
1

Modelling and Analysing an Industry 4.0
Communication Protocol

Benjamin Aziz Member, IEEE

Abstract—The increasing complexity and criticality of indus-
trial automation systems, embodied by the concept of Industry
4.0, which brings together concepts like Cyber-physical systems,
the Internet-of-Things, Big Data and Artificial Intelligence,
calls for more formality in specifying the technology standards
underlying these systems. We define in this paper a formal
model of an Industry 4.0 machine-2-machine communication
protocol, Hermes, used in specifying electronic board transfers
in an assembly line. Our analysis of the formal specification
reveals that, despite the robustness of the protocol, many testing
scenarios have been ignored in the protocol standard and in
particular, scenarios that include simultaneous machine errors.
Therefore, our work paves the way for a better informed testing
strategy in Industry 4.0 systems that implement the protocol.

Index Terms—Communication Protocols, Cyber-Physical Sys-
tems, Formal Analysis, Industry 4.0, IoT.

I. INTRODUCTION

The new wave of digitisation in manufacturing, dubbed
Industry 4.0, brings to the manufacturing industry the benefits
of many of the recent technological paradigms including
Cyber-Physical Systems, Internet-of-Things, Cloud computing
and Artificial Intelligence. This has lead to smarter and more
autonomous systems. Of these, the IPC-HERMES-9852 stan-
dard [1] (Hermes, henceforth) has emerged as a leading com-
munication protocol in the electronics manufacturing industry,
and as a replacement for the IPC-SMEMA-9851 Mechanical
Equipment Interface Standard [2]. The Hermes protocol de-
scribes necessary steps in transporting a Printed Circuit Board
(PCB) from one machine to another and a description of
the scenarios that may occur in the event of errors detected
at either the sending or the receiving machine. Hermes is
maintained by the Institute for Printed Circuits (IPC) and it is
hailed as a non-proprietary open protocol bringing the benefits
of Industry 4.0 to the electronics community.

As with any other protocol, more clarity and understanding
of the properties of the protocol and its operation can be gained
by following formal specification and analysis techniques. In
this paper, we specify the Hermes protocol formally using
a version of the π-calculus language [3]. We also apply an
abstract interpretation to analyse the protocol for agreement
properties. These include agreement on the completeness, non-
completeness and non-starting of the PCB transfer between the
sending and receiving machines in the protocol.

We summarise our two major findings as follows:

B. Aziz is with the School of Computing, University of Portsmouth,

• Specifying the protocol formally has shown that a number
of error-detection scenarios were missed by the standard
document [1], as part of the protocol’s behaviour. The
document identified only 7 such scenarios, whereas we
found that there were 24 scenarios that needed considera-
tion. The significance of this finding is that it will lead in
the future to more comprehensive testing suites applied
to software implementations of the protocol by increasing
the coverage of these tests from 7 cases to 24. This will
further increase the robustness of those implementations
as a result. This basically means that implementations of
the protocol ought to be tested more than what the current
standard recommends in [1].

• Related to the above finding, the standard document [1]
does not consider simultaneous occurrences of errors –
only that a single machine detects an error at any single
point in time. This is indicated for each and every one of
the 7 scenarios highlighted in the document. However,
in reality, such errors may occur simultaneously, and
therefore it is necessary also to consider the simultaneous
triggering of the error-handling processes at both the
sending and receiving machines. This, as we show later
in more detail, could lead to these processes interacting
with one another.

The rest of the paper is structured as follows. In Section II, we
discuss related work in literature. In Section III, we give some
background on the Hermes protocol and the formal language
used in the modelling and analysis. In Section IV, we define
formally the Hermes protocol for the case of normal operation
and analyse the correctness of the protocol in relation to the
PCB transfer completion property. In Section V, we extend
this definition to be able to deal with errors, analysing for the
cases of non-started and incomplete PCB transfers. Finally, in
Section VI, we conclude and highlight future research.

II. RELATED WORK

Formal specification and analysis techniques have been
used extensively ever since their inception as a method for
increasing the dependability of systems and deepening our
understanding of the behaviour of critical systems. Industry
4.0, which brings together several paradigms including Cyber-
Physical Systems, the Internet-of-Things (IoT), Cloud com-
puting, Big Data and Artificial Intelligence among others,
poses particular challenges due to the high dimensionality
and complexity of the systems involved. Formal methods have
much to contribute to the demystification of such complexity
[4]. In fact, the important role that formal methods can play in

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Portsmouth University Research Portal (Pure)

https://core.ac.uk/display/323993278?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2

industry to enhance dependability and reliability of industrial
systems was emphasised in works as early as [5], [6], [7],
needless to say that this strong relationship emerged between
the two worlds in the form of infamous methods like VDL
[8], Z [9] and B [10]. Examples of early surveys highlighting
cases where formal methods contributed to the enhancement
of industrial systems include [11], [12], [13], [14], [15].

More recently, IoT protocols have had a direct relationship
with industrial systems, both together sometimes referred by
the term Industrial IoT (IIoT). Amongst the most widely
modelled and formally verified I oT p rotocols i s t he MQTT
protocol [16]. Various works, e.g. [17], [18], [19], [20], [21],
have addressed issues with the reliability and security of the
protocol using a variety of formal methods. Most notably, in
[17], [18], it was discovered that the informal semantics of
the protocol contained subtle ambiguities that undermined the
protocol’s correctness. Other IoT protocols that have benefited
from the application of formal methods include CoAP [22],
which has been verified i n a n umber o f w orks including
[23], who used the Event Calculus [24] to generate a set
of monitoring events for the run-time verification o f CoAP
systems. By contrast, [25] used model checking techniques to
analyse the flow of messages among CoAP nodes.

Apart from this work, other works have also addressed
the problem of formally modelling the properties of Industry
4.0 communication technologies. In [26], the authors stud-
ied some of the security properties of the Open Platform
Communications (OPC) Unified Architecture (UA) [27] using
the ProVerif static analysis tool [28]. One of the weaknesses
of such tools, in addition to the complexity underlying their
usage, is their reliance on the presence of explicit cryptography
in the protocol in order to formalise security properties. As
such, [29] used UML to semi-formally model UA.

In [30], the authors also used UML, particularly UML
activities [31], as part of the Reactive Blocks [32], [33]
model-driven approach to model control software in industrial
automation. Similarly UML was combined with net condi-
tions/event systems [34] to model and validate automation
systems in [35], particularly plants’ structures and dynamics.
The formal specification part facilitated the checking of prop-
erties such as the lack of dangerous situations in the plant,
robustness of the system in terms of the malfunctioning of
sensors, avoidance of deadlocks and particularly of relevance
to our work in this paper, the presence of ample checkpoints
in any possible scenario of behaviour the system may follow.

Security has also been the subject of the application of
formal verification t echniques i n t he c ontext o f I ndustry 4.0
systems, particularly when it comes to the issue of the integra-
tion of various system components. In [36], for example, the
Shibboleth federated identity and single-sign on protocol [37]
was proposed as a solution to securely connect Fog clients
and Fog nodes [38] in automation systems. High-level Petri
nets [39] were then used to demonstrate the reliability and
robustness of this connection. The various security issues that
can arise in Industry 4.0 systems were highlighted in [40].

The approach adopted in this paper follows from a number
of existing works [41], [17], [17], [18], which demonstrated
the effectiveness of the method in analysing properties and

detecting issues with different systems and protocols. The
original theory underlying the abstract analysis framework was
defined in [42], to which we refer the reader for further detail.

To conclude, existing literature highlights the wide context
in which formal approaches can be utilised to improve the
specification of modern industrial systems and clarify ambigu-
ities in their designs in relation to a variety of properties, such
as reliability and security. It is this context, and its importance,
that has largely motivated the work presented in this paper.

III. BACKGROUND

We give in this section some background on the specifica-
tion of the Hermes protocol and the formal language used in
modelling the protocol.

A. The Hermes Protocol

The normal operation of the Hermes protocol is illustrated
in Figure 1, with alternative sequences of handshakes.

Fig. 1. The normal operation of Hermes [1] with alternative sequences.

An Upstream machine is a machine that sends a PCB
whereas a Downstream machine is a machine that receives the
PCB. Note that the protocol provides for two alternatives for
two of its message blocks. The first is related to the exchange

3

of the first t wo m essages, M achineReady() a nd BoardAvail-
able(), which simply allow each machine to indicate to the
other that it is ready to commence the PCB transfer. After
that, the Downstream machine starts the transfer by sending
the StartTransport() signal. The second alternative sequence
then commences and it is related to the final s tage o f the
transfer, where either machine again can indicate before the
other that it has completed the transfer. This is done using the
pair of signals TransportFinished(Complete) and StopTrans-
port(Complete) signals. All across the protocol timeline, either
machine can switch on and switch off its conveyor belt by
performing Conveyor on and Conveyor off internal actions,
respectively, at the appropriate points in time. Further details
of the sequence of messages and their meaning can be found
in [1], which also describes a few error-detection scenarios.

It is worth noting that despite the fact that Hermes is,
in its essence, an Industry 4.0 machine-2-machine protocol,
it nonetheless provides for connectivity with the Internet,
since both the upstream and downstream machines can offer
a TCP server that can be contacted on port 1248 for the
purpose of receiving configuration m essages t o c onfigure the
machines. This facilitates the deployment of a Hermes-based
manufacturing line in an Industrial Internet-of-Things set-up.

B. The Process Algebra

The formal model of Hermes that we introduce later is based
on a version of the π-calculus process algebra [3], which is a
synchronous message-passing model. We give an overview of
the syntax and semantics of this algebra.

C. Syntax and Structural Operational Semantics

We use the following syntax to define processes,
P,Q . . . ∈ P , where names are denoted as x, y . . . ∈ N :

P,Q ::= x〈y〉.P | x(y).P | τ.P | !P | (νx)P | (P |
Q) | (P+Q) | 0 | A | P [x = y]Q

The syntax corresponds to the synchronous π-calculus [3]. A
process can perform any of the following actions: it can output
a message over a channel, x〈y〉.P , it can input a message over
a channel and use it to replace a parameter, x(y).P and it can
perform a silent internal action τ.P . A process can also restrict
the scope of a name (νx)P and can be combined with another
process in parallel, (P |Q), or in a non-deterministic choice,
(P+Q). A process can also be replicated, !P , to generate as
many copies of P as required or it can be passive and therefore
do nothing, 0. We can also call a definition of a process by
performing A where A def

= P . Finally, the special construct,
P [x = y]Q, will evaluate the condition x = y and if true, it
will continue as P , otherwise as Q.

We omit the input parameter y in x(y).P and write x().P if
no message is expected. Similarly, we omit the message y in
x〈y〉.P if no such message exists and simply write x〈〉.P . We
call the set of free names of a process, fn(P), such as x and
y in x〈y〉.P , x(u).P and P [x = y]Q, and the set of bound
names, bn(P), such as u and y in x(u).P and (νy)P .

The structural operational semantics of the above version of
the π-calculus is given in terms of the structural congruence,
≡, and the operational transition, τ−→, relations as shown in
Figure 2, where fn(P) are the set of free names of P .

Rules of the ≡ relation:
(1) (P/ ≡, |,0) is a commutative monoid
(2) (νx)0 ≡ 0
(3) (νx)(νy)P ≡ (νy)(νx)P
(4) !P ≡ P | !P
(5) (νx)(P | Q) ≡ (P | (νx)Q) if x /∈ fn(P)

(6) P [x = y]Q =

{
P if x = y
Q otherwise

(7) A ≡ P , where A def
= P

Rules of the τ−→ relation:
(8) x〈y〉.P | x(z).Q τ−→ P | Q[y/z]

(9) x〈〉.P | x().Q τ−→ P | Q
(10) τ.P τ−→ P

(11) P τ−→Q ⇒ (νx)P
τ−→ (νx)Q

(12) P τ−→ P ′ ⇒ P | Q τ−→ P ′ | Q
(13) P τ−→ P ′ ⇒ P +Q

τ−→ P ′

(14) P τ−→ P ′ ⇒ Q+ P
τ−→ P ′

Fig. 2. The structural operational semantics of the π-calculus.

The significance of these relations is that they demonstrate
how a process evolves. The definition of ≡ expresses how
the syntactic structure of the process can be altered without
any operational evolution. On the other hand, the definition of
τ−→ outlines how the process operates. The main rules here are

rules (8) and (9), which define how communications take place
resulting in the substitution [y/z] when a message is passed
(Rule (8)), and no substitution when no message is passed
(Rule (9)). More detail on the semantics of the π-calculus can
be found in works like [3], [43].

On the other hand, in [42], [44], we defined a non-standard
name-substitution semantics for the π-calculus, which when
abstracted using an approximation function, was capable of
yielding an abstract environment:

φ : N] → ℘(N]) ∈ D]
⊥

where N] represents the set of abstract names. Unlike N , N]

is finite and as a result any element of the powerset of N],
i.e. ℘(N]), is also finite. The resulting semantic domain, D]

⊥,
guarantees termination for an abstract interpretation computed
over it (with applications e.g. such as in [45]). The bottom
element of D]

⊥, ⊥ = φ0, is the empty environment where
∀x ∈ N] : φ0(x) = {}. N] and consequently D]

⊥ can be
constructed using some approximation function that keeps the
size of N] finite by limiting the number of copies of input
parameter names and freshly created names.

The static analysis of a process, P , can then be obtained
through the application of a suitable abstract interpretation
function, A([P])φ0 ∈ D]

⊥. When analysing the specification
of a process, we use the resulting φ environment to formalise

4

the definitions o f t he p roperties w e a re i nterested i n. A s a
simple example, consider the following process:

P def= (! x(y).0) | (! (νz)x〈z〉.0)

were we could apply an approximation that limits the number
of copies of the input parameter y and the freshly generated
message z, to a maximum of two such copies. Then we
would obtain the following abstract environment, A([P])φ0 =
φexample, where:

φexample[y1 7→ {z1, z2}, y2 7→ {z1, z2}]

Defining a ny p roperty a mounts t o t he d efinition of a suitable
predicate, z : D]

⊥ → B, on the resulting abstract environment.
For example, we could choose to say that y will be instantiated
with its corresponding copy of the z message:

z(φexample) = z1 ∈ φexample(y1) ∧ z2 ∈ φexample(y2)

which is true. We keep sub-environments resulting from
choices of process executions explicitly separate for clarity.
For example, consider the following process:

Q def= x(y).0 | (x〈z〉.0 + x〈t〉.0)

When analysed, A([Q])φ0 = φexample2, this would result in the
following two sub-environments:

φexample2 = φ′example2[y1 7→ {z}] ∪ φe
′′
xample2[y1 7→ {t}]

which we prefer to keep separately, instead of writing:

φexample2[y1 7→ {z, t}]

IV. A FORMAL MODEL OF THE HERMES PROTOCOL

The formal model for the Hermes protocol reflects the two
machines specified in the Hermes protocol [1]: the upstream
and the downstream machines. These are formally defined in
Figure 3. This definition reflects the normal operation of these
machines without the presence of any errors (i.e. stop signals).
The conveyor-on and conveyor-off actions in the Hermes
specification document are modelled here for simplicity as
silent internal actions, τ . This is due to the fact that these
actions cannot be interrupted and therefore do not constitute
any externally observable behaviour. Running the full system,
System, corresponds to running the two machines in parallel:

System def
= (UP | DP)

An important property of this protocol is to ensure that both
machines agree on whether they have completed the PCB
transfer successfully. We express this property as a predicate
on the result of analysing the protocol.

Property 1 (Agreement on PCB Transfer Completion):
Both machines, upstream and downstream, agree on the PCB
transfer completion iff the following predicate, z1, defined on
the result of analysing the protocol, φ, is true:
z1(φ) = ∃x ∈ bn(UP), y ∈ bn(DP) :

“Complete” ∈ φ(x) ⇔ “Complete” ∈ φ(y) �

This property captures the requirement that if one machine
believes it has completed the transfer of the PCB, the other
does as well, in whichever order that completion is signalled.
Applying our static analysis, A([System])φ0 = φ, to the
protocol specification of Figure 3, we obtain the following
two sub-environments:

φ = φ1[y
′ 7→ “Complete”, x 7→ y′] ∪ φ2[x

′ 7→
“Complete”, y 7→ x′]

where both φ1 and φ2 satisfy the above PCB transfer com-
pletion predicate z1. In this case, we did not need to use any
approximation function since the set of names used is finite
by nature due to the lack of any infinite (replicated) behaviour
in the protocol’s definition.

V. ERROR TESTS

The definition of the Hermes protocol presented in Figure 3
of the previous section assumes normal operation and therefore
does not cater for situations when errors are detected by any
of the two machines, which could result in stopping their
operation. Hence, we define in this section an enhanced formal
specification that can handle such transport errors along the
lines of the scenarios captured in [1, §2.3.4].

Before we can do that, we need to define a mechanism in
the formal protocol specification to express the ability of the
Hermes protocol in testing for the presence of such errors. One
such mechanism for defining these tests can be specified using
the condition evaluation construct in the π-calculus language:

state(ei).Pei [ei = “stop”]Qei

The communication channel, state, is used to receive from
the environment of the two machines any “stop” signals sent
to those machines whenever transport errors occur in them.
We use the enumerations, i ∈ N, to distinguish the different
copies of the input parameter, e, that receives such “stop”
signals from the environment. Process Pei will run if a “stop”
signal is received, otherwise Qei runs if the received signal is
different from “stop”. We call Pei the error-handling process.

For brevity, we use the following shorthand representation
of the above tests:

[ei](Qei) ≡ state(ei).Pei [ei = “stop”]Qei

As a matter of fact, [ei] becomes an alias to uniquely reference
the communication channel, state, input parameter, ei, and
the process, Pei . We stress here that these tests are part of
the operation of the protocol itself, not a method to test the
protocols behaviour.

The next question is where should such tests be positioned in
the protocol’s specification? The Hermes protocol [1, §2.3.4]
provides only a limited number of points at which such tests
are carried out (see the seven Scenarios U1a–D3). In our case,
we consider that any sequential composition point with an
action a ∈ {x(y), x〈y〉, τ} is a potential testing point that the
protocol could use to detect errors in machines:

a
test point︷︸︸︷. P

5

The Upstream Machine Process:
UP def

= machineready().boardavailable〈〉.UPcont +
boardavailable〈〉.machineready().UPcont

where,
UPcont

def
= starttransport().τ.

(τ.transportfinished〈“Complete”〉.stoptransport(x).0
+ stoptransport(x′).τ.transportfinished〈x′〉.0)

The Downstream Machine Process:
DP def

= machineready〈〉.boardavailable().DPcont +
boardavailable().machineready〈〉.DPcont

where,
DPcont

def
= τ.starttransport〈〉.(transportfinished(y′).τ.stoptransport〈y′〉.0

+ τ.stoptransport〈“Complete”〉.transportfinished(y).0)

Fig. 3. A π-calculus model of the Hermes v1.2 protocol in normal operation.

This implies that each machine should be able to be stopped
after each action it performs, allowing for better range of
detection of errors at more points in its operation.

Based on this, we redefine the formal specification of the
Hermes protocol, as in Figure 4, in order to incorporate the
ability to receive stop signals from the environment. The full
system, System, will now consist of the two machines running
in parallel with the environment, Env, as follows:

System def
= (UP | DP | Env)

The environment process, Env, will always send either a
“continue” message, when there is no error to be signalled
to either machine, or a “stop” message, when some transport
error is detected. As a result, the definitions of UP and DP
need to be modified, from their normal definitions in Figure
3, to be able to detect “stop” messages and to react to any
error-handling behaviour such messages may initiate.

The specification of Figure 4 considers all possible points
in a process where an error can be tested, once that process
has commenced running (i.e. it has fired its first action). We
identified 24 such points, compared to the original 7 points that
were identified in the scenarios of [1, §2.3.4]. The error-testing
specification also modifies the normal operation specification
of Figure 3 by adding extra communication channels to cater
for the RevokeMachineReady and RevokeBoardAvailable sig-
nals resulting from transport errors. Both UP and DP deviate
to their error-handling processes once “stop” is received.

The individual error-handling processes, Pei , are defined
in Figure 5 for the upstream machine, and Figure 6 for the
downstream machine. We also indicate which of the scenarios
in [1] each error-handling process corresponds to, or none
if it does not correspond to any. An important observation
that one can make here is that whilst the specification of
[1] considers only scenarios where errors occur in either
machine, the specification does not consider the possibility
that errors may occur simultaneously in both machines. That
is, the environment of Figure 4 could “stop” both machines
at the same time. Due to the execution sequences of UP and

DP, this possibility is limited to the following pairs of tests:

([e1], [e
′
1]), ([e2], [e

′
2]), ([e3], [e

′
3]), ([e4], [e

′
4]), ([e4], [e

′
5]),

([e2], [e
′
5]), ([e5], [e

′
6]), ([e6], [e

′
6]), ([e7], [e

′
6]), ([e5], [e

′
10]),

([e6], [e
′
10]), ([e7], [e

′
10]), ([e8], [e

′
7]), ([e8], [e

′
8]), ([e9], [e

′
9]),

([e10], [e
′
11]), ([e11], [e

′
11]), ([e12], [e

′
12])

In most of these pairs, nothing will occur as the neither point
will offer actions that can synchronise with the other point in
the pair. However, in a few cases, we find that certain error-
handling processes may communicate with each other if both
are triggered at the same time, as their actions can synchronise.
This is the case for the following four pairs:
([e8], [e

′
7]), ([e8], [e

′
8]), ([e10], [e

′
11]), ([e11], [e

′
11])

Next, we apply our static analysis, A([System])φ0 = φ′, to the
above version of the protocol specification with error tests.
As a result, we obtain the following environment:

φ′ = (φ′1[x
′′ 7→ y′, y′ 7→ “NotStarted”] ∪

φ′2[x
′′′ 7→ y′, y′ 7→ “Incomplete”] ∪

φ′3[x
′′′′ 7→ y′, y′ 7→ “Incomplete”] ∪

φ′4[x
′ 7→ “Incomplete”, y′′ 7→ x′] ∪

φ′5[x
′ 7→ “Incomplete”, y′′′ 7→ x′] ∪

φ′6[x 7→ y′, y′ 7→ “Complete”] ∪
φ′7[x

′′′′′ 7→ y′, y′ 7→ “Complete”] ∪
φ′8[y 7→ x′, x′ 7→ “Complete”] ∪
φ′9[y

′′′′ 7→ x′, x′ 7→ “Complete”] ∪
φ′10[x

′′′′′ 7→ “Complete”, y′ 7→ “Complete”] ∪
φ′11[y

′′′′ 7→ “Complete”, x′ 7→ “Complete”] ∪
φ′12[x 7→ “Complete”, y′ 7→ “Complete”])

Each sub-environment part of φ′ represents a different path
of execution, depending sometimes on which error points are
triggered. This brings us to the following two properties.

Property 2 (Agreement on PCB Transfer Not Started):
Both machines, upstream and downstream, agree that the
PCB transfer has not started iff z2 is true on the result of
the analysis of the protocol, φ′, where:

6

The Upstream Machine Process:
UP def

=
machineready().([e1](boardavailable〈〉.([e2](UPcont) + revokemachineready().0)) +

revokemachineready().0) +
boardavailable〈〉.[e3](machineready().([e4](UPcont) + revokemachineready().0))

where,
UPcont

def
= starttransport().[e5](τ.[e6](
(τ.[e7](transportfinished〈“Complete”〉.[e8](stoptransport(x).[e9](0))) +
stoptransport(x′).[e10](τ.[e11](transportfinished〈x′〉.[e12](0))))))

The Downstream Machine Process:
DP def

=
machineready〈〉.[e′1](boardavailable().([e′2](DPcont) + revokeboardavailable().0)) +
boardavailable().([e′3](machineready〈〉.([e′4](DPcont) + revokeboardavailable().0) +

revokeboardavailable().0))

where,
DPcont

def
= τ.[e′5](starttransport〈〉.[e′6](
(transportfinished(y′).[e′7](τ.[e

′
8](stoptransport〈y′〉.[e′9](0))) +

τ.[e′10](stoptransport〈“Complete”〉.[e′11](transportfinished(y).[e′12](0))))))

The Test Environment Process:
Env def

= (! state〈“continue”〉.0) | (! state〈“stop”〉.0)

Fig. 4. A formal model of the Hermes v1.2 protocol with error tests.

Process Definition Description
Pe1

def
= 0 No corresponding scenario

Pe2
def
= revokeboardavailable〈〉.0 Corresponds to Scenario U1a

Pe3
def
= Pe2 No corresponding scenario

Pe4
def
= Pe2 No corresponding scenario

Pe5
def
= transportfinished〈“NotStarted”〉. Corresponds to Scenario U1b

stoptransport(x′′).0
Pe6

def
= τ.transportfinished〈“Incomplete”〉. Corresponds to Scenario U2

stoptransport(x′′′).0
Pe7

def
= transportfinished〈“Incomplete”〉. No corresponding scenario

stoptransport(x′′′′).0
Pe8

def
= stoptransport(x′′′′′).0 Corresponds to Scenario U3

Pe9
def
= 0 No corresponding scenario

Pe10
def
= τ.transportfinished〈“Complete”〉.0 No corresponding scenario

Pe11
def
= transportfinished〈“Complete”〉.0 No corresponding scenario

Pe12
def
= 0 No corresponding scenario

Fig. 5. Definition of error-handling processes for the upstream machine.

7

Process Definition Description
Pe′1

def
= revokemachineready〈〉.0 No corresponding scenario

Pe′2
def
= Pe′1 Corresponds to Scenario D1

Pe′3
def
= 0 No corresponding scenario

Pe′4
def
= Pe′1 No corresponding scenario

Pe′5
def
= τ.Pe′1 No corresponding scenario

Pe′6
def
= τ.stoptransport〈“Incomplete”〉. Corresponds to Scenario D2

transportfinished(y′′).0
Pe′7

def
= τ.stoptransport〈“Complete”〉.0 Corresponds to Scenario D3

Pe′8
def
= stoptransport〈“Complete”〉.0 No corresponding scenario

Pe′9
def
= 0 No corresponding scenario

Pe′10
def
= stoptransport〈“Incomplete”〉. No corresponding scenario

transportfinished(y′′′).0
Pe′11

def
= transportfinished(y′′′′).0 No corresponding scenario

Pe′12
def
= 0 No corresponding scenario

Fig. 6. Definition of error-handling processes for the downstream machine.

z2(φ
′) = ∃x ∈ bn(UP), y ∈ bn(DP) :

“Not Started” ∈ φ′(x) ⇔ “Not Started” ∈ φ′(y) �

z2 is satisfied by the φ′1 sub-environment. The z2 predicate
corresponds to error-handling in Scenario U1b in [1], where
the error occurs in the upstream machine before it starts
transporting the PCB. On the other hand, the next property
captures all errors that occur in both machines while the PCB
is in the middle of being transported.

Property 3 (Agreement on PCB Transfer Not Completed):
Both machines, upstream and downstream, agree that the PCB
transfer has not been completed iff z3 is true, where:
z3(φ

′) = ∃x ∈ bn(UP), y ∈ bn(DP) :
“Incomplete” ∈ φ′(x) ⇔ “Incomplete” ∈ φ′(y) �

z3 is satisfied by φ′2 – φ′5 sub-environments. Of these, φ′2
corresponds to Scenario U2 and φ′4 corresponds to Scenario
D2 in [1]. Both φ′3 and φ′5 have no corresponding scenarios
and are therefore, a new result of this analysis.

It is also worth noting now that the PCB transfer completion
is satisfied not only due to the z1 predicate, which was
satisfied by the φ1 = φ′6 and φ2 = φ′8 environments, but also
due to the additional cases of φ′7, φ′9, φ′10, φ′11 and φ′12. In par-
ticular, the cases of φ′10 and φ′11 are a result of the communi-
cations between the pairs ([e8], [e

′
7]), ([e8], [e

′
8]), ([e10], [e

′
11])

and ([e11][e
′
11]) as indicated earlier. The case of φ′7 corre-

sponds to Scenario U3 and the case of φ′12 to Scenario D3
[1]. However, φ′9 is a new case that does not correspond to
any of the standard scenarios. We now define robustness as the
result that the two machines always agree on the same status
in any environment.

Lemma 1: The Hermes protocol is robust since z1∧z2∧z3.
Proof. z1 ∧z2 ∧z3 can be shown to be true from Properties
1–3. �

VI. CONCLUSION

To conclude the paper, we have demonstrated that despite
the lack of testing of some parts of the Hermes protocol
in its original specification document [1], and the lack of
consideration for simultaneous errors, the protocol behaves
in the intended manner. We used a formal specification and
analysis approach to demonstrate the robustness of the pro-
tocol by demonstrating that the protocol behaves as expected
leading to upstream and downstream machine agreement in
every case where the transfer completes successfully, due to
lack of errors, or does not start or complete, due to presence
of errors at some stage of the board transfer process.

As part of future work, we plan to model and analyse
other Industry 4.0 communication technologies [46], e.g. the
Open Platform Communications (OPC) Unified Architecture
[27], Bosch’s Production Performance Management Protocol
(PPMP) [47] and the Data Distribution Service [48]. We also
plan to specify probabilistic and stochastic properties and
verify whether such properties hold in the Hermes protocol
and other Industry 4.0 protocols.

Another interesting area to extend this research to would
be the new IPC-CFX (Connected Factory Exchange) standard
[49], which transforms a Hermes-based manufacturing line
into a fully Industrial Internet-of-Things environment. As far
as we know, the CFX standard is not yet made open-source.

REFERENCES

[1] T. H. S. Initiative, “IPC-HERMES-9852: The global standard for
machine-to-machine communication in SMT assembly (version 1.2),”
IPC, Tech. Rep., 2019.

[2] IPC, “IPC-SMEMA-9851: Mechanical Equipment Interface Standard,”
IPC - Association Connecting Electronics Industries, Tech. Rep., 2007.

[3] R. Milner, J. Parrow, and D. Walker, “A Calculus of Mobile Processes,”
Information and Computation, vol. 100(1), pp. 1–77, Sep. 1992.

[4] L. D. Xu, E. L. Xu, and L. Li, “Industry 4.0: state of the art and future
trends,” International Journal of Production Research, vol. 56, no. 8,
pp. 2941–2962, 2018.

8

[5] L. M. Barroca and J. A. McDermid, “Formal methods: Use and relevance
for the development of safety-critical systems,” The Computer Journal,
vol. 35, no. 6, pp. 579–599, 1992.

[6] C. J. Burgess, “The role of formal methods in software engineering
education and industry,” University of Bristol, Bristol, UK, UK, Tech.
Rep., 1995.

[7] P. G. Larsen, J. Fitzgerald, and T. Brookes, “Applying formal specifica-
tion in industry,” IEEE software, vol. 13, no. 3, pp. 48–56, 1996.

[8] P. Wegner, “The vienna definition language,” ACM Computing Surveys,
vol. 4, no. 1, pp. 5–63, Mar. 1972.

[9] J. M. Spivey, Understanding Z: A Specification Language and Its Formal
Semantics. New York, NY, USA: Cambridge University Press, 1988.

[10] J.-R. Abrial, The B-book: Assigning Programs to Meanings. New York,
NY, USA: Cambridge University Press, 1996.

[11] D. Craigen, S. Gerhart, and T. Ralston, “An international survey of
industrial applications of formal methods,” in Z User Workshop, London
1992. Springer, 1993, pp. 1–5.

[12] M. G. Hinchey and J. P. Bowen, Applications of formal methods.
Prentice Hall New Jersey, 1995, vol. 1.

[13] J. Bowen and V. Stavridou, “Safety-critical systems, formal methods and
standards,” Software Engineering Journal, vol. 8, no. 4, pp. 189–209,
1993.

[14] J.-R. Abrial, E. Börger, H. Langmaack et al., Formal methods for
industrial applications: Specifying and programming the steam boiler
control. Springer Science & Business Media, 1996, vol. 9.

[15] G. Frey and L. Litz, “Formal methods in plc programming,” in Smc
2000 conference proceedings. 2000 ieee international conference on
systems, man and cybernetics.’cybernetics evolving to systems, humans,
organizations, and their complex interactions’(cat. no. 0, vol. 4. IEEE,
2000, pp. 2431–2436.

[16] A. Banks and R. Gupta, “MQ Telemetry Transport (MQTT) V3.1.1 Pro-
tocol Specification: Committee Specification Draft 02 / Public Review
Draft 02,” IBM Corporation, Tech. Rep., 2014.

[17] B. Aziz, “A Formal Model and Analysis of the MQ Telemetry Transport
Protocol,” in 9th International Conference on Availability, Reliability
and Security (ARES 2014), Fribourg, Switzerland. IEEE, 2014, pp.
59–68.

[18] B. Aziz, “A formal model and analysis of an IoT protocol,” Ad Hoc
Networks, vol. 36, pp. 49–57, 2016.

[19] S. Chouali, A. Boukerche, and A. Mostefaoui, “Towards a formal
analysis of mqtt protocol in the context of communicating vehicles,”
in Proceedings of the 15th ACM International Symposium on Mobility
Management and Wireless Access. ACM, 2017, pp. 129–136.

[20] K. Mladenov, “Formal verification of the implementation of the MQTT
protocol in IoT devices,” Master’s thesis, University of Amsterdam, the
Netherlands, 2017.

[21] M. Houimli, L. Kahloul, and S. Benaoun, “Formal specification, verifica-
tion and evaluation of the mqtt protocol in the internet of things,” in 2017
International Conference on Mathematics and Information Technology
(ICMIT). IEEE, 2017, pp. 214–221.

[22] C. Bormann, A. P. Castellani, and Z. Shelby, “CoAP: An Application
Protocol for Billions of Tiny Internet Nodes,” IEEE Internet Computing,
vol. 16, no. 2, pp. 62–67, 2012.

[23] K. İnçki and I. Ari, “A novel runtime verification solution for iot
systems,” IEEE Access, vol. 6, pp. 13 501–13 512, 2018.

[24] R. Kowalski and M. Sergot, “A logic-based calculus of events,” New
Generation Computing, vol. 4, no. 1, pp. 67–95, Mar 1986.

[25] A. J. Vattakunnel, N. S. Kumar, and G. S. Kumar, “Modelling and
verification of coap over routing layer using spin model checker,”
Procedia Computer Science, vol. 93, pp. 299–308, 2016.

[26] M. Puys, M.-L. Potet, and P. Lafourcade, “Formal analysis of security
properties on the opc-ua scada protocol,” in International Conference on
Computer Safety, Reliability, and Security. Springer, 2016, pp. 67–75.

[27] “The OPC Unified Architecture,” https://opcfoundation.org/about/opc-
technologies/opc-ua/, accessed: 11-06-2019.

[28] “ProVerif: Cryptographic protocol verifier in the formal model,”
https://prosecco.gforge.inria.fr/personal/bblanche/proverif/, accessed:
11-06-2019.

[29] S. Rohjans, K. Piech, and S. Lehnhoff, “Uml-based modeling of opc
ua address spaces for power systems,” in 2013 IEEE International
Workshop on Inteligent Energy Systems (IWIES), Nov. 2013, pp. 209–
214.

[30] P. Herrmann and J. O. Blech, “Formal model-based development in in-
dustrial automation with reactive blocks,” in Federation of International
Conferences on Software Technologies: Applications and Foundations.
Springer, 2016, pp. 253–261.

[31] “Object Management Group: OMG Unified Mod-
eling Language (OMG UML), Superstructure,”
https://www.omg.org/spec/UML/2.4.1/Superstructure/PDF/, accessed:
03-06-2019.

[32] “Bitreactive AS: Reactive Blocks,” http://www.bitreactive.com, ac-
cessed: 03-06-2019.

[33] F. A. Kraemer, V. Sltten, and P. Herrmann, “Tool support for the rapid
composition, analysis and implementation of reactive services,” Journal
of Systems and Software, vol. 82, no. 12, pp. 2068 – 2080, 2009.

[34] M. Rausch and H. . Hanisch, “Net condition/event systems with multiple
condition outputs,” in Proceedings 1995 INRIA/IEEE Symposium on
Emerging Technologies and Factory Automation. ETFA’95, vol. 1, Oct.
1995, pp. 592–600 vol.1.

[35] H.-M. Hanisch, A. Lobov, J. L. M. Lastra, R. Tuokko, and V. Vyatkin,
“Formal validation of intelligent-automated production systems: towards
industrial applications,” International Journal of Manufacturing Tech-
nology and Management, vol. 8, no. 1-3, pp. 75–106, 2006.

[36] S. Zahra, M. Alam, Q. Javaid, A. Wahid, N. Javaid, S. U. R. Malik,
and M. Khurram Khan, “Fog computing over iot: A secure deployment
and formal verification,” IEEE Access, vol. 5, pp. 27 132–27 144, Nov.
2017.

[37] “Shibboleth,” https://www.shibboleth.net/, accessed: 11-06-2019.
[38] F. Bonomi, R. Milito, J. Zhu, and S. Addepalli, “Fog computing and its

role in the internet of things,” in Proceedings of the first edition of the
MCC workshop on Mobile cloud computing. ACM, 2012, pp. 13–16.

[39] K. Jensen, “High-level petri nets,” in Applications and Theory of Petri
Nets. Springer, 1983, pp. 166–180.

[40] D. Chen and G. Chang, “A survey on security issues of m2m commu-
nications in cyber-physical systems.” KSII Transactions on Internet &
Information Systems, vol. 6, no. 1, 2012.

[41] B. Aziz, “Measuring the speed of information leakage in mobile
processes,” in Proceedings of the 11th International Conference on
Algebraic Methodology and Software Technology, ser. Lecture Notes
in Computer Science, vol. 4019. Kuressaare, Estonia: Springer Verl
formag, Jul. 2006, pp. 36–50.

[42] B. Aziz, “A static analysis framework for security properties in mobile
and cryptographic systems,” Ph.D. dissertation, School of Computing,
Dublin City University, Dublin, Ireland, 2003.

[43] D. Sangiorgi and D. Walker, The Pi-Calculus - A Theory of Mobile
Processes. Cambridge, UK: Cambridge University Press, 2001.

[44] B. Aziz and G. Hamilton, “A Privacy Analysis for the π-calculus:
The Denotational Approach,” in Proceedings of the 2nd Workshop on
the Specification, Analysis and Validation for Emerging Technologies,
ser. Datalogiske Skrifter, no. 94. Copenhagen, Denmark: Roskilde
University, Jul. 2002.

[45] B. Aziz, G. Hamilton, and D. Gray, “A static analysis of cryptographic
processes: The denotational approach,” Journal of Logic and Algebraic
Programming, vol. 64(2), pp. 285–320, Aug. 2005.

[46] P. Marcon, F. Zezulka, I. Vesely, Z. Szabo, Z. Roubal, O. Sajdl,
E. Gescheidtova, and P. Dohnal, “Communication technology for in-
dustry 4.0,” in 2017 Progress In Electromagnetics Research Symposium
- Spring (PIERS), May 2017, pp. 1694–1697.

[47] “The PPMP Specification,” https://www.eclipse.org/unide/specification/,
accessed: 11-06-2019.

[48] “The Data Distribution Service Foundation,” https://www.dds-
foundation.org/, accessed: 11-06-2019.

[49] C. F. Initiative, “IPC-2591: Connected Factory Exchange (CFX),” IPC,
Tech. Rep., 2019.

Benjamin Aziz is a Senior Lecturer at the School of Computing, University
of Portsmouth. Benjamin holds PhD degree in formal verification of computer
security from Dublin City University (2003) and has research interests and
experience in the field of computer and information security, with over
130 publications related to areas such as security engineering of large-scale
systems, IoT and SDN security, formal analysis, requirements engineering and
digital forensics. He is on board several program committees for international
conferences and working groups, including ERCIM’s FMICS, STM, Cloud
Security Alliance and IFIP WG11.3.

