structure
of the dRGT mass terms, we here construct mass terms by
usingW and Y, defined in Eq. (25), as building blocks. Let

5If there is degeneracy, it is not possible to conclusively
demonstrate this using perturbative methods around fixed
backgrounds.
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us consider the most general mass terms up to quadratic
order in W and Y,

Lmass ¼ B1½W�2 þ B2½W2� þ B3½Y�2 þ B4½Y2�
þ B5½W�½Y� þ B6½WY�; ðB1Þ

where Bi are function of X. Then we consider the following
action including the nonminimal coupling:

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p M2
p

2
½GðXÞR½g� þ FðXÞ½Y�

þ AðXÞ½W� þm2Lmass�: ðB2Þ

After 3þ 1 decomposition, the canonical momenta are
given by

πa ¼ δL

δ _ϕa

¼ −4GXKϕa − 2A _ϕa − 2Fϕaϕb _ϕb þ 4ðB1 þ B2Þ _ϕa _ϕb
_ϕb þ 2ðB5 þ B6Þðϕbϕc _ϕa _ϕb

_ϕc þ ϕaϕb _ϕb
_ϕc

_ϕcÞ
þ 4ðB3 þ B4Þðϕaϕbϕcϕd _ϕb

_ϕc
_ϕd − ϕaϕbϕcϕd _ϕbðDμϕdÞðDμϕcÞÞ

− 4B1
_ϕaðDμϕbÞðDμϕbÞ − 4B2

_ϕbðDμϕbÞðDμϕaÞ − 2B5ðϕaϕb _ϕbðDμϕcÞðDμϕcÞ þ ϕbϕc _ϕaðDμϕcÞðDμϕbÞÞ
− 2B6ðϕbϕc _ϕbðDμϕcÞðDμϕaÞ þ ϕaϕb _ϕcðDμϕcÞðDμϕbÞÞ; ðB3Þ

πμν ¼ δL
δKμν

¼ 2GðKμν − γμνKÞ − 4GXγ
μνϕa _ϕa: ðB4Þ

As in Sec. IV, we consider the linear combination of the
canonical momenta,

Ψ≡ α1ϕ
aπa þ α2γ

μνπμν; ðB5Þ

where α1 and α2 are constants. To ensure the existence
of a primary constraint on arbitrary backgrounds, Ψ should
be independent of K, ϕa

_ϕa, w1 ≡ ϕa _ϕbDμϕaDμϕb,

w2≡ϕa
_ϕaDμϕbDμϕb, and w3≡ϕaϕbϕc

_ϕaDμϕ
bDμϕc, i.e.,

∂Ψ
∂ðϕa

_ϕaÞ ¼ 0;
∂Ψ
∂K ¼ 0:

∂Ψ
∂w1

¼ 0;

∂Ψ
∂w2

¼ 0;
∂Ψ
∂w3

¼ 0; ðB6Þ

which gives the five conditions,

GXXα1þGα2¼ 0;

ðAþFXÞα1þ6GXα2¼ 0;

B5þB6þ2ðB3þB4ÞX¼ 0;

6B1þ4B2þ5B5Xþ4XðB6þðB3þB4ÞXÞ¼ 0;

10B1þ12B2þXð7B5þ8B6þ4ðB3þB4ÞXÞ¼ 0: ðB7Þ

Solving these equations, we find

F ¼ 6G2
X

G
−
A
X
; B6 ¼ −

2B2

X
;

B5 ¼ −
2B1

X
; B4 ¼ −

B1 þ B2 − B3X2

X2
: ðB8Þ

As one can see, the degeneracy conditions for G, A, F and
Bi do not mix, and this implies that they can be imposed at
each order. In the translation invariant case (B3;4;5;6 ¼ 0 and
B1;2 ¼ const), we have B1 ¼ B2 ¼ 0. Thus these trans-
lation-breaking terms are crucial to ensure the degeneracy.
Once we impose these degeneracy conditions, the mass
term Lmass is characterized by only the arbitrary functions
B1 and B2, while the B3 term is canceled due to the
above conditions. We can then rewrite the mass term in
terms of only the projection tensor, and it can be written as
Lg ¼ B1½Z�2 þ B2½Z2�. Thus, besides the nonminimal
coupling and its counterterms, the mass terms can be
described by the traces of the matrix Zμ

ν. With the same
procedure, one can easily show that the cubic mass terms
are described by all the possible combinations of the traces
of Zμ

ν with three arbitrary functions. The higher order
extension can be also possible, and we finally arrive at the
action (38).

APPENDIX C: SCALAR SOUND SPEEDS
IN THE EXTENDED THEORIES WITH

NONMINIMAL COUPLING

In this section, we present the full expressions of the
sounds speeds of scalar perturbations in the nonminimally
coupled theories defined by the actions (51) and (80). After
the nondynamical degrees of freedom are integrated out,
the reduced scalar action contains two propagating degrees,
one corresponding to the matter perturbations and the other
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to the scalar graviton polarization. Considering a mono-
chromatic wave and taking the subhorizon limit, we can
solve the equations of motion, which can formally be
reduced to the following algebraic equation for the sound
speed C:

�
C2

c2s
− 1

�
ðAC2 − BÞ −D ¼ 0: ðC1Þ

For the first class of theory (51), the coefficients A, B,
and D are given by

A ¼ 3ðρχ þ PχÞ
m2M2

pr2

�
Jξr

ðH þ _G
2GÞ2

�
κ

a2
þm2Jξ

2G

�
−

Jξ

ðH þ _G
2GÞ

�
H −

3 _G
2G

þ
_J
J
þ

_ξ

ξ

�
þ 2ðΓ − JξÞ

�

þ 3

ð2GH þ _GÞr2
�
ρχ þ Pχ

m2M2
p

�
2
�
m2Jξr

H þ _G
2G

þ ð1 − 3c2sÞ _G
�
;

B ¼
�

ρχ þ Pχ

m2M2
pðH þ _G

2GÞr

�
2
�
ð1 − 3c2sÞ2

_G2

4G2
−
m2r
2G

ð2Γ − 3JξÞ
�

−
Jξðρχ þ PχÞ

m2M2
prðH þ _G

2GÞ2

 ̈ξ
ξ
−
1þ r
r

�
H þ

_ξ

ξ

�
2

þ
�
4ðH þ _G

GÞ½Jξðr − 1Þ þ ðrþ 1ÞΓ�
Jrξ

−
_G½Jξð7r − 10Þ þ 4ðrþ 1ÞΓ�

2GJrξ
−
2_J
Jr

−
_r
r

��
H þ

_ξ

ξ

��
þ ðρχ þ PχÞξ
4m2M2

pJðH þ _G
2GÞ2



4ðH þ _G

2GÞ2
r2ξ2

½4ð1þ rÞðΓ − JξÞ2 þ Jrξð10Γ − 7JξÞ�

þ 4J
r2ξ

�
H þ

_G
2G

��
−2ðΓ − JξÞ

�
_rþ 2ð1þ rÞ_J

J
−
ð3þ rÞ _G

G

�
þ 2rð _Γ − _JξÞ þ Jrξ

2

�
7 _G
G

−
8_J
J

��
þ 4J2

r

�
2G̈
G

−
J̈
J

�
þ 2Jðr − 6Þ _J _G

Gr2
−
2J2 _r
r2

�
3 _G
G

−
2_J
J

�
þ J2ð9 − 10rÞ _G2

G2r2

þ 4ð1þ rÞ _J2
r2

þ 4κJ
a2rξ

½2ðr − 1ÞΓþ 3Jξ� þ 4m2J2ð3r − 1Þ
Gr

ðΓ − JξÞ þ 2m2J3ξð2rþ 1Þ
Gr

�
;

D ¼
�ð1 − 3c2sÞ _Gðρχ þ PχÞ

m2M2
prð2GH þ _GÞ

�2

: ðC2Þ

For the second class, i.e., the projected theory (80), these coefficients are given by

A≡ 9c2sðρg þ pgÞðρχ þ pχÞð _Gþ 2GHÞ½ð9c2sρχ þ 3ð3c2s − 4Þpχ þ ρg − 3pgÞ _Gþ 2Gð3 _pg þHðρg þ 9pgÞÞ�;

B≡ −9c2sð1 − 3c2sÞ2ðρχ þ pχÞ2ðρχ þ pχ þ ρg þ pgÞ _G2 −
A2

81c2sðρg þ pgÞ2ðρχ þ pχÞð _Gþ 2GHÞ2

þ
�ð13ρg þ 21pgÞð _Gþ 2GHÞ þ 6ð3c2s − 1Þðρχ þ pχÞ _G

9ðρg þ pgÞð _Gþ 2GHÞ −
2

3

�
2 −

M2
pM2

GW

ρg þ pg

��
A;

D≡ −ð1 − 3c2sÞ2ðρχ þ pχÞ2 _G2½ð9c2s − 1Þρg þ 9ðc2s − 1Þpg − 6M2
pM2

GW�: ðC3Þ

The solutions of Eq. (C1) can then be written as

C2 ¼ 1

2

�
c2s þ

B
A

�
�
c2s −

B
A

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4c2s

D
A

�
c2s −

B
A

�
−2

s �
:

ðC4Þ
The conditions for avoiding gradient instability simply
require a real sound speed, i.e., C2 > 0 for both roots. Due

to the presence of the nonminimal coupling, it is not
straightforward to distinguish between the matter pertur-
bation and the scalar graviton. However, we observe that in
the case c2s ¼ 1=3, the sound speeds in both theories
become relatively simple with

C2
1jc2s¼1=3 ¼

1

3
; C2

2jc2s¼1=3 ¼
B
A
: ðC5Þ
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