
https://doi.org/10.1007/s00165-020-00512-5
The Author(s) 2020
Formal Aspects of Computing

Formal Aspects
of Computing

Legislation-driven development of a
Gift Aid system using Event-B

David M. Williams 1, Salaheddin Darwish 2, Steve Schneider 3, and David R. Michael4

1 School of Computing, University of Portsmouth, Portsmouth, PO1 3HE, UK
2 Information Security Group, Royal Holloway, University of London, Egham, TW20 0EX, UK
3 Department of Computer Science, University of Surrey, Guildford, GU2 7XH, UK
4 Streeva Ltd., Surrey Technology Centre, Guildford, GU2 7YG, UK

Abstract. This work presents our approach to formally model the Swiftaid system design, a digital plat-
form that enables donors to automatically add Gift Aid to donations made via card payments. Following
principles of Behaviour-Driven Development, we use Gherkin to capture requirements specified in legislation,
specifically the UK Charity (Gift Aid Declarations) Regulations 2016. The Gherkin scenarios provide a basis
for subsequent formal modelling and analysis using Event-B, Rodin and ProB. Interactive model simulations
assist communication between domain experts, software architects and other stakeholders during require-
ments capture and system design, enabling the emergent system behaviour to be validated. Our approach
was employed within the development of the real Swiftaid product, launched by Streeva in February 2019.
Our analysis helped conclude that there was not a strong enough business case for one of the features, which
was shown to provide nominal user convenience at the expense of increased complexity. This work provides a
case study in allying formal and agile software development to enable rapid development of robust software.

Keywords: Behaviour-driven development, Formal modelling, Gherkin, Event-B, Gift Aid, Swiftaid

1. Introduction

In the UK, Gift Aid is a system of tax relief enabling charities to reclaim the income tax paid on donations
made by UK taxpayers [HMR16]. Upon the donor declaring that the donation qualifies for Gift Aid, charities
can claim an additional 25p from HM Revenues and Customs (HMRC) for each £1 donated at no additional
cost to the donor. UK charities miss out on £560 million a year due to unclaimed Gift Aid [HMR18b], the
amount that would be paid to charities were it not for donors failing to add Gift Aid to donations when
eligible to do so.

Correspondence to: D.M. Williams, E-mail: david.m.williams@port.ac.uk, URL: https://research.streeva.com

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Portsmouth University Research Portal (Pure)

https://core.ac.uk/display/323993313?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://crossmark.crossref.org/dialog/?doi=10.1007/s00165-020-00512-5&domain=pdf
http://orcid.org/0000-0002-5272-8058
http://orcid.org/0000-0003-1175-5970
http://orcid.org/0000-0001-8365-6993

D.M. Williams, S. Darwish, S. Schneider and D.R. Michael

The inconvenience of having to complete a Gift Aid declaration form by hand upon each donation is often
sufficient discouragement. Increased charity adoption of donations via contactless payment cards presents
an opportunity to streamline the Gift Aid process and reclaim much of this lost income. The Swiftaid
project [UKR19] was an initiative to automate Gift Aid processing. Donors sign up for a free account, to
which they add one or more contactless payment cards [Str19]. By capturing relevant data from the payment,
Swiftaid automatically adds an extra 25% to donations at no additional charge to the donor.

In this work, we present the formal and agile development approach followed to ensure the Swiftaid system
design satisfies requirements specified in legislation, namely the Donations to Charity (Gift Aid Declarations)
Regulations 2016 [HMR16]. This work provides a case study for allying agile software development (used
by technology startups for increased productivity, accelerated delivery and allowing for adaption to change)
with formal methods (used by safety and security critical industries for applying mathematical rigour to
increase systems reliability and robustness) to enable rapid development of high assurance software.

In software engineering, the term ‘formal methods’ denotes a broad set of mathematical techniques for
the specification and verification of software systems. Their use is often mandated or highly recommended
for safety and security critical software components that require the highest levels of assurance [CC17].
Formal methods apply mathematical rigour to assert or refute claims made about the correct behaviour of
systems. Distributed concurrent software systems find particular benefit in the application of formal methods
to address challenges arising from their inherently complex behaviour. The application of formal methods
enables the identification of defects early in the development cycle. Formal methods are employed in safety
and security critical circumstances where the reliability and robustness of software is imperative [RT13].

Conversely, agile software development methodologies are employed in environments where increased pro-
ductivity, accelerated delivery and an ability to adapt to change are paramount [Man19b]. Agile techniques
are characterised as productive, incremental, adaptable, efficient, sustainable, cooperative and reflective. Pro-
ponents of agile methodologies assert their ability to increase productivity by delivering value early and often,
with frequent delivery of enhanced utility. In principle, agile methodologies are adaptable and responsive
to changing requirements throughout development. When used effectively, the iterative process of structur-
ing work done in short bursts enables development to maintain a consistent, steady pace and encouraging
frequent communication and interaction between developers, managers and external stakeholders.

Formal methods and agile are perceived to be in conflict, for example, in their willingness to welcome
changing requirements. Changes to the requirements or design after the modelling and analysis stage often
lead to additional overheads due to the need to repeat the validation and verification effort. However, formal
models can be used as a useful basis for understanding and appreciating inherent consequences arising from
requirements change. Using a formal model to analyse the extent to which the change in requirements
impacts the system may avoid costs associated with uncovering unforeseen consequences much deeper into
implementation and/or testing. For formal methods to ally with agile software development it is necessary for
the re-analysis to be quick, efficient and supported by automated tools [LFW10]. Where formal methods stand
to benefit from agile techniques, is in the close collaboration with all stakeholders that they advocate. To
effectively analyse a model of a system against its requirements, the requirements must have been accurately
expressed, captured, communicated and formalised. Close collaboration between stakeholders can help avoid
requirements being inaccurate, incomplete or open to misinterpretation.

Our approach united agile software development (we used Behaviour-Driven Development, expressing
legislation as Gherkin scenarios [Ghe19]) with formal methods (we used Event-B whose theory of refinement
enables incremental system design, expressing desired system behaviour at different levels of abstraction
while proving consistency between them.) Event-B has been used within sectors including automotive, rail,
space telecommunication and business information by Bosch [GJ13], Siemens [FLDL+13], Finland Space
Systems [ILL+13] and SAP [WKW+13]. Event-B benefits from significant tool support; we used the Rodin
Platform [ABH+10] (an Eclipse-based IDE supporting refinement and mathematical proof) and ProB [LB03]
(an animator and model checker for Event-B, as used by Thales, Alstom and others [HSL16].)

Section 2 provides background on Gift Aid, Behaviour-Driven Development and Event-B. Section 3
presents Gherkin scenarios that express legislated requirements from the Donations to Charity (Gift Aid
Declarations) Regulations 2016 [HMR16]. Section 4 outlines the process of authorised donor intermediaries:
(i) creating and delivering Gift Aid declarations to charities on behalf of donors, and (ii) processing cancel-
lations of Gift Aid; see [WDSM20] for the Rodin Event-B models. Section 5 records the positive impact of
the formal analysis, avoiding otherwise costly functionality. We conclude with a discussion of related work
in Sect. 6 and future work in Sect. 7.

Legislation-driven development of a Gift Aid system using Event-B

Fig. 1. The key activities in the Swiftaid system

2. Development process

Our software development approach combined elements of agile and formal methods using Gherkin as a
semi-formal intermediary specification language to aid the iterative development of Event-B machines to
meet legislated Gift Aid requirements. This section begins by summarising Gift Aid legislation, introduces
the Given-When-Then syntax of Gherkin and concludes with an Event-B overview.

Legislation

The Donations to Charity (Gift Aid Declarations) Regulations 2016 [HMR16] are the statutory instrument
specifying criteria for reclaiming income tax paid on donations made by UK taxpayers. Charities can claim
an additional 25% from HMRC on each qualifying donation at no additional cost to the donor. Higher and
additional rate taxpayers may also claim back the difference between the basic rate of tax claimed on their
donation and the higher rate of tax the donor actually pays. The donor must provide a Gift Aid declaration
that states they have paid at least the same amount in Income Tax or Capital Gains Tax in that tax year
and that they agree to Gift Aid being claimed. The declaration must also include a description of the gift,
the name of the charity and the name and address of the donor. Typically, this information is provided in
writing by the donor by completing a standard Gift Aid declaration form each time they make a donation.

Swiftaid must satisfy such requirements. As a donor intermediary, donors can authorise Streeva to create
and give Gift Aid declarations on their behalf. Figure 1 illustrates the typical flow of Swiftaid activities. A
Gift Aid declaration can be created (and a claim made) only if the intermediary has received authorisation
and only if a donation was received and confirmed by the charity and donor to be a qualifying donation.

Regulation 6 (see Fig. 2) specifies the requirements for declarations given by a donor intermediary, Reg-
ulation 7 imposes record keeping requirements on a donor intermediary, while Regulation 8 (see Fig. 3)
specifies the circumstances under which a donor intermediary must provide the donor with an annual state-
ment. Regulation 6 requires Gift Aid declarations given by a donor intermediary to contain the donor’s name
and address, name the charity, identify the gift being Gift Aided and, importantly, confirm that the identified
gift is a qualifying donation. Qualifying donations are specified within Section 416 of ITA 2007; Section 424
of ITA 2007 must have been explained to the donor in advance of the donor intermediary receiving autho-
risation to give Gift Aid declarations on the donor’s behalf. Gift Aid cannot be claimed on donations that
are payment for goods or services. For example, Gift Aid cannot be claimed when giving money to enter a
raffle, participate in an auction or for tickets to attend an event.

D.M. Williams, S. Darwish, S. Schneider and D.R. Michael

Regulation 6. Gift Aid declaration given by a donor intermediary

1. A Gift Aid declaration given by a donor intermediary on behalf of a donor under regulation 4(1)(b) must

(a) contain the name and home address of the donor,

(b) name the charity (or be made in circumstances where the charity is identified),

(c) identify the gift to which the Gift Aid declaration relates, and

(d) confirm that the identified gift is to be a qualifying donation for the purposes of section 416 of
ITA 2007.

2. Before giving a Gift Aid declaration a donor intermediary must have−
(a) been authorised by the donor to give a Gift Aid declaration on behalf of the donor, and

(b) given an explanation of the effect of section 424 of ITA 2007 to the donor

in order for the Gift Aid declaration to have effect for the purposes of the Income Tax Acts (subject to
paragraph (5) and regulation 10).

3. A donor intermediary must obtain the authorisation referred to in paragraph (2)(a) and provide the
explanation referred to in paragraph (2)(b) in every tax year in which it gives a Gift Aid declaration
on behalf of the donor. This is subject to paragraph (4).

4. Paragraph (3) does not apply in respect of a tax year if the donor intermediary obtained the
authorisation referred to in paragraph (2)(a) and gave the explanation referred to in paragraph 2(b)
on or after 1st March in the immediately preceding tax year.

5. A donor is entitled to cancel the authorisation referred to in paragraph (2)(a) by giving notice to the
donor intermediary.

6. The notification under paragraph (5) may be given in writing or orally, including the use of written or
oral methods of electronic communications.

7. Where a donor notifies a donor intermediary under paragraph (5), the authorisation ceases to have effect
from the date on which the donor intermediary receives that notification, or if the notice specifies a
later date, from that date.

Fig. 2. Donations to charity (Gift Aid Declarations) Regulations 2016—Regulation 6 [HMR16]

Regulation 8. Annual statement to be provided by donor intermediaries

1. ... following the end of a tax year during which a donor intermediary has given a gift aid declaration
on behalf of a donor under regulation 6, the donor intermediary must send the donor a statement in
writing, or details as to how the donor can access a statement in writing

2. Paragraph (1) does not apply to a tax year during which

(a) the aggregate value of the gift aided donations is £20 or less, or

(b) only one gift aided donation is made.

Fig. 3. Donations to charity (Gift Aid Declarations) Regulations 2016—Regulation 8 (selected text) [HMR16]

When you receive something in return for your donation, it is not recognised as a ‘freewill’ gift. Likewise,
a donation does not qualify for Gift Aid if a friend gives the donor cash for them to donate on their behalf.
As not all donations qualify, Swiftaid should allow for donations to be marked as ineligible for Gift Aid,
whether by the donor or the charity.

The few regulations presented in Figs. 2 and 3 already begin to indicate events and state variables one
should expect to be included within system design and its formal model. Regulation 6(2)(a) suggests that
some status of authorised is required before a declaration can be given by a donor intermediary; conversely a
declaration cannot be given with the status notAuthorised . The status shall transition from notAuthorised to
authorised upon the occurrence of a giveAuthorisation event. Regulation 6(3) suggests that each authorisation
pertains to a single tax year, thus the authorisation status transitions back to notAuthorised upon the expiry
date of the authorisation, typically the final day of the tax year. Regulation 6(5), 6(6) and 6(7) allow for a
donor to cancel the authorisation by giving notice to the intermediary, suggesting a cancelAuthorisation event
may occur when authorised , with the effect of bringing forward the occurrence of an expireAuthorisation
event. Similarly, Regulation 8 requires an annual statement to be provided to each donor that has given an
aggregate value of gift aided donations in excess of £20 over the tax year and has gift aided at least two
donations in that time. This alludes to the system design and formal model needing to record the amounts
donated by each donor and account explicitly for the passing of days.

Legislation-driven development of a Gift Aid system using Event-B

Gherkin scenarios

Behaviour-Driven Development (BDD) is used to discover, illustrate, and verify desired system behaviour
during development [Sma15]. Our first step towards formal development was to specify desired system
behaviour as Gherkin features and scenarios within a language that could be easily understood by all stake-
holders including senior management, software architects, developers, testers and external stakeholders (in
our case, HMRC). Our Gherkin scenarios subsequently aided the construction of the Event-B models by
following simple patterns that could be used by both development and modelling teams.

Within Behaviour-Driven Development using Gherkin, concrete example scenarios are used to specify
system behaviour and form the basis for automated tests. Gherkin allows scenarios to be specified in a
Given-When-Then form. Given some precondition holds, when some specified triggering event occurs, then
some desirable behaviour is witnessed, which changes the state of the system such that some post-condition
holds. For example, the following scenario relates to a tutorial in which a small code fragment is developed
that can figure out whether it’s Friday yet [Cuc19a]. Within the feature ‘Is it Friday yet?’ everybody wants
to know whether today is Friday. If asked on a Friday, then the system under test should return ‘TGIF’ else
if it is Sunday or any day other than Friday then the system should respond ‘Nope.’

Given today is <day>
When I ask whether it’s Friday yet
Then I should be told <answer>

Examples:
day	answer
Friday	TGIF
Sunday	Nope
anything else!	Nope

Scenario: The one where today is or is not Friday

Example-driven scenarios often underspecify system behaviour, by failing to capture an exhaustive set of
examples. Formal models more precisely capture the system behaviour helping to identify gaps or ambiguities
left by such examples. This is useful for resolving issues arising from underspecification or misinterpretation
ahead of development effort; such edge cases also provide useful test cases. Formal modelling helps validate
and verify that the Gherkin scenarios faithfully capture the intended behaviour expressed in the legislated
requirements and that the system design meets the behaviour specified within the Gherkin scenarios.

Given-When-Then statements can be mapped to the {P}C{Q} constructs of Floyd-Hoare logic, where
P denotes some precondition, C denotes some triggering event and Q denotes the resultant postcondi-
tion [Car17]. Hoare’s {P}C{Q} triple and its accompanying axioms [Hoa69] provide a means to reason
about program correctness and is fundamental to state-based formalisms such as Z [WD96], (classical)-
B [Abr96], and Event-B [Abr10]. In [Car17] the authors posit that the mapping enables the creation of a
(classical) B-Method model to explore the inherent system behaviour and identify gaps in requirements and
test plans. BDD tools (e.g., cucumber [Cuc19b], Behave [Beh19], and jBehave [jBe19]) enable the execution
of each specified scenario by driving the system under test and checking assertions regarding its behaviour.

The Gherkin scenarios we specified provided a clear foundation for agreement between the formal mod-
elling team and the system design and software development/testing teams.

Event-B machines

Event-B [Abr10] is a state-based formalism founded on set theory and first order logic. In Event-B, a system
is typically presented by a context and machine. The context represents the static part of a model where data
values are defined, i.e., carrier sets and constants that are constrained by axioms. The machine represents
the dynamic and functional behaviour of the Event-B model, which is composed of variables describing

D.M. Williams, S. Darwish, S. Schneider and D.R. Michael

MACHINE MachineName
refines [AbstractMachineName]
SEES [ContextName]
VARIABLES v0, .., vn
INVARIANTS I(v)
EVENTS
init
event1
event2
.....

END

event1 ∧=
status s
begin
S(v)

end

event2 ∧=
status s
when
G(v)

then
S(v)

end

event3 ∧=
status s
any t where
G(v, t)

then
S(v, t)

end

Fig. 4. Event-B machine and different event body samples

the system states, invariants constraining variables and events handling machine behaviour, as illustrated in
Fig. 4. The machine is linked to the context by the sees relationship. Invariants I (v) are necessary predicates
that assert specific properties of the variables (the state) before and after the occurrence of each event. Each
event includes a guard G(v) and an action S (v). Guards are necessary conditions for an event to be enabled,
and actions describe how the state variables change when the event is triggered. Events may also contain
local parameters t , which are declared in the guard G(v , t) and may be used in the action S (v , t) to update
the state variable v . Every machine must have an initialisation event, which sets the initial state of each
state variable; this special event has no guards or parameters.

Development in Event-B typically begins with developing a high level abstract model of the system and
refining the model over a series of steps to incrementally develop a more detailed specification. As presented
in [Abr10, HLP13, STW14] and [HSTW16], Event-B provides an effective and flexible refinement strategy,
allowing events to be added, merged, forked and extended in steps. Refinement rules may extend functional-
ity, add data values, strengthen event guards and introduce invariants. The refines notation indicates that
a machine refines another and is also applicable to events. Each Event-B model is mathematically validated
through a set of proof obligations to maintain correctness and consistency between refinement levels. Consis-
tency between the behaviour of the refined machine and the machine being refined must be maintained and
the proof obligations (e.g., feasibility FIS REF, guard strengthening GRD REF and invariant preservation
INV REF) for each event must be proven to hold [Abr10]. Rodin [ABH+10] facilitates Event-B modelling
and verification via the generation and automated discharging of such proof obligations.

3. Expressing legislated requirements as Gherkin scenarios

In this section we express requirements garnered from the Donations to Charity (Gift Aid Declarations)
Regulations 2016 into Gherkin scenarios. Gherkin was selected as an intermediary semi-formal language that
could consistently be understood and used by the distinct design, modelling and development teams. The
concrete examples of the scenarios specify system behaviour via a Given-When-Then syntax. Given some
precondition, when some event occurs, then the state of the system is updated.

Regulation 6(1)(d) of the Donations to Charity (Gift Aid Declarations) Regulations 2016 (see Fig. 2)
requires that the gift is confirmed to be a qualifying donation for the purposes of section 416 of ITA 2007.
Swiftaid allows both the charity and the donor to influence whether the donation qualifies for Gift Aid. The
following conditions must be satisfied for a Gift Aid declaration to be given for a donation:

• A donor must have given authorisation for the intermediary to give Gift Aid declarations on their behalf
• A donor must have made a donation that they have not subsequently marked as ineligible
• The charity should have confirmed that they know of no reason that the donation does not qualify

The donor must take action if they wish some time to consider whether it qualifies (markOnHold tran-
sitions the donor eligibility from permitted to onHold) or if they wish to permanently mark the donation as
ineligible for Gift Aid (via markCancelled). Scenario F02S02 specifies this behaviour, which is later illustrated
in Fig. 9 (see Sect. 4.1)

Legislation-driven development of a Gift Aid system using Event-B

Given a donation that is marked <fromState> and <checkDeclared>
When a donor performs <action>
Then the donation is marked <newState>

Examples:
fromState	checkDeclared	action	newState
permitted	is not declared	markOnHold	onHold
permitted	is not declared	markCancelled	cancelled
permitted	is declared	markCancelled	cancelled
onHold	is not declared	markCancelled	cancelled
onHold	is not declared	markPermitted	permitted

Only state changes listed are possible, e.g., markOnHold cannot occur when a declaration exists.

F02S02 The one where the donor changes the eligibility of a donation

Conversely, the charity must explicitly mark the donation as warranted to confirm that they have no
reason to doubt that the donation may qualify (F02S03). The charity cannot return the charityEligibility
to notWarranted ; a design decision made to manage the complexity of Swiftaid’s first release. Section 5
elaborates on how the modelling helped to appreciate and mitigate complexity arising from design decisions.

Given a donation that is not marked warranted
When a charity performs markWarranted
Then the donation is marked warranted

F02S03 The one where the charity confirms the eligibility of the donation

F02S04 specifies that declarations may only be created for qualifying donations on behalf of donors that
have authorised the donor intermediary to do so (those marked permitted , warranted and authorised).

Given a donation that is marked <donorEligibility>
And the donation is marked <charityEligibility>
And the intermediary is <authorisation> to create declarations for the donor
And there is no existing declaration linked to the donation

When the intermediary tries to create a declaration
Then a declaration is <result>

Examples:
donorEligibility	charityEligibility	authorisation	result
permitted	warranted	authorised	created
onHold	*	*	notCreated
cancelled	*	*	notCreated
*	notWarranted	*	notCreated
*	*	notAuthorised	notCreated

We use * to denote a wildcard of any arbitrary value

F02S04 The one where the intermediary tries to create a declaration from a donation

D.M. Williams, S. Darwish, S. Schneider and D.R. Michael

Feature F02 is a special case; its scenarios capture more of the Swiftaid system design than the legislation
mandates. Regulation 6(1)(d) requires a donation to qualify, whereas F02 specifies how Swiftaid ensures the
donation qualifies. Other regulations were more directly captured in Gherkin, such as the following examples.

Regulation 6(7) of the Donations to Charity (Gift Aid Declarations) Regulations (see Fig. 2) requires the
donor to be able to cancel authorisation from a specified date by giving notice to the donor intermediary.

Given a donor gave authorisation on 2018-02-28 set to expire on 2018-04-06
When a donor intermediary receives notice from the donor

to cancel their authorisation on 2018-03-01
requested to expire on <requestedExpiryDate>

Then the authorisation is set to expire on <expiryDate>

Examples:
requestedExpiryDate	expiryDate
2018-03-01	2018-03-01
2018-03-08	2018-03-08
2018-01-01	2018-03-01
2019-01-01	2018-04-06

F04S01: The one where notice is given to cancel the authorisation on a specified date

In the first two examples, the date at which the authorisation ceases to have effect is brought forward
to the requested expiry date. The other examples capture what must happen if (i) the requested expiry
date is before the notice is received or (ii) the requested expiry date is after the current expiry date. In (i)
the authorisation ceases to have an effect from the date the notice is received; in (ii) the expiry date is not
changed. Recall from Sect. 3 that example-driven scenarios are likely to underspecify the system behaviour,
by failing to capture an exhaustive set of examples. In F04S01, just a few representative examples are given.
Numerical data values often give rise to such underspecification, so we delayed the introduction of such
values until the final Event-B machine in the refinement chain (see Sect. 4). In F02S04, we used a wildcard
‘*’ to denote an arbitrary value to capture all circumstances in just a few lines.

F06S03 also specifies just a few examples using numerical values to represent all possible values. Reg-
ulation 8 of the Donations to Charity (Gift Aid Declarations) Regulations (see Fig. 3) requires the donor
intermediary to send the donor a statement unless the aggregate value of the gift aided donations in that year
is £20 or less, or only one gift aided donation was made. Various circumstances meeting or failing to fulfil
the criteria are expressed via concrete scenario examples. In the first three examples, an annual statement
needn’t be provided by the intermediary due to Regulation 8(2). In the first example no donation has been
made by the donor, in the second the aggregate value is insufficient, while the third has insufficient gift aided
donations. Finally, Regulation 8(1) does apply to the fourth scenario, so a statement must be provided.

Given the donor has <count> declarations that total <amount> in this tax year
When the tax year ends
Then a statement <will-or-will-not> be provided to the donor

Examples:
amount	count	will-or-will-not
£0	0	will not
£20	3	will not
£500	1	will not
£20.01	2	will

F06S03 The one where an annual statement will or will not be provided to the donor

Legislation-driven development of a Gift Aid system using Event-B

In total, 34 Gherkin scenarios over 7 features were specified to capture Swiftaid’s required behaviour.
Each scenario was annotated with the associated items of legislation (regulation). For example, F02S02 was
labelled ‘@2016/1195/6.1.d’ providing a link back to Regulation 6(1)(d) [HMR16]. There was a many-to-
many relationship between regulations and scenarios. Sometimes a regulation was best expressed in several
scenarios, while scenarios were sometimes refactored to capture aspects of multiple regulations. The Event-B
machines were similarly commented, such that an item of legislation could be linked to the set of scenarios
that captured its required behaviour, which could in turn be linked to each line in the Event-B.

4. Modelling system behaviour via Event-B machines

Event-B modelling was conducted prior to software development and supported refinement of the system
requirements and design. Once an initial set of Gherkin scenarios had been specified, regular meetings
were held between the modelling and development teams to refine the models, design and requirements,
as necessary. This section documents the final Event-B models [WDSM20] delivered within the Swiftaid
project [UKR19]. We architected a series of refinements involving the following three Event-B machines,
illustrated in Fig. 5:

• M0 Core Functionality—the initial Event-B machine incorporates the essential Swiftaid system
behaviour concerning the authorisation of the donor intermediary to create declarations on behalf of
the donor, receiving notification of a donation, creating a declaration for a qualifying donation and cre-
ating a Gift Aid claim for a set of declared donations. It abstracts away details concerning quantities; it
excludes the amount donated and does not account explicitly for the passing of time.

• M1 With Numerical Values—our second Event-B machine refines M0 by providing supplementary
state information and new events regarding the amount donated and the amount of donations made,
necessary for certain legislated requirements. For example, Regulation 8 (see Fig. 3) requires that an
annual statement be provided to a donor only if the aggregate value of their gift aided donations exceeded
£20 and at least two gift aided donations were made; M1 tallies the total aggregate value of each donor’s
gift aided donations and counts the number of donations each donor has made.

• M2 Finer Grained Time—our final Event-B machine further refines the system behaviour by explicitly
accounting for the passing of days. Certain aspects of the requirements are date-dependent. For example,
Regulation 6(4) (see Fig. 2) allows the donor intermediary to obtain authorisation for the forthcoming
tax year on or after 1st March in the current (soon to end) tax year. A donor is also entitled to cancel
the authorisation on any date by giving notice to the donor intermediary.

As well as illustrating the three Event-B machines in the refinement chain, Fig. 5 also shows their composition
of the following six groups of events (each of which are discussed in more detail later in this section):

• Time—As certain Gift Aid regulations are time constrained, our models should include the passing of
time. In M0 and M1 we account only for the passing of tax years and maintain a temporal ordering of
events; a finer grained treatment of time is deferred until M2, which accounts for the passing of days to
enable the consideration of requirements that concern specific dates of the year.

• Authorisation—A donor must provide a donor intermediary with authorisation to create Gift Aid
declarations on their behalf. A donor typically provides authorisation for the remainder of the tax year
but may also give notice to cancel an authorisation, which shall expire on the date given. Towards the
end of the tax year a donor may provide advance authorisation for the duration of the subsequent year.

• Donation—Once Swiftaid is notified of a donation then a Gift Aid declaration can be made on behalf of
the donor only if the donor and charity agree that it is a qualifying donation. Each machine incorporates
actions within the Swiftaid system design associated with the donor and charity confirming whether or
not the donation qualifies for Gift Aid (by marking the donation permitted and warranted , respectively).

• Declaration—Assuming that the donor and charity agree that it is a qualifying (eligible) donation, i.e.,
the donation is marked as permitted and warranted , and the donor intermediary has been authorised by
the donor, then a Gift Aid declaration for this donation may be created on behalf of the donor.

• Claim/Overclaim—Finally, Gift Aid claims can be created on behalf of the charity that include each
donation for which a Gift Aid declaration has been created on behalf of the donor. Occasionally, a donor
may cancel a declaration for which Gift Aid has already been claimed; an overclaim is then required to
refund HMRC the appropriate amount.

D.M. Williams, S. Darwish, S. Schneider and D.R. Michael

M0 Core Functionality
T
im

e
A
u
th

o
ri
sa

ti
o
n

D
o
n
a
ti
o
n

D
e
c
la
ra

ti
o
n

C
la
im createClaim

createDeclaration

markOnHold

markPermitted

markWarranted

markCancelled

makeDonation

giveAdvanceAuthZ

expireAuthorisation
cancelAuthorisation

giveAuthorisation

newY ear

≺

M1 With Numerical Values

T
im

e
A
u
th

o
ri
sa

ti
o
n

D
o
n
a
ti
o
n

D
e
c
la
ra

ti
o
n

C
la
im

provideStatement

createClaim

createDeclaration

markOnHold

markPermitted

markWarranted

markCancelled

makeDonation

giveAdvanceAuthZ

expireAuthorisation
cancelAuthorisation

giveAuthorisation

newY ear

D
o
n
a
ti
o
n

A
m
o
u
n
ts
,
C
o
u
n
ts

a
n
d

A
g
g
re
g
a
te
d

T
o
ta

ls

S
ta

te
m
e
n
t

≺

M2 Finer Grained Time

T
im

e
A
u
th

o
ri
sa

ti
o
n

D
o
n
a
ti
o
n

D
e
c
la
ra

ti
o
n

C
la
im

S
ta

te
m
e
n
t

D
o
n
a
ti
o
n

A
m
o
u
n
ts
,
C
o
u
n
ts

a
n
d

A
g
g
re
g
a
te
d

T
o
ta

ls

provideStatement

createClaim

createDeclaration

markOnHold

markPermitted

markWarranted

markCancelled

makeDonation

giveAdvanceAuthZ

expireAuthorisation
cancelAuthorisation

giveAuthorisation

newY ear

newDay

A
u
th

Z
E
x
p
ir
y
T
im

e
,

E
m
b
a
rg

o
P
e
ri
o
d

Fig. 5. Event-B stepwise refinement of Swiftaid

• Statement—At the end of the tax year donor intermediaries are required to provide annual statements
to donors. Statements are to be provided to all donors that have donated more than once in the tax
year and the donations amounted to more than £20. In M1 we introduce the amount donated, count the
number of donations made and sum the total amount donated.

The remainder of this section describes aspects of the three Event-B models (M0, M1 and M2) that are
most pertinent to the following three User Stories1. Processing a donation (through to creating Gift Aid
declarations and claims), and allowing cancellation of a declaration at any time, are essential aspects of
Gift Aid. Our description focuses on these and other representative modelling aspects; other details are
omitted for brevity.

• Processing a Donation: As a donor, I want Swiftaid to process my donation so that the charity can
claim Gift Aid on my behalf. According to the regulations, only qualifying (eligible) donations should be
declared and subsequently included in a claim.

• Cancelling a Donation/Declaration: As a donor, I want Swiftaid to cancel the processing of a
donation so that either: (i) Gift Aid is not claimed; or (ii) Gift Aid is refunded to HMRC if already
claimed, i.e., an over claim is recorded in a subsequent claim.

• Reversing a Cancellation: As a donor, upon changing the status of a previously cancelled donation to
permitted, I want Swiftaid to process my donation so that the charity can claim Gift Aid on my behalf.

The third user story is not a functionality included in the final model or system design. It was a user
story considered during early stages of the system design, but it was deemed extraneous as a result of the
formal analysis. The added value provided by the formal model in communicating the increased complexity
that arose from the inclusion of the feature is reserved for independent discussion in Sect. 5.

4.1. Processing a donation

The primary Swiftaid user story is for a donation to be processed such that the charity can claim Gift Aid with
minimal effort to the donor. This first requires an annual authorisation step in which the donor authorises the

1The user stories presented in this section provide structure to our explanation of the modelling of the Swiftaid system
behaviour. Scenarios were not derived from the user stories; the Gherkin scenarios were specified directly from Gift Aid legis-
lation.

Legislation-driven development of a Gift Aid system using Event-B

donor intermediary to give Gift Aid declarations on their behalf. Thereafter, when notified that a donation
has been made, Swiftaid generates a declaration for the donation (if it qualifies for Gift Aid) and periodically
creates a Gift Aid claim for a set of declared donations on behalf of the charity. This section presents the
step-wise refinement in terms of the key aspects of the model concerning processing of a donation. Figure 1
illustrates this typical process.

M0—Core Functionality

Our first Event-B machine, M0, represents the core abstract behaviour of the Swiftaid system for handling
Gift Aid declarations and claims, but without incorporating precise amounts or dates. As shown in Fig. 5,
M0 incorporates five key groups of events: (i) Time; (ii) Authorisation; (iii) Donations; (iv) Declarations;
and (v) Claims. M0 excludes the amount donated and does not account for the passing of days. M0 does,
however, account for the passing of tax years and maintains the temporal ordering of events.
Time—While accounting for precise dates within each tax year is deferred until M2, the initial machine at
least accounts for the passing of tax years. This is so that our initial model can incorporate abstract notions
of an authorisation expiring on or before the end of a tax year and advance authorisation being provided for
the subsequent tax year. The event newYear marks the end of one tax year and the beginning of the next.
Authorisation—Regulation 6 (see Fig. 2) of the Donations to Charity (Gift Aid Declarations) Regulations
2016 [HMR16] specifies that a donor intermediary must be authorised by the donor to give a Gift Aid
declaration on their behalf. A donor typically provides authorisation for the remainder of the tax year but
may also give notice to cancel an authorisation, which shall expire on the date given. Towards the end of
the year a donor may provide advance authorisation for the duration of the subsequent tax year.

Four events update the state of donorAuthorisation, the variable that records whether a given donor
has authorised the donor intermediary to give Gift Aid declarations on their behalf (authorised) or not
(notAuthorised). giveAuthorisation models a donor giving authorisation to an intermediary to process
Gift Aid on their behalf for the remainder of the current tax year. It switches the donorAuthorisation from
notAuthorised to authorised . The initial state of the donorAuthorisation variable is notAuthorised .

Three other events in M0 can also change the donorAuthorisation state. expireAuthorisation switches
donorAuthorisation to notAuthorised upon reaching the date that authorisation expires (this is typically the
end of the tax year, but could otherwise be at an earlier date specified by the donor). cancelAuthorisation
shall later enable the donor to specify a date at which the authorisation shall expire. In this initial machine,
which does not keep track of specific dates, skip indicates that this event does not change the state of the
system at this level of abstraction. Finally, giveAdvanceAuthorisation allows a donor to grant an advance
authorisation for the next tax year when within thirty days of the next tax year. Since accounting for the
passing of days is deferred until M2 the execution of this event is not restricted in the initial machine.

Figure 6 documents selected aspects regarding donor authorisation within the initial machine M0, while
Fig. 7 illustrates the possible authorisation (and advance authorisation) states for a single donor. A donor
starts without having given the donor intermediary authorisation, nor advance authorisation. A typical cycle
through the statespace would be for authorisation to be given (via giveAuthorisation) at the start of each
tax year, which expires at the end of the year (i.e., upon newYear). Giving authorisation when the donor
intermediary is already authorised does not change the state of the system at this initial abstract, as witnessed
by the giveAuthorisation self loops. In a subsequent refinement, once the passing of days is accounted for,
giving authorisation until the end of the current tax year having previously brought forward the authorisation
expiry date to earlier in the year via cancelAuthorisation would change the state; the expiryDate would be
updated to be the last day of the current tax year. The event expireAuth models the expiry of authorisation at
a date earlier than the end of the year, otherwise newYear expires the authorisation. If advance authorisation
has been given, then upon the start of a new tax year (newYear) then the donorAuthorisation is set to
authorised and the donorAdvanceAuthorisation is reset to notAuthorised .
Donation—Our model includes an event modelling the Swiftaid system receiving notification that a donation
has been made and events for actions that may be taken by the donor or charity ahead of a declaration being
created on behalf of the donor. makeDonation models the notification that a donor has made a donation;
it associates an identifier of the donation and a donor (and an amount, but not until the first refinement).
Subsequently, there are five events that switch the overall state of a donation once a donation is received.

Founded in Regulation 6(1)(d) of the Donations to Charity (Gift Aid Declarations) Regulations 2016
(see Fig. 2), F02S02 requires that the donor must take action if they wish some time to consider whether
it qualifies (see Sect. 3); markOnHold transitions the donorEligibility from permitted to onHold . Having

D.M. Williams, S. Darwish, S. Schneider and D.R. Michael

MACHINE M0

SEES [C0]
VARIABLES donorAuthorisation, donorAdvanceAuthorisation,
INVARIANTS
donorAuthorisation ∈ DONORS → AUTHORISATION STATES
donorAdvanceAuthorisation ∈ DONORS → AUTHORISATION STATES
.....

EVENTS

init
begin
donorAuthorisation := {x �→ y | x ∈ DONORS ∧ y = notAuthorised}
donorAdvanceAuthorisation := {x �→ y | x ∈ DONORS ∧ y = notAuthorised}
.....

end

giveAuthorisation ∧=
status ordinary
any donor where
donor ∈ DONORS

then
donorAuthorisation(donor) := authorised

end

expireAuthorisation ∧=
status ordinary
any donor where
donor ∈ DONORS
donorAuthorisation(donor) = authorised

then
donorAuthorisation(donor) := notAuthorised

end

cancelAuthorisation ∧=
status ordinary
any donor where
donor ∈ DONORS
donorAuthorisation(donor) = authorised

then
skip

end

giveAdvanceAuthorisation ∧=
status ordinary
any donor where
donor ∈ DONORS
donor ∈ dom(donorAdvanceAuthorisation)

then
donorAdvanceAuthorisation(donor) := authorised

end

newYear ∧=
status ordinary
begin
donorAuthorisation(donor) := {x �→ y | x ∈ DONORS ∧ y = donorAdvanceAuthorisation(x)}
donorAdvanceAuthorisation(donor) := {x �→ y | x ∈ DONORS ∧ y = notAuthorised}
.....

end

.....
END

Fig. 6. Donor authorisation variables, invariants and events in the first machine-M0

Legislation-driven development of a Gift Aid system using Event-B

¬AuthZ
¬AdvAuthZ

start AuthZ
¬AdvAuthZ

¬AuthZ
AdvAuthZ

AuthZ
AdvAuthZ

newY ear

giveAuthZ giveAuthZ
cancelAuthZ

giveAdvAuthZ

newY ear
expireAuthZ

giveAdvAuthZ

giveAdvAuthZ

giveAuthZ

newY ear

giveAuthZ
cancelAuthZ

giveAdvAuthZ

newY ear

expireAuthZ

Fig. 7. The state machine for authorisation (AuthZ) and advance authorisation (AdvAuthZ) of a single donor

taken time to consider whether the donation qualifies in the onHold state, a donor may confirm that it
can be gift aided by again marking it as permitted via markPermitted. The donor may otherwise wish
to permanently mark the donation as ineligible for Gift Aid, but we defer discussion of markCancelled
until Sect. 4.2. Figure 8 documents aspects regarding donorEligibility within M0, while Fig. 9 illustrates the
behaviour of M0 in terms of those events concerning donorEligibility for a single donation. F02S03 requires
the charity to explicitly mark the donation as eligible to confirm that they have no reason to doubt that the
donation may qualify; markWarranted transitions the charityEligibility from the notWarranted state to
warranted confirming that the donation was not, for example, in return for good or services.

As the initial machine does not account for days passing to determine the precise date within the year, an
auxiliary variable called yearCreated classifies donations based on the recency of their creation (i.e., thisYear
or somePreviousYear). This is necessary to ensure that only donations made in the current tax year (in
which the donor intermediary holds authorisation) can have declarations created. The yearCreated is set to
thisYear upon the receipt of notification that a donation has been made (via makeDonation); the newYear
event sets all donations received as having been received in somePreviousYear .
Declaration—Assuming that the donor and charity agree that the donation qualifies for Gift Aid, i.e.,
the donation is marked as permitted and warranted , then a Gift Aid declaration for this donation may
be created on behalf of the donor. createDeclaration models the creation of a Gift Aid declaration of a
single donation. A donation can only be declared if specific properties are satisfied, adhering to the system
requirements (see F02S02, F02S03 and F02S04 in Sect. 3).

The donorEligibility for this particular donation must be permitted and the charityEligibility must be
warranted . Importantly, the donor intermediary must be authorised to give declarations on behalf of the
donor, i.e., the donorAuthorisation state of the donor giving the donation must be authorised for a decla-
ration to be created (via createDeclaration). Finally, a donation can only be declared when this donation is
received in the current tax year (thisYear) and not some previous year (somePreviousYear). Should all such
requirements be satisfied, i.e., all guards of the createDeclaration event hold, then createDeclaration adds
an association between the donation and a unique declarationId to the set of all declarations (Declarations)
and the DeclarationState for this particular declaration (declarationId) is set irreversibly to declared .

D.M. Williams, S. Darwish, S. Schneider and D.R. Michael

MACHINE M0

.....
EVENTS
.....

markPermitted ∧=
status ordinary
any donor, donation where
donor ∈ DONORS
donation ∈ DONATIONS
(donation �→ donor) ∈ Donations
donorEligibility(donation) = onHold
donation �∈ dom(Declarations)

then
donorEligibility(donation) := permitted

end

markOnHold ∧=
status ordinary
any donor, donation where
donor ∈ DONORS
donation ∈ DONATIONS
(donation �→ donor) ∈ Donations
donorEligibility(donation) = permitted
donation �∈ dom(Declarations)

then
donorEligibility(donation) := onHold

end

markCancelled ∧=
status ordinary
any donor, donation where
donor ∈ DONORS
donation ∈ DONATIONS
(donation �→ donor) ∈ Donations
donorEligibility(donation) �= cancelled

then
donorEligibility(donation) := cancelled
DeclarationState := DeclarationState �− (Declarations[{donation}] × {reversed})

end

createDeclaration ∧=
status ordinary
any donor, donation, declarationId where
donor ∈ DONORS
donation ∈ DONATIONS
Donations(donation) = donor
donorEligibility(donation) = permitted
charityEligibility(donation) = warranted
yearCreated(donation) = thisY ear
donorAuthorisation(donor) = authorised
declarationId ∈ DECLARATIONS
declarationId �∈ ran(Declarations)
donation �∈ dom(Declarations)

then
Declarations := Declarations ∪ {donations �→ declarationId}
DeclarationState := DeclarationState ∪ {declarationId �→ declared}

end

.....
END

Fig. 8. Donor eligibility variables, invariants and events in the first machine-M0

Legislation-driven development of a Gift Aid system using Event-B

¬declared
permittedstart ¬declared

onHold
¬declared
cancelled

declared
permitted

declared
cancelled

createDeclaration

markOnHold

markPermitted

markCancelled

markCancelled

markCancelled

Fig. 9. The state machine for donor eligibility for a single donor

Claim—Finally, charities may claim Gift Aid on those donations for which they have received Gift Aid dec-
larations. In our model Claims maps a declarationId of a declared donation to a claimId . The createClaim
event generates a claim for all declared donations that are yet to be claimed. The event results in associat-
ing the set of all donations that are both declared and permitted (but not yet claimed) to a new claimId .
Donations marked cancelled prior to having been declared shall be precluded from any subsequent declara-
tion/claim. See Sect. 4.2 for discussion on cancelling a donation/declaration.

M1—With numerical values

Statement—the first refinement, machine M1, introduces the handling of numerical data to aggregate
the total donated by each donor and count how many donations were made by each donor. A new event
provideStatement is introduced to model the creation of a statement for a donor regarding their declared
donations over the current tax year guarded by two constraints. Firstly, a donor must have a total amount of
declared donations in the current year greater than 2000 (pence). Secondly, a donor must have had multiple
Gift Aid declarations given on their behalf. Annual statements are to be provided around the end of the tax
year, but as M1 abstracts away from accounting for the passing of days; consideration of when in the year a
statement is to be provided is deferred to M2. Providing a statement is not intended to change the system
state, which is modelled as skip within the action section of the event. Figure 10 illustrates the introduction
of the new event provideStatement within the first refinement, M1.
Donation/Declaration—for M1 to record the data necessary to provide annual statements, events captur-
ing (i) Swiftaid’s receipt of a notification that a donation has been made and (ii) the creation of associated
declarations, are extended to account for the amount being donated. An amount parameter is added to the
makeDonation event allowing any donation amount within a defined range (valueRange specified within
the context). A new relation donationAmount records the amount of each donation, mapping a donationID
to the amount donated. Only once a donation is declared are the aggregate value donated and the number of
donations count increased. Figure 10 illustrates how makeDonation is extended in this manner. In the cre-
ateDeclaration event, once a declaration (declarationId) is created for a given donation (donation) made
by a certain donor (donor), the newly added variable donorDonationTotal is incremented by the donation
amount. Likewise, donorDonationCount is incremented by one for that donor.

D.M. Williams, S. Darwish, S. Schneider and D.R. Michael

MACHINE M1

refines [M0]
SEES [C1]
.....
EVENTS
.....

makeDonation ∧=
status ordinary
any donor, donation, amount where
donation ∈ Donations
donation �∈ dom(Donations)
donor ∈ DONORS
donor ∈ dom(donorAuthorisation)
amount ∈ donV alueRange
donation �∈ dom(donationAmount)

then
Donations(donation) := donor
donorEligibility(donation) := permitted
charityEligibility(donation) := notWarranted
yearCreated(donation) := thisY ear
donationAmount := donationAmount ∪ {donation �→ amount}

end

provideStatement ∧=
status ordinary
any donor, donation where
donor ∈ DONORS
donor ∈ dom(donorDonationTotal)
donor ∈ dom(donorDonationCount)
donorDonationTotal(donor) > 2000
donorDonationCount(donor) > 1

then
skip

end

.....
END

Fig. 10. Assorted new and refined events in machine M1

M2—Finer grained time

The final machine in the refinement chain illustrated in Fig. 5, M2, incorporates a finer grained notion of time
into our Event-B model to account for the passing of days and handle requirements constrained by specific
dates within the year. In M2 we model time as a global clock via the time variable which incrementally
counts the number of days since the beginning of the tax year.

A new convergent event newDay is introduced to mark the passing of days, incrementing time by one
day until the final day of the current (tax) year. Convergent events must be proven to only occur some
finite number of times before some non-convergent event occurs. To prove convergence a variant must be
specified as an expression that yields a natural number, which strictly decreases upon the occurrence of any
convergent event. Our variant is the integer value recording the number of days until the next tax year,
calculated by subtracting the number of days into the current tax year, time, from the total number of days
in the tax year, totalNewDays (see Fig. 11). Each newDay decreases the variant by one; the guard of newDay
precludes the occurrence of the event if this value is less than two. On the final day of the tax year, the next
tax year is one day away and newDay cannot fire. A distinct event newYear , which may only occur on the
final day of each tax year, marks the end of one tax year and the beginning of another. newYear resets the
number of days left in the tax year.

As the time variable is included in this machine to account for the passing of days, a number of events
predefined in the previous machines can be extended by adding new parameters, guards or actions pertaining
to time. Firstly, in the makeDonation event, the current time must be captured in the DonationTime set
once a given donation is added to Donations set in order to monitor a one day embargo period to be handled

Legislation-driven development of a Gift Aid system using Event-B

MACHINE M2

refines [M1]
SEES [C2]
.....
VARIANT totalNewDays − time
INVARIANTS

∀donor.(donor ∈ dom(DonorAuthzExprT ime) =⇒
(DonorAuthzExpT ime(donor) = 0 ⇔ donorAuthorisation(donor) = notAuthorised))

.....
EVENTS
.....

cancelAuthorisation ∧=
status ordinary
any donor, exprT ime where
exprT ime ∈ 0..totalNewDays
donor ∈ dom(DonorAuthzT ime)
exprT ime < DonorAuthzExpT ime(donor)
exprT ime ≥ time

then
DonorAuthExpT ime(donor) := exprT ime

end

expireAuthorisation ∧=
status ordinary
any donor where
donor ∈ DONORS
donorAuthorisation(donor) = authorised
donor ∈ dom(DonorAuthExpT ime)
DonorAuthExpT ime(donor) = time

then
donorAuthorisation(donor) := notAuthorised
DonorAuthExpT ime(donor) := 0

end

newDay ∧=
status convergent
when
time = totalDays
∀donor.(donor ∈ dom(DonorAuthzExpT ime) =⇒ DonorAuthzExpT ime �= time)

then
time := time+ 1

end

.....
END

Fig. 11. Assorted new and refined events in machine M2

in the createDeclaration event. The brief embargo period is introduced into the system design to leave some
time for a donor to mark a donation as onHold or cancelled before creating a declaration on their behalf.
The createDeclaration event can be enabled only if the current time is equal to or less than the total time
of donation time and predefined embargo period.

To fulfil F06S03, in accordance with Regulation 8 of the Donations to Charity (Gift Aid Declarations)
Regulations 2016, provideStatement models the provision of donor statements at the end of each tax year.
Since in this machine the passing of days is now explicitly modelled, a guard can be introduced that checks
if the current time reaches totalNewDays (i.e., the final day of the tax year). Time is also important for
the fulfilment of scenarios concerning each donor’s authorisation of the donor intermediary, in accordance
with Regulation 6 (see Fig. 2). A new guard is added to expireAuthorisation monitoring current time with
respect to the authorisation expiry time for a particular donor, DonorAuthzExpTime. If the current time
has reached the donor’s authorisation expiry time, the donorAuthorisation is set to notAuthorised and the
DonorAuthzExpTime variable is reset for that donor. cancelAuthorisation is extended to more faithfully
model the donor giving notice of when the authorisation should cease to have effect. This event is augmented
with a new parameter exprTime, which refers to the earlier expiry time of authorisation being requested by

D.M. Williams, S. Darwish, S. Schneider and D.R. Michael

the donor. Once all guards of this event are satisfied, the event brings forward the DonorAuthzExpTime for
a particular donor to the new exprTime.

To fulfil F03S02, giveAdvanceAuthorisation must be allowed only in the last thirty days of the current
year. In previous machines, this event was always enabled without restriction. In this machine, we simply
add a new guard to check that the current time is within the last 30 days of the current tax year.

The specification of the Event-B model enables us to check that the behaviour of the model is correct
and consistent with the formal constraints of the system. The Rodin tool [ABH+10] automatically generates
proof obligations (PO) which must be discharged, typically using Rodin’s integrated mathematical provers.
Using Rodin, we discharged POs for each of the three machines modelling the Swiftaid system behaviour,
almost all of which were discharged automatically although some required the addition of missing statements
or predicates. Due to the complexity of set comprehension being used, some POs in M1 and M2 were not fully
discharged automatically. As the remaining proofs by hand were incidental, the relative risk of introducing
errors at this stage was determined to be very low in relation to further holding back implementation. Greater
benefit was obtained from the formal models uncovering significant unforeseen complexity in other aspects
of the initial design (see Sect. 5).

4.2. Cancelling a donation/declaration

Recall from Sect. 2 that once a donation is received by the Swiftaid system the donor may postpone
the creation of a declaration if they wish to consider whether it qualifies; markOnHold transitions the
donorEligibility from permitted to onHold . A donor may decide that a donation does not qualify and may wish
to permanently mark the donation as ineligible for Gift Aid; markCancelled transitions the donorEligibility
to cancelled from permitted or onHold . Unlike a donation marked onHold , a donation marked cancelled
cannot return to a permitted state. Once a declaration has been created for a donation then the donor can
no longer postpone the creation of a declaration, but may still cancel the donation. Figure 9 illustrates the
possible changes to the donorEligibility .

In M0 the markCancelled event has the effect of either precluding a declaration or claim from being created
for that donation or forcing the declaration to be included in a subsequent overclaim. As M1 introduces
numerical data to account for the aggregate amount donated and total number of donations made by each
donor in a year, markCancelled also has the effect of reducing these amounts. No special attention to
cancelling donations/declarations is required within the second refinement M2, which introduces finer grained
notion of time, as cancellation can occur at any time.

M0—Core functionality

markCancelled occurs when a donor wishes to permanently mark a donation as ineligible for Gift Aid.
Any donation that has not already been marked as cancelled can be marked as such via markCancelled ;
once a donation has been cancelled it cannot be marked as onHold or permitted . Cancellation precludes the
creation of a declaration for an as yet undeclared donation. Cancellation shall also preclude the inclusion
within a claim of a declared but as yet unclaimed donation. Finally, if the declared donation has already
been included in a claim, the cancellation will require it to appear as an overclaim in a subsequent claim by
the charity. In the model, two distinct variables are defined for Claims and Overclaims. An invariant ensures
that only those declarations that have previously been claimed can be overclaimed. The createClaim event
generates a single claim listing both the recently declared donations and the previously declared but recently
cancelled donations. The event results in mapping all declarations that are not yet claimed (nor cancelled),
to a new claimId passed by the event parameter. Similarly, all declarations of donations that have already
been claimed, and have since been cancelled but not yet overclaimed, are assigned the new claimId .

M1—With numerical values

The first refinement introduces numerical values to enable the aggregation of the total donated by each
donor and the counting the donations made by each donor in a tax year. M1 was extended to appropriately
update the two variables donorDonationCount and donorDonationTotal upon the cancellation of a dona-
tion/declaration. In M1 the markCancelled event is extended to subtract the appropriate amount from the
aggregate total when cancelling a donation/declaration and decrement the total amount of donations by one.

Legislation-driven development of a Gift Aid system using Event-B

5. Reversing a cancellation

An earlier version/iteration of the design/model allowed a donor (resp. charity) to toggle the state of a
donation’s donorEligibility (resp. charityEligibility) ad infinitum. Due to our analysis, it was decided to limit
this behaviour to avoid significantly more complexity resulting from a cascading effect on the declaration and
claims processes. Allowing a donation to be cancelled at any time, and allowing a cancellation to be reversed
at any time after a cancellation, gave rise to a significantly more complex system, as explained below. By
identifying that this feature would require additional resources for development, testing and maintenance,
we enabled Streeva to make the informed decision to preclude this feature in the first release.

As in the final version of the model, the earlier version allowed for a donation to be marked as onHold
or cancelled by the donor, if it had not yet been declared (the earlier version also allowed the charity to
mark a donation as notPermitted in case they had previously marked it permitted by mistake). This would
preclude a declaration from being created for the donation unless it was subsequently marked permitted
again. The earlier version of the model also allowed a donation to be marked onHold or cancelled , if it had
been declared but not yet claimed. In this case the donation was marked accordingly, but the declaration
also needed to be marked as having been cancelled to ensure that the declared donation was not included in
a subsequent claim. This could also be reversed leading to a claim finally being made (if it was not cancelled
again in the meantime). Finally, as in the final version, the earlier version allowed for a claimed donation
to be cancelled leading to the declaration to be included in a subsequent overclaim. However, the ability to
cancel and reverse the cancellation of a declared donation ad infinitum raised questions on how this should
be recorded and communicated. Should a new declaration (with a new declaration ID) be created each time,
or should a declaration previously marked cancelled have the cancelled marking removed? The latter may
lead to the same declaration appearing in two separate claims both claiming Gift Aid for the same donation
(although an overclaim should have refunded the first of these). While Streeva could have incorporated the
feature to toggle between cancelling a donation/declaration and reversing a cancellation (and may do so in
the future) the added complexity may have slowed early delivery of working software. It would have also
complicated the process of creating Gift Aid claims, raising questions over which declarations are included
in which claims/overclaims and why they appear multiple times.

From the Event-B model, it became apparent that allowing what seemed (superficially at least) a simple
feature of toggling between onHold and permitted (resp. notWarranted and warranted) required additional
state information to be recorded to maintain a growing history of a donation’s various eligibility, declarations,
claims, cancellations and reversals. The Event-B modelling surfaced the additional overhead that would be
incurred in managing this added complexity and enabled Streeva to judge that the business case for this
was not strong enough; it is expected that donors/charities will mistakenly cancel a donation only very
infrequently. Disallowing cancellations to be reversed is a conservative design choice, ensuring that Swiftaid
adheres to the legislation. It does not preclude the standard manual process of a donor providing a Gift Aid
declaration for a donation that was mistakenly/prematurely cancelled within the automated Swiftaid system.
In contrast, not allowing for cancellations at all would not have been compliant with the legislation.

The added complexity was identified in the initial machine, enabling the business decision to be made at
a very early stage of the software development life cycle. Using Rodin and ProB, we interactively stepped
through traces of the model with Streeva, to appreciate the cascading effects of toggling a donation as
cancelled at various stages (i.e., as yet undeclared, declared but as yet unclaimed, and claimed). In the final
model/design, the state transitions of DonorEligibility were limited to those illustrated in Fig. 9. Guards of
markOnHold and markPermitted preclude either event from occurring once a donation is marked cancelled.
To put a donation on hold (markOnHold), the donation must be permitted and not yet declared. To mark
a donation permitted again (markPermitted) it must be onHold and not yet declared.

Precluding a donor/charity from reversing a cancellation was the most significant change to the design
resulting from our Event-B modelling and analysis. However, other edge cases were identified by this approach
that were less consequential to the system design but significant nonetheless. The formal modelling also
helped identify gaps or ambiguities in the specification of Gherkin scenarios helping to ensure that they
were sufficiently robust prior to their use in driving the development effort. The primary contribution of
the formal modelling to the software development was the development amongst all stakeholders of a strong
understanding of the inherent behaviour of the system design enabling its complexity to be appreciated,
leading to proposals of how this could be mitigated.

D.M. Williams, S. Darwish, S. Schneider and D.R. Michael

6. Related work

Behaviour-Driven Development (BDD) is an agile software development approach which focuses on anal-
ysis and testing of software specifications (i.e., an expected system behaviour). Since BDD was proposed
by North [Nor06] to support test-driven development in the software testing phase, BDD has broadened to
addresses to enhance software development in all life cycle stages [Sma15]. However, most of BDD-based
works appear to focus only on supporting the implementation and testing phases in a software project
neglecting planning and analysis phases [SW11]. Few attempts begin to address Behaviour-Driven Devel-
opment in specification analysis to bridge the gap between stakeholders and domain experts and also to
augment system requirements to be highly matched the desired system behaviour required by stakeholders.
Snook et al. [SHD+18] take the advantage of the BDD approach to apply it specifically on the process of for-
mal model development and validation for a given system using Event-B. Their proposal attempts to enable
the modeller to provide a robust and rigorous formal model of the system (i.e., precise and reliable specifica-
tions) along with a set of desired test traces that will be used in integration and testing stage. In [SdSS17],
the authors propose to involve the Event-B formal modelling tool in the BDD approach specification analysis
using a structured natural language based on the Semantics of Business Vocabulary and Business Rules.

[Car17] enumerates mismatches between agile and formal software development using the Agile man-
ifesto [Man19a] as a framework. Whereas the agile manifesto promotes individuals and interactions over
processes and tools, formal methods appear to shift focus from people to tools. The agile manifesto also
advocates working software over comprehensive documentation; formal specifications may be viewed as
excessive documentation impeding production of working software. The agile manifesto promotes respond-
ing to change over following a plan; modelling the entire system before development delays the delivery of
early milestones. Despite these fundamental differences BHive authors believe a formal model integrated
with the agile approach (namely (classical) B and Behaviour-Driven Development) helps to resolve some of
these deeply entrenched issues.

7. Discussion and future work

Significant benefits were realised by adopting Event-B modelling within an agile software development pro-
cess. An early iteration of the modelling identified significant complexity in terms of the additional state
information that would have been required in order to exhibit the specified behaviour. This gave an early
indication of otherwise unanticipated development and maintenance overheads that were the result of pro-
viding convenient but non-essential features for donors and charities. The features in question concerned: (i)
a donor’s ability to create a new declaration for a donation after having cancelled a previous declaration for
the same donation and (ii) a charity’s ability to unwarrant a donation that they had previously warranted.
The decision was made (by Streeva’s senior management team, in conjunction with the software development
team) to remove these features in the initial Swiftaid release. This represented a significant contribution of
the formal development approach to the overall system design.

Additionally, the formal development approach identified a number of interesting edge cases that were not
otherwise addressed in legislation/requirements that have informed the additional specification to manage
such cases should they arise. For example, the model identified the interesting case in which the one day
embargo period, which delays donations from being immediately declared to allow for donors to possibly mark
them on onHold or cancelled prior to declaration, is due to end after the donor intermediary authorisation
has expired. This enabled Streeva to further consider and specify how such a case should be handled by the
system. The model has been used to identify notable traces of expected behaviour through the system (and
simulation thereof) to validate the requirements and define future integration test plans.

Our formal approach proved useful in identifying and validating necessary assumptions required to address
ambiguities in the legislation and aided direct communication with HMRC. The development process docu-
mented within this paper has helped to ensure adherence of the smart contracts with tax law, which adds
trust to the system, removes reliance on audit and is a step towards real-time compliance. A formal mod-
elling approach, backed by a shared ledger and run-time verification, may enable real-time assurance of the
system. As the captured requirements are human-readable and the interactive model provides clarity of the
combined effects of scenarios, it provides an economical road to an HMRC approved solution.

The Gherkin scenarios were developed by Michael and Chorley, who lead the Streeva development team.
Darwish, Dupressoir and Williams, from the academic modelling team, also participated directly in the

Legislation-driven development of a Gift Aid system using Event-B

specification of the Gherkin scenarios. HMRC were consulted to clarify aspects of the legislation, but in
retrospect we would have had their direct participation in the specification of the Gherkin scenarios, which
would have further accelerated this process. Involving all key stakeholders when interpreting and captur-
ing requirements specified in legislation helps avoid misinterpretation and mitigates the impact of making
misplaced assumptions.

The whole modelling in Event-B model took around 45 working days, with the model passing through
a series of modifications as the assumptions changed. The main modeller (Darwish) is a qualified security
expert but did not have previous experience with B or Event-B. Darwish was supported by Schneider and
Williams with 25 years and 7 years respective experience in formal methods and reasoning in B and Event-B.
The difficult decisions in the modelling centred on precisely capturing the legislated requirements and the
explication of inherent assumptions.

Following the formal modelling and reasoning, the Streeva development team used GoDog, a Cucumber
framework for golang, for acceptance testing. GoDog generated boilerplate code from the Gherkin require-
ments, which was then populated with gRPC code to call an instance running on Hyperledger Fabric.

Swiftaid is a step towards realising UK Government aim to make it easier for individuals and businesses
to get their tax right and keep on top of their affairs under the banner ‘Making Tax Digital’. Future work
shall aim to address key issues in the current method of VAT collection, which accounts for 35% of the tax
gap [HMR18c], i.e., the difference between the tax due and tax paid to HMRC. Unpaid VAT places compliant
organisations at an unfair disadvantage and deprives the Exchequer of monies needed to effectively fund vital
public services. The failure of overseas sellers to charge VAT on online sales is estimated to have cost the
UK £1.5 billion in 2016 alone, which a digital solution to Split Payments could address [HMR18a].

Within the Swiftaid project we established a development process to capture/express legislated require-
ments using Gherkin and systematically develop formal models of the system design using Event-B. Our
formal analysis identified unnecessary complexity during system design helping us avoid undue implemen-
tation, testing and maintenance costs. This process may be improved by further integrating the formal
modelling by automating systematic aspects of the modelling and generating interactive visualisations to
enable broader stakeholder engagement with the models produced. In particular, we aim to create interac-
tive visualisations of our Event-B models using BMotionWeb, an extension of ProB for rapid creation of
formal prototypes [LL16], or its successor VisB [WL20]. Further extensions of this work would be to utilise
alternative means of capturing requirements and specifying behaviour that aids communication amongst all
stakeholders while embedding Event-B modelling within a Behaviour-Driven Development, including Linear
Temporal Logic (LTL) [HSTW16], and the iUML-B diagrammatic front-end for Event-B [SHD+18].

The adoption of formal methods within an agile software development process helped avoid misinterpreta-
tion of requirements and supported close collaboration between all stakeholders. Stepping through sequences
of events with the models, via interactive Rodin and ProB simulations, enabled assumptions to be validated.
Furthermore, by annotating each scenario with the precise items of legislation (regulation) whose behaviour
the scenario specified and, similarly, by annotating each Event-B event with the scenarios that they mod-
elled, we established a useful basis for understanding and appreciating inherent consequences arising from
requirements change. We are able to efficiently evaluate the full impact of changes in requirements/design.

By allying agile and formal software development processes, we seek to make commercial use of formal
methods mainstream. Where formal methods are already applied, (e.g., defence, aerospace, transport), mak-
ing them more effective and efficient will enable further advances in academic research that supports these
sectors. Moreover, the allying agile and formal software will enable exploitation of formal methods in new
domains enabling rapid development of robust software across a broader set of industry sectors and academic
disciplines. Sectors that immediately stand to benefit are those that would value streamlined payments or
supply-chains, e.g., finance, retail, manufacture and construction.

Acknowledgements

This work was funded by UKRI through the Innovate UK Swiftaid Project (Grant Number 133294). We
thank Chris Chorley and Dr. François Dupressoir for contributing to the specification of Gherkin scenarios
and Event-B modelling and we thank Dr. Benjamin Aziz and Dr. Philip Godsiff for insightful comments on

D.M. Williams, S. Darwish, S. Schneider and D.R. Michael

an early draft of this paper. We also thank the anonymous reviewers for providing their essential critical
insight.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long
as you give appropriate credit to the original author(s) and the source, provide a link to the Creative
Commons licence, and indicate if changes were made. The images or other third party material in this
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to
the material. If material is not included in the article’s Creative Commons licence and your intended use
is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission
directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/
by/4.0/.

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

References

[ABH+10] Abrial J-R, Butler M, Hallerstede S, Hoang TS, Mehta F, Voisin L (2010) Rodin: an open toolset for modelling
and reasoning in Event-B. Int J Softw Tools Technol Transf 12(6):447–466

[Abr96] Abrial J-R (1996) The B-book: assigning programs to meanings. Cambridge University Press, Cambridge
[Abr10] Abrial J-R (2010) Modeling in EventB: system and software engineering. Cambridge University Press, Cambridge
[Beh19] Behave: behavior-driven development, python style. https://github.com/behave/behave. Accessed 24 May 2019
[Car17] Carter J (2017) BHive: behaviour-driven development meets B-method. Ph.D. thesis, The University of Guelph
[CC17] Common criteria for information technology security evaluation. V3.1r5. Technical report, Common Criteria (2017)
[Cuc19a] Cucumber: 10 minute tutorial. https://cucumber.io/docs/guides/10-minute-tutorial/. Accessed 24 May 2019
[Cuc19b] Cucumber: a tool that supports behaviour-driven development. https://github.com/cucumber/cucumber. Accessed

24 May 2019
[FLDL+13] Falampin J, Le-Dang H, Leuschel M, Mokrani M, Plagge D (2013) Improving railway data validation with ProB,

pp 27–43. Springer, Berlin
[Ghe19] Gherkin Reference: Cucumber. Accessed 24 May 2019
[GJ13] Gmehlich R, Jones C (2013) Experience of deployment in the automotive industry, pp 13–26. Springer, Berlin
[HLP13] Hallerstede S, Leuschel M, Plagge D (2013) Validation of formal models by refinement animation. Sci Comput

Program 78(3):272–292
[HMR16] HMRC (2016) The donations to charity (gift aid declarations) regulations 2016. Statutory instruments
[HMR18a] HMRC (2018a) Alternative method of VAT collection—split payment. Summary of responses
[HMR18b] HMR (2018b) Charitable giving and gift aid. HMRC research report 482
[HMR18c] HMRC (2018c) Measuring tax gaps 2018 edition. An official statistics release
[Hoa69] Hoare CAR (1969) An axiomatic basis for computer programming. Commun. ACM 12(10):576–580
[HSL16] Hansen D, Schneider D, Leuschel M (2016) Using B and ProB for data validation projects. In: Proceedings ABZ

2016, pp 167–182. Springer International Publishing
[HSTW16] Hoang TS, Schneider S, Treharne H, Williams DM (2016) Foundations for using linear temporal logic in Event-B

refinement. Formal Asp Comput 28(6):909–935
[ILL+13] Ilić D, Laibinis L, Latvala T, Troubitsyna E, Varpaaniemi K (2013) Deployment in the space sector, pp 45–62.

Springer, Berlin
[jBe19] JBehave: a framework for behaviour-driven development. https://jbehave.org/. Accessed 24 May 2019
[LB03] Leuschel M, Butler M (2003) ProB: A model checker for B. In: FME 2003: formal methods, pp 855–874. Springer,

Berlin
[LFW10] Larsen PG, Fitzgerald JS, Wolff S (2010) Are formal methods ready for agility? a reality check. Technical report

no. CS-TR-1218, Newcastle University
[LL16] Ladenberger L, Leuschel M (2016) BMotionWeb: A tool for rapid creation of formal prototypes. In: Software

engineering and formal methods—14th international conference, SEFM 2016, Held as part of STAF 2016, Vienna,
Austria, July 4–8, 2016, Proceedings, pp 403–417

[Man19a] Manifesto for agile software development. https://agilemanifesto.org/. Accessed 24 May 2019
[Man19b] Principles behind the agile manifesto. https://agilemanifesto.org/principles.html. Accessed 24 May 2019
[Nor06] North D (2006) Introducing behaviour-driven development (BDD). Better Software
[RT13] Romanovsky A, Thomas M (2013) Industrial deployment of system engineering methods providing high depend-

ability and productivity. Springer, Berlin
[SdSS17] Siqueira FL, de Sousa TC, Silva PSM (2017) Using BDD and SBVR to refine business goals into an Event-B model:

a research idea. In: 2017 IEEE/ACM 5th international FME workshop on formal methods in software engineering
(FormaliSE), pp 31–36. IEEE

[SHD+18] Snook C, Hoang TS, Dghyam D, Butler M, Fischer T, Schlick R, Wang K (2018) Behaviour-driven formal model
development. In: Formal methods and software engineering, pp 21–36. Springer

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://github.com/behave/behave
https://cucumber.io/docs/guides/10-minute-tutorial/
https://github.com/cucumber/cucumber
https://jbehave.org/
https://agilemanifesto.org/
https://agilemanifesto.org/principles.html

Legislation-driven development of a Gift Aid system using Event-B

[Sma15] Smart JF (2015) BDD in action: behavior-driven development for the whole software lifecycle. Manning
[Str19] Streeva. Swiftaid. https://swiftaid.co.uk/. Accessed 09 July 2019
[STW14] Schneider S, Treharne H, Wehrheim H (2014) The behavioural semantics of Event-B refinement. Formal Asp

Comput 26(2):251–280
[SW11] Solis C, Wang X (2011) A study of the characteristics of behaviour driven development. In: 2011 37th EUROMICRO

conference on software engineering and advanced applications, pp 383–387. IEEE
[UKR19] UKRI gateway to research: Swift Aid project reference 133294. https://gtr.ukri.org/projects?ref=133294. Accessed

24 May 2019
[WD96] Woodcock J, Davies J (1996) Using Z: specification, refinement, and proof. Prentice Hall, Upper Saddle River
[WDSM20] Williams DM, Darwish S, Schneider S, Michael DR (2020) Swiftaid rodin event-b models. Zonodo https://10.

5281/zenodo.3715494
[WKW+13] Wieczorek S, Kozyura V, Wei W, Roth A, Stefanescu A (2013) Business information sector, pp 63–79. Springer,

Berlin
[WL20] Werth M, Leuschel M (2020) VisB: A lightweight tool to visualize formal models with SVG graphics. In: Proceedings

ABZ 2020, LNCS

Received 16 October 2019

Accepted in revised form 9 April 2020 by Michael Butler

https://swiftaid.co.uk/
https://gtr.ukri.org/projects?ref=133294
https://10.5281/zenodo.3715494
https://10.5281/zenodo.3715494

	Legislation-driven development of a Gift Aid system using Event-B
	Abstract
	1 Introduction
	2 Development process
	3 Expressing legislated requirements as Gherkin scenarios
	4 Modelling system behaviour via Event-B machines
	4.1 Processing a donation
	4.2 Cancelling a donation/declaration

	5 Reversing a cancellation
	6 Related work
	7 Discussion and future work
	Acknowledgements
	References

