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 2 

Abstract 30 

We tested the social complexity hypothesis which posits that animals living in complex social 31 

environments should use complex communication systems. We focused on two components of 32 

vocal complexity: diversity (number of categories of calls) and flexibility (degree of gradation 33 

between categories of calls). We compared the acoustic structure of vocal signals in groups of 34 

macaques belonging to four species with varying levels of uncertainty (i.e. complexity) in 35 

social tolerance (the higher the degree of tolerance, the higher the degree of uncertainty): two 36 

intolerant species, Japanese and rhesus macaques, and two tolerant species, Tonkean and 37 

crested macaques. We recorded the vocalizations emitted by adult females in affiliative, 38 

agonistic, and neutral contexts. We analysed several acoustic variables: call duration, entropy, 39 

time and frequency energy quantiles. The results showed that tolerant macaques displayed 40 

higher levels of vocal diversity and flexibility than intolerant macaques in situations with a 41 

greater number of options and consequences, i.e. in agonistic and affiliative contexts. We 42 

found no significant differences between tolerant and intolerant macaques in the neutral 43 

context where individuals are not directly involved in social interaction. This shows that 44 

species experiencing more uncertain social interactions displayed greater vocal diversity and 45 

flexibility, which supports the social complexity hypothesis. 46 

 47 
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1. Introduction 49 

When looking for the determinants of social evolution in animals, two main types of 50 

factors can be distinguished: external pressures coming from the environment and internal 51 

constraints arising from the structure of the phenotype. Understanding how adaptation to 52 

environmental factors shapes social behaviour has attracted a great deal of research, and is in 53 

fact a main objective of the field of behavioural ecology [1,2]. In comparison, the role of 54 

structural constraints in biology has long been a controversial issue [3,4], and much less effort 55 

has been devoted to studying how they channel social organizations [5]. Although the 56 

definition of structural constraints itself has been problematic for some time, they can be 57 

actually defined as processes that limit the response of phenotypic traits to the selective action 58 

of ecological factors [6,7]. These constraints arise from the existence of functional 59 

relationships that link phenotypic traits or from passive interconnections that have occurred 60 

over the course of evolutionary history, and keep them in an entrenched state [5,8,9]. 61 

According to the social complexity hypothesis for communicative complexity, there is a 62 

functional relationship between patterns of communication and patterns of social organisation: 63 

animals living in complex social environments should use complex communication systems 64 

because a complex social life increases the need to discriminate individuals, express a wide 65 

range of emotional states, and convey a broad variety of messages related to different goals and 66 

contexts [10–12]. Although the social complexity hypothesis applies to communicative signals 67 

in general, most of the current evidence comes from the study of vocal communication [10]. 68 

The correlations found between the amount of information or the size of vocal repertoire on 69 

one side, and the size of social groups [13–15] or the number of categories of individuals on 70 

the other side [11,16] are in line with this hypothesis. However, there are problems with the 71 

definition and measurement of both social and vocal complexity. 72 

There is no consensus on measures of the complexity of social systems [10,17–19]. The 73 

number of individuals in a social unit, as well as their number of categories or interactions, 74 

have long been used as indicators of complexity [10,11,16,17,20,21]. More recently, authors 75 

have focused on the number of social relationships or associations between group members 76 

[18,22]. Numbering the components of social systems may provide a good proxy for assessing 77 

their diversity, but diversity is only part of complexity, it does not encompass all aspects of 78 
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complexity [23], which limits the evaluation of the social complexity hypothesis. 79 

A similar problem hinders the measurement of the complexity of vocal communication 80 

[24]. Authors generally assume that the greater the number of call types, the higher the level of 81 

vocal complexity [14,15,25]. In these studies, what is considered is the diversity of 82 

communication signals rather than the complexity of the entire vocal system. Moreover, there 83 

is no agreement on how to identify the types of calls, and therefore the size of a species’ 84 

communicative repertoire [24]. The task is especially tricky when repertoires are graded, that 85 

is, when there is gradual transition from one acoustic structure into another [24], as reported in 86 

species such as primates [26,27]. Some have proposed abandoning the idea of counting the 87 

number of calls to quantify vocal complexity, and instead using the degree of gradation of 88 

repertoires [24,28], i.e. flexibility in the acoustic structure of vocal signals. Since diversity and 89 

flexibility represent two different components of complexity, however, it seems that the best 90 

solution is to take both into account when characterising vocal complexity [23]. 91 

Uncertain outcomes appear to be the most important characteristic of complex systems 92 

[29,30]. Shannon's information theory [31] provides a way to quantify diversity and flexibility 93 

in terms of uncertainty [23]. This theory refers to what can be treated as a quantity of 94 

information which is here synonymous with a lack of a priori knowledge about the outcome of 95 

events, and therefore their unpredictability. More types of calls or more graded calls offer a 96 

greater number of options and, ultimately, the greater the number of options, the greater the 97 

uncertainty. The social complexity hypothesis can therefore be tested by comparing the 98 

diversity and flexibility of communication in species with varying levels of uncertainty in their 99 

social relationships. These species must be close enough to allow for homologous comparison 100 

from the point of view of both social relations and communication signals. In this respect, the 101 

genus Macaca offers a model that meets these requirements. Macaque species exhibit wide 102 

variations in their degree of social tolerance, which can be related to different levels of 103 

uncertainty in the outcome of their agonistic interactions [32,33]. In the most intolerant 104 

species, social conflicts generally have clear consequences: in Japanese macaques (Macaca 105 

fuscata) and rhesus macaques (M. mulatta), for instance, the recipient of aggression flees or 106 

submits in nine out of ten cases among unrelated females [34]. By contrast, in more tolerant 107 

species the recipient of the aggression frequently protests or counter-attacks: in Tonkean 108 
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macaques (M. tonkeana) and crested macaques (M. nigra), 68.0 and 45.4% of conflicts among 109 

unrelated females, respectively, remain undecided, with no clear winners and losers [34]. 110 

The need for complex communication signals is not necessarily the same in all social 111 

contexts [10]. In the agonistic context, animals need information to cope with the many 112 

potential outcomes of uncertain situations such as open contests between two or more 113 

individuals, which affects competition for resources and expose individuals to risk of injury. In 114 

the affiliative context, a wealth of communication signals can also help individuals to achieve 115 

the best solution from a variety of behavioural options and maintain their social relationships 116 

[25,35]. Significant interspecies differences in communication systems are to be expected in 117 

situations of competition and cooperation. On the contrary, no significant interspecies 118 

differences should occur in neutral circumstances – i.e. when individuals are not directly 119 

involved in a social interaction – that do not require the expression of a wide range of 120 

intentions. 121 

The interspecific variations reported in the agonistic patterns of macaques covary with 122 

other components of their social style such as hierarchical steepness, degree of nepotism, 123 

reconciliation rates, or range of facial displays; for example, dominance and kinship relations 124 

have stronger influence on individual behaviours in intolerant macaques compared with 125 

tolerant macaques, and the latter reconcile more often and have a greater number of facial 126 

displays than the former [32,36,37]. Despite such variations, macaque species share the same 127 

basic patterns of organization. All are semi-terrestrial primates living in multimale-multifemale 128 

groups; males disperse, and females remain in their natal group where they constitute 129 

matrilines, i.e. subgroups of relatives linked by maternal descent [36]. While no association has 130 

been found so far between the contrasting social styles of macaque species and the ecological 131 

conditions in which they have evolved, it appears that social styles consistently vary with 132 

phylogeny: closely related species are more similar than those that are distant [5,37,38]. 133 

In this study, we compared the vocal signals of two tolerant species (Tonkean & crested 134 

macaques, Macaca tonkeana & M. nigra) and two intolerant species (Japanese & rhesus 135 

macaques, M. fuscata & M. mulatta), based on three main variables (acoustic distance, 136 

diversity, flexibility) in three different social contexts (agonistic, affiliative, neutral). Like the 137 

other species of macaque, they use a graded repertoire of vocalizations [39–42]. They are 138 
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mainly frugivorous and their primary habitat is forest, with the exception of rhesus macaques 139 

which occur in a variety of habitats, from forests to arid lands or regions of human settlement 140 

[38]. Both Tonkean and crested macaques live on different parts of the island of Sulawesi, 141 

Indonesia, they belong to the oldest macaque lineage [43]. Japanese and rhesus macaques live 142 

in Japan and mainland southern Asia, respectively, and both belong to a more recent lineage 143 

[43,44]. The two lineages separated about five million years ago [45,46]. In comparison, the 144 

divergence between Tonkean and crested macaques on one side, and Japanese and rhesus 145 

macaques on the other side, is much more recent. It is estimated to have occurred almost one 146 

million years ago at the latest [46,47]. Because of these phylogenetic distances, it can be 147 

expected that the vocal signals used by individuals will differ more between these two pairs of 148 

species than within each pair. However, such differences should apply indiscriminately to the 149 

various vocal variables and social contexts, contrary to the social complexity hypothesis which 150 

specifies that contrasts between species should depend on the variables and contexts. 151 

We tested the predictions of three different hypotheses: (1) Null hypothesis: We should 152 

find no significant difference in the calls of tolerant and intolerant species regardless of 153 

variables and contexts; (2) Phylogenetic hypothesis: Greater similarity should occur in more 154 

closely related species, for any variable, and regardless of the social context, so we should find 155 

more differences between Tonkean and crested macaques on the one hand, and Japanese and 156 

rhesus macaques on the other, than within each of these species pairs across variables and 157 

contexts; (3) Social complexity hypothesis: Greater uncertainty in the social interactions of 158 

tolerant species compared to intolerant species should be associated with greater vocal 159 

diversity and flexibility in the former species than in the latter, while no significant differences 160 

should be found regarding the acoustic distances of calls. In addition, differences in diversity 161 

and flexibility should vary across social contexts: they should be strong in the agonistic and 162 

affiliative contexts, and weak in the neutral and context. 163 

 164 

2. Methods 165 

(a) Subjects and living conditions 166 

We made behavioural observations and acoustic recordings in 29 adult females from two 167 

groups of Japanese macaques, 16 adult females from two groups of rhesus macaques, 13 adult 168 
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females from four groups of Tonkean macaques, and 51 adult females from two groups of 169 

crested macaques. We focused on adult females because they are the most represented age-and-170 

sex category in macaque social groups, and also the most active contributors in vocal 171 

communication [48]. Japanese, rhesus and Tonkean macaque females were captive born and at 172 

least five years old. Crested macaques were studied in their natural habitat, and the age of the 173 

subjects was assessed according to their reproductive history since 2006 (Macaca Nigra 174 

Project, www.macaca-nigra.org), their body size, the shape of their nipples, and the presence of 175 

old physical injuries. The composition of groups is given in Supplementary material S1, 176 

Table 1.  177 

The groups of Japanese macaques (Ft, Fw) were housed in two enclosures of 960 and 178 

4,600 m², respectively, at the Primate Research Institute in Inuyama, Japan [49]. The groups of 179 

rhesus macaques (Ma, Mb) were housed in two 210-m² enclosures at the Biomedical Primate 180 

Research Center in Rijswijk, The Netherlands [50]. One group of Tonkean macaques (Tb) was 181 

housed at the Orangerie Zoo in Strasbourg, France, in a 120-m² enclosure, and the other three 182 

groups (Tc, Td, Te) were housed at the Parco Faunistico di Piano dell’Abatino Rescue Centre 183 

in Rieti, Italy, in 500-m² enclosures [50]. Enclosures were wooded or furnished with perches, 184 

ropes and shelters. Animals were fed commercial monkeys diet pellets, supplemented with 185 

fresh fruits and vegetables, and water was available ad libitum. The groups of crested 186 

macaques (Npb, Nr1) lived in the Tangkoko Nature Reserve, North Sulawesi, Indonesia [35]. 187 

They were not provisioned and inhabit lowland tropical rainforest [51]. 188 

The study complied with the legal requirements and guidelines of the Italian, French 189 

Japanese, Dutch and Japanese governments, and followed the ASAB/ABS guidelines for the 190 

treatment of animals in behavioural research. In what follows we will refer for convenience to 191 

the Tonkean and crested macaque species as the Tonkean/crested pair, and the Japanese and 192 

rhesus macaque species as the Japanese/rhesus pair. 193 

 194 

(b) Data collection 195 

We carried out observations outdoor to ensure the quality of the recordings. Data were 196 

collected by A.L. in Japanese macaques [49], N.R. in rhesus macaques, A.D.M., A.S. and N.R. 197 

in Tonkean macaques [50], and J.M. in crested macaques [35] (S1, Table 1). We observed 198 

http://www.macaca-nigra.org/
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subjects in a predefined random order using focal sampling. Sample duration was 10 min in 199 

Japanese and Tonkean macaques from groups Tc, Td and Te, 15 min in rhesus macaques and 200 

Tonkean macaques from group Tb, and 30 min in crested macaques. This resulted in 201 

6.1±0.16 h of focal sampling per female in Japanese macaques, 12.7±0.7 h in rhesus macaques, 202 

13.6±3.2 h in Tonkean macaques, and 7.8±0.4 in crested macaques. 203 

In Japanese macaques, we recorded vocalizations with a TCD-D100 Sony (Tokyo, Japan) 204 

DAT recorder (WAV format, sampling frequency: 44100 Hz, resolution: 16 bits), and an 205 

ECM672 Sony directional microphone. In rhesus and Tonkean macaques, we used a Marantz 206 

(Eindhoven, The Netherlands) PMD661 recorder (WAV format, sampling frequency: 207 

44100 Hz, resolution: 16 bits), and a Sennheiser (Wedermark, Germany) K6 & ME66 208 

directional microphone. In crested macaques, we used partly a high-resolution camera 209 

Panasonic (Osaka, Japan) HDC-SD700 linked to a Sennheiser (Wedermark, Germany) K6 & 210 

ME66 directional microphone, and partly a Marantz (Eindhoven, The Netherlands) PMD661 211 

(WAV format, sampling frequency: 32000 Hz, resolution: 16 bits). We collected observational 212 

data about the context of call emission with a lavalier microphone connected to the recorder in 213 

Japanese, rhesus and Tonkean macaques (at805f, audio-technica, Leeds, UK vs TCM160, 214 

Meditec, Singapore). In the crested macaques, the observer filmed the focal individual while a 215 

field assistant recorded contextual data using a handheld computer; we extracted the audio 216 

tracks from the video recordings using the software FFmpeg (v 3.4.1). 217 

We distinguished three social contexts: agonistic, affiliative and neutral. Contexts were 218 

defined according to the behaviours that could occur in the 3 s before and after the emission of 219 

a call or a sequence of calls. A sequence was itself defined as a series of calls separated by a 220 

maximum of 3 s. Note that behaviour patterns could fluctuate before and after the emission of 221 

the calls, but the context did not change. Behavioural units were based on published repertoires 222 

for macaques [52–54]. The agonistic context included aggression (supplantation, lunge, chase, 223 

slap, grab, bite, facial threat display) and response to aggression (aggression, avoidance, flight, 224 

crouch, submissive facial displays). The affiliative context included affiliative behaviours 225 

(approach, sitting in contact, social grooming, social play, grasp, embrace, mount, affiliative 226 

facial display). In the neutral context, the caller was not involved in a social interaction. 227 

 228 
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(c) Acoustic analysis 229 

We had records for 1368 calls in Japanese macaques, 1026 calls in rhesus macaques, 1210 230 

calls in Tonkean macaques, and 1234 calls in crested macaques. The first author (N.R.) drew 231 

spectrograms using the software Raven Pro v1.4’ (Cornell Lab of Ornithology, Center for 232 

Conservation Acoustics, Ithaca, NY, USA) with a 256 fast Fourier transform length and a 233 

Hanning window. With the same software, she measured the following variables: Duration: 234 

duration from the beginning to the end of a call, in seconds; Q2 ratio: ratio between duration 235 

that divides a call into two intervals of equal energy and duration in percentage; Q1 frequency: 236 

value of the frequency that divides a call into two intervals containing 25% and 75% of the 237 

energy, in Herz; Q2 frequency: value of the frequency that divides a call into two intervals of 238 

equal energy, in Herz; Q3 frequency: value of the frequency that divides a call into two 239 

intervals containing 75% and 25% of the energy, in Herz; Wiener’s aggregate entropy: degree 240 

of disorder (i.e. noisiness) of the call, which uses the total energy in a frequency bin over the 241 

entire call; Wiener’s average entropy: mean of the mean entropies of the different time slices 242 

of a call. Our objective was to compare the four species on tonal and atonal calls, so we did not 243 

take into account the variables associated with fundamental frequencies since they are absent in 244 

atonal calls. 245 

We selected recordings according to their quality. We randomly selected no more than 246 

three calls per sequence. A sequence was defined as a series of calls separated by a maximum 247 

of 3 s. Based on the total number of calls, females with a sample size less than five calls were 248 

excluded from the analysis. We also excluded some specific types of calls for which we could 249 

collect only a few recordings or none in each species: alarm calls, œstrus calls, and twits and 250 

cackles. Our samples resulted in 434 calls in 24 Japanese macaques (agonistic context: total 251 

number of calls, 79 & mean number of calls per female ± SD, 3.30 ± 377; affiliative context: 252 

94 & 3.92 ± 4.16; neutral context: 255 & 10.6 ± 5.48), 639 calls in 16 rhesus macaques 253 

(agonistic: 118 & 7.38 ± 6.75; affiliative: 59 & 3.69 ± 3.22; neutral: 461 & 28.8 ± 16.0), 700 254 

calls in 13 Tonkean macaques (270 & 20.8 ± 26.3, 226 & 17.4±14.3, 202 & 15.5 ± 8.42), and 255 

696 calls in 19 crested macaques (201 & 10.6 ± 6.61, 297 & 15.6 ± 11.8, 191 & 10.1 ± 7.40).  256 

 257 

(d) Statistical analysis 258 
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Statistical analyses were run in R [55]. In a first analysis, we tested the differences in 259 

acoustic variables between species. In a second analysis, we assessed vocal diversity and 260 

compared it across species; we first performed a Principal Component Analysis (PCA), then a 261 

cluster analysis using an algorithm adapted to the graded repertoire. In a third analysis, we 262 

quantified the degree of gradation of the repertoire based on assignment probabilities using a 263 

second cluster analysis. 264 

Acoustic distances: To test the differences between species in their acoustic variables, we 265 

performed discriminant function analyses using the function lda of the package MASS [56]. 266 

Since a discriminant function analysis can be affected by the unit in which predictor variables 267 

are measured, we scaled the acoustic variables prior to analysis. As collinearity can bias the 268 

results of a linear discriminant analysis [57], we removed acoustic variables so that each 269 

Pearson pairwise correlation between acoustic variables was less than 0.7; a simulation study 270 

showed that this is the value above which collinearity begins to bias model estimates, and is 271 

consequently the most commonly used threshold [58]. We therefore included the following 272 

variables in the discriminant function analysis: duration, Q2 ratio, Q2 frequency, Average 273 

entropy. We used the function PermuteLDA from the package multiDimBio [59] to assess 274 

interspecific differences in acoustic variables that we name acoustic distances, which allowed 275 

to statistically determine whether the species were at different locations in the multivariate 276 

space [60]. The function PermuteLDA calculated the multivariate distances between the sets of 277 

calls of each species in each context, and determined whether they differed significantly using 278 

Monte Carlo randomization. 279 

Principal Component Analysis: As individuals were described by multifactorial 280 

characteristics, we used Principal Component Analyses (PCA) to reduce the dimensionality of 281 

the data set and stabilize cluster results [61], which means that the clustering outputs are 282 

smaller in number and less sensitive to noise and specific observations. In addition, the PCA 283 

approach eliminates correlations between factors that can influence clustering. Prior to PCA, 284 

and per context for all species, we scaled the seven acoustic variables to obtain a standard 285 

deviation of one, and a mean of zero, using the R base function scale [55]. The PCAs per 286 

context were then performed using the PCA function of FactoMineR package [62]. We 287 

weighted each female according to her number of calls by applying the argument row.w of the 288 
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PCA function to balance the contributions of the different females to the creation of the space. 289 

Eventually, we selected the number of dimensions that explained near 95% of the variance of 290 

the data. 291 

Vocal diversity: It is possible to measure vocal diversity by the number of call types in the 292 

repertoire of a species [12]. We ourselves measured it using the number of main categories of 293 

calls (i.e. groups of calls with similar acoustic characteristics) as follows. There is more 294 

uncertainty in communication when individuals can emit more calls, i.e. when the number of 295 

groups of calls is large. We determined the diversity in groups of calls by quantifying the 296 

number of clusters that structured the data set. The greater the number of clusters, the greater 297 

the vocal diversity. To calculate the optimal number of clusters, we chose to apply Gaussian 298 

Mixture models (GMM) based on a clustering approach [63–665]. GMMs assume that the 299 

clusters come from a finite mixture of probability distributions, which allows each group to be 300 

described with a different volume, shape, and orientation. The distribution parameters must be 301 

computed, which has been done by an Expectation maximization (EM) algorithm. The best 302 

model was then selected based on the Bayesian Information Criterion (BIC) score. The BIC 303 

scoring of a GMM was performed using the function Mclust of the package Mclust [66]. We 304 

have considered only the optimal number of clusters defined by the best model. As we wanted 305 

to compare these optimums statistically between each of the species, we used a bootstrap 306 

procedure. We ran 100 bootstraps where 80% of the data was sampled per bootstrap. 307 

Vocal flexibility: We can measure signal uncertainty as the degree of gradation between 308 

call types [23]. We named vocal flexibility the degree of gradation between calls: the higher 309 

vocal flexibility is, the greater is the potential for information transmission [12]. We used the 310 

probability for a single call to belong to the different clusters to measure the degree of 311 

gradation between clusters. Accordingly, we used the soft assignment from a fuzzy clustering 312 

algorithm over GMM because we aimed at avoiding shape, volume or orientations difference 313 

between groups that can affect the likelihood of membership to each cluster. We applied the 314 

function fanny from the package cluster [67]. We set the argument membership exponent at 1.2 315 

because it was the highest value – giving a higher degree of fuzziness [68] – that did not lead to 316 

convergence issue. Each call was assigned a probability of belonging to each cluster (N 317 

probabilities per call for N clusters). Therefore, if a call had a probability of one to belong to 318 



 12 

cluster A, and of zero to belong to any other clusters, this call was considered as typical of 319 

cluster A. On the contrary, if a call had more evenly distributed probabilities, it was considered 320 

as an intermediate call between at least two different clusters. The higher the number of 321 

intermediates, the higher the degree of gradation between clusters. Hence, to quantify this 322 

degree, we could use the Shannon’s entropy formula [31]: the higher the entropy, the more 323 

even the distribution across clusters. We calculated the entropy of each call. Entropy value was 324 

then transformed into a relative entropy value, i.e., the entropy divided by the logarithm of the 325 

number of clusters [69,70]. We then calculated the mean of these relative entropy values. This 326 

computation was performed for a number of clusters varying from 2 to 6 (optimal number of 327 

clusters range). 328 

Statistical comparisons: We compared the optimal number of clusters between species 329 

with a generalised linear model using a Poisson family (GLM). We compared the entropy 330 

value (i.e. degree of gradation between clusters) using linear models (LM). We compared the 331 

full models (i.e. with species as predictor factor) to the null models (i.e. without species) by 332 

applying likelihood ratio tests (LRT) using the function lrtest of the package lmtest [71]. This 333 

allowed to assess whether the species factor had a significant effect. When species had a 334 

significant effect, we performed post-hoc tests to make pairwise comparisons using the 335 

function emmeans of the package emmeans [72]. 336 

 337 

3. Results 338 

(a) Acoustic distance 339 

In the agonistic context, pairwise comparisons in the multivariate acoustic distances 340 

yielded significant differences between species, except between Japanese and Tonkean 341 

macaques; the distances between rhesus and Tonkean macaques remained limited relative to 342 

other distances between species (Fig. 1 & S1, Table 2). In the affiliative context, comparisons 343 

also yielded significant differences, except between Japanese and rhesus macaques; the 344 

distances between Tonkean macaques and either Japanese or rhesus macaques were limited 345 

(Fig. 1 & S1, Table 2). In the neutral context, all pairwise comparisons produced significant 346 

differences, but distances between Japanese, rhesus and Tonkean macaques were limited; 347 

crested macaques were farther from the other species in the three contexts (Fig. 1 & S1, 348 
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Table 2). As an outcome, no grouping appeared between the Tonkean and crested macaques on 349 

one side, and Japanese and rhesus macaques on the other side. 350 

 351 

(b) Vocal diversity 352 

In the agonistic context, the mean optimal number of clusters differed significantly 353 

between species (LRT χ² = 28.1, p < 0.001), meaning that they differed in their number of 354 

groups of calls. Post-hoc tests revealed that the Tonkean/crested pair had a significantly greater 355 

number of clusters than the Japanese/rhesus pair; no significant differences were found 356 

between the two members of each pair (Tonkean/crested macaques pair; Japanese/rhesus pair) 357 

(Fig. 2 & S1, Table 3). In the affiliative context, the mean optimal number of clusters differed 358 

significantly between species (LRT χ² = 90.4, p < 0.001). Post-hoc tests showed that the 359 

Japanese macaques had a significantly smaller number of clusters than the other species; rhesus 360 

macaques had a lower number of clusters than the Tonkean/crested pair although the difference 361 

was significant with the crested macaques and not with the Tonkean macaques; Tonkean and 362 

crested macaques did not differ in their numbers of clusters (Fig. 2 & S1, Table 3). In the 363 

neutral context, the mean optimal number of clusters differed significantly between species 364 

(LRT χ² = 88.3, p < 0.001). Post-hoc tests revealed that rhesus macaques had a significantly 365 

greater number of clusters than the other species); Tonkean macaques had a similar number of 366 

clusters compared to crested macaques; Japanese macaques had a significantly smaller number 367 

of clusters than the other species (Fig. 2 & S1, Table 3). 368 

We used the truncation of the mean optimal number (N) of clusters for each species and 369 

context to illustrate the optimal grouping of call types usually recognized in macaque species 370 

(see Supplementary materials S1, Table 4, and S2, 3D cluster graphs). Although call types such 371 

as screams, barks and coos were common to the four species, other types of calls were specific 372 

to species: girneys and growls in Japanese and rhesus macaques, and soft grunts, hard grunts 373 

and chuckles in Tonkean and crested macaques (S1, Table 4). 374 

 375 

(c) Vocal flexibility 376 

In the agonistic context, the mean entropy value was significantly different between 377 

species (LRT χ² = 1092, p < 0.001), meaning that they varied in the degree of gradation 378 
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between call types. Post-hoc tests showed that the strongest differences opposed the 379 

Japanese/rhesus pair to the Tonkean/crested pair, with the latter displaying higher entropies 380 

than the former. Additionally, Tonkean macaques had a higher entropy than crested macaques, 381 

and Japanese macaques had a higher entropy than rhesus macaques (Fig. 2 & S1, Table 2). In 382 

the affiliative context, the entropy value was significantly different between species (LRT χ² = 383 

679, p < 0.001). Post-hoc tests revealed that the strongest differences opposed the 384 

Japanese/rhesus pair to the Tonkean/crested pair, with the Tonkean/crested pair displaying a 385 

higher entropy than the Japanese/rhesus pair; crested macaques had a higher entropy than 386 

Tonkean macaques, and Japanese macaques had a higher entropy than rhesus macaques (Fig. 2 387 

& S1, Table 2). In the neutral context, the entropy value was significantly different between 388 

species (LRT χ² = 737, p < 0.001). Post-hoc tests revealed no clear pattern contrasting the 389 

Japanese/rhesus to the Tonkean/crested pairs; rhesus macaques had a higher entropy compared 390 

to the other species; Japanese macaques had a higher entropy compared to Tonkean and crested 391 

macaques, and crested macaques had a higher entropy than Tonkean macaques (Fig. 2 & S1, 392 

Table 2). 393 

 394 

4. Discussion 395 

Based on the comparison of the acoustic variables characterizing both tonal and atonal 396 

calls, we found that the vocalisations of the four species of macaques studied differed by 397 

several respects. Although call types such as screams, barks and coos were common to all of 398 

them, other types of calls were specific to species, consistently with the results of previous 399 

studies: girneys and growls in Japanese and rhesus macaques, and soft grunts, hard grunts and 400 

chuckles in Tonkean and crested macaques [39,40,73–75]. The analysis of the acoustic 401 

distances between the sets of calls recorded in each species for each context confirmed that 402 

each macaque species has its own acoustic repertoire [42]. In particular, we did not find any 403 

significant contrasts in acoustic distances that would allow to arrange the sets of calls of 404 

Japanese macaques and rhesus on one side, and Tonkean and crested macaques on the other 405 

side. 406 

We addressed vocal diversity by identifying the optimal number of groups of calls in each 407 

species. This showed that the Japanese/rhesus pair differed from the Tonkean/crested pair in 408 
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the agonistic context; the latter had one additional group of calls compared to the former. It 409 

should be emphasized that a group of calls does not represent a single type of calls, but 410 

generally includes several types. In other words, this means that the diversity of call types was 411 

more extensive in Tonkean and crested macaques compared to Japanese and rhesus macaques 412 

in the context of aggression. We found a similar pattern in the affiliative context, although the 413 

difference between rhesus and Tonkean macaques was not statistically significant. On the other 414 

hand, we did not find similar contrasts between the two pairs of species in the neutral context. 415 

We also examined vocal flexibility by analysing the degree of gradation between groups of 416 

calls. We found the same type of demarcation between the Japanese/rhesus and the 417 

Tonkean/crested pairs in the agonistic and the affiliative contexts. As for vocal diversity, no 418 

difference appeared in the neutral context between both pairs of species. 419 

Based on the interspecies contrasts evidenced in the acoustic structure of calls, we can 420 

reject the null hypothesis that there should be no difference between the Tonkean/crested and 421 

Japanese/rhesus pairs. The phylogenetic hypothesis posits that closely related species should 422 

show generalised similarity in calls for any acoustic variable and social context. However, this 423 

fails to explain why the two pairs of species differed in the number of group of calls and the 424 

degree of gradation between calls, but not in their acoustic distances, nor why the contrasts 425 

were consistent in the agonistic context, but not in the other social contexts. By contrast, the 426 

social complexity hypothesis is able to account for these various results. This hypothesis 427 

predicts that only complexity variables – vocal diversity measured by the number of groups of 428 

calls and vocal flexibility measured by the degree of gradation – should differ between the 429 

Tonkean/crested and Japanese/rhesus pairs in the agonistic and affiliative contexts. It also 430 

expects that the magnitude of contrasts between the two pairs of species should be absent in the 431 

neutral context. We found that species differences in the neutral context did not follow any 432 

pattern related to variations in the degree of social uncertainty between pairs of species. As 433 

callers do not receive specific responses from their group mates in the neutral context, the 434 

number of possible outcomes remain limited and it is understandable that vocal complexity 435 

was not influenced by the species-specific style of social interactions. 436 

The social interactions of tolerant macaque species are characterized by a higher degree of 437 

freedom than those of more intolerant macaques, as they are less constrained by kinship and 438 
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dominance relations [76]. Functionally, a greater diversity of vocal signals and a marked 439 

gradation between them can provide richer and more nuanced meanings, as moving gradually 440 

from one display to another would allow the signals to express a broad motivational spectrum 441 

[77]. In other words, such signals have the potential to contain a large amount of information 442 

and convey a wide range of emotions and intentions. This would contribute to the developed 443 

negotiation skills of tolerant macaques, enabling them to engage in highly sophisticated 444 

affiliative interactions, manage undecided open contests, and achieve high rates of conflict 445 

resolution [35,78–82]. 446 

It should be stressed that our results are by nature correlational. The causal direction of the 447 

social complexity hypothesis for communicative complexity is still debated [12]. While 448 

complex social situations may require complex communicative abilities, complex 449 

communicative abilities may also foster the emergence of complex social interactions. Since 450 

the two processes are not mutually exclusive, a positive feedback loop may occur between 451 

them at the evolutionary level. In addition, it is generally assumed that the social complexity 452 

hypothesis applies to entire social systems. Our results reveal that the hypothesis can hold for 453 

some social situations and not for others. In particular, we did not find consistent differences 454 

between tolerant and intolerant macaques in the neutral context, where most of the recorded 455 

calls were coos and growls. As mentioned above, it seems logical that no link between social 456 

and communicative complexity has emerged in a context where callers were not involved in 457 

social interactions. 458 

We have studied the calls of three species of macaque in captive settings, and in the wild 459 

for the fourth, but we found no contrast between groups that could be attributed to the 460 

recording conditions. Furthermore, while Japanese, Tonkean and crested macaques are mainly 461 

forest-dwelling species, rhesus macaques can live in quite diverse habitats. Again, our analyses 462 

did not reveal systematic contrasts between rhesus macaques and the other three species. It is 463 

known that the physical structure of the habitat can affect the frequency or amplitude of 464 

auditory signals for example [26,83], but we have relied on variables related to vocal diversity 465 

and flexibility, for which no influence of ecological conditions is assumed to date [10]. Future 466 

research should confirm the contrasts in vocal diversity and flexibility found between tolerant 467 

and intolerant macaques by extending the analyses to a larger number of groups and species. 468 
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The additional study of the combinations of calls in vocal sequences and the responses of 469 

receivers will also be necessary to test the social complexity hypothesis in a comprehensive 470 

way. 471 
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Figures captions 

 

 

 

 

Fig. 1. Comparisons of acoustic distances between species for calls emitted in the agonistic, 

affiliative and neutral contexts: Linear Discriminant Analysis biplot with the four groups 

centroids of species on the first two linear discriminants (LD1 & LD2). The ellipses correspond 

to the 95% confidence interval. 

 

Fig. 2. Comparisons of vocal diversity and flexibility between species for calls emitted in the 

agonistic, affiliative and neutral contexts: optimal numbers of clusters and entropy values 

(***p < 0.001, ** p< 0.01, *p < 0.05). 
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