
Trends in the use of passive sampling for monitoring polar pesticides in water 1 

 2 

Adam C. Taylora, Gary R. Fonesa* and Graham A. Millsb 3 

 4 

aSchool of the Environment, Geography and Geosciences, University of Portsmouth, Burnaby Road, 5 

Portsmouth, PO1 3QL, UK 6 

bSchool of Pharmacy and Biomedical Sciences, University of Portsmouth, White Swan Road, 7 

Portsmouth, PO1 2DT, UK 8 

 9 

*To whom all correspondence should be addressed 10 

Phone number: +44 239 284 2252 11 

e-mail: gary.fones@port.ac.uk  12 

 13 

 14 

 15 

 16 

 17 

 18 

 19 

 20 

 21 

 22 

 23 

 24 

 25 

 26 

 27 

 28 

mailto:gary.fones@port.ac.uk


Trends in the use of passive sampling for monitoring polar pesticides in water 29 

 30 

 31 

Abstract 32 

The presence of polar pesticides in environmental waters is a growing problem. After application their 33 

migration into the aqueous phase is promoted by their high water solubility. Transport processes are 34 

usually complex and inputs are generally stochastic; this makes monitoring of this class of pesticides 35 

challenging using low volume spot samples of water. Recently there has been a trend to use passive 36 

samplers to monitor pesticides in river catchments as it is an in-situ time integrative sampling 37 

technique. The three main types of device used for this purpose are, Chemcatcher®, POCIS and o-38 

DGT. This article reviews the fate and current state-of-the-art for monitoring polar pesticides in 39 

aqueous matrices. Principles and the theory of passive sampling and strategies for passive sampler 40 

design and operation are presented. Advances in the application of passive sampling devices for 41 

measuring polar pesticides are extensively critiqued; future trends in their use are also discussed. 42 
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1. Introduction 61 

Polar pesticides, defined here as pesticides with an n-octonol-water distribution coefficient (log DOW) 62 

< 4.5, are contaminants of emerging concern (CECs) [1].  Recent advances in analytical techniques 63 

have enabled the detection of CECs in the environment at trace concentrations (ng L-1 to μg L-1). 64 

CECs have now been detected in waters globally [2]. Knowledge of the environmental presence and 65 

fate of CECs is often limited and the risk CECs pose to human and ecological health is not well 66 

understood [3]. Polar pesticides encompass numerous fungicides, herbicides, insecticides and other 67 

biocides, with new chemism continually developed [4]. The European Union is becoming 68 

increasingly aware of the risk posed by polar pesticides, resulting in the inclusion of several in their 69 

list of priority pollutants (e.g. diuron) [5,6]. Worldwide only 26% of jurisdictions have equivalent 70 

monitoring programmes for environmental pesticide residues [7].   71 

Polar pesticides (including biocides) are used in agriculture, domestically and industrially, and may 72 

enter the aquatic environment through several pathways [1]. Polar pesticides have differential 73 

environmental persistence and mobility and temporal variation in usage and landscape processes (i.e. 74 

precipitation) result in a dynamic fluctuation in aqueous concentrations [8]. Current monitoring 75 

programmes rely on spot samples. However, spot sampling only provides a ‘snapshot’ of analyte 76 

concentration at the time of sampling and may not accurately capture variation over time [9]. 77 

Additionally, spot sampling may not achieve limits of quantification (LOQ) for all pesticides present 78 

in a sample [10]. Another method, passive sampling, relies on in-situ accumulation of analytes within 79 

a receiving phase during an exposure in sampled waters. Passive sampling overcomes many of the 80 

limitations of spot sampling and can provide additional information through time-weighted average 81 

(TWA) or equilibrium concentrations of the freely dissolved pesticide fraction [11]. A range of 82 

passive sampling devices and receiving phases is available with selectivity for different polar 83 

pesticides [12]. This paper briefly discusses the environmental fate of polar pesticides and presents the 84 

theory of passive sampling, before reviewing recent applications of passive sampling of polar 85 

pesticides in water. Passive sampling techniques for monitoring hydrophobic (non-polar) pesticides 86 

was recently reviewed by Taylor et al. [12]. 87 

 88 

2. Polar pesticides in the environment 89 

2.1 Pesticide use and classification 90 

A pesticide is any product intended to prevent harm caused by pests such as plants, fungi, and insects.  91 

This encompasses plant protection products (PPPs) used in agriculture, as well as biocides with public 92 

health, veterinary or industrial applications [4]. Most agricultural land globally is treated with 93 

pesticides, with usage undergoing a 20-fold increase since 1960, a trend set to continue until 2050, in 94 

line with increasing worldwide demand for food [13]. Pesticides vary in terms of their physical and 95 



chemical properties and are normally classified according to their chemical group, mode of action 96 

(MoA) and target pest. Development of new pesticides is driven by the need for new MoA often in 97 

response to developed pest resistance [4]. Over time changes in pesticide usage occur as compounds 98 

are approved, banned or become obsolete [11]. There are now hundreds of pesticides in current use 99 

and a greater number of legacy compounds; for example the European Union pesticides database 100 

contains < 1300 compounds, of which approximately 500 have approval [14]. Table 1 shows use, 101 

approval and toxicity [15] [16] for a range of commonly used polar pesticides. 102 

 103 

2.2 Polar pesticides in environmental waters 104 

The fate of polar pesticides in the environment is a function of their physicochemical properties, the 105 

environmental compartment of residence and transport processes that take place in each 106 

environmental compartment [17,18]. To describe the fate of persistent and mobile organic compounds 107 

Reemtsma et al. [10] conceptualize a partially closed system with pollution sources, pathways, 108 

environmental compartments and barriers. Figure 1 is an adaptation of this concept for a partially 109 

closed system appropriate for pesticide fate (i.e. a river catchment). Sources, environmental 110 

compartments and attenuation, transport and retention within the system are presented.  111 

 112 

2.3 Sources 113 

Environmental sources of polar pesticides and biocides vary widely and include application in 114 

agriculture, amenities (e.g. herbicides on railways and road margins) and households (e.g. in gardens 115 

and insecticide treatments for pets) [19]. Factors relating to pesticide use, such as, dose, frequency, 116 

timing of application and other effects (e.g. spray drift, drain flow, run-off and infiltration), facilitate 117 

initial mobilisation from the site of application [18]. Generally, polar pesticides enter the environment 118 

through multiple routes, primarily through diffuse sources due to use in agriculture [18]. Additional 119 

contributions to diffuse pollution result from improper handling or disposal, which may permit 120 

movement to sewers, ground waters and surface waters [20]. A strong seasonal pattern in usage is 121 

observed for most pesticides used in agriculture, caused by seasonal differences in cropping and pest 122 

stress [21]. Where areas of high use and potential for mobilisation intersect in a catchment, pollution 123 

hotspots making a disproportionately large contribution to pesticide load are probable [18].  124 

 125 

2.4 Mobility 126 

The affinity for water (solubility) and other interacting phases (sorption) largely determine mobility of 127 

polar pesticides [10]. Mobility is not a measure of solubility, but of the preference for aqueous phases 128 

over non-polar phases; as such the partition or distribution coefficient between n-octanol and water 129 

(KOW and DOW respectively) and organic carbon and water (KOC) are more accurate predictors of 130 



mobility [17]. Log KOW is a good approximation of log KOC for neutral pesticides [22]. Alongside 131 

coefficients describing partitioning and distribution, other metrics attempt to provide information 132 

about environmental fate. Many of these metrics (see Table 2) are derived from predicted values of 133 

these coefficients (e.g. KOW). Such predicted values often disagree depending on the calculation 134 

method [23]; for example log KOW of actetamiprid, predicted using two different software 135 

programmes is either 0.62 or 2.55 (http://www.chemspider.com/Chemical-136 

Structure.184719.html?rid=0a73594e-a785-4ffc-b321-136f5b0bdd66). As such the mobility of a 137 

compound in the environment cannot be precisely determined through modelling. 138 

 139 

 140 

 141 

2.5 Persistence  142 

Environmental concentrations of polar pesticides are a reflection of ongoing input, and attenuation 143 

occurring through elimination and dilution [20]. Persistence describes resistance to elimination 144 

through transformation or removal, that supports longevity in the environment [10,22]. Pseudo-145 

persistence often occurs where the rate of input supports ubiquity in the environment, despite 146 

attenuation. Table 2 shows attenuation processes within each environmental compartment. 147 

Transformation can occur through microbial degradation in soil, ground, surface and waste waters, 148 

chemical oxidation (e.g. in drinking water treatment process such as chlorination and ozonation), 149 

photodegradation and hydrolysis [1,11,24]. Removal may occur through sorption to solid surfaces. 150 

Metabolites and transformation products may be chemically similar, to the parent compounds, and/or 151 

persistent [1]. Persistence in each environmental compartment can be significantly different.  152 

 153 

 154 

2.6 Stochastic processes affecting pesticide fate  155 

Pesticide fate in the environment is subject to a high degree of uncertainty over space and time 156 

[18,20,25] due to the interaction of: 157 

 158 

i) Anthropogenic, climatic and biotic factors, affecting pesticide use, mobilisation, transport and 159 
attenuation. 160 

ii) The geological and topological features of the landscape, and the hydrological regime and 161 
connectivity of waters.  162 

iii) Hydraulic (e.g. suspension of sediments under high flow or stratification of water column 163 

under low flow), physiochemical and compositional qualities of aqueous phases.  164 

http://www.chemspider.com/Chemical-Structure.184719.html?rid=0a73594e-a785-4ffc-b321-136f5b0bdd66
http://www.chemspider.com/Chemical-Structure.184719.html?rid=0a73594e-a785-4ffc-b321-136f5b0bdd66


As a consequence of these uncertainties, the dynamics of pesticide fate in the environment are 165 

fundamentally complex and fluctuation in aqueous pesticide concentrations may appear random. To 166 

simplify and understand pesticide fate it is useful to consider the factors contributing to the 167 

uncertainty in mobilisation, transport and attenuation within each compartment separately, which are 168 

shown in Table 2. Within this context, any position in a hydrological system exists at a confluence of 169 

pesticide transport pathways, originating throughout the upstream catchment (see Figure 1), resulting 170 

in pesticide mixes derived from temporally and spatially diverse sources [19]. Increasing hydrological 171 

complexity and catchment size, compound the stochastic nature of pesticide flux and the challenge of 172 

characterising pesticide pollution at downstream locations. Most current monitoring involves 173 

infrequent low volume spot (bottle or grab) sampling; this approach neglects the majority of pesticide 174 

flux. More representative sampling methods are required to detect peak concentrations due to short-175 

term events and long-term trends. Time integrative methods such as passive sampling are becoming 176 

increasingly favoured within pesticide monitoring programmes. 177 

 178 

2.7 Regulation of pesticide residues in water  179 

Regulatory limits are set for pesticide concentrations in water and other environmental matrices such 180 

as, residential air, soil and food. These vary by matrix and correspond to the risk identified during 181 

pesticide authorisation or reauthorisation [26]. Limits in water are often generic for groups of 182 

compounds such as pesticides [22]. In the European Union regulatory limits and monitoring 183 

requirements for pesticides in surface water are contained within the Water Framework Directive 184 

(WFD) and its daughter directives [5,27–30]. Through implementation of the WFD the European 185 

Union aimed to achieve good ecological and chemical status for water bodies throughout Europe by 186 

2015, since revised to 2027 [31]. Secondary legislation and amendments to the WFD have set 187 

environmental quality standards (EQSs) for priority substances and (generic) drinking water quality 188 

standards (DWQS); 0.1 µg L−1 for pesticides and relevant pesticide transformation products, and 0.5 189 

µg L−1 for the total of these [6]. Twenty pesticides including several polar pesticides are priority 190 

substances, these are generally monitored monthly in all water bodies [11]. Several polar pesticides 191 

are also included in the first and second Watch Lists [29] and may become priority substances in the 192 

future [6]. Through a delegation of powers, Member States are now encouraged to set EQS for 193 

catchment specific pollutants to be included in monitoring. This has been undertaken for several polar 194 

pesticides in the UK (see Table 1 for examples). To achieve good chemical status a water body must 195 

comply with both maximum allowable and annual average EQS determined through spot sampling, 196 

the only approved method [32]. As of 2019, there has been a modest increase in the number water 197 

bodies achieving good status, with legacy pesticides responsible for poor chemical status in many 198 

failing water bodies [31]. As relatively few polar pesticides are priority or Watch List substances, 199 

pesticide occurrence in drinking water is a higher priority in the European Union. The intrinsic 200 



mobility and persistence of certain polar pesticides allows them to pass through drinking water 201 

treatment processes, with many frequently detected at elevated concentrations (> DWQS) in treated 202 

drinking water, for example the molluscicide, metaldehyde [33]. Regulatory standards and monitoring 203 

of pesticides in water in other jurisdictions is often decentralised and based on established guidelines 204 

[26].  205 

 206 

3. Monitoring of polar pesticides in water  207 

Monitoring of environmental waters is undertaken to obtain qualitative and quantitative information 208 

about the biological chemical, hydrological and toxicological status of waters [34]. In the case of 209 

polar pesticides this is typically achieved through representative sampling and subsequent analysis 210 

(chemical and/or toxicological) within monitoring programmes [34]. Such programmes may be 211 

undertaken in commercial, research or regulatory contexts. The requirements of data quality and 212 

assurance prescribe the precision, accuracy and sensitivity of sampling and analytical methods. The 213 

requirements of data representativeness and availability of resources, determine the spatial and 214 

temporal resolution of sampling [34]. The number and identity of pesticides included in the 215 

monitoring suite may be informed by legislation, based on known or suspected presence or in 216 

screening approaches expanded to all compounds amenable to the selected analytical methods [19].  217 

 218 

3.1 Design of monitoring programmes  219 

There is no universal methodology for monitoring polar pesticides. The timing and frequency of 220 

sampling, location and number of sampling sites, and the duration of monitoring are all important 221 

considerations [11,19,34]. The frequency of sampling and duration of monitoring should consider the 222 

dynamic range of pesticide concentration and variability over time to ensure that peak concentrations 223 

are not missed, and long-term trends are correctly interpreted [35]. Likewise, the timing of sampling 224 

should consider the hydrological system and the influence of events such as rainfall to peak 225 

concentrations [36–38]. For example, flow proportional sampling and Lagrangian sampling are often 226 

used to accommodate diurnal flow patterns in waste water treatment plants [39], and the travel time 227 

between upstream and downstream surface water sites [25], respectively. Monitoring of ground 228 

waters may be appropriate at lower frequencies [40]. When selecting sampling locations, it is 229 

important to consider the information sampling seeks to provide (e.g. source appointment or 230 

describing fate), to ensure this is discriminated within results, and to minimise replication [36]. 231 

Increasing the temporal and spatial resolution of sampling will increase data representativeness. In 232 

practice workability, time and cost often restrict this [41]. 233 

 234 



3.2 Comparison of sampling methods  235 

Sampling can be integrative or discrete [34]. Methods can be integrative of flow, time or both [36]. 236 

Whilst discrete methods can be representative of the progression in time and/or flow through 237 

recurring sampling that is proportional to evolving conditions [42]. Multiple discrete samples can be 238 

analysed separately to provide a time series describing concentration fluctuations [43], or pooled to 239 

obtain a composite value [42]. Whole water sample collection may be manual, automated or on-line 240 

[43]. Sampling may seek to capture different quantities of aqueous pesticides such as, total or 241 

dissolved concentration, load or distribution, or qualitative confirmation of the presence of a pesticide 242 

[19,32,40]. Comparable results are often possible with different methods, and method performance, 243 

versatility, practically, cost and expertise should be considered to select the most appropriate approach 244 

[42–45]. Practical handling considerations include the sampling frequency, the equipment transported 245 

to field or left in-situ, and the need to prepare the site before sampling (e.g. power supply) [43]. The 246 

monitoring programme of the WFD mandates spot sampling, however, use of passive sampling is 247 

recommended if large temporal variation in concentrations may reduce the representativeness of spot 248 

sampling (alone) [42]. Discussing monitoring under the WFD, Allan et al. [34] acknowledge that no 249 

sampling method is appropriate in all situations, with each providing different, often complimentary, 250 

information. Spot sampling remains the default choice in most pesticide monitoring programmes, 251 

despite its lack of temporal representativeness [11]. Table 3 shows attributes of a variety of discrete 252 

and integrative sampling methods. The current trend within pesticide monitoring is use of time-253 

integrative methods such as passive sampling.  Most studies investigate surface waters, where passive 254 

sampling has been extensively compared with other methods. Passive sampling has also been 255 

evaluated alongside on-line, automated and spot sampling in a drinking water supply works [43], with 256 

exposures occurring in a range of matrices, for example, waste waters [46] and ground waters [47]. 257 

Trends in the applications of passive samplers for pesticide monitoring are reviewed in Section 5. The 258 

principles underpinning passive sampling are presented in Section 4.  259 

260 

4. Passive sampling of polar pesticides 261 

A recent review of passive sampling of hydrophobic organic compounds [48] presents the monitoring 262 

principles for non-polar pesticides. At present, knowledge of the theory underpinning passive 263 

sampling of polar organic compounds, such as polar pesticides, is less developed. The absence of a 264 

complete mechanistic understanding prevents modelling of uptake and accumulation in polar devices 265 

[49,50]. Whilst available models do predict uptake and accumulation within acceptable error for some 266 

compounds and conditions, examples of divergent accumulation behaviour occur throughout the 267 

literature. Researchers have been unable to attribute, or distinguish, the contribution of phenomena 268 

responsible for this variation within, and between, studies [51]. Principles derived from absorption of 269 

non-polar organic compounds, a process occurring through partitioning, underpinned the initial theory 270 



for passive sampling of polar organic compounds. Passive accumulation of polar compounds occurs 271 

through adsorption, the result of concentration dependant interactions between solute and sorbent 272 

leading to bond formation [49]. As such the equivalence of the principles of non-polar/polar passive 273 

sampling is not always appropriate, for example, the existence of isotropic exchange between bulk 274 

and receiving phases for any analyte is uncertain and examples of anisotropic exchange are not well 275 

understood [44,52,53]. The following sections introduce the basic theory and range of passive 276 

sampling devices (PSDs) used to monitor polar pesticides.  277 

 278 

4.1 Theory of passive sampling  279 

Passive sampling is any technique where mass flux driven by differential chemical potential, causes 280 

transfer and retention of contaminants present in a bulk phase of the sampled medium, in/to the 281 

receiving phase of a device placed within said medium [54]. Mass flux will continue in the presence 282 

of a positive gradient in chemical potential between bulk and receiving phases (i.e. until 283 

thermodynamic equilibrium is reached) [48]. Mass flux of freely dissolved analytes from bulk to 284 

receiving phases occurs over successive interfacial layers [49]. These layers can include: 285 

 286 

WLBsW/DM  >  Fouling film  >  DM/DL  >  WBLDM/iW  >  WBLiW/S  >  Sorbent 287 

 288 

Where WLBsW/DM is the external water boundary layer (WBL) between sampled water and diffusion 289 

membrane (or layer). Fouling film refers to any accumulation of sediment and biotic matter formed on 290 

the sampling surface during exposure. DM/DL refers to a diffusion membrane (DM) or layer 291 

(hydrogel) (DL) separating sorbent and sampled water. WBLDM/iW and WBLiW/S refer to any WBL 292 

present between the DM (WBLDM/iW) and sorbent (WBLiW/S) and interstitial water within the sampler. 293 

Sorbent describes the receiving phase of the sampler. The device used largely determines the 294 

existence and/or importance of transport through each layer. Resistance to mass transfer in each layer 295 

is analyte specific and may limit uptake. The extent of any rate limiting effect is determined by the 296 

sampler configuration and ambient conditions [55]. When equating resistance to mass transfer over all 297 

interfacial layers (i.e. the resistance to mass transfer of uptake), resistance to mass transfer in 298 

sequential layers is normally assumed to be additive [56]. It is typically appropriate to consider only 299 

the external WLB, DM/DL and sorbent, in approaches using three compartment first order kinetic 300 

models [57–59]. 301 

Some devices promote mass flux (direction of diffusion gradient) occurring perpendicular to the 302 

water/sampler boundary and uniform across the sampling face. The design of other devices may 303 



permit lateral diffusion, or the formation of variable diffusion gradients where the relative position of 304 

layers is not uniform throughout the device, or shifts (e.g. when the sampler moves in the water 305 

column) [50,60]. Accumulation in the receiving phase follows first order kinetics, occurring in linear, 306 

then curvilinear regimes, ending at equilibrium. In the linear uptake regime, accumulation is time 307 

integrative and responsive to changes in aqueous concentration. The rate of mass flux and length of 308 

linear and curvilinear regimes, as well as the point at which equilibrium is attained, is specific to the 309 

analyte, sampler composition and geometry (configuration), and the ambient conditions during 310 

sampling. It must be determined and validated for each polar pesticide in each setting [61]. Many 311 

devices have been developed to monitor polar pesticides, with design and operation, optimised to 312 

achieve sensitivity and selectivity over exposures of various time lengths. Typically, passive sampling 313 

of polar pesticides is undertaken in the linear regime, and the sampled analyte mass (mS) is related to a 314 

TWA concentration (cTWA) in the sampled water over a deployment time (t) through knowledge of the 315 

analyte sampling rate (RS), using first order kinetic models [57,62], from which the following 316 

equation (Equation 1) can be derived: 317 

 318 

                                                     cTWA=mS/(RS t)                                          (Equation 1)                                                                  319 

 320 

RS is a theoretical volume of water sampled per unit time and must be determined for each 321 

combination of analyte and device. During the linear regime the aqueous concentration (cW) 322 

corresponds to the rate of accumulation in the sorbent (as RS should not change). Differences in the 323 

speed of transport over layers between sampled water and sorbent, result in analyte specific lag-324 

phases before a change in cW is registered as accumulation in the sorbent. Lag-phases of between 325 

several minutes and days are common. Subsequent increases or decreases in the rate of accumulation 326 

following a change in cW may also experience a lag-phase [46,63,64]. Large lag-phases reduce the 327 

accuracy of cTWA during short exposures (< 10 days) [46]. In the curvilinear regime, the rate of 328 

accumulation reduces, approaching an asymptote at equilibrium, when solute-sorbent bond formation 329 

ceases to be energetically favourable, or assuming isotropic exchange, sorption and desorption are 330 

equal (or a mixture of both, producing no net accumulation if exchange is anisotropic). Under what 331 

circumstances such bonds are reversible (i.e. desorption) is poorly understood [50]. Equilibrium 332 

sampling of polar pesticides is uncommon and may be inappropriate for adsorption-based devices. 333 

Use of passive samplers in the qualitative chemical or toxicological monitoring of pesticides, such as 334 

screening or bioassays, does not require knowledge of RS and is growing in popularity [40,46,65,66]. 335 

It is still necessary to confirm the suitability of the device over the exposure length and aqueous 336 

concentration range before devices can be used to monitoring pesticides in water. This is normally 337 

performed through calibration experiments.  338 



4.2 Types of passive sampler  339 

Three types of device are predominantly used to monitor polar pesticides, namely the, Chemcatcher®, 340 

o-DGT and POCIS [67]. These passive samplers typically operate in the linear/integrative mode for 341 

monitoring polar pesticides and not in the equilibrium mode. However, if deployed for long periods of 342 

time (~months) they will move into the equilibrium phase and thus unable to elucidate TWA 343 

concentrations. The choice of diffusive membrane/layer and receiving phase is made to alter the 344 

performance of each device. The following sections and Table 4 present practical aspects of the 345 

design, handling, performance and availability of samplers used to monitor polar pesticides. Values 346 

for LOQ, sensitivity, RS and linear period (i.e. integrative time) contained in Table 4 are taken from 347 

selected calibration studies. These values are indicative of performance and should be used only to 348 

compare device configurations. RS values reported in the literature often disagree. Reviews of 349 

Chemcatcher® [68,69], polar organic compound integrative sampler (POCIS) [49], and o-DGT [70], 350 

assemble data from multiple sources and discuss the inter-comparability of values for each device.  351 

 352 

i) Chemcatcher® 353 

The Chemcatcher® comprises a reusable three-part polytetrafluoroethylene (PTFE) body (base plate, 354 

retaining ring and transport lid) housing a commercially available solid-phase extraction (SPE) disk 355 

(Empore™/AttractSPE™/Atlantic™) receiving phase, overlain with a DM. Sorbent chemistry and 356 

DM composition and structural properties (e.g. membrane thickness or pore size) are selected based 357 

on affinity for monitored pesticides and required performance (e.g. integrative time or LOQ). Since 358 

Kingston et al. [71] developed the Chemcatcher® several iterations of the design have occurred, with 359 

two designs in current use. Each design has an internal volume and sampling area that accommodates 360 

SPE disks with diameters of either 52 mm (Atlantic design) or 46 mm (Empore design). Repeatability 361 

is aided through use of DMs and receiving phases with known properties (e.g. thickness, pore size, 362 

sorbent mass and distribution). The main differentiation between the Chemcatcher® and other devices 363 

is the use of commercially available SPE disk receiving phases. Whether this differentiation is 364 

advantageous or restrictive is a matter of opinion, as the uniformity in device properties, could equally 365 

be considered in terms of the lack of ability to optimise sorbent mass or use mixed sorbents, as is seen 366 

with other samplers. Likewise, fewer sorbent chemistries are available in the SPE disk format than in 367 

granular forms. What is certain is that the simplicity of preparation and handing means that 368 

performance bias resulting from user proficiency is less likely to occur than with POCIS, and to a 369 

much greater extent o-DGT. Occasionally improvised Chemcatcher® type devices are also used [72], 370 

however, problems resulting from the inconsistency of construction of such devices have been 371 

reported (e.g. DM losing contact with disk) [46]. Only one face of the receiving disk of the 372 

Chemcatcher® is in contact with the DM, however, improvised POCIS type devices containing SPE 373 

disks with two sampling surfaces are used occasionally [12]. A polyethersulphone (PES) DM is 374 



normally used for monitoring polar pesticides, however, other polymers such as polysulphone (PSU) 375 

have been used [72]. The geometric properties of the DM such as pore size, porosity, tortuosity, and 376 

membrane thickness may be different between studies with pores of 0.2 or 0.45 μm typical [58] and 377 

0.1 μm used infrequently [12]. Sometimes no DM is used, and the receiving phase is exposed directly 378 

in the sampled water. This will effect performance (e.g. reducing lag-phases and integrative periods), 379 

and may complicate sample clean-up, or increase uncertainty [73]. Naked disks outside the housing 380 

are also used as samplers, these are considered separately, as the area of sorbent disk exposed to 381 

sampled water has been shown to alter performance [74]. SPE disks used in Chemcatcher® are usually 382 

polymeric with moieties able to interact with solutes through polar, non-polar and ionic bond 383 

formation [58]. Generally. methanol is the preferred choice of solvent for eluting pesticides from the 384 

SPE disks used in Chemcatcher® devices [39]. In the past n-octadecyl disks were used to monitor 385 

polar pesticides [12], however, the improved performance of newer polymeric sorbents, mean these 386 

are now preferred. Unlike POCIS and o-DGT miniaturised versions of the Chemcatcher® have not 387 

been developed.  388 

 389 

ii) POCIS 390 

The POCIS contains granular sorbent sandwiched between two DMs, held in place by two stainless 391 

steel rings screwed together to form a seal. The internal sorbent is loose and does not fill the 392 

interstitial space. Distribution of sorbent within the sampler may change throughout deployments and 393 

the area in contact with the DM, is likewise, subject to change [50,61]. As the interstitial space is not 394 

filled it is convenient to increase the mass of sorbent within a device, however, sorbent mass of 200-395 

230 mg is typical. Polymeric sorbents are used to monitor polar pesticides, but carbonaceous sorbents 396 

are sometimes mixed with polymeric sorbents to improve performance. A variety of sorbents have 397 

been shown to have broad affinity for polar pesticides, whilst other sorbents have specific affinity for 398 

certain compounds for example a molecularly imprinted polymer sorbent has been developed to 399 

monitor glyphosate and α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) [75]. Two 400 

standardised versions of the POCIS: POCIS-pharms and POCIS-pest contain polymeric, or a mix of 401 

carbonaceous and polymeric sorbents, respectively. Despite names that suggest suitability for 402 

monitoring different classes of compounds both devices are used to monitor polar pesticides. 403 

Typically, methanol is used to extract the pesticides from the sorbent [42]. Ahrens et al. [12] found 404 

that each version of the POCIS had affinity for a similar number of compounds (106 or 110 of 124 405 

investigated), over the a similar range (log KOW  -1.9 to 5.2 or -1.9 to 5.3), with similar sorption 406 

capacity  (sampler and water partition coefficient (KSW)) of (log KSW of 4.78 L kg−1 or 4.56 L kg−1). 407 

PES DMs with pore sizes of 0.1 μm and combined sampling area of 41 cm2 are typically used to 408 

monitor polar pesticides [58], Miniaturised POCIS have also been used with a reduced surface area 409 

(16 cm2) and 0.45 μm pores [58]. Other studies have investigated larger sampling areas (95 cm2) [76], 410 

and the effect of varying sampling area and sorbent mass [77]. Nylon DMs with pores of 30 μm have 411 



also been investigated, and were shown to reduce lag-phases [63]. The POCIS is vulnerable to 412 

damage as DMs have no solid support and can be punctured during deployments. Lose sorbents must 413 

be weighted and conditioned for each device and preparation is more complicated than Chemcatcher®. 414 

Conditioning and elution of sorbents is typically undertaken in an SPE column.  415 

 416 

iii) o-DGT 417 

o-DGT is a recent variant of the DGT sampler, developed to monitor organic compounds in water and 418 

sediment with several variants used to monitor polar pesticides [70]. The o-DGT uses granular 419 

sorbents. The mass of sorbent used in each device deviates between studies, however, between 300-420 

350 mg of sorbent is typical. These may be polymeric, carbonaceous or inorganic, such as the TiO2 421 

sorbent developed to monitor glyphosate and AMPA [78]. The important distinction from both 422 

Chemcatcher® and POCIS is the use of hydrogel diffusive and binding layers to control analyte uptake 423 

and stabilise and ensure constant distribution of sorbent within the device. The binding layer 424 

containing sorbent sits at the base of a plastic housing and is overlain by the diffusive layer, held in 425 

place by a cap with an aperture exposing the diffusive layer surface to sampled waters. Following use 426 

the analytes are eluted from the binding disk using methanol [70]. o-DGT was developed to reduce 427 

the influence of ambient conditions on analyte uptake and the requirement to perform calibration for 428 

each compound. This is achieved as the resistance to mass transfer in the diffusive layer is similar to 429 

the WBL, and as the thickness is far greater, typically 0.75 mm, variation in WBL thickness does not 430 

impact RS significantly. Diffusive layers of between 0.4 and 2 mm have been investigated whilst the 431 

sampling area is typically 3.1 cm2. Larger devices with sampling areas of 4.91 cm2 [78] and 45 cm2 432 

[79] have been used. Binding layer thickness typically mirrors the diffusive layer, although different 433 

hydrogels are often used for each layer (1.5% agarose or 15% polyacrylamide). The thickness of each 434 

layer must be precise, and the distribution of sorbent equal, as inaccuracy in either may extend or 435 

reduce the length of the diffusional path within the device or promote lateral diffusion, altering 436 

uptake. As such preparation of o-DGT requires high user proficiency to avoid bias and is more time 437 

consuming than other devices. Ready constructed o-DGTs can be purchased to avoid this bias. To 438 

reduce the effect of ambient conditions on device performance o-DGT sacrifices sensitivity and 439 

sampling rates meaning LOQ are higher than POCIS and Chemcatcher®. Upscaling of the device 440 

would enable reduced LOQ but is complicated by the vulnerability of hydrogel layers to grazing, 441 

mechanical damage and dissolution, which prohibits larger sampling areas. One solution to protect the 442 

hydrogel layers during deployments is the inclusion of a protective filter or membrane. A range of 443 

membranes (cellulose acetate, cellulose ester, Nylon and PES) has been evaluated and were found to 444 

suppress uptake [80,81]. Commenting on use of protective membranes, Guibal et al. [70] proposed 445 

two points to consider before use:  446 

 447 



“1: target analytes and their potential interaction with the membrane (several compounds are often 448 

targeted and there is no “universally” inert membrane). 2: knowledge of the site of field deployment 449 

(including seasonal changes) to evaluate the risk of biofilm development and the relevance using 450 

naked o-DGT.” 451 

It is probable that use of protective membranes may reintroduce some of the uncertainty associated 452 

with transport over layers that the o-DGT tries to avoid. If lower LOQ are desired, multiple devices 453 

can be deployed in parallel and extracts combined for analysis.  454 

 455 

iv) Other devices 456 

A range of other devices has been used to monitor polar pesticides. These include silicone rubber, 457 

sheets [82,83] or stir bar sorptive extraction (SBSE) rods [84,85]. Silicone hollow fibre membranes 458 

containing nitric acid have been used to monitor triazine herbicides [86] and silicone sheets with 459 

various embedded SPE sorbents have been evaluated [87], and used to monitor equilibrium 460 

concentrations of polar pesticides in rivers [88]. Microporous polyethylene tubes filled with hydrogel 461 

embedded polymeric [89] and inorganic sorbents [90] have been exposed in river waters to monitor 462 

polar pesticides over a broad range of affinities (for different sorbents), or glyphosate and AMPA, 463 

respectively. Ethylene-vinyl acetate (EVA) coated Ti sheets have been used to monitor selected 464 

pesticides in coastal waters [91]. Other studies have used sorbents typically used in devices such as 465 

the Chemcatcher® but without the DM separating sorbent from the sampled water. This has mainly 466 

been done where it is desirable to increase the sensitivity of the device when monitoring episodic flux 467 

of polar pesticides [92] or when monitoring ground waters [47]. Ground water has also been 468 

monitored with an activated carbon sorbent contained in a steel mesh [93]. Aside from use of naked 469 

SPE disks in monitoring ground water or episodic pollution, it is unclear if any other devices currently 470 

used offer improved performance over the Chemcatcher®, POCIS or o-DGT. Use of naked disks to 471 

monitor short duration events, typical of polar pesticide pollution, may be particularly suitable, as the 472 

dynamic range and rate of mass flux can be large. For this reason, use of equilibrium devices based on 473 

silicone rubber alone or with embedded sorbent probably offers little improvement over discrete 474 

sampling methods, as the time to equilibrium is typically several days (i.e. the response time of the 475 

device is greater than fluctuation in environmental concentrations). Such devices may be suitable for 476 

monitoring other polar organic contaminants with stable environmental concentrations. New devices 477 

that remove some of the limitations the Chemcatcher®, POCIS or o-DGT would be welcome.  478 

          479 
480 

4.3 Calibration 481 

Calibration experiments are undertaken to establish device performance for specific analytes and 482 

exposure conditions. The length of time-integrative accumulation must exceed the duration of 483 

sampling and follow first order kinetics. Accumulation in the sorbent should be proportional and 484 



responsive to fluctuating concentrations. Calibration should characterise any lag-phases. Calibration 485 

of multiple analytes can be performed simultaneously. This is done through laboratory or in-situ, 486 

exposure within water in which the analyte concentration is known. In most laboratory calibrations 487 

samplers are exposed within an analyte fortified matrix, representative of the ambient conditions 488 

during field exposure. Devices are removed and analysed at regular intervals (1-2 days) and the 489 

fortified matrix is regularly (i.e. static renewal) or continuously (i.e. flow through systems) replaced. 490 

Alternative approaches inferring analyte uptake by measuring analyte depletion (i.e. static depletion) 491 

are occasionally used. However, analyte losses due to volatilisation, degradation, and sorption to the 492 

DM and surfaces within the calibration system reduce the accuracy of such calibrations [49]. There 493 

are currently no universally agreed calibration protocols and by necessity, each calibration system is 494 

bespoke. This has frustrated the reliability of laboratory derived RS which often disagree [49,50]. 495 

Ahrens et al. [12] characterised performance of five devices in laboratory calibrations experiments for 496 

124 polar pesticides, showing broad affinity for different configurations. Alternatively, in-situ 497 

calibrations may be performed in the field were aqueous concentrations are regularly checked with 498 

discrete sampling alongside analysis of samplers at regular intervals to convert the mass sampled to 499 

RS [94,95] 500 

Quality control during calibration studies and field exposures typically includes duplicate or triplicate 501 

deployment of samplers and a number of blanks to identify contamination during sorbent conditioning 502 

(solvent blank), construction, (construction blank) and field handling (field blank). A current trend for 503 

in-situ calibration is use of a variety of methods alongside each other to monitor non-steady state 504 

events [9,37,73,74]. Non-steady state conditions have also been replicated in laboratory calibrations; 505 

such approaches may help identify confidence intervals for passive sampling data, important for 506 

passive sampling of stochastic pesticide pollution. Vermeirssen et al. [57] found that lag-phases of 507 

certain moderately hydrophobic pesticides (diazinon and diuron) occurred following increases and 508 

decreases in aqueous concentration in a flow-through system, reducing the integrative performance 509 

the greater the duration of the lag-phase in relation to the length of exposure. Bernard et al. [96] 510 

investigated the integrative performance of POCIS through several static renewal calibrations with 511 

fluctuating concentrations of variable intensity and duration. Uptake was linear for most pesticides 512 

with lag-phases in accumulation differing based on analyte polarity. Shaw et al. [97] found sampler 513 

configuration effected integrative performance with DMs preferable over longer exposures. Naked 514 

SPE disks exposed to fluctuating concentrations of atrazine and allowed to equilibrate where found to 515 

attain isotherms proportional to the sampling surface area of the disk, not the mass of sorbent. 516 

Typically, RS values are greatest in POCIS as this device has the largest available surface area. 517 

Chemcatcher® has the next largest surface area and lower Rs lower values compared to POCIS. This 518 

was shown by Townsend et al. when assessing uptake of acidic herbicides  [21]. o-DGT has the 519 

smallest surface area and hence the lowest uptake rate of these three passive samplers. However 520 



device composition, geometry and ambient conditions will all affect the uptake rate in practice. The 521 

mass of sorbent and sampling surface area alongside the sorbent to sampling surface area ratio can be 522 

used to approximate RS values for devices of similar composition (i.e. same type and thickness of 523 

diffusive layer or membrane) [21]. Such approximations would be imprecise and compound specific 524 

as the contribution of different stages in the uptake process to rate limitation for different analytes will 525 

produce diverging responses to any change in device configuration. This complexity and uncertainty 526 

reinforce the need for device calibration and improved quality assurance and control in passive 527 

sampling of polar analytes.  528 

 529 

4.4 Environmental factors effecting uptake  530 

The properties of the DM and sorbent do not change, however, ambient conditions influence and limit 531 

the rate of transport across interfacial layers, and accumulation in the sorbent [98]. Such rate limiting 532 

effects either, alter the transport distance or resistance to mass transfer, or influence the rate at which 533 

the component mechanisms of transport/uptake occur. Changes in transport distance or resistance to 534 

mass transfer can be caused by variation in the thickness of the external WBL or the formation of 535 

fouling films [99]. Whilst temperature and matrix composition may also influence solute diffusion 536 

[79], speciation [100], or interaction with surfaces of DM and sorbent [101]. Additionally, amenable 537 

metabolic pathways or sorption sites present in fouling films may attenuate mass flux, suppressing 538 

accumulation in the sorbent [99]. Pesticide use and mobilisation is associated with seasonal and 539 

episodic climatic conditions that may also cause rate-limiting effects. These must be overcome, 540 

estimated, or preferably quantified, to improve accuracy of quantitative results and identify any 541 

uncertainty.  542 

i) Flow 543 

The WBL is a region of stationary water at the sampler-water boundary. Analyte transfer across this 544 

region occurs only by diffusion. WBL thickness is determined by turbulence at the sampling surface, 545 

which is typically greater at higher flow rates, however, translating measured flow to turbulence at the 546 

sampler surface is difficult [102]. o-DGT hydrogels are homogeneous and have a similar resistance to 547 

mass transfer as the WBL, and it is appropriate to consider the latter as an extension of the former 548 

comprising a single compartment [70]. Changes in the thickness of the WBL are normally negligible 549 

compared to the thickness of diffusive and binding gels and the rate limiting effect of flow should not 550 

exceed 20% of RS for o-DGT as a result [103]; with the exception of stagnant conditions where 551 

significant WBLs have been observed [104]. Diffusion across the WBL is often dominant in limiting 552 

uptake in POCIS [49] and Chemcatcher® [46], however, the flow dependency of RS is not always 553 

observed [54,95,105]. At present no approach can adequately compensate for flow effects on RS. 554 

Although, empirical approaches to determining RS in quiescent and turbulent conditions such as that 555 



adopted by Poulier et al. [11] have been used to establish confidence intervals for cTWA of pesticides to 556 

support use of POCIS in regulatory monitoring. Likewise, passive in-situ methods relating dissolution 557 

of gypsum balls to flow rate to infer WBL thickness have been demonstrated, but are not routinely 558 

used at present [102,106]. Compounding the challenge of understanding the effect of flow on RS is the 559 

failure to adequately report the hydrodynamic conditions in calibration experiments [50].  560 

ii) Fouling 561 

The presence of fouling layers composed of microbial flora and fauna and deposited particles on the 562 

surface of samplers may alter the resistance to mass transfer and uptake rates. When monitoring polar 563 

pesticides exposures exceeding 21 days are less common, reducing the potential for excessive fouling. 564 

Lissalde et al. [55] found that POCIS exposed for 14 days in positions parallel or perpendicular to 565 

flow, both experienced slight fouling that obstructed DM pores. Accumulation of a range of pesticides 566 

and metabolites was statistically similar for both exposure positions. The PES DM used in POCIS and 567 

Chemcatcher® resists fouling more than polymeric materials used in other device [62]. Challis et al. 568 

[104] noted fouling on o-DGT over 21 days, but no apparent effect on the uptake of a range of 569 

pesticides. The composition and thickness of each fouling film is unique, however, [48], and the 570 

potential for fouling should always be minimised as any effects on uptake are not understood and may 571 

be situational. Harman et al. [107] found that uptake decreased for certain hydrophobic analytes (log 572 

KOW 4-6) in pre-fouled POCIS compared to co-deployed un-fouled devices, whilst uptake of more 573 

hydrophilic analytes increased. Uptake of thiacloprid in Chemcatcher® was unaffected by fouling on 574 

the DM, but fouling on naked disks suppressed uptake, potentially due to interference with the sorbent 575 

moieties, impeding analyte uptake and/or recovery [99]. Djomte et al. [108] induced heavy fouling on 576 

POCIS through addition of suspended sediments (3600 ppm) to deionised water to compare uptake of 577 

12 polar pesticides in PES and Oasis™ HLB of fouled and unfouled devices exposed for 10 days. 578 

Visible fouling of DMs increased throughout exposure to suspended sediments. Comparison of DMs 579 

prior to exposure and at 10 days under microscopy, confirmed that unfouled DMs remained in the 580 

same condition throughout the experiment, whilst fouled DMs were extensively soiled with visible 581 

obstruction of (some) pores. Sultana et al. [24] suspected suppressed performance reference 582 

compounds (PRC) elimination of POCIS deployed in raw water (drinking water treatment) resulted 583 

from fouling but could not rule out other factors (e.g. matrix composition). The consequences of 584 

fouling on performance may differ depending on the identity of sampled pesticides and the 585 

composition of fouling layers and when fouling does occur the consequence for all sampled analytes 586 

should be assessment separately.  587 

iii) Temperature 588 

Generally, diffusion increases with temperature. The effect of temperature on RS is less clear, 589 

however, with enhanced uptake observed in laboratory exposures [109], contrasting with uptake 590 



unaffected by temperature in field exposures [95]. Yabuki et al. [98] found RS of 43 pesticides in 591 

POCIS increased between, 18, 24 and 30 °C, whilst five more hydrophobic pesticides displayed the 592 

opposite trend. Two-fold changes in RS in response to temperature are possible, but any effect may 593 

depend on the contribution of diffusion, partitioning and adsorption to rate limitation, which is not 594 

understood in POCIS or Chemcatcher® at present. In o-DGT, diffusion within hydrogel layers is rate 595 

limiting. Challis et al. [104] recently proposed a method to correct for the effect of temperature on 596 

uptake in o-DGT devices.  597 

iv) Matrix composition 598 

Speciation of ionisable pesticides is pH dependant. pH was found to effect uptake of acid herbicides 599 

in o-DGT containing Oasis™ HLB or Oasis™ MAX [110] and Oasis™ HLB or Sepra™ ZT [101]. 600 

Stroski et al. [101] attributed this to differential proclivity of species for solute-sorbent interactions 601 

leading to sorption as uptake of neutral pesticides was unaffected by pH.  The effect of pH on solute-602 

sorbent interactions for ionizable pesticides has also been highlighted in Chemcatcher® [58,72] and 603 

POCIS [111], with ion-exchange sorbents displaying superior performance for ionised species. The 604 

possibility of competition at sorption sites, complex formation and enhanced adsorption (e.g. salting 605 

out) due to interference from other matrix components has been suggested [67], however, salinity was 606 

not found to effect equilibrium adsorption isotherms in Oasis™ HLB [112]. Likewise nitrate [111] did 607 

not influence pesticide uptake in POCIS. Charlestra et al. [53] performed batch experiments to 608 

investigate the influence of natural organic matter (NOM) on uptake in POCIS for three moderately 609 

hydrophilic pesticides expected to partition to NOM. However, no effect on RS was observed. 610 

Mazzella et al. [61] investigated the potential of dissolved organic carbon (DOC) to influence PRC 611 

desorption rates through competition with PRCs, detecting no effect. Suggesting that although solutes 612 

capable of competition with PRCs were absent in sampled waters, this did not intimate their non-613 

existence elsewhere. The effect of such competition on PRC correction is unclear, as the dynamics of 614 

solute-sorbent bond formation are not understood. Interference in glyphosate and AMPA 615 

accumulation in samplers containing TiO2 sorbents has been inconsistently observed  in waters with 616 

different metal cation compositions [90]. PSDs are occasionally used to monitor the removal of polar 617 

pesticides in treatment process waters where oxidising agents such as ozone and chlorine [113], or 618 

electrolytes such as Ca2+, Na+, and Cl- [114], are present. Oxidation could suppress analyte uptake, or 619 

cause degradation of sorbed molecules. The presence of electrolytes in solution has been 620 

demonstrated to influence the sorption affinity of ions to oppositely charged SPE sorbents [114], such 621 

an effect could alter uptake to ion exchange sorbents during passive sampling. However, the effect of 622 

such oxidants and electrolytes in process waters on sampler performance has not been investigated. 623 

 624 

 625 



5. Applications of passive sampling for polar pesticides 626 

Tables 5-8 present recent applications of passive sampling for polar pesticides. For each study, 627 

monitored analytes and sampler configuration are summarised alongside a short description of 628 

research methods and objectives. The following analyte types are listed in the tables: acid herbicides, 629 

fungicides, herbicides, insecticides and molluscicides. Herbicides includes plant growth regulators. 630 

Insecticides includes insect repellents. Metabolites means any pesticide transformation product. For 631 

brevity the chemical class or name of pesticides is only provided if convenient. Applications covered 632 

include event monitoring in sewer overflows [92] and floods [37,74] and evaluation of passive 633 

samplers over larger temporal [38] and spatial [115,116] scales. Other applications include the  634 

qualitative characterisation of aqueous pesticides has included screening in, ground water [40,76,117] 635 

and surface water [118], and comparison with quantitative analysis of sampler extracts [65,95]. Field 636 

applications including device performance has been extensively investigated in comparative studies 637 

assessing various PSDs [8,12,36,89,119], and other sampling methods [8,9,42,43,84,115] for 638 

pesticides in a range of aqueous matrices. Other field applications have focused on passive sampling 639 

within the context of regulatory monitoring [11,32,120], and to optimise strategies to characterise 640 

pesticide flux and identify analytes originating from episodic or continuous sources within passive 641 

sampling data [35,116]. A significant portion of the literature for each PSD concerns calibration and 642 

performance, including the influence of ambient conditions on uptake [103,108,121]. Approaches to 643 

data quality and assurance have included  development and evaluation of methods for PRC correction 644 

[52,61,123] and discussion of challenges of the PRC approach [51], use of passive flow monitors 645 

(PFMs) [106] and modelled analyte uptake [23,124,125]. 646 

 647 

 648 

6. Conclusions and future trends  649 

 650 

Over the last decade, passive sampling of polar pesticides has seen preferential use of POCIS and 651 

Chemcatcher®. The introduction of o-DGT marked a divergence from previous sampler designs due to 652 

its internal hydrogel layers. It was hoped that by adopting hydrogels, a homogenous material with 653 

known diffusional properties, o-DGT would reduce measurement uncertainties arising from analyte 654 

uptake within traditional sampler designs. However, o-DGT measurement was found to be vulnerable 655 

to lower sensitivity and reduced integrative ability (slow responsiveness). This diminished the 656 

suitability of o-DGT for monitoring stochastic pesticide flux. 657 

Trends in the use of alternative devices (e.g. SBSE), were promoted due to user familiarity (used in 658 

sample separation), and compatibility with simplified analytical methods for extraction and analysis. 659 

However, such devices have only been validated over relativity short deployments and may be 660 



unsuitable for monitoring pesticide flux over longer exposures. As such kinetic or equilibrium 661 

application of such devices is unlikely to be representative of non-steady state pesticide pollution. Use 662 

of sorbent embedded SR (mixed polymer) to sample hydrophobic and polar pesticides in same device 663 

has been demonstrated. However, with the need manufacture the sorbent embedded polymer in house, 664 

this seems like an unnecessary complication, offering no improvement over parallel exposure of 665 

sorbent and SR independently. Other novel designs have incorporated a range of design features taken 666 

from established devices with novel materials and geometries. For example, microporous 667 

polyethylene tubes combining the diffusive gels and sorbents used in o-DGT enveloped by a porous 668 

barrier with a rigid structure, have been developed to overcome vulnerability of hydrogels whilst 669 

increasing the sampling area associated with standard o-DGT designs.  670 

Predicting future trends in sampler use is difficult, as past decisions to include devices in monitoring 671 

were often made based on the habit or past experience of each research group, rather than objectively. 672 

Past trends in Chemcatcher® and POCIS development, have focused on novel materials (e.g. DMs or 673 

sorbents) expanding the devices to new compounds, recalcitrant to previously available 674 

configurations. Whilst methods with broad affinity have continued, largely unchanged, these are 675 

exemplified by certain Chemcatcher® and POCIS configurations in continual use, since the initial 676 

development of these devices. Future improvements to device configuration will continue with the 677 

availability of novel materials, producing incremental expansions in chemical affinity and sensitivity 678 

of Chemcatcher® and POCIS. Past deployments in many cases, did not address the causes of 679 

uncertainty within passive sampling (e.g. ambient conditions). In future continued failure to address 680 

the sources of uncertainty common to polar passive sampling, will allow these uncertainties to 681 

propagate in future monitoring programmes. This will frustrate efforts to increase wider acceptance of 682 

passive sampling. Recent application of passive sampling has seen devices deployed in surface water, 683 

drinking water and ground water, however, use within regulatory monitoring is currently prevented by 684 

gaps in the theoretical understanding of the mechanisms occurring during passive sampling, and the 685 

absence of validated methods to ensure precision and reproducibility of passive sampling data. In the 686 

absence of novel sampler configurations the popularity of Chemcatcher® and POCIS for monitoring 687 

polar pesticides will likely continue. 688 
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Figure 1. Pesticide sources and processes influencing their fate in different compartments of a simplified water cycle in a partially closed system, such as a 

river catchment. Adapted from Reemtsma et al. [10].  



Table 1 Examples of properties and application of polar pesticides.  
Chemical Class             MoA Type Applications Authorisation (EU) Comments 
Neonicotinoids      
 Clothianidin nAChRs agonist  Insecticide OSR, corn, fruit, potatoes, ornamentals Restricted Outdoor use ban.  
 Imidacloprid nAChRs agonist  Insecticide Cereals, potatoes, beet, lawns, maize Restricted Outdoor use ban.  
 Thiacloprid nAChRs agonist Insecticide Apples, pears, carrots, parsnip, brassicas, potatoes, OSR, peas Approved (CfS) Candidate for substitution EDC 
Triazines      
 Atrazine PSII inhibitor Herbicide Pre/post-emergence: Corn, sorghum, turf, asparagus Expired Not used since 2010, WFD Priority Substance, still detected in 

groundwaters and surface water, as well as a number of transformation 
products.  

 Simazine  PSII inhibitor Herbicide Fruit, vines, hops, legumes Expired WFD Priority Substance  
 Terbuthylazine PSII inhibitor Herbicide Maize, sorghum, fruit, vines, roads, railways, industrial sites Approved UK approval withdrawn 
Azoles      
 Ipconazole SS inhibitor  Fungicide Root and leafy vegetables, brassicas, cereals, sunflower Approved PAN listed HHS 
 Propiconazole ES inhibitor Fungicide Mushroom, corn, sorghum, oats, fruit Expired Ban March 2020 
 Tebuconazole SS inhibitor Fungicide  Cereals, vines, onions, peas, peppers Approved (CfS) Also used as a plant growth regulator.  
Urea      
 Linuron PSII inhibitor Herbicide Carrots, parsnips, cereals, peas, ornamentals  Expired UK aaEQS 2 ug/L, MAC 20 ug/L 
 Isoproturon PSII inhibitor Herbicide Cereals Expired Banned 2016, not used since 2011. WFD Priority Substance: aaEQS:0.3 

ug/L; MAC 1.0 ug/L. UK aaEQS 2 ug/L, MAC; 20 ug/L. WHO drinking 
water guideline; 0.009 mg/L  

 Chlorotoluron PSII inhibitor Herbicide Cereals, potatoes, maize, vegetables, fruit Approved (CfS) UK aaEQS; 2 ug/L, MAC; 20 ug/L.  
Carboxamide      
 Boscalid DhyE inhibitor Fungicide Vegetables, brassicas, onions, garlic, peas, carrots, turnips, fruit Approved  
 Asulam DhyE inhibitor Herbicide Fruit, hops, pasture, amenity, moorland, woodland Withdrawn Subject to PIC regulations. *Emergency approval bracken.  
Bhenoxy      
 2,4-D Synth Aux   Approved  
 MCPA Synth Aux Herbicide Cereals, grass, linseed, asparagus Approved Non-statutory standards EA: 12 ug/L; WHO drinking water guideline: 

0.002 mg/L 
 Mecoprop-p Synth Aux Herbicide Post-emergence: lawns, amenity, cereals Approved  
Pyridine      
 Clopyralid Synth Aux Herbicide Cereals, turf, ornamentals, fallow land, industrial sites Approved  
 Fluroxypyr Synth Aux Herbicide Grass, pasture, cereals, orchards, vines Approved  
Quaternary      
 Paraquat PSI inhibitor Herbicide Lucerne, legumes, hops, vines, potatoes, amenity, industrial Withdrawn PAN Dirty Dozen; Chemical subject to PIC regulations 
 Diquat PSI inhibitor Herbicide Potatoes, OSR, fruit, vines, sunflowers, legumes, carrots, beet Expired PAN listed HHC 
 Chlormequat - PGR Cereals, ornamentals, tomatoes, cabbage, cauliflower, radish Approved  
Misc.      
 Quinmerac  Synth Aux Herbicide OSR, cereals, beet Approved  PAN listed HCC 
 Glyphosate ESPS inhibitor Herbicide Agriculture (many uses), industrial and amenity sites Approved PAN listed HCC 

 

Abbreviations: acetylcholinesterase (AchE); candidate for substitution (CfS); endocrine disrupting compound (EDC); nicotinic acetylcholine receptors 

(nAChRs); mode of action (MoA); maximum allowable concentration (MAC); sterol synthesis (SS); photosystem I (PSI); photosystem II (PSII); 

DeHydrogenase (DhyE);  Synthetic Auxin (Synth Aux); Very long chain fatty acid (VLCFA);  highly hazardous chemical (HHC); pesticide action network 

(PAN); Water Framework Directive (WFD); World Health Organization (WHO). 



Table 2 Environment fate of polar pesticides: Properties of compartments and chemicals, pathways, attenuation and uncertainty. 
Compartment  Inward pathways Compartment properties Attenuation Chemical properties  Uncertainty 

Soil 

(days-weeks) 

 

- Application 

- Improper handling, 
disposal and 

cleaning of pesticide 
products and 
equipment. 

- Soil composition and 
structure (e.g. clay content). 

- Distance to and interaction 
with water table. 

- Microbiome 

- Subsurface flow and field 
drains 

-Sorption to soil 

 

- Photolysis (surface) 

 

- Microbial metabolism (aerobic 
and anaerobic) 

- Log Koc (sorption) 

- Log Kow (solubility) 

- Ionisation (sorption and solubility) 

- DT50 Soil 

- Groundwater ubiquity score (GUS) 
describes the likelihood of a 

compound to infiltrate to water table 

- Usage variation because of differential pest stress and 
cropping patterns. 

- Diurnal and annual variation in climatic condition will 
impact biological activity 

- Variation in soil moisture and precipitation and resulting 
runoff to surface waters before compounds enter the soil 

structure.  

Ground water 

(months-years) 

- Infiltration from 
soil, surface water 

and sewers 

- Flow regime. 

- Redox potential. 

- Microbiome 

- Composition and porosity 
of aquafer matrix. 

- Sorption to aquafer matrix 

- Microbial metabolism  

- Log Koc (sorption) 

- Log Kow (solubility) 

- Ionisation (sorption and solubility) 

- Metabolite formation. 

- Farming practices which effect infiltration, such as soil 
compaction or drainage. 

WWTW 

(hours) 

- Sewers, residency 
in sewers is 

inconsistent and will 
vary with distance 

and flowrate.  

- Level of treatment 
(primary, secondary and 

tertiary) 

- Types of processes 

- Process operation 

-Sorption to sediments 

-Microbial metabolism Aerobic 
and anaerobic 

-Oxidation 

- Log Koc (sorption) 

- Log Kow (solubility) 

- Ionisation (sorption and solubility) 

-Affect of changing flow on process performance and 
enrichment or dilution of pesticide concentrations 

- Temperature dependence of biotic processes 

- Disparate nature of microbial communities between locations 

- Possible back transformation of metabolites. 

Surface waters 

(days-months) 

-Runoff from the 
built and natural 

environment. 

-Groundwater 

-Field drains and 
ditches 

- Direct discharges 
from WWTW 

- Flow regime 

- Microbiome 

- Matrix composition 

- Temperature 

- Photolysis 

- Microbial metabolism 
(planktonic and biofilms) 

- Sorption to sediment 

- Volatilisation  

- Log Koc (sorption) 

- Log Kow (solubility) 

- Ionisation (sorption and solubility) 

- DT50 (Photolysis) 

- DT50 (hydrolysis) 

- KWA(Volatility)  

- The effect of climatic variation on attenuation and inputs, 
such as sunlight, temperature and precipitation 

- Usage variation because of differential pest stress and 
cropping patterns  

- Variation in the contribution of different inputs to flow  

- Variation in the flow regime due low/high flows and the 
presence of vegetation 

- Penetration of less sunlight under turbid conditions 

Drinking water 
treatment works 

(hours) 

-Ground water 
abstraction 

-Surface water 
abstraction 

- Types of processes 

- Process operation 

- Adsorption (activated carbon) 

- Conventional and advance 
oxidation processes (chlorination 

and ozonation) 

- Reverse osmosis 

- Log Koc (sorption) 

- Log Kow (sorption solubility) 

- Ionisation (sorption and solubility) 

- Resistance to oxidation 

- Mixing of abstraction from multiple sources 

- Activated carbons loses efficacy with time and following 
each regeneration 

- Certain processes are less efficient in the presence of 
dissolved organic matter or reduced contact times or under 

different loads 



Table 3. Comparison of water sampling methods for polar pesticide monitoring.  

Sampling 
method 

Performance Versatility Proficiency and availability  

SV
 per sam

ple 

SV
 per day 

Flow
* 

T
im

e* 

Sensitivity 

Selectivity 

Advantages Disadvantages  Scope to optimise Restrictions Equipment  
Skill 

U
sage 

Cost 

Spot 
sampling L L N N L  H 

All analyte fractions present in 
sample Stability of labile compounds  Pre-treatment to prevent degradation or 

sorption of analytes Logistical 
Bottle L H $ 

High accuracy Snapshot only Repeat sampling Logistical 
Sensitivity - Increase sample volume Logistical 

Automated 
sampling Op Op Op Op L-

M H 

Stability of labile compounds (in 
sample) Stability of labile compounds Pre-treatment or refrigeration to prevent 

degradation or sorption of analytes Logistical In-situ - 
Automated 
sampler and 

power supply 
(portable and 
left on site), 
may be large 

and expensive 

M M $$$ 
Representativeness Problems may occur undetected or only 

become apparent after the event - QA/QC 

Programmable to take multiple 
discrete or composite samples Site requirements (security and power) - Logistical 

Sensitivity Less freedom to alter sample volume Increase sample volume (shorter 
deployment) Logistical 

On-line 
monitoring 0 0 Op Op H H 

Method developed for analyte Limited to developed method Expand method Analytical Fixed 
equipment for 
sampling and 

analysis  

vH vL 100x 
$ Real time data - -  Economical 

Stability of sample is assured No sample retained - Information 

Passive 
sampling L Op N Y vH L-

M 

Freely dissolved fraction sampled Analyte speciation may affect sampling - Information 

In-situ - PSD 
and deployment 
apparatus (left 

on site) 

H L $$$ 

Integrative of time Length of exposure may influence 
accuracy 

Device configuration and exposure time 
(10-30 days typical) QA/QC  

TWA Concentrations can be 
measured 

Requires calibration, may be affected be 
ambient conditions 

Device configuration, deployment 
apparatus QA/QC 

High enrichment of analytes Limited analyte selectivity Multiple devices Logistical 

Representativeness Concentration fluctuation is not captured - Information 

Active 
sampling L Op Op Y vH H 

Freely dissolved fraction sampled Analyte speciation may affect sampling - Information 

In-situ - Active 
sampling device 

with power 
supply (battery 

or fixed) 

H vL $$$$ 

Integrative of time Length of exposure may influence 
accuracy 

Device configuration and exposure time 
(10-30 days typical)  QA/QC  

Representativeness Concentration fluctuation is not captured - Information 
TWA Concentrations can be 

measured 
Requires calibration, may be affected be 

ambient conditions 
Device configuration, exposure 

conditions QA/QC 

High enrichment of analytes Limited analyte selectivity Multiple receiving phases within the 
same device Logistical 

*integrative. Key: high (H); low (L); optional (Op); medium (M); no (N); sampled volume (SV); very high (vH); very low (vL); yes (Y). Abbreviations: passive sampling device (PSD); quality assurance (QA); quality control (QC); time-weighted 
average (TWA). 

 

 



Table 4. Practical aspects of the design, handling, performance and availability of passive samplers used to monitor polar pesticides. 

*maximum outlier above the range typically for most analytes. Abbreviations: agarose (Ag); diffusion membrane (DM); diffusive layer (DL); limit of quantification (LOQ); molecularly imprinted polymer (MIPs); n-octanol and water partition 
coefficient (KOW); not available (N/A); nylon (NL); passive sampling device (PSD); polyacrylamide (PA); polyethersulphone (PES); polyethylene glycol (PEG); polytetrafluoroethylene (PTFE); sampling rate (RS); silicone rubber (SR); solid-phase 
extraction (SPE); stir bar sorptive extraction (SBSE). 

Passive 
sampling 

device 

Practical aspects Performance Availability  

Specification Versatility Preparation and 
extraction  Design Selectivity  

(analyte type/ log KOW) Sorbent  DM/L:  
(μm/mm) 

LOQ  
(ng L-1) Linear days (RS (L d-1)) 

Commercial 
suppliers and 
approx. cost 

 
 
 

Ref 

POCIS 

Two x steel 
rings securing 

two x DM, 
between which 

granular 
sorbent is 

sandwiched, 
sampling area = 

45 cm2. 

Sorbent mass can 
be altered or 

multiple sorbents 
mixed in a single 

device. More 
vulnerable to 

damage during 
field exposure 

than other devices. 

Conditioning and 
extraction solvents and 
procedures defined for 

sorbent. Sorbent must be 
weighted separately for 

each device. PEG present 
in PES DM must be 

removed to avoid matrix 
effects. 

- Type and 
mass of 
sorbent 

- DM, type, 
thickness, 

porosity and 
tortuosity 

Neutral 

-1.9 - 5.3 Oasis™ HLB PES: 0.1 < 1 - 50 *200 14 (~ 0.18) 
Yes - 

constructed 
devices and 
component 
parts can be 

purchased from 
several 

suppliers 
(Affinisep, 

EHSS, EST). 
 

$$$ 

[12] 
~ -2 - 3.5 NL: 30 N/A < 1 – 21 (0.03 - 3.29) [63] 
0.57 – 5.2 Bond Elut Plexa PES: 0.1 < 1 - 15 14 (0.09 - 0.22) [42] 

-1.9 - 5.2 Isolute ENV+/ 
Ambersorb 1500 PES: 0.1 < 1 - 10 *83 14 (~ 0.22) [12] 

-2 - 4 Chromabond HR-X PES: 0.1 N/A < 21 (0.006 - 0.125) [111] 
2.6 - 3 Strata X-CW PES: 0.1 < 5 12 (0.139 - 2.6) [123] 

Acidic 
-2 - 4 Oasis™ MAX PES: 0.1 N/A 9-21 (0.038 - 0.302) [111] 
N/A Envi-Carb PES: 0.2 < 1 7 (0.035 - 0.07) [100] 

1.9 - 3.38 Strata X-CW PES: 0.45 N/A < 8 (0.047 - 0.076) [58] 

Glyphosate - MIPs 
PES: 0.1 N/A > 14 (0.078) 

[75] PES: 0.2 N/A 17 (0.111) 
NL: 30 N/A < 13 (N/A) 

o-DGT 

Plastic housing, 
0.75 mm 

diffusive and 
binding 

hydrogels, 
embedded 
granular 
sorbent 

(binding), 
sampling area = 

3.1 cm2. 

Reusable (housing 
only). Preparation 
is difficult for non-
experts. Gels used 
in construction are 

vulnerable to 
damage and may 
be eaten by biota. 

Thickness of diffusive 
and binding layers and 

position of sorbent 
particles govern sampler 
performance and must be 

consistent between 
devices. Device 

preparation requires 
more expertise than 

POCIS or Chemcatcher®. 

- Type and 
mass of 
sorbent 

- Type and 
thickness of 
diffusive and 
binding gels 

Neutral 

N/A 
(various) 

Sepra™ ZT 
Ag: 0.75 

N/A > 25 Yes – 
constructed 
devices and 
component 
parts can be 
purchased 

(DGT 
Research). 

 
$$ 

[101] PA: 0.75 

Oasis™ HLB Ag: 0.75 
PA: 0.75 

1.14 - 3.2 Amberlite XAD 18 Various 0.03 - 2.73 *1094 N/A [81] 

~ 1.5 - 6 Strata-X A = 45 cm2 

Ag: 0.2 - 2 2 > 21 [79] 

Acidic N/A Oasis™ MAX PA: 0.77 3 – 13 (14 days) 43 [110] 
Oasis™ HLB 

Glyphosate - TiO2 A = 4.91 cm2 PA: 0.8, 
PES: 0.45/ PA: 0.4 0.03 2 - 6 [78] 

Chemcatcher®  

PTFE housing 
52 or 47 mm 

receiving disk 
overlain with 
DM, sampling 
area = 17 cm2. 

Reusable (housing 
only). Preparation 

and handling 
simpler than 

POCIS/o-DGT. 

Conditioning and 
extraction solvents and 
procedures defined for 
commercially available 
receiving phases. PEG 

present in PES DM must 
be removed to avoid 

matrix effects. 

- Type of 
sorbent 

- DM, type, 
thickness, 

porosity and 
tortuosity 

Neutral 

-1.9 - 5.3 
(POCIS) Atlantic™ HLB PES: 0.2 < 1 > 14 (0.016, 

metaldehyde) 
Yes – Housing, 

DM and 
receiving 

phases can be 
purchased 
(TelLab). 

 
$$$ 

[12,126
] 

-1.2 - 4.7 Empore™ SDB-RPS 2 x PES: 0.1 < 1- 20 * 1300 > 14 (~0.05) [12] 

1.3 - 5.3 Empore™ C18 2 x PES: 0.1 < 1 – 10 *230 < 14 (~0.02) [12] 
1.78 - 
3.51 Empore™ SDB-XC PES: 0.45 N/A < 5 (0.03 - 0.07) [58] 

Acidic 

-2.6 - 4.6 Empore™ SAX PES: 0.2 2 6 - 58 (0.044 - 0.113) [21] 
1.9 - 3.38 Empore™ SDB-RPS PES: 0.2 N/A < 7 (0.01 - 0.018) 

[58] 
1.9 - 3.38 Empore™ SDB-XC PES: 0.2 Poor affinity (1 

detection) 4 (0.04, haloxyfop) 

Silicone rubber 
based devices 

Single phase 
PSD comprised 

of multiple 
sheets or rods 
used in SBSE 

Can be re-used if 
cleaned. Multiple 
sheets can form 

one device. 

Oligomers must be 
removed before use this 
takes time and solvent. 

Soxhlet extraction 
(solvents: methanol-
acetonitrile, 1:2 v/v). 

- Surface 
area, 

embedded 
sorbent 

Neutral 

0.70 - 7.0 SR sheets 450 cm2 < 1 - 5 *2000 < 7 (~0.88) Yes – SBSE 
(Gerstel).  

No – Sheets 
 

$$$ 

[12] 

2.18 - 
5.11 SR SBSE twisters - < 2 < 4 (0.001 - 0.121) [85] 

Naked SPE 
disks 

SPE disks 
exposed 

directly in 
sampled waters. 

Must be deployed 
in appropriate 

apparatus. Fouling 
or damage of the 

disk possible. 

Conditioning and 
extraction solvents and 
procedures defined for 
commercially available 

receiving phases. 

- Type of 
sorbent 

Anionic -1.1 - 4.2 Empore™ SDB-RPS 
- 

< 2 1.5 (0.1 - 0.18) Yes (Affinisep,  
Merck,  

Biotage).  
 
$ 

[92] 

Neutral 
1.5 (0.48 - 1.1) 

0.78 - 
4.21 Empore™ SDB-XC < 2 14 (0.018 - 0.047) [47] 

https://www.affinisep.com/media/affinisep_pocis_affinimip_en__071167900_1624_26052016.pdf
https://www.ehss.eu/en/passive-sampling/services-and-experience/
https://www.est-lab.com/pocis.php
https://www.dgtresearch.com/search-test/
https://www.dgtresearch.com/search-test/
https://chemcatcher.ie/#toggle-id-8
http://www.gerstel.co.uk/en/twister-stir-bar-sorptive-extraction.htm
https://www.affinisep.com/media/booklet_disk__069707600_1727_27112018.pdf
https://www.sigmaaldrich.com/catalog/search?term=empore&interface=All&N=0&mode=match%20partialmax&lang=en&region=GB&focus=product
https://www.biotage.com/product-page/atlantic-spe-disks


Table 5. Examples of applications of POCIS for monitoring polar pesticides.    
Application Analytes Sampler design*1 Description Ref 

TWA 
concentrations 

Acid herbicides, 
fungicides, herbicides, 

insecticides and 
molluscicides  

- PES DM (0.132 mm thick, 0.1 µm 
pore)/ 200 mg Oasis™ HLB 

- POCIS, o-DGT and MPTs were exposed (22-24 days) in 36 agricultural streams in New Zealand, alongside grab sampling, PFMs and 
temperature/light data loggers to characterize pesticide pollution, with quantitation through LC-MS/MS or LC-q-Trap, and evaluate sampling 

method performance. 
[89] 

TWA 
concentrations 

Fungicides, herbicides 
and insecticides 

- PES DM (N/A)/230 mg Oasis™ 
HLB 

- 21 day exposures at 4 sites in the Bizerte lagoon catchment (Tunisia) alongside grab and sediment sampling to quantify (LC-MS/MS) 25 
pesticides and 7 transformation products, to evaluate agricultural pollution.  

[127] 

Calibration and 
performance 

Fungicides, herbicides 
and insecticides 

- PES DM (0.1 µm pore)/200 mg 
Oasis™ HLB 

- Effects of suspended sediment (3600 ppm) on the extent of PSD fouling and uptake of 12 pesticides evaluated in laboratory 10 day 
exposures. 

[108] 

Calibration and 
performance Neonicotinoids -PES DM (0.1 µm pore)/220 mg 

Oasis™ HLB 
- RS determined in 21 batch sorption experiments before investigation of performance under non-steady state conditions typical of serious 

pollution event (1000, 100 or 10 µg L-1) in 3, 14 day laboratory exposures. 
[128] 

Screening 
(target) / TWA 
concentrations 

Fungicides, herbicides 
and insecticides 

- (N/A) DM (N/A)/200 mg Oasis™ 
HLB  

- 14 day exposures at 16 sites in the Tagus River catchment (Spain) alongside grab sampling to screen (LC-q-ToF) for pesticides and organic 
chemicals originating from point sources (430), to characterize site chemical profiles and prioritize chemicals for subsequent quantitative 

(LC-MS/MS) analysis. The suitability of each sampling method and uncertainty of results were also investigated.  
[129] 

TWA 
concentrations 

Fungicides, herbicides, 
insecticides and 

metabolites 

- PES DM (0.1 µm pore)/200 mg 
Oasis™ HLB (30 µm particle size) 

- 6 non-consecutive 14 day exposures over 1 year at 51 sites in the Adour-Garonne catchment alongside grab sampling to characterize 
profiles of 29 pesticides analysed through LC-MS/MS, in relation to land use and evaluate the temporal representativeness of each method. 

[116] 

TWA 
concentrations 

Fungicides, herbicides 
and insecticides 

- PES DM (N/A)/230 mg Oasis™ 
HLB 

- 1 month exposures at 9 river, transition and coastal sites (Dublin and Cork regions of Ireland), representative of pollution sources and land 
use, alongside grab sampling to explore barriers to future inclusion of passive sampling in regulatory monitoring of Priority and Watch List 

CECs (e.g. WFD and MSFD). CECs were quantified by LC-q-Trap. 
[120] 

TWA 
concentrations 124 pesticides 

- PES DM (0.1 µm pore)/220 mg 
Oasis™ HLB (30 µm particle size) 

- The ability of monitoring methods (Chemcatcher®, POCIS, SR and composite sampling) to characterise concentrations and fluxes over 6 
weeks at 2 river sites (Sweden). Pesticide concentrations (GC-MS or LC-MS/MS) and detection frequency for each method is compared. 

- An in-situ calibration is performed for each PSD was and PRC suitability was investigated and found suitable for SR PSDs (only). 
[8] 

Calibration and 
performance 

Glyphosate and AMPA 
- PES DM (0.1 and 0.2 µm pore) or 

nylon DM (0.2 µm pore)/220 mg 
Oasis™ HLB 

- 31 day laboratory calibrations to investigate the performance of a novel MIP sorbent and three types of DM. [75] 

Calibration and 
performance 

Fungicides, herbicides 
and insecticides 

- DM (N/A)/200 mg Oasis™ HLB - Effects of flow velocity (0-20.5 cm s-1) and temperature (8-39 °C) on RS (LC-MS/MS) investigated in lab exposures (21 days) and an 
Arrhenius model. 

[109] 

TWA 
concentrations 

(modelled)  
Metolachlor - - Comparison of monthly passive sampling data from extant literature and 2-D modelling (MARS) at 5 coastal and 6 upstream river sites in 

Arcachon Bay (France) to develop a simulated proxy for metolachlor concentration in the bay.  
[130] 

- Atrazine - 

- Review of passive sampling (POCIS and Chemcatcher®) of atrazine. Sampler configuration and geometry, uptake kinetics, calibration best 
practice, effects of flow and temperature and suitability of models describing mass transfer were discussed and developed (flow dependency 

RS). 
- Measures to improve data quality were proposed: standardization of sampling area and sorbent mass (POCIS), and calibration conditions 

(WBL thickness). Recommendations for reporting PSD configuration included, DM material, pore size, tortuosity and thickness, and sorbent 
mass, exposed area and area: sorbent ratio.  

[50] 

TWA 
concentrations 

Neonicotinoids and 
metabolites 

- PES DM (N/A)/220 mg Oasis™ 
HLB 

- 13-15 days exposures in raw and treated waters of 6 DWSWs in the Lake Erie region (Canada) alongside grab sampling (LC-q-Trap). 
- PRCs (DIA-d5, propranolol-d7 and metoprolol-d6) were used to calculate in-situ RS.  

[24] 

Calibration and 
performance 

Acid herbicides, 
fungicides, herbicides 

and insecticides  

- Miniaturized design (A= 9.8 cm2) 
- PES DM (0.1 µm pore)/54.4 mg 

Oasis™ HLB (30 µm particle size): 
180 cm2 PES DM/(per) g Oasis™ 

HLB 

- RS and partitioning of organic compounds over a range of hydrophobicity (log KOW -0.03 to 6.26) in miniaturised POCIS (sorbent and DM) 
and a mono-phasic mixed polymer sampler through batch experiments to investigate the performance of each PSD. 

[88] 

TWA Fungicides, herbicides, - PES DM (0.1 µm pore)/200 mg - Consecutive 14 day exposures at 3 sites on both, the Auvézère (Jan 2012-Dec 2014), and Aixette (Jan 2014-Oct 2016), rivers (France), [35] 



concentrations insecticides and 
metabolites  

Oasis™ HLB/PRCs (DIA-d5) alongside grab sampling with quantitation by either LC- MS/MS or LC-q-ToF to characterize pesticide occurrence in agricultural 
catchments. 

MS (spiked 
samplers) 

Herbicides and 
insecticides 

- PES DM (N/A)/200 mg Oasis™ 
HLB 

- Stability of analytes in POCIS stored at -20° C for 6 years showed +/- 14% mass variation (average LC-MS/MS), < o-DGT (+/- 9%) stored 
for 18 months. 

[131] 

- - - - Review of POCIS, o-DGT and Chemcatcher® passive sampling devices in environmental monitoring. [67] 

TWA 
concentrations 

Fungicides, herbicides, 
insecticides and 

metabolites 

- PES DM (0.1 µm pore)/220 mg 
Bond Elut Plexa/PRC (DIA-d5 and 

Caffeine-d3) 

- 2, 14 day exposures at 2 sites receiving mixed inputs on the Marque River (France), alongside composite sampling to evaluate the ability of 
each method to monitor compounds with differential temporal concentration flux and the reliability of using RS reported previously in the 

literature and PRC correction (46 pesticides and 19 pharmaceuticals, quantitated by LC-MS/MS or LC-Orbitrap/MS). 
[42] 

Calibration and 
performance 

Atrazine 
- Diffusion cell separated by PES 
DM (Supor-200 145 µm thick, 0.2 

µm pore) 
- A method to adjust RS for flow conditions during exposures using alabaster dissolution is developed and discussed.  [102] 

Calibration and 
performance 

Acid herbicides, 
fungicides and 

herbicides 

- Oasis™ HLB (various mass) in 
spiked solutions 

- Equilibrium partitioning to Oasis™ HLB is investigated in batch experiments, including the influence of sorbent concentration, 
temperature, pH and salinity.  [112] 

TWA 
concentrations 

Acid herbicides, 
fungicides, herbicides, 

insecticides and 
metabolites 

- (N/A) DM (N/A)/Oasis™ HLB 
(N/A) 

- Exposures (mean 37 days) at 97 river sites representative of different types of land use and river hydrology in the Midwest region (USA), 
alongside weekly grab and sediment sampling and ecological surveys to profile pesticide pollution, with quantitation through LC-MS/MS. [115] 

TWA 
concentrations 

Acid herbicides, 
fungicides, herbicides 

and glyphosate 

- PES DM (N/A)/200 mg Oasis™ 
HLB 

- Exposures at 11 sites around Toronto (Canada) representative of pesticide sources in the built environment, agriculture (rivers) and 
downstream locations (lakes), to identify and quantify the contribution of sources of pollution (current use pesticides), with quantitation 

through LC-MS/MS. 
[132] 

TWA 
concentrations 

Fungicides, herbicides 
and insecticides 

- PES DM (0.1 µm pore)/200 mg 
Oasis™ HLB 

- 12 consecutive 1-month exposures at 3 sites, alongside monthly grab sampling at 10 sites in the River Ugie catchment to evaluate both 
methods, within the constraints of regulatory monitoring of pesticides and calculate flux and risk to aquatic organisms, with quantitation 

through GC-MS. 
[32] 

Screening (target 
and suspect) 

Various pesticides - PES DM (0.1 µm pore)/200 mg 
Oasis™ HLB 

- Multiples exposures (15 days or a month), alongside grab sampling at 2 groundwater sites dominated by agricultural, or agricultural and 
urban pollution to profile polar organic micro-pollutants, through screening (LC-q-ToF) and interpretation/identification using target and 

suspect databases and multidimensional data visualization. 
[117] 

Calibration and 
performance 
(modelled) 

Acid herbicides, 
herbicides and 

insecticides 

- PES DM (0.1 µm pore)/200 mg 
Oasis™ HLB 

- RS is modelled for 73 compounds using artificial neutral networks by 2 methods, namely modelled chromatographic retention, or molecular 
descriptors such as topological, constitutional, geometrical and physiochemical properties, and validated through laboratory determined RS. [125] 

Calibration and 
performance 

Fungicides and 
herbicides 

- PES DM (0.1 µm pore)/200 mg 
Oasis™ HLB or Strata X-CW 

- The performance of 7 candidate PRCs is evaluated through laboratory (17 days) and multiple field (12-21 days) exposures in 3 rivers with 
agricultural and WWTW inputs (Switzerland), including alongside automated sampling, with quantitation by LC-MS/MS. [123] 

Calibration and 
performance 

Fungicides, herbicides 
and metabolites 

- 3 POCIS configurations - Inter-laboratory study to access sources of error in passive sampling (multiple devices) and causes of data variability within and between 
labs. 

[119] 

Calibration and 
performance 

Fungicides, herbicides 
and insecticides 

- PES DM (0.1 µm pore)/220 mg 
Oasis™ HLB 

- Batch laboratory exposures (28 days) to determine the influence of temperature (18, 24 and 30 °C) on RS of 48 pesticides, quantified 
through GC-MS/MS. [98] 

Calibration and 
performance 

Fungicides, herbicides, 
insecticides and 

metabolites 

- PES DM (0.1 µm pore)/200 mg 
Oasis™ HLB/PRCs (DIA-d5) 

- Method to remove PEG from PES DMs and reduce matrix effects and improve quantitation (LC-q-ToF) of coeluting pesticides is 
developed and validated through 14 day field exposures at sites (2) on the La Pude and the Arnac rivers (France). [122] 

TWA 
concentrations 

Fungicides, herbicides, 
insecticides and 

metabolites 

- PES DM (0.1 µm pore)/200 mg 
Oasis™ HLB 

- Consecutive 14 day exposures over 9 months at 3 sites in the Auvézère River catchment to evaluate the performance (detection frequency 
and LOQ) of grab and passive sampling and suitability of each method to calculate concentration flux with quantitation by LC-MS/MS. 

[9] 

Calibration and 
performance 

Acid herbicides, 
fungicides, herbicides, 

insecticides, 
molluscicides and 

metabolites 

- PES DM (N/A)/220 mg Oasis™ 
HLB or 220 mg mixed sorbent 

(Isolute ENV+ (80%) and 
Ambersorb 1500 (20%)) 

- Characterization of 5 PSDs (2 types of POCIS and Chemcatcher® and SR) in laboratory exposures in river water spiked with 124 
pesticides. 

- Analysis occurred by GC-MS or LC-MS/MS and RS and KSW were evaluated and 3 PSDs (1 x each device) deployed (6 x 7 days) in the 
River Halland. 

[12] 



Calibration and 
performance  

Fungicides, herbicides, 
insecticides and 

metabolites 

- PES DM (0.1 µm pore)/200 mg 
Oasis™ HLB/PRCs (DIA-d5) 

- Analytical method (LC-q-ToF) developed for 46 polar pesticides and validated through analysis of POCIS exposed for 14 days at 2 river 
sites (France). 

- Full scan MS data enabled non target screening and identification of PEG compounds causing instrumental interference.  
[65] 

TWA 
concentrations 

Fungicides, herbicides, 
insecticides and 

metabolites 

- PES DM (0.1 µm pore)/200 mg 
Oasis™ HLB 

- Data from various 14 day exposures (extant literature) on the Trec River (France) is compared to regulatory monitoring data (Government 
Agency) to evaluate the limitation of POCIS in regulatory monitoring programmes. 
- A procedure to incorporate POCIS in regulatory monitoring (WFD) is proposed.  

[11] 

Calibration and 
performance  

Herbicides, insecticides 
and metabolites 

- PES DM (0.1 µm pore)/200 mg 
Oasis™ HLB/PRCs (DIA-d5) 

- Consecutive 14 day exposures alongside automated sampling at 2 agricultural river sites (France) to investigate the influence of exposure 
conditions (e.g. flow velocity, pH and conductivity) on RS and the suitability of PRC correction, with quantitation by LC-MS/MS. [55] 

Calibration and 
performance 

Herbicides and 
metabolites 

- PES DM (0.1 µm pore)/200 mg 
Oasis™ HLB/PRCs (various) 

- Performance of 21 candidate PRCs was evaluated in batch experiments and validated in 3 week field exposures alongside grab sampling 
(GC-MS or LC-MS/MS). 

[52] 

Calibration and 
performance 

Fungicides, herbicides, 
insecticides and 

metabolites 

- Nylon DM (65 µm thick, 30 µm 
pore) or PES DM (100 µm 

thickness, 0.1 µm pore)/200 mg 
Oasis™ HLB 

- Accumulation kinetics of a novel POCIS with nylon DM is developed and evaluated alongside POCIS with PES DM in batch experiments 
(0-30 days) with quantitation by GC-MS/MS and LC-MS/MS.  

- A intraparticulate diffusion model considering multiple compartments (e.g. water, biofilm, DM and sorbent) is proposed and used to 
evaluate accumulation.  

[63] 

Calibration and 
performance 

Acid herbicides, 
herbicides 

- Miniaturized design (A= 16 cm2) 
- PES DM (0.45 μm pore)/Strata-X 

600 mg 

- Versions of Chemcatcher® and POCIS PSDs were exposed and removed at intervals (26 days) in spiked water to investigate the 
relationship between PSD configuration, analyte properties and analyte uptake (LC-MS/MS).  

[58] 

Calibration and 
performance 

Acid herbicides, 
herbicides and 

metabolites 

- Four designs  
- PES DM (A=16 or 45 cm2, 0.1 µm 

pore)/200-600 mg Oasis™ 
HLB/PRCs (various) 

- Batch exposures of 4 POCIS designs to compare performance and optimize PSD configuration for monitoring of neutral (LC-MS/MS) and 
acidic (HILIC-MS/MS) herbicides. 

[77] 

TWA 
concentrations Atrazine 

- PES DM (0.1 µm pore)/200 mg 
Oasis™ HLB/PRCs (DIA-d5) 

- Two consecutive 28 days exposures at 24 sites in the South Nation River catchment (Canada) alongside in-situ calibration (PRCs) at 4 sites 
over 2 non-consecutive 2 month exposures to determine atrazine pollution throughout the catchment with quantitation through LC-q-Trap. [105] 

MS (RS unknown) 
Fungicides, herbicides, 

insecticides and 
metabolites. 

- PES DM (0.1 µm pore)/200 mg 
Oasis™ HLB. 

-  Deployments of 1 or 2 weeks, over 1 month, in 2 rivers in a French vineyard. Semi quantitative and qualitive results (LC-MS/MS analysis 
of 19 pesticides), obtained from Stir bar PSDs were compared to POCIS and automated grab sampling coupled to SBSE. [84] 

TWA 
concentration 
(estimated- RS 

unknown) 

Herbicides and 
metabolites 

- Altered design (A= 95 cm 2) 
- DM (N/A)/450 mg Oasis™ HLB 

- Four consecutive exposures (14-21 day) in groundwater abstraction well at a DWSW (Paris, France) and 2 consecutive 7 day exposures in 
a well upstream of an abstraction well field (Troyes, France) alongside grab sampling to access the ability of each method with quantitation 

through LC-MS/MS. 
[76] 

Calibration and 
performance 

Fungicides, herbicides 
and metabolites - DM (N/A)/230 mg Oasis™ HLB - 21 day laboratory calibration to determine the RS of 17 polar pesticides (LC-MS/MS). [133]  

Calibration and 
performance 

Fungicides, herbicides, 
insecticides and 

metabolites 

- PES DM (N/A)/220 mg mixed 
sorbent (Isolute ENV+ (80%) and  

Ambersorb 1500 (20%)) 

- Transfer kinetics are modelled in POCIS and Chemcatcher® after laboratory exposures using a three compartment first order kinetic 
models. [57] 

Calibration and 
performance 

Fungicides, herbicides 
and metabolites 

- DM (N/A)/230 mg Oasis™ HLB 
- In-situ calibration through 21 day exposure (samplers removed at days 3, 7, 10, 14, 17 and 21) in a water pumping station on the Rhone 

River (France) to determine the RS of 10 polar pesticides and the influence of environmental factors on uptake, alongside grab sampling, with 
quantitation by LC-MS/MS. 

[134] 

Calibration and 
performance 

Acid herbicides, 
fungicides, herbicides 

and metabolites 

- PES DM (0.1 µm pore)/Oasis™ 
HLB or Oasis™ MAX or 

Chromabond HR-X (sorbent mass 
N/A)/PRCs (DIA-d5, dicamba-d3) 

- The performance of 3 versions of POCIS are evaluated in 21 day batch exposures, including the influence of matrix composition (drinking 
water or river water) and the presence of nitrates on performance (acidic and neutral pesticides), with quantitation by LC-MS/MS. 

[111] 

- - - - Critical reviews of the calibration and use of POCIS in environmental monitoring. [49,135,136] 

Calibration and 
performance 

Chlorothalonil, 
hexazinone, phosmet 

and propiconazole 

- DM (N/A)/Oasis™ HLB (sorbent 
mass N/A) 

- Batch laboratory exposures (spiked river water) to determine the influence of flow velocity and the presence of natural organic matter on 
RS, with quantitation by GC-MS. [53] 

Calibration and Fungicides, herbicides, - PES DM (0.1 µm pore)/200 mg - A method (LC-MS/MS) for quantitation of multiple pesticide classes in water was validated through analysis of water samples (grab and [44] 



performance insecticides and 
metabolites 

Oasis™ HLB/PRCs (DIA-d5) automated extracted, SPE)  and PSD extracts calibrated over 24 days (spike tap water) or exposed in a river for 14 days optimize the method 
and reduce matrix effects. The performance (e.g. LOQ, sample treatment/processing and representativeness of pesticide pollution) of 

monitoring methods was also evaluated. 

Calibration and 
performance 

Herbicides and 
metabolites 

- PES DM (0.1 µm pore)/200 mg 
Oasis™ HLB/PRCs (DIA-d5) 

- Laboratory calibration (7, 14, 21 and 28 days in spiked tap water) followed by in situ calibration (6, 13 and 22 days) and field trial 
alongside automated sampling (five consecutive 14 day exposures) in two French rivers, to investigate the performance of Oasis™ HLB 

sorbent and PRC correction (LC-MS/MS).  
[61] 

Calibration and 
performance 

Herbicides and 
metabolites 

- PES DM (0.1 µm pore)/200 mg 
Oasis™ HLB 

- Batch exposures (9 days) in spiked river water to investigate performance under different concentration fluxes during 3 day ‘events’ (GC-
MS). [45] 

Calibration and 
performance 

Herbicides and 
metabolites 

- PES DM (0.1 µm pore)/200 mg 
Isolute ENV+ and Ambersorb 572 
(80:20) or 200 mg Oasis™ HLB 

- Laboratory exposure (5 days) in spiked tap water of two versions of POCIS to evaluate PSD performance. PRC spiked POCIS (Oasis™ 
HLB) were then exposed (5, 10, 15 and 21 days) to determine the uptake kinetics of selected neutral and weakly acidic or basic herbicides 

and metabolites (HPLC-DAD).  
[59] 

*1Unless stated sampling area is 41 cm2. DM is described as: “polymer” DM (thickness, pore size (if available)). DM is separated from sorbent by “/”. Key: sampling area (A). Abbreviations: contaminants of emerging concern (CECs); diffusion 
membrane (DM); drinking water supply works (DWSW) ; gas chromatography-mass spectrometry (GC-MS); gas chromatography-tandem mass spectrometry (GC-MS/MS); high-performance liquid chromatography-diode array detector (HPLC-
DAD); hydrophilic interaction liquid chromatography- tandem mass spectrometry (HILIC-MS/MS); limit of quantification (LOQ); liquid chromatography-Orbitrap/mass spectrometry (LC-Orbitrap/MS); liquid chromatography-quadrupole-time-of-
flight (LC-q-ToF); liquid chromatography-quadrupole-Trap (LC-q-Trap); liquid chromatography-tandem mass spectrometry (LC-MS/MS); Marine Strategy Framework Directive (MSFD); microporous polyethylene tubes (MPTs); molecularly 
imprinted polymer (MIPs); n-octanol and water partition coefficient (KOW); not available (N/A); passive flow monitors (PFMs); passive sampling device (PSD); performance reference compounds (PRC); polyethersulphone (PES); polyethylene 
glycol (PEG); sampled analyte mass (MS); sampler and water partition coefficient (KSW); sampling rate (RS); silicone rubber (SR); solid-phase extraction (SPE); stir bar sorptive extraction (SBSE); time-weighted average (TWA); wastewater 
treatment works (WWTW); water boundary layer (WBL); Water Framework Directive (WFD); α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA).  

 



Table 6. Examples of applications of Chemcatcher® for monitoring polar pesticides. 
Application Analytes Sampler design* Description Ref 

Targeted 
screening 

Fungicides, 
herbicides and 

insecticides 

- Atlantic design 
- PES DM (Supor® 200, 

0.2 μm)/HLB-L (Atlantic™, 52 
mm) 

- PSDs exposed at 7 sites on two rivers impacted by wastewater in the Hartbeespoort Dam catchment (South Africa), over a 14 day deployments. 
- A method coupling passive sampling of ground water to semi quantitative analysis (LC-q-ToF) was used to perform a risk assessment based on 

hierarchical ranking of detection frequency and relative abundance. 
[118] 

TWA 
concentrations Metaldehyde 

- Atlantic design 
- PES DM (Supor® 200, 

0.2 μm)/HLB-L (Atlantic™, 52 
mm) 

- The ability of four monitoring techniques (PSDs, spot and automated bottle sampling and online GC-MS) to monitor metaldehyde concentrations 
in a river and a DWSW (Herts, UK) was tested over five, 14 day PSD exposures. 

- Advantages (e.g. data resolution) and disadvantages (e.g. cost), and information provided by each method are discussed. 
[43] 

TWA 
concentrations 

124 pesticides 
- PES DM (0.1 μm pore)/C18 

disk (47 mm) 

- The ability of monitoring methods (Chemcatcher®, POCIS, SR and composite sampling) to characterize concentrations and fluxes over 6 weeks at 
2 river sites (Sweden). Pesticide concentrations (GC-MS or LC-MS/MS) and detection frequency for each method is compared. 

- An in-situ calibration was performed for each PSD was and PRC suitability was investigated and found suitable for SR PSDs (only). 
[8] 

TWA 
concentrations 

Acid herbicides 

- Empore design 
- PES DM (Supor® 200, 0.2 μm 

pore)/anion-exchange disk 
(Empore™, 47 mm)  

- Novel PSD is developed and Rs determined in laboratory exposure, and tested in 2 field trials (12 sites, Exe Catchment, UK). 
- Concentrations obtained through high frequency spot sampling and passive sampling used to locate sources of pollution. 

[21] 

- Atrazine - 

- Review of passive sampling (POCIS and Chemcatcher®) of atrazine, including sampler configuration and geometry, uptake kinetics, calibration 
best practice, effects of flow and temperature and suitability of models describing mass transfer were discussed and developed (flow dependency of 

RS). 
- Measures to improve data quality were proposed: standardization of sampling area and sorbent mass (POCIS), and calibration conditions (WBL 

thickness). Recommendations for reporting PSD configuration included, DM material, pore size and thickness, and sorbent mass, exposed area and 
area: sorbent ratio. 

[50] 

TWA 
concentrations Metaldehyde 

- Atlantic design 
 - PES DM (Supor® 200, 0.2 μm 

pore)/ HLB-L (Atlantic™, 52 
mm) 

- Metaldehyde RS determined in laboratory exposures, and PSD performance evaluated in 5 x 14 day exposures at 3 river sites (UK). 
- Ability of passive sampling to monitor pollutants with stochastic inputs, locate sources and integrate concentration fluxes is discussed. [126] 

TWA 
concentrations Metaldehyde 

- Atlantic design 
 - PES DM (Supor® 200, 0.2 μm 

pore)/ HLB-L (Atlantic™, 52 
mm) 

- 14 day exposures of PSDs and grab sampling (14 day intervals) at 14 sites throughout England and Wales over the course of a year are compared. [33] 

TWA 
concentrations 

Acaricides, 
fungicides, 
herbicides, 

insecticides and 
metabolites 

- Empore design 
- PES DM (Supor® 200, 0.2 μm 

pore)/SDB-RPS disk 
(Empore™, 47 mm) 

- Exposures in 7 German rivers receiving wastewater effluent over 2 sampling campaigns of 2 and 3 weeks, alongside event driven samplers (peak 
concentrations) and passive flow monitors to access the impact of pesticide in effluent on invertebrates. Quantitation occurred through LC-MS/MS. [137] 

TWA 
concentrations 

Herbicides 

- Empore design 
- PES DM (Supor® 200, 0.2 μm 

pore)/SDB-RPS disk 
(Empore™, 47 mm) 

- 2 months of overlapping exposures (average 28 days) before, during and after a flood event at a site in the Barratta Creek catchment (Australia) 
alongside grab sampling and a passive flow monitor, to monitor TWA concentrations and determine herbicide load with quantitation through LC-

MS. 
[37] 

TWA 
concentrations 

Fungicides, 
herbicides and 

insecticides 

- Empore design 
- PES DM (Supor® 200, 0.2 μm 

pore)/SDB-RPS disk 
(Empore™, 47 mm) 

- Chemcatcher® and SR PSDs and grab sampling monitoring were evaluated alongside PFMs through  1 month exposures (2 years) at four sites in 
the Barratta Creek catchment (Australia) to profile temporal and spatial trends in pesticides presence, concentration and fate, with quantitation by 

HPLC-MS/MS.  
[36] 

TWA 
concentrations 

Fungicides, 
herbicides, 

insecticides and 

- Empore design 
- PES DM (Supor® 200, 0.2 μm 

pore)/SDB-RPS disk 

- Multiple 3 week exposures in 37 site/streams in an agricultural region of Germany with quantitation by LC-MS/MS, compared to compiled data 
1998-2011 on pesticide concentration, physiochemical status, habitat and invertebrate community composition to access pesticide toxicity to 

invertebrates (SPEAR pesticides). 
[138] 



molluscicides  (Empore™, 47 mm) 

Calibration and 
performance 

(in-situ) 

Acid herbicides, 
fungicides, 
herbicides, 

insecticides and 
metabolites 

- Improvised design 
- PES DM (0.45 μm pore)/SDB-
RPS disk (Empore™, 47 mm) 

- in-situ calibration through exposures (14 day over 4 months) alongside time proportional composite sampling in 5 rivers in varied catchments. 
- 322 compounds were analysed by LC-MS/MS, however, RS could only be calculated for 88 which included pesticides and pharmaceuticals. 

Uncertainty of the results obtained and suitability of passive sampling for monitoring different organic pollutant are discussed. 
[95] 

Calibration and 
performance 

Acid herbicides, 
fungicides, 
herbicides, 

insecticides, 
molluscicides and 

metabolites 

- Improvised design with PES 
DM overlain on each side of 
either a SDB-RPS or C18 disk 
(Empore™, 47 mm) in metal 

housing 

- Characterization of 5 PSDs (2 types of POCIS and Chemcatcher® and SR) in laboratory exposures in river water spiked with 124 pesticides. 
- Analysis occurred by GC-MS or LC-MS/MS and RS and KSW were evaluated and 3 PSDs (1 x each device) deployed (6 x 7 days) in the River 

Halland. 
[12] 

Calibration and 
performance 

Neonicotinoids  
- Empore design 

- (naked)/SDB-RPS, SDB-XC or 
C18 disk (Empore™, 47 mm) 

- A multi-residue analytical method for neonicotinoids is developed and validated (UPLC-MS) using spiked and unspiked river water samples. 
- Receiving phase performance (retention and recovery) was investigated in batch experiments followed by laboratory exposures of selected PSDs 

(SDB-RPS) in spiked water with samplers removed and analysed at intervals for 21 days repeated to investigate uptake and desorption. 
[139] 

TWA 
concentrations 

(estimated) 

Herbicides, 
insecticides and 

metabolites 

- Empore design 
- PES DM (with and without 

DM) (Supor® 0.45 μm 
pore)/SDB-RPS disk 
(Empore™, 47 mm) 

- Chemcatcher® were deployed for either 7 days (no DM) or 28 days (with DM), alongside SR, SPMD and XAD resin PSDs in 5 ground water wells 
located at distances from an aquifer recharge and recovery well to quantify (LC-MS/MS) pollutant transport and attenuation in a storm water 

recycling system. 
[140] 

Calibration and 
performance 

Acid herbicides, 
herbicides 

- Empore Design 
- PES DM (0.45 μm or 0.2 μm 
pore)/SDB-RPS or SDB-XC 

disk (Empore™, 47 mm) 

- Four versions of Chemcatcher® and POCIS PSDs were exposed and removed at intervals (26 days) in spiked water to investigate the effect of PSD 
configuration on analyte uptake (LC-MS/MS). [58] 

Calibration and 
performance 

Fungicides, 
herbicides, 

insecticides and 
metabolites 

- Empore design 
- PES DM (0.1 μm pore)/SDB-
RPS disk (Empore™, 47 mm) 

- Transfer kinetics are modelled in POCIS and Chemcatcher® after laboratory exposures using a three compartment first order kinetic models. [57] 

TWA 
concentrations 

Herbicides and 
metabolites 

- Empore design 
- PES DM (with and without 

DM) (Z-bind™ 0.45 μm 
pore)/SDB-RPS disk 
(Empore™, 47 mm) 

- 2 years of non-consecutive deployments (between 4-20 days), at 4 sites located at river mouth, near shore, mid shelf and outer reef portions of the 
great barrier reef (Australia), to investigate the influence of extreme wet weather on pesticide pollution as part of an wider ongoing long term 

monitoring programme, with quantitation through LC-MS/MS. 
[38] 

Calibration and 
performance 

Fungicides, 
herbicides and 

insecticides 

- Empore Design 
- (naked) SDB-XC disk 

(Empore™, 47 mm) 

- 2, 14 day laboratory calibrations to determine RS for 12 pesticides at 2 flow velocities (0.135 and 0.4 ms-1) and investigated the performance of 2 
PRCs to correct for the influence of flow on uptake.  

[54] 

Calibration and 
performance 

Atrazine and 
prometryn 

- Empore design 
- PES DM (with and without 
DM) (Z-bind™ 200 0.2 μm 

pore)/SDB-RPS disk 
(Empore™, 47 mm) 

- 5 lab calibration experiments in an exposure cell to investigate the influence of flow velocity 0-24 cm s-1 on RS and the accuracy of flow velocity 
inference with PFMs followed by field exposures (28 days) at 8 freshwater sites (Australia), with analyte quantitation by GC-MS.  

[106] 

TWA 
concentrations 

Herbicides and 
metabolites 

- Empore design 
- PES DM (with and without 
DM) (Z-bind™ 200 0.2 μm 

pore)/SDB-RPS disk 
(Empore™, 47 mm) 

- Chemcatcher® with or without DM were exposed over 2 years in non-consecutive deployments (between 4-29 days), including alongside SPMD 
and SR, at 14 sites in the Princess Charlotte Bay area comprising river mouths and near shore, mid shelf, and outer, reefs, to investigate temporal 

and spatial variation in pesticide pollution, with quantitation through LC-MS/MS. 
[141] 

Calibration and 
performance 

Atrazine, diuron and 
simazine 

- Empore design 
- PES DM (with and without 

- Overlapping (3-24 days) exposures of PSDs with and without DMs alongside grab and automated composite sampling to investigate analyte 
uptake during a flood ‘event’ at 4 sites on the Brisbane River (Australia), with comparison to precipitation and flow data and analyte quantitation by 

[74] 



(in-situ) DM) (0.45 μm pore)/SDB-RPS 
disk (Empore™, 47 mm) 

LC-MS/MS. 
- Equilibrium and kinetic parameters were calculated in-situ based on dynamic concentrations obtained through each method. 

Calibration and 
performance 

Acid herbicides, 
fungicides, 

herbicides and 
metabolites 

- Empore Design 
- PES DM (with and without 
DM) (N/A pore)/SDB-RPS 

(Empore™, 47 mm) 
-(naked)/SDB-XC disk 

(Empore™, 47 mm) 

- Three variations of the Chemcatcher® were exposed in WWTW effluent in batch experiments to investigate the influence flow velocity and 
sampler response time (5 day exposures) and the period of linear uptake (overlapping exposures 3-21 days) to investigate any relationships between 

analyte uptake properties and log KOW, with quantitation through LC-MS/MS and toxicity (PSII inhibition) determined in bioassays. 
[46] 

Calibration and 
performance 

Thiacloprid 

- Empore design 
- PES DM (with and without 
DM) (0.2 μm pore)/SDB-XC 

disk (Empore™, 47 mm) 

- 1 or 10 day exposures in thiacloprid spiked artificial streams (3.2 or 100 μgL-1) of (pre)fouled and unfouled devices, with and without DMs (4 
variations total), to investigate the influence of fouling on DMs or naked disks on uptake at different concentrations and exposure times, with 

quantitation by LC-MS.  
[99] 

TWA 
concentrations 

Fungicides, 
herbicides and 

insecticides 

- Empore design,  
-(naked) SDB-XC disk 

(Empore™, 47 mm) 
- 10-13 day exposures in 16 European rivers alongside event driven and suspended particle samplers to compare method performance (GC-MS). [142] 

Calibration and 
performance 

Acid herbicides and 
herbicides 

-Empore design 
- PSU or PES DM (0.2 μm 

pore)/SDB-RPS or SDB-XC 
disk (Empore™, 47 mm) 

- 4 variations (2 x DM and 2 x receiving phase) of Chemcatcher® exposed (21 days removed 3 day intervals) in a flow through system containing 
spiked tap water to investigate the influence of DM and receiving phase selection on uptake and desorption (separate exposures), with quantitation 

through HPLC-UV.  
[72] 

TWA 
concentration 
and bioassays 

Acid herbicides, 
herbicides, 

insecticides and 
metabolites 

- Empore design 
- (polymer N/A) DM 

(0.45 μm pore)/SDB-RPS 
(Empore™, 47 mm) 

- 27 day exposures at 8 sites in the treatment stream of a DWSW (Australia), with chemical (LC-MS/MS) and toxicological (Microtox, E-SCREEN 
and photosynthesis inhibition) analysis to quantifying and attribute MoA for various compounds, including selected pesticides, as treatment 

progressed. 
[113] 

 *DM is described as: “polymer” DM (thickness, pore size (if available)). DM is separated from sorbent by “/”.  Abbreviations: diffusion membrane (DM); drinking water supply works (DWSW); gas chromatography-mass spectrometry (GC-MS); 
high performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS); high-performance liquid chromatography-ultraviolet (HPLC-UV); liquid chromatography-mass spectrometry (LC-MS); liquid chromatography-quadrupole-
time-of-flight (LC-q-ToF); liquid chromatography-tandem mass spectrometry (LC-MS/MS); mode of action (MoA); n-octanol and water partition coefficient (KOW); not available (N/A); passive flow monitors (PFMs); passive sampling device 
(PSD); performance reference compounds (PRC); polyethersulphone (PES); polysulphone (PSU); sampler and water partition coefficient (KSW); sampling rate (RS); semipermeable membrane device (SPMD); silicone rubber (SR); solid-phase 
extraction (SPE); time-weighted average (TWA); ultra-performance liquid chromatography- mass spectrometry (UPLC-MS); wastewater treatment works (WWTW); water boundary layer (WBL). 

 

 



Table 7. Examples of applications of o-DGT for monitoring polar pesticides. 
Application Analytes Sampler design*1 Description Ref 

TWA 
concentrations 

Acid herbicides, fungicides, 
herbicides, insecticides and 

molluscicides  

- 0.75 mm polyacrylamide/0.75 mm/0.35 mg 
Sepra™ ZT  

- POCIS, o-DGT and MPTs were exposed (22-24 days) in 36 agricultural streams in New Zealand, alongside grab sampling, 
PFMs and temperature/light data loggers to characterize pesticide pollution, with quantitation through LC-MS/MS or LC-q-Trap, 

and evaluate sampling method performance. 
-  > 2 pesticides and > 3 pesticides were detected at 78% and 69% of sites respectively. Pesticide and nutrient concentrations were 

not correlated. POCIS had the highest detection frequency of the evaluated methods. 

[89] 

Calibration and 
performance 

Herbicides, fungicides, 
insecticides and metabolites 

- 6 types of DM investigated*2 

- (i) 0.5-2 mm, polyacrylamide or agarose/1-10 mg 
L-1 Oasis™ HLB. 

- (ii) 0.5-2 mm polyacrylamide or agarose/1-10 mg 
L-1 Amberlite XAD 18 

- Evaluation of numerous DM, diffusive gels, sorbents, including determination of diffusion coefficients, the influence of DM 
type, DL thickness, sorbent mass and environmental conditions on performance, and the accuracy of PRC correction (atrazine-d5 

or linuron-d6), in comprehensive lab experiments and subsequent field exposures in several rivers and reservoirs (China). 
[81] 

TWA 
concentrations 

Acid herbicides, herbicides 
and insecticides - 0.75 mm/0.75 mm, 25 mg Oasis™ HLB 

- Performance of PSDs (o-DGT and POCIS) and grab sampling evaluated through exposures of 2-3 weeks for 7 months at 14 
sites in the Red River, Lake Winnipeg, and Nelson River watersheds, which are influenced by agriculture and wastewater. 

Deployments encompassed environmental conditions ranging from fast flowing river, lakes with surface ice. 
[80] 

TWA 
concentrations 

Acid herbicides, herbicides 
and insecticides 

- (i) 0.75mm, polyacrylamide gel/0.75 mm, 350 mg 
Sepra™ ZT 

- (ii) 0.75 mm/0.75 mm, 350 mg Oasis™ HLB 

- Diffusion coefficients in polyacrylamide gel were determined experimentally, using a diffusion cell. 
- Sampler performance under varying pH was investigated during batch laboratory calibration experiments lasting 25 days. 

[101] 

TWA 
concentrations Herbicides and flutolanil 

- Novel geometry (A= 45 cm2)  
- 0.2-2 mm/0.75 mm, 50-1000 mg Strata-X 

- Sorbent sorption isotherms were determined through equilibration in spiked water and a modified sampler geometry developed. 
-  Exposures (17-21 days) over four months in a river in an agricultural catchment alongside an automated bottle sampler to 

investigate the influence of flow, temperature, DL thickness and sorbent mass on sampler performance and uncertainty. 

[79] 

MS (spiked 
samplers) Herbicides and insecticides  - 1 mm/0.75 mm, 25 mg Oasis™ HLB - Stability of analytes in o-DGTs stored at -20° C for 18 months and POCIS stored at -20° C for 6 years was investigated. [131] 

- - - - Review of POCIS, o-DGT and Chemcatcher® passive sampling devices in environmental monitoring. [67] 

Calibration and 
performance Acid herbicides 

- (i) 0.77 mm, polyacrylamide or agarose/0.67 mm, 
polyacrylamide, 300 mg Oasis™  HLB. 

- (ii) 0.77 mm, polyacrylamide or agarose/0.67 
mm, polyacrylamide, 300 mg Oasis™ MAX 

- Method (preparation/elution) for o-DGT for anionic pesticides, four model compounds and two sorbents investigated (HPLC-
ToF analysis). 

- Uptake and desorption by diffusive and binding gels, binding capacity of sampler configurations, diffusion coefficients and the 
effect of pH, temperature and flow rate determined in lab experiments and validated through exposures (7-14 days) in spiked 

Evian® water and two French rivers. 

[110] 

Calibration and 
performance 

Glyphosate and AMPA 
- Novel geometry (A= 4.91 cm2) 

- PES, N/A, 0.45 μm/0.4 mm, polyacrylamide/0.4 
mm, polyacrylamide, 2 g TiO2 

- Diffusion cell and calibration experiments evaluating DGT containing TiO2 binding phase (typically used for inorganic ions) to 
monitor glyphosate, including the influence of pH, flow rate, temperature and the presence of naturally occurring ions (e.g. 

copper, iron and magnesium). 
[78] 

Review - - 
- Comprehensive review of o-DGT in environmental monitoring of polar organic compounds (including polar pesticides) in water 

(35 papers). [70] 

Calibration and 
performance 

- Acid herbicides, herbicides 
and insecticides - 1 mm/0.75 mm, 25 mg Oasis™ HLB 

- A novel o-DGT is developed and validated in comprehensive batch experiments and laboratory calibrations investigating the 
influence of temperature, flow and subsequent field exposures alongside POCIS. [104] 

*1Unless stated sampling area is 3.1 cm2 and all layers are formed of 1.5% agarose gel, the customary configuration for o-DGT samplers. If more than one diffusive and binding layer configuration is used, each is prefixed with Latin numerals e.g. (i). If a diffusion 
membrane (DM) overlays the diffusive layer, DM properties are listed first in the form DM = (polymer type, thickness, porosity (if available)). Otherwise diffusive layer is listed before binding layer and thickness is listed before composition properties (gel type or 
binding agent), and the properties of the diffusive layer and the binding layer and separated by “/”. Where a range of layer thicknesses or sorbent masses are used the range is represented by a hyphen For example if a agarose diffusive gel was investigated at 
thicknesses between 0 and 0.2 mm with a 0.75 mm binding gel containing 25 mg of Oasis™ HLB sorbent this would appear as: 0-0.1 mm/0.75 mm, 25 mg Oasis™ HLB. *2Polyethenesulfone DM, 0.14 mm, 0.45 μm; Nucleopore track-etch DM, 0.01 mm, 0.45 μm; 
Nylon DM, 0.125 mm, 0.45 μm; Cellulose acetate DM, 0.115 mm, 0.45 μm; Mixed cellulose ester DM, 0.15 mm, 0.45 μm; Hydrophilic polypropylene DM, 0.114 mm, 0.45 μm. Key: sampling area (A). Abbreviations:  diffusion membrane (DM); diffusive layer (DL); 
high performance liquid chromatography-time-of-flight (HPLC-ToF); liquid chromatography-quadrupole-Trap (LC-q-Trap); liquid chromatography-tandem mass spectrometry (LC-MS/MS); microporous polyethylene tubes (MPTs); not available (N/A); passive flow 
monitors (PFMs); passive sampling device (PSD); performance reference compounds (PRC); polyethersulphone (PES); sampled analyte mass (MS); time-weighted average (TWA); α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA). 



Table 8. Examples of applications of other passive sampling devices for monitoring polar pesticides. 
Application Analytes Sampler design Description Ref 

Calibration / 
performance 
(semi-quant) 

Herbicides, 
insecticides, fungicides 

and metabolites 

- (naked) SDB-XC (Empore™ 
47mm) 

- Laboratory calibration of novel PSD for use in groundwater of three polar pesticides and one PPCPs in matrix, flow and temperature matched media 
over 14 days, followed by field trials at 12 groundwater wells (Lyon, France) over 10 days, with quantitative analysis (LC-q-ToF).   

- The four RS from the calibration study were extrapolated to obtain semi-quantitative TWA concentrations for 16 polar pesticides during field 
exposures. 

[47] 

TWA 
concentrations 

Acid herbicides, 
fungicides, herbicides, 

insecticides and 
molluscicides  

- (MPT) external diameter 0.8 cm, 2 
mm thick, 

2.5 µm pore, 35% porosity, 4-cm 
length/400 mg Strata-X 

- POCIS, o-DGT and MPTs were exposed (22-24 days) in 36 agricultural streams in New Zealand, alongside grab sampling, PFMs and 
temperature/light data loggers to characterize pesticide pollution, with quantitation through LC-MS/MS or LC-q-Trap, and evaluate sampling method 

performance. 
[89] 

Screening Fungicides, herbicides 
and insecticides 

- Novel deployment rig design 
- (naked) SDB-RPS and SDB-XC 

(Empore™ 47 mm) 

- PSDs exposed at five storm water infiltration system sites (Lyon, France) in ground waters and collected runoff over 10 days during a storm event. 
- A method coupling passive sampling of ground water to HRMS analysis (LC-q-ToF) was tested. 

[40] 

TWA 
concentrations Diuron and metolachlor  

- Custom metal housing 
- SDB-RPS (Empore™ 47 mm) 

- PSDs and automated bottle samplers were deployed in three sewers over 10 day deployments during high rainfall/flow ‘events’. 
- Concentration patterns for sewer overflows and rivers in hypothetical ‘events’ were modelled and compared to monitoring results. 
- Ability of passive sampling to integrate TWA concentrations of ‘events’ is investigated, and uncertainty/sources of error discussed. 

[73] 

Target and 
non-target 
screening 

Fungicides, herbicides 
and insecticides  

- (naked) SDB-RPS (Empore™ 47 
mm) 

- Multiple field exposures (four months) at two costal sites receiving fluvial inputs and a marine site, (Great Barrier Reef region). Non-targeted and 
targeted screening with either a LC-MS/MS or LC-q-ToF as part of integrated chemical exposure assessment of green turtle foraging grounds. 

[143] 

TWA 
concentrations Various pesticides 

- Mobile dynamic passive sampler 
- (naked) SDB-RPS (Empore™ 47 

mm) 

- Dynamic passive sampler attached to a boat. Sampling occurred over a 2130 km stretch of the Danube as part of integrated toxicological and 
chemical monitoring using several methods. Extracts were analysed for 40 pesticides with LC-MS.   

[144] 

Calibration and 
performance 

Acid herbicides, 
fungicides, herbicides 

and insecticides  

- PDMS sheet sampler, A= 47.5 
cm2/100 mg (embedded) Oasis™ 

HLB 

- RS and partitioning of organic compounds over a range of hydrophobicity (log KOW -0.03 to 6.26) in miniaturised POCIS (sorbent and DM) and a 
monophasic mixed polymer sampler through batch experiments to investigate the performance of each PSD. [88] 

Screening  
Herbicides, 

insecticides, fungicides 
and metabolites  

- 1 mm steel mesh pouches 
containing 3 g activated carbon 

- PSDs deployed in 15 bore holes over 2 deployments of 6 months, were screened (GC-MS) for various organic compounds. Compounds detected 
(passive sampling) and quantitative results from grab sampling were used to profile pollution sources and optimise future monitoring. 

[93] 

Calibration and 
performance Glyphosate and AMPA 

- MTP PSD, 2 mm thickness, 2.5 
μm A= 17.6 cm2/216 mg TiO2 

embedded in agarose gel  
- Six day laboratory calibration followed by 11 day in-situ calibration in a freshwater lake alongside grab sampling to test novel diffusive material. [90] 

Calibration and 
performance 

Fungicides, herbicides 
and insecticides 

- Novel composite polymer PSD 
- PDMS/SPE sorbents* 

- Composite polymers containing one of several SPE sorbents embedded in a PDMS matrix were prepared. 
 - The physical and sorption properties of each composite were tested in batch experiments. 

[87] 

Equilibrium 
concentrations 

Atrazine, diazinon and 
metolachlor 

- Novel thin-film PSD. 
- EVA (0.03 g) coated Ti plates 

- The ability of a novel equilibrium PSD, grab and biota monitoring to monitor three polar pesticides and dieldrin were compared in batch 
experiments and 10-day field exposures at 5 sites in coastal waters (Long Island Sound, USA). [91] 

Calibration and 
performance 

Fungicides, herbicides 
and insecticides 

- Gerstel Twister, PDMS stir bars 
(SBSE) applied as a PSD 

- Calibration (lag phase and RS) in a flow through system for 18 pesticides (log KOW 2.18-5.11). A PRC (fenitrothion-d6) is also investigated. [85] 

TWA 
concentrations 

Fungicides and 
insecticides 

- Custom metal housing  
- (naked) SDB-RPS (Empore™ 

47mm) 

- Suitability of passive sampling to integrate polar pesticide concentrations during four episodic rainfall driven ‘events’ evaluated alongside event 
driven water sampling in 17 streams in a German vineyard. [145] 

MS (RS 
unknown) 

Fungicides, herbicides, 
insecticides and 

- Gerstel Twister, PDMS stir bars 
(SBSE) applied as a PSD 

- Deployments of 1 or 2 weeks, for 1 month, in 2 rivers in a French vineyard. Semi quantitative and qualitive results (LC-MS/MS analysis of 19 
pesticides), obtained from Stir bar PSDs were compared to POCIS and automated grab sampling coupled to SBSE. [84] 



metabolites 

MS at 
equilibrium 

(unknown log 
KSW and RS) 

Acid herbicides, 
fungicides, herbicides, 

insecticides and 
molluscicides 

- PDMS strip, A= 600 cm2 
- 54-day exposures alongside automated grab sampling (3 h intervals) at 3 sites on the River Ythan (UK) to determine the suitability of each method 

to profile diffuse agricultural pollution. Quantitation was by either GC-MS/MS (neutral pesticides) or LC-MS/MS (acid herbicides). [82] 

Equilibrium 
concentrations 

Herbicides and 
insecticides 

- PDMS strip, 0.5 mm thickness, A= 
100 cm2 

- New instrumental method (LC-Orbitrap-MS) developed and applied to extract from two exposures (2 months) at five sites in coastal waters 
(Belgium). 

-  KSW determined in batch experiments and TWA concentrations calculated, however linear uptake over the exposure period was not confirmed. 
[83] 

Calibration and 
performance Triazines 

- Silicone hollow fibre membranes, 
V= 1 mL/(internal) 0.5 M nitric acid  

- Laboratory exposures of 2, 3, 5 and 7 days to investigate performance and the influence of humic substances and flow velocity on analyte 
accumulation. 

- 7-day field exposures at three sites in the Hartebesspoort Dam catchment (South Africa), alongside Chemcatcher® and grab sampling could not 
validate method applicability as no triazines were detected by any method. 

[86] 

Calibration and 
performance Herbicides 

- Custom metal housing  
- (naked) SDB-RPS (Empore™ 

47mm) 

- Empirically determined and modelled mass transfer coefficients of four herbicides through a WBL investigated in order to predict WBL limited 
uptake in a naked SPE disk type PSD. [146] 

*SPE sorbets: i) OASIS™ HLB ii) OASIS™ MAX iii) OASIS™ MCX iv) Evolute ABN v) HyperSep Hypercarb™. Key: sampling area (A); volume (V). Abbreviations:  diffusion membrane (DM); ethylene-vinyl acetate (EVA); gas 
chromatography-mass spectrometry (GC-MS); gas chromatography-tandem mass spectrometry (GC-MS/MS); high-resolution mass spectrometry (HRMS); liquid chromatography-mass spectrometry (LC-MS); liquid chromatography-Orbitrap/mass 
spectrometry (LC-Orbitrap/MS); liquid chromatography-quadrupole-time-of-flight (LC-q-ToF); liquid chromatography-quadrupole-Trap (LC-q-Trap); liquid chromatography-tandem mass spectrometry (LC-MS/MS); microporous polyethylene 
tubes (MPTs); n-octanol and water partition coefficient (KOW); passive flow monitors (PFMs); passive sampling device (PSD); performance reference compounds (PRC); pharmaceuticals and personal care products (PPCPs); polydimethylsiloxane 
(PDMS); sampled analyte mass (MS); sampler and water partition coefficient (KSW); sampling rate (RS); solid-phase extraction (SPE); stir bar sorptive extraction (SBSE); time-weighted average (TWA); water boundary layer (WBL); α-amino-3-
hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA). 



 


