
 

 
 

 
 

warwick.ac.uk/lib-publications 
 

 
 
 
 
Manuscript version: Author’s Accepted Manuscript 
The version presented in WRAP is the author’s accepted manuscript and may differ from the 
published version or Version of Record. 
 
Persistent WRAP URL: 
http://wrap.warwick.ac.uk/137788                                                                     
 
How to cite: 
Please refer to published version for the most recent bibliographic citation information.  
If a published version is known of, the repository item page linked to above, will contain 
details on accessing it. 
 
Copyright and reuse: 
The Warwick Research Archive Portal (WRAP) makes this work by researchers of the 
University of Warwick available open access under the following conditions.  
 
Copyright © and all moral rights to the version of the paper presented here belong to the 
individual author(s) and/or other copyright owners. To the extent reasonable and 
practicable the material made available in WRAP has been checked for eligibility before 
being made available. 
 
Copies of full items can be used for personal research or study, educational, or not-for-profit 
purposes without prior permission or charge. Provided that the authors, title and full 
bibliographic details are credited, a hyperlink and/or URL is given for the original metadata 
page and the content is not changed in any way. 
 
Publisher’s statement: 
Please refer to the repository item page, publisher’s statement section, for further 
information. 
 
For more information, please contact the WRAP Team at: wrap@warwick.ac.uk. 
 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Warwick Research Archives Portal Repository

https://core.ac.uk/display/323992188?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://go.warwick.ac.uk/lib-publications
http://go.warwick.ac.uk/lib-publications
http://wrap.warwick.ac.uk/137788
mailto:wrap@warwick.ac.uk


Re-pairing brackets
Dmitry Chistikov

Centre for Discrete Mathematics and its Applications
(DIMAP)

Department of Computer Science
University of Warwick

Coventry, United Kingdom
d.chistikov@warwick.ac.uk

Mikhail Vyalyi
National Research University Higher School of Economics

Moscow, Russia
Dorodnicyn Computing Centre, FRC CSC RAS

Moscow, Russia
Moscow Institute of Physics and Technology

Dolgoprudny, Moscow Region, Russia
vyalyi@gmail.com

Abstract
Consider the following one-player game. Take a well-formed
sequence of opening and closing brackets (a Dyck word).
As a move, the player can pair any opening bracket with
any closing bracket to its right, erasing them. The goal is to
re-pair (erase) the entire sequence, and the cost of a strategy
is measured by its width: the maximum number of nonempty
segments of symbols (separated by blank space) seen during
the play.
For various initial sequences, we prove upper and lower

bounds on the minimum width sufficient for re-pairing. (In
particular, the sequence associated with the complete binary
tree of height 𝑛 admits a strategy of width sub-exponential
in log𝑛.) Our two key contributions are (1) lower bounds
on the width and (2) their application in automata theory:
quasi-polynomial lower bounds on the translation from one-
counter automata to Parikh-equivalent nondeterministic fi-
nite automata. The latter result answers a question by Atig
et al. (2016).

CCS Concepts: • Mathematics of computing → Com-
binatoric problems; • Theory of computation → Au-
tomata extensions; Regular languages.

Keywords: automata theory, one-counter automata, Parikh
image, Dyck language, balanced parentheses, combinatorics

ACM Reference Format:
Dmitry Chistikov and Mikhail Vyalyi. 2020. Re-pairing brackets. In
Proceedings of the 35th Annual ACM/IEEE Symposium on Logic in
Computer Science (LICS ’20), July 8–11, 2020, Saarbrücken, Germany.
ACM,NewYork, NY, USA, 14 pages. https://doi.org/10.1145/3373718.
3394752

LICS ’20, July 8–11, 2020, Saarbrücken, Germany
© 2020 Copyright held by the owner/author(s). Publication rights licensed
to ACM.
This is the author’s version of the work. It is posted here for your personal
use. Not for redistribution. The definitive Version of Record was published in
Proceedings of the 35th Annual ACM/IEEE Symposium on Logic in Computer
Science (LICS ’20), July 8–11, 2020, Saarbrücken, Germany, https://doi.org/10.
1145/3373718.3394752.

1 Introduction
Consider the following one-player game. Take a well-formed
sequence of opening and closing brackets; that is, a word
in the (1-)Dyck language. As a move, the player can pair
any opening bracket with any closing bracket to its right,
erasing them. The two brackets do not need to be adjacent
or matched to each other in the word. The goal is to re-pair
(erase) the entire word, and the cost of a play is measured
by its width: the maximum number of nonempty segments
of symbols (‘islands’ separated by blank space) seen during
the play. Here is an example:

Initial word: (()())
After move 1: ( ())
After move 2: ( )
After move 3:

Note that move 2 pairs up two brackets not matched to each
other in the initial word; such moves are permitted with-
out restrictions. At the beginning, there is a single segment,
which splits into two after the first move. Both segments
disappear simultaneously after the third move; the width of
the play is equal to 2. In this example, width 1 is actually
sufficient: a better strategy is to erase the endpoints first and
then erase the two matched pairs in either order.
For a word 𝜎 , the width of 𝜎 is the minimum width suffi-

cient for re-pairing it. Is it true that all well-formed (Dyck)
words, no matter how long, have bounded cost, i.e., can be
re-paired using width at most 𝑐 , where 𝑐 is independent of
the word? The answer to this simply formulated combina-
torial question turns out to be negative, but there does not
appear to be a simple proof for this: re-pairing strategies,
perhaps surprisingly, turn out quite intricate. In the present
paper, we study this and related questions.

Motivation. First of all, we find the re-pairing problem
interesting in its own right—as a curious combinatorial game,
easily explained using just the very basic concepts in discrete
mathematics. So our motivation is, in part, driven by the
appeal of the problem itself, and in fact the results that we
obtain add to this motivation further.
Second, and perhaps most importantly, we use the re-

pairing game as a key abstraction when we prove a lower
bound in another problem, answering an open question

https://doi.org/10.1145/3373718.3394752
https://doi.org/10.1145/3373718.3394752
https://doi.org/10.1145/3373718.3394752
https://doi.org/10.1145/3373718.3394752


LICS ’20, July 8–11, 2020, Saarbrücken, Germany Dmitry Chistikov and Mikhail Vyalyi

from automata theory. This question is about the complex-
ity of translation of one-counter automata (OCA) on finite
words into Parikh-equivalent nondeterministic finite au-
tomata (NFA) [7]. The translation arose in model check-
ing, namely in the context of availability expressions [1, 26],
which extend usual regular expressions by constraints count-
ing occurrences of letters. It is more generally motivated by
recent lines of research on the classic Parikh theorem [43]: on
its applications in verification (see, e.g., [17, 20, 25]) and on
its extensions and refinements required for them [16, 32, 33].
It has been unknown [7] whether the translation in ques-
tion can be made polynomial, and in this paper we answer
this question negatively: using our results on the re-pairing
problem, we obtain a quasi-polynomial lower bound on the
blowup in the translation. We are not aware of any other
way to prove this lower bound; the reader focused on au-
tomata theory can view the present paper as one presenting
a solution to the OCA to Parikh-equivalent NFA problem.
(This is how we have first identified the re-pairing problem.)

Finally, viewed from a different angle, the re-pairing prob-
lem can be seen as a curious case study in the theory of non-
uniform models of computation. As it turns out, restricted
strategies, where paired brackets are always matched to
each other in the word, have a close connection with the
black-and-white pebble game on binary trees, a classic set-
ting in computational complexity (see, e.g., surveys by Nord-
ström [41, 42]). We show that unrestricted strategies in the
re-pairing game make it significantly more complex than
pebbling, strengthening this model.

Our contribution
In this paper, we define and study the re-pairing problem
(game), as sketched above. Our two key contributions are (i)
lower bounds on the width of Dyck words in this problem
and (ii) the connection to automata theory: lower bounds on
the translation from OCA to Parikh-equivalent NFA. Before
giving a precise formulation of our results (see below), we
explain why we would like to highlight these two.

Our lower bounds on the width are obtained by bound-
ing the set of (Dyck) words that can be re-paired using
width 𝑘 (for each 𝑘). To put this into context, classic models
of matrix grammars [47] and deterministic two-way trans-
ducers [45], as well as a more recent model of streaming
string transducers [4, 5], extend our model of computation
with additional finite-state memory. (We refer the reader
to surveys [19, 38, 39] for more details on transducers.) In
terms of transducers, our technique would correspond to de-
termining the expressive power of machines of bounded size.
Existing results of this kind (see [19, 38]) apply to variants
of the model where concatenation is restricted: with [6] or
without [13] restrictions on output and in the presence of
nondeterminism [8]. Here our result makes a step towards a
first lower bound against the unrestricted model.

In the application of the re-pairing problem to au-
tomata theory, our lower bounds on the size of NFA for the
Parikh image can be viewed as lower bounds on the size of
commutative NFA, i.e., nondeterministic automata over the
free commutative monoid (cf. [15, 24, 30–33]). To the best of
our knowledge, we are the first to develop lower bounds (on
description size) for this simple non-uniform model of com-
putation. It is well-known that, even for usual NFA, obtaining
lower bounds on the size (number of states) is challenging
and, in fact, provably (and notoriously) hard; and that the
available toolbox of techniques is limited (see, e.g., [22, 27]
and [29]). From the ‘NFA perspective’, we first develop a
lower bound for a different model of computation and then
import this result to NFA using combinatorial tools, which
we thus bring to automata theory: the Birkhoff—von Neu-
mann theorem on doubly stochastic matrices (see, e.g., [50,
p. 301]) and the Nisan—Wigderson construction of a fam-
ily of sets with pairwise low intersection [40]. The obtained
lower bounds point to a limitation of NFA that does not seem
to have the form of the usual communication complexity
bottleneck (cf. [51, Theorem 3.11.4], [29], and the book by
Hromkovic [28]); exploring and exploiting this further is a
possible direction for future research.

Summary of our results. Our main results for the re-
pairing game are as follows:

1. We show that every well-formed (Dyck) word 𝜎 has
a re-pairing of width𝑂 (log |𝜎 |), where |𝜎 | is the length
of 𝜎 .
This re-pairing always pairs up brackets that are
matched to each other in 𝜎 ; we call re-pairings with
this property simple. It is standard that Dyck words
are associated with trees; for words 𝜎 associated with
binary trees, we show that the minimum width of a
simple re-pairing is equal (up to a constant factor) to
the minimum number of pebbles in the black-and-white
pebble game on the associated tree, a quantity that has
been studied in computational complexity [11, 35, 41,
42] and captures the amount of space used by nonde-
terministic computation.
In particular, thismeans [35–37] that for theword𝑍 (𝑛)
associated with a complete binary tree of height 𝑛 (see
definition in Section 2), the minimum width of simple
re-pairings is Θ(𝑛), which is logarithmic in the length
of 𝑍 (𝑛).

2. For 𝑍 (𝑛), we show how to beat this bound, giving a
(non-simple) recursive re-pairing strategy of width
2𝑂 (

√
log𝑛) . This is a function sub-exponential in log𝑛;

it grows faster than all (log𝑛)𝑘 , but slower than all 𝑛Y ,
Y > 0.

3. For𝑍 (𝑛) and for a certain ‘stretched’ version of it,𝑌 (ℓ)
(see definition in Section 5), we prove lower bounds



Re-pairing brackets LICS ’20, July 8–11, 2020, Saarbrücken, Germany

on the width of re-pairings:

width(𝑍 (𝑛)) = Ω

(
log log |𝑍 (𝑛) |

log log log |𝑍 (𝑛) |

)
= Ω

(
log𝑛

log log𝑛

)
,

width(𝑌 (ℓ)) = Ω

(√
log |𝑌 (ℓ) |

log log |𝑌 (ℓ) |

)
= Ω(ℓ).

(1)

We further show how to use the re-pairing game in automata
theory—the application that motivated our study of this
game in the first place:

4. As an application of our lower bounds in the re-pairing
game, we prove that there is no polynomial-time trans-
lation from one-counter automata (OCA) on finite
words to Parikh-equivalent nondeterministic finite au-
tomata (NFA). This shows that optimal translations
must be quasi-polynomial, answering a question by
Atig et al. [7].
To prove this result, we consider OCA from (a vari-
ant of) a specific complete family, (H𝑛)𝑛≥2, identified
by Atig et al. [7]. (There is a polynomial translation
from (all) OCA to Parikh-equivalent NFA if and only
if these OCA H𝑛 have Parikh-equivalent NFA of poly-
nomial size.) We prove, for every Dyck word 𝜎𝑛 of
length ≤

√
𝑛/8, a lower bound of 𝑛Ω (width(𝜎𝑛)) on the

minimum size of NFA accepting regular languages
Parikh-equivalent to 𝐿(H𝑛). Based on the words 𝑌 (ℓ),
we get a lower bound of

𝑛
Ω

(√
log𝑛/log log𝑛

)
on the size of NFA. Note that this holds for NFA that
accept not just a specific regular language, but any lan-
guage Parikh-equivalent to the one-counter language
𝐿(H𝑛) (there are infinitely many such languages for
each 𝑛).

In this extended abstract, we introduce main definitions
and show the main results for the re-pairing game, including
proof ideas and sketches. We show the proof of the theorem
linking re-pairings to the OCA to Parikh-equivalent NFA
problem (Theorem 5) in more detail. Full proofs for all our
results can be found in the full version of the paper [10].

Background and related work
Parikh image of one-counter languages. The problem

of re-pairing brackets in well-formed (Dyck) words is linked
to the following problem in automata theory.
The Parikh image (or commutative image) of a word 𝑢

over an alphabet Σ is a vector of dimension |Σ| in which
the components specify how many times each letter from Σ
occurs in 𝑢. The Parikh image of a language 𝐿 ⊆ Σ∗ is the
set of Parikh images of all words 𝑢 ∈ 𝐿. It is well-known [43]
that for every context-free language 𝐿 there exists a regular
language 𝑅 with the same Parikh image (Parikh-equivalent
to 𝐿). If 𝐿 is generated by a context-free grammar of size 𝑛,

then there is a nondeterministic finite automaton (NFA) of
size exponential in 𝑛 that accepts such a regular language 𝑅
(see [16]); the exponential in this translation is necessary in
the worst case.

When applying this translation to a language from a proper
subclass of context-free languages, it is natural to ask
whether this blowup in description size can be avoided. For
languages recognized by one-counter automata (OCA; a fun-
damental subclass of pushdown automata), the exponential
construction is suboptimal [7]. If an alphabet Σ is fixed, then
for every OCA with 𝑛 states over Σ there exists a Parikh-
equivalent NFA of polynomial size (the degree of this poly-
nomial depends on |Σ|). And even in general, if the alphabet
is not fixed, for every OCA with 𝑛 states over an alphabet of
cardinality at most 𝑛 there exists a Parikh-equivalent NFA
of size 𝑛𝑂 (log𝑛) , quasi-polynomial in 𝑛. Whether this quasi-
polynomial construction is optimal has been unknown, and
we prove in the present paper a quasi-polynomial lower
bound.
We note that the gap between NFA of polynomial and

quasi-polynomial size grows to exponential when the trans-
lation is applied iteratively, as is the case in Abdulla et al. [1].

Matrix grammars of finite index and two-way trans-
ducers. The question of whether all well-formed (Dyck)
words can be re-paired using bounded width can be linked
to a question on matrix grammars, a model of computation
studied since the 1960s [2]. Matrix grammars are a general-
ization of context-free grammars in which productions are
applied in ‘batches’ prescribed by the grammar. This formal-
ism subsumes many classes of rewriting systems, including
controlled grammars, L systems, etc. (see, e.g., [12]).

The index of a derivation in a matrix grammar is the max-
imum number of nonterminals in a sentential form in this
derivation (this definition applies to ordinary context-free
grammars as well) [9, 21]. Bounding the index of derivations,
i.e., restricting grammars to finite index is known to reduce
the class of generated languages; this holds both for ordinary
context-free [21, 23, 48] and matrix grammars [9]. Languages
generated by finite-index matrix grammars have many char-
acterizations: as languages output by deterministic two-way
transducers with one-way output tape [44], or produced by
EDT0L systems of finite index [34, Proposition I.2]; images of
monadic second-order logic (MSO) transductions [14]; and,
most recently, output languages of streaming string trans-
ducers [4, 5]. (See also the survey by Filiot and Reynier [19].)

Encoding the rules of our re-pairing problem in the matrix
grammar formalism leads to a simple sequence of grammars
with increasing indices for subsets of the Dyck language 𝐷1;
the question of whether all Dyck words can be re-paired
using bounded width is the same as asking if any of these
grammars has in fact (bounded-index) derivations for all Dyck
words. A 1987 paper by Rozoy [47] is devoted to the proof
that, in fact, no matrix grammar can generate all words in



LICS ’20, July 8–11, 2020, Saarbrücken, Germany Dmitry Chistikov and Mikhail Vyalyi

𝐷1 using bounded-index derivations without also generating
somewords outside𝐷1. This amounts to saying that no finite-
index matrix grammar generates 𝐷1; and a non-constant
lower bound on the width in the re-pairing problem could
be extracted from the proof.
Unfortunately, the proof in that paper, as well as in an

earlier paper [46], seems to be flawed. Fixing the argument
does not seem possible as far as we can see, and we are not
aware of an alternative proof. We discuss Rozoy’s proof in
the full version of the present paper [10].

2 Basic definitions
The Dyck language. We use non-standard notation for

brackets in words from the Dyck language: the opening
bracket is denoted by + and the closing bracket by −; we call
these symbols pluses and minuses, accordingly. Moreover,
in some contexts it is convenient to interpret + and − as
integers +1 and −1.
Let 𝑁 be an even integer. A word 𝜎 = (𝜎 (1), . . . , 𝜎 (𝑁 )),

𝜎 (𝑖) ∈ {+1,−1}, is aDyckword if it has an equal number of+1
and −1 and for every 1 ≤ 𝑘 ≤ 𝑁 the inequality

∑𝑘
𝑖=1 𝜎 (𝑖) ≥ 0

is satisfied.
We assume that a position in a word points to a place

between symbols. Formally, a position corresponds to a par-
titioning of the word 𝑤 into a prefix and suffix: 𝑤 = 𝑝 · 𝑠 .
Thus, an 𝑛-symbol word has 𝑛 + 1 positions, including the
start position (empty prefix) and the end position (empty
suffix). The positions are numbered left to right, starting
from 0 (the symbols are also numbered left to right, but start-
ing from 1). The height of a position 𝑖 in a Dyck word 𝜎
is ℎ(𝑖) = ∑𝑖

𝑗=1 𝜎 ( 𝑗). As usual, |𝜎 | denotes the length of the
word 𝜎 (the number of symbols in it).

Dyck words are naturally associated with ordered rooted
forests (i.e., with sequences of ordered rooted trees). E.g.,
words 𝑍 (𝑛) defined by

𝑍 (1) = +−; 𝑍 (𝑛 + 1) = +𝑍 (𝑛)𝑍 (𝑛)− (2)

can be associated with complete binary trees of height 𝑛 − 1.
Recall that the height of a rooted tree is the maximum length
of a path (number of edges) from the root to a leaf.
Note that we described a re-pairing of the word 𝑍 (2) in

Section 1.

Re-pairings and their width. A re-pairing of a Dyck
word 𝜎 is a sequence of pairs

𝑝 = (𝑝1, . . . , 𝑝𝑁 /2), where 𝑝𝑖 = (ℓ𝑖 , 𝑟𝑖 )

and the following properties are satisfied:
(R1) 𝜎 (ℓ𝑖 ) = +1, 𝜎 (𝑟𝑖 ) = −1, ℓ𝑖 < 𝑟𝑖 for all 𝑖;
(R2) every number from the interval [1, 𝑁 ] occurs in ex-

actly one pair 𝑝 𝑗 .
(We use the word ‘interval’ to refer to a set of the form

[𝑎, 𝑏] = {𝑥 ∈ Z : 𝑎 ≤ 𝑥 ≤ 𝑏}.)

The intuition is that the index 𝑖 corresponds to discrete
time, and at time 𝑖 the two symbols 𝜎 (ℓ𝑖 ) and 𝜎 (𝑟𝑖 ) are
(re-)paired (or erased). Denote by

𝐵𝑡 (𝑝) = {𝑏 ∈ [1, 𝑁 ] : (𝑏 = ℓ𝑖 ) or (𝑏 = 𝑟𝑖 ), 𝑖 ≤ 𝑡}
the set of points from [1, 𝑁 ] that correspond to symbols
erased at times [1, 𝑡].

It is easy to see that re-pairings exist for every Dyck word.
By induction on the length of the word one can prove a
stronger statement: a sequence (𝑝1, . . . , 𝑝𝑡 ) can be extended
to a re-pairing iff all numbers in the pairs 𝑝𝑖 = (ℓ𝑖 , 𝑟𝑖 ) are
different, the property (R1) is satisfied, and the remaining
signs (those which have not been erased) constitute a Dyck
word. We now define the following quantities:

• The width of a set 𝑆 of integers,width(𝑆), is the smallest
number of intervals the union of which is equal to 𝑆 .

• The width of a re-pairing 𝑝 at time 𝑡 is width(𝐵𝑡 (𝑝)).
• The width of a re-pairing 𝑝 of a Dyck word 𝜎 ,width(𝑝),
is max𝑡 width(𝐵𝑡 (𝑝)), i.e., the maximum of the width
of this re-pairing over all time points.

• The width of a Dyck word 𝜎 ,width(𝜎), is the minimum
of width(𝑝) over all re-pairings 𝑝 of 𝜎 .

We will look into how big the width of a Dyck word of
length 𝑁 can be, that is, we are interested inmax𝜎 width(𝜎),
where the maximum is over all Dyck words of length 𝑁 .

Remark 1. Section 1 discussed the minimization of the maxi-
mum number of the “surviving” (non-erased) intervals.
This quantity cannot differ from the width defined above
(using erased intervals) by more than 1.

Remark 2. A tree-based representation of re-pairings is de-
scribed in Section 5. For more details please refer to the full
version of the paper.

3 Simple bounds and simple re-pairings
In this section we establish several basic facts on the width
of Dyck words and re-pairings. A careful use of bisection
(see Subsection 3.1) leads to the following upper bound:

Theorem 1. width(𝜎) = 𝑂 (log |𝜎 |) for all Dyck words 𝜎 .

We call a re-pairing of a Dyck word 𝜎 simple if at all times
it pairs up two signs that are matching in the word 𝜎 . The
re-pairing that the proof of Theorem 1 constructs is simple.

We now show a link between simple re-pairings and strate-
gies in the following game. Let𝐺 be an acyclic graph (in our
specific case it will be a tree with edges directed from leaves
to root). Define a black-and-white pebble game on 𝐺 (see,
e.g., [35, 42]) as follows. There is only one player, and black
and white pebbles are placed on the nodes of the graph. The
following moves are possible:
(M1) place a black pebble on a node, provided that all its

immediate predecessors carry pebbles;
(M2) remove a black pebble from any node;



Re-pairing brackets LICS ’20, July 8–11, 2020, Saarbrücken, Germany

(M3) place a white pebble on any node; and
(M4) remove a white pebble from a node, provided that all

its immediate predecessors carry pebbles.
(In a tree, immediate predecessors are immediate descen-
dants, i.e., children. Rules (M1) and (M4) are always applica-
ble to all sources, i.e., leaves of𝐺 .) At the beginning there are
no pebbles on any nodes. A sequence of moves in the game
is a strategy; it is successful if it achieves the goal: reaching
a configuration in which all sinks of the graph (i.e., nodes
of outdegree 0; the root in the case of trees) carry pebbles
and there are no white pebbles on any nodes. By bw(𝐺) we
will denote the minimum number of pebbles sufficient for
a successful strategy in the black-and-white pebble game
on 𝐺 .

Theorem2. Suppose the tree𝐷 associated with a Dyckword𝜎
is binary. Then the minimum width of a simple re-pairing for 𝜎
is Θ(bw(𝐷)).

Since 𝐷 is a tree, it follows from the results of the pa-
pers [35–37] (see also [49, pp. 526–528]) that the value of
bw(𝐷) at most doubles if the strategies are not allowed to
use any white pebbles. The optimal number of (black) peb-
bles in such strategies is determined by the so-called Strahler
number (see, e.g., [18] and [35]):

Corollary 1. For binary trees, the following two quantities
are within a constant factor from each other: the minimum
width of a simple re-pairing for 𝜎 and the maximum height of
a complete binary tree which is a graph-theoretic minor of the
tree 𝐷 .

Upper bounds provided by Theorem 1 and Corollary 1 are
similar. Note that the former gives a simple re-pairing too,
but also holds for non-binary trees 𝐷 .
The lower bound in Theorem 2 relies on the re-pairing

being simple. For instance, for the word𝑍 (𝑛) associated with
a complete binary tree (see equation (2)), the minimumwidth
of a simple re-pairing is Θ(𝑛), but the (usual) width is 𝑜 (𝑛Y)
for all Y > 0 (Section 4).

3.1 Proof of the Theorem 1
In the proof we use several observations.

Claim 1. Let 𝜎 = 𝜎1 · 𝜎2 · . . . · 𝜎𝑡 be a factorization of a Dyck
word into Dyck words. Then

width(𝜎) ≤ 1 + max
1≤𝑖≤𝑡

(
width(𝜎𝑖 )

)
.

Proof. Denote by 𝑝𝑖 an optimal re-pairing of a word 𝜎𝑖 .
Consider a re-pairing 𝑝 of 𝜎 which erases the words 𝜎1,

𝜎2, . . . , 𝜎𝑡 consecutively and according to the optimal re-
pairings 𝑝1, . . . , 𝑝𝑡 . The width of this re-pairing at all times
when the word 𝜎𝑖 is being re-paired cannot exceed the num-
ber of erased intervals in the re-pairing 𝑝𝑖 plus possibly an
additional interval that consists of the fully erased word
𝜎1 · . . . · 𝜎𝑖−1. □

Claim 2. Let a Dyck word 𝜎 factorize as 𝐿 ·𝜋1 ·𝑅, where 𝜋1 is
a Dyck word. Then the word 𝜋2 = 𝐿𝑅 is also a Dyck word and

width(𝜎) ≤ max(width(𝜋1), 1 +width(𝜋2)) .

Proof. The first statement is obvious.
Consider a re-pairing 𝑝 of the word 𝜎 which first erases

the word 𝜋1 (optimally, using a re-pairing 𝑝1) and then the
word 𝜋2 (also optimally, using a re-pairing 𝑝2).

Before the beginning of 𝜋2’s re-pairing, the width of 𝑝
does not exceed width(𝑝1). From that point on, the word 𝜋1
is erased completely, so the width of 𝑝2 can be increased by
at most 1 (which corresponds to the erased interval 𝜋1). □

Proof of Theorem 1. Use induction on the length of the Dyck
word, 𝑁 = |𝜎 |. Construct a sequence of nested factors of 𝜎
in the following way.
Any Dyck word is a concatenation of Dyck primes, i.e.

words of the form +𝑤−, where 𝑤 is a Dyck word. If 𝜎 =

𝜎1 . . . 𝜎𝑚 , where 𝜎𝑖 are Dyck primes, then pick the factor
𝜎 (1) = 𝜎 𝑗 of maximum width. Since 𝜎 (1) is a Dyck prime,
𝜎 (1) = +𝜎 (1)

1 . . . 𝜎
(1)
𝑚 (1)−, where 𝜎

(1)
𝑖

are Dyck primes. If some
𝜎
(1)
𝑗

has length greater than 𝑁 /2, set 𝜎 (2) = 𝜎 (1)
𝑖

. Note that
𝜎 (1) = 𝐿2𝜎 (2)𝑅2, and |𝐿2𝑅2 | < 𝑁 /2.

Repeating this procedure produces a sequence of Dyck
primes 𝜎 (𝑖) : if 𝜎 (𝑖) = +𝜎 (𝑖)

1 . . . 𝜎
(𝑖)
𝑚 (𝑖)−, where 𝜎

(𝑖)
𝑘

are Dyck
primes, and |𝜎 (𝑖)

𝑗
| > 𝑁 /2 for some 1 ≤ 𝑗 ≤ 𝑚(𝑖), then

𝜎 (𝑖+1) = 𝜎
(𝑖)
𝑗
. It is easy to check that 𝜎 (1) = 𝐿𝑖+1𝜎 (𝑖+1)𝑅𝑖+1

and |𝐿𝑖+1𝑅𝑖+1 | < 𝑁 /2. The process stops on a Dyck prime
𝜎 (𝑓 ) such that

𝜎 (𝑓 ) = +𝜎 (𝑓 )
1 . . . 𝜎

(𝑓 )
𝑚 (𝑓 )−

where |𝜎 (𝑓 )
𝑗

| ≤ 𝑁 /2 for all 1 ≤ 𝑗 ≤ 𝑚(𝑓 ). We have 𝜎 (1) =

𝐿𝑓 𝜎
(𝑓 )𝑅𝑓 and |𝐿𝑓 𝑅𝑓 | < 𝑁 /2.

Applying Claim 1 to the factorization of 𝜎 , Claim 2 to the
factorization 𝜎 (1) = 𝐿𝑓 𝜎

(𝑓 )𝑅𝑓 , and then again Claims 2 and 1
to the factorization of 𝜎 (𝑓 ) , obtain the inequality

width(𝜎) ≤ 1 +width(𝜎 (1) ) ≤ 1 + 1 + 1 + max
|𝜏 | ≤𝑁 /2

width(𝜏).

It is now easy to see that max
|𝜎 |=𝑁

width(𝜎) ≤ 3 log2 𝑁 . □

4 Upper bound for complete binary trees
In this section we construct re-pairings of the words 𝑍 (𝑛)
associated with complete binary trees of height 𝑛 − 1 and
defined by equation (2) on page 4.

Theorem 3. width(𝑍 (𝑛)) = 2𝑂 (
√
log𝑛) .

The upper bounds from Section 3 give width(𝑍 (𝑛)) =

𝑂 (𝑛), whilst the functions 𝑓 (𝑛) = 2𝑎
√
log𝑛 for 𝑎 > 0 are such

that (log𝑛)𝑘 = 𝑜 (𝑓 (𝑛)) and 𝑓 (𝑛) = 𝑜 (𝑛Y) for all 𝑘, Y > 0.



LICS ’20, July 8–11, 2020, Saarbrücken, Germany Dmitry Chistikov and Mikhail Vyalyi

To prove Theorem 3 we need a family of framed words
𝑍 (𝑛) (𝑘) . Denote by 𝜎 (𝑘) the word

+ + . . . + +︸      ︷︷      ︸
𝑘

𝜎 − − . . . − −︸       ︷︷       ︸
𝑘

. (3)

Using the brackets terminology, this is the word 𝜎 which is
enclosed by 𝑘 pairs of opening and closing brackets. We will
call such words 𝑘-framed.

Remark 3. If 𝑘 ≥ |𝜎 |/2, then width(𝜎 (𝑘) ) ≤ 2, because a
re-pairing can erase the signs of 𝜎 from left to right, pairing
each + with a − from the suffix and each − with a + from the
prefix. This re-pairing is, of course, not simple.

We construct a family of re-pairings 𝑝 (𝑞, 𝑛, 𝑘) of framed
words 𝑍 (𝑛) (𝑘) , where 𝑘 ≤ 𝑛 and 1 ≤ 𝑞 ≤ (𝑛 + 1)/2 are pa-
rameters. The definition will be recursive, and 𝑞 will control
the ‘granularity’ of the recursion.

Overview. On each step of the re-pairing 𝑝 (𝑞, 𝑛, 𝑘) the
leftmost remaining − is erased. For 𝑛 ≤ 2, it is paired with
the leftmost remaining +. For 𝑛 > 2, it is paired with the +
that we choose using the following recursive definition.

At each step of the re-pairing 𝑝 (𝑞, 𝑛, 𝑘), we define an aux-
iliary subsequence of the word 𝑍 (𝑛) (𝑘) that forms a word
𝑍 (𝑞) (𝑘′) . If the leftmost remaining minus is not in the sub-
sequence, then we pair it with the leftmost remaining plus.
Otherwise we consider the re-pairing 𝑝 (𝑞′, 𝑞, 𝑘 ′) of the word
𝑍 (𝑞) (𝑘′) , where we pick 𝑞′ and 𝑘 ′ below, and pair the minus
using this re-pairing (more details to follow).

Stages of the re-pairing 𝒑(𝒒, 𝒏, 𝒌). The re-pairing is di-
vided into stages, indexed by 𝑡 = 1, . . . , 2𝑛−𝑞 . Denote by 𝑍𝑡 ,
1 ≤ 𝑡 ≤ 𝑁 = 2𝑛−𝑞 , the 𝑡th leftmost occurrence (factor)
of 𝑍 (𝑞) in the word 𝑍 (𝑛) (𝑘) . Stage 𝑡 begins at the moment
when all minuses to the left of the start position 𝑖𝑡 of the
factor 𝑍𝑡 have been erased, and ends when stage 𝑡 + 1 begins.
Define an integer sequence 𝑘𝑡 as follows:

𝑘2𝑞 ·𝑠+1 = 0, 𝑘2𝑞 ·𝑠+𝑎 = ⌈log2 𝑎⌉ −1 for 1 < 𝑎 ≤ 2𝑞, 0 ≤ 𝑠 . (4)

At the beginning of stage 𝑡 , consider the subsequence 𝑍 ′
𝑡 of

𝑍 (𝑛) (𝑘) formed by the 𝑘 ′ = 𝑘𝑡 rightmost non-erased pluses
to the left of 𝑖𝑡 ; followed by the symbols of the factor 𝑍𝑡 ;
followed by the 𝑘𝑡 leftmost non-erased minuses to the right
of the end position of 𝑍𝑡 . (There is a separate proof that this
is well-defined.) The symbols of 𝑍 ′

𝑡 , written together, form
the word 𝑍 (𝑞) (𝑘𝑡 ) .

− +Zt−1 Zt

+ −
kt ktZ ′

t

Figure 1. Beginning of stage 𝑡 , with erased signs dashed.

Choose 1 ≤ 𝑞′ ≤ 𝑞/3 such that the width of the re-pairing
𝑝 (𝑞′, 𝑞, 𝑘𝑡 ) is minimal. At the first part of stage 𝑡 , the re-
pairing 𝑝 (𝑞, 𝑛, 𝑘) pairs the signs in 𝑍 ′

𝑡 according to the re-
pairing 𝑝 (𝑞′, 𝑞, 𝑘𝑡 ). The first part ends when either all mi-
nuses to the left of the factor 𝑍𝑡+1 are erased or the sequence
𝑍 ′
𝑡 is exhausted (whichever is earlier). In the latter case the

second and final part of stage 𝑡 is started. At each step of
this part, the leftmost non-erased minus is paired with the
leftmost non-erased plus.

Claim 3. Re-pairings 𝑝 (𝑞, 𝑛, 𝑘) are well-defined.

Define𝑊𝑛 = min𝑞 max0≤𝑘≤𝑛 width(𝑝 (𝑞, 𝑛, 𝑘)), where the
minimum is over 15 ≤ 𝑞 ≤ 𝑛/3 for 𝑛 ≥ 45 and over 1 ≤ 𝑞 ≤
𝑛/3 for 3 ≤ 𝑛 < 45.

Claim 4. 𝑊𝑛 ≤ min
15≤𝑞≤𝑛/3

( 2𝑛
𝑞

+ 2𝑊𝑞 + 3
)
for 𝑛 ≥ 45.

Somewhat strangely, we have been unable to find solutions
to recurrences of this form in the literature.

Claim 5. 𝑊𝑛 = 2𝑂 (
√
log𝑛) .

Since width(𝑍 (𝑛)) ≤𝑊𝑛 , Theorem 3 follows.

Proof idea for Claim 4. Assume 15 ≤ 𝑞 ≤ 𝑛/3. We no-
tice that at each step at most two factors𝑍𝑡 ,𝑍𝑡+1 are partially
erased. (All other factors 𝑍𝑡 ′ either have been erased com-
pletely (𝑡 ′ < 𝑡 ) or are yet untouched (𝑡 ′ > 𝑡+1).) Furthermore,
non-erased signs to the left of the partially erased factors
𝑍𝑡 , 𝑍𝑡+1 form several intervals; each of them, except possibly
the leftmost, has size at least 𝑞.
Note that, at each moment in time, the non-erased signs

form a Dyck word, so the height of each position in 𝑍 (𝑛) (𝑘)
with respect to these signs only is nonnegative. Since the
height of positions in the word𝑍 (𝑛) (𝑘) cannot exceed𝑛+𝑘 ≤
2𝑛, it follows that a partially erased factor𝑍𝑡 can be preceded
by at most 2𝑛/𝑞 + 1 non-erased intervals (runs of pluses).
This leads to the recurrence of Claim 4.

5 Lower bounds
Theorem 4. There exists a sequence of Dyck words𝑊𝑛 with

width(𝑊𝑛) = Ω(
√
log |𝑊𝑛 |/log log |𝑊𝑛 |).

The words in this sequence are similar to the words 𝑍 (𝑛)
associated with complete binary trees. They are associated
with a ‘stretched’ version of the complete binary tree, i.e.,
one in which every edge is subdivided into several edges.
More precisely, let 𝑎0, 𝑎1, . . . , 𝑎𝑘 be a finite sequence of posi-
tive integers. Define the following sequence of Dyck words
inductively:
𝑋 (𝑎0) = +𝑎0−𝑎0 ,

𝑋 (𝑎0, . . . , 𝑎𝑘 ) = +𝑎𝑘𝑋 (𝑎0, . . . , 𝑎𝑘−1)𝑋 (𝑎0, . . . , 𝑎𝑘−1) −𝑎𝑘 .

The words we use to prove Theorem 4 have the form
𝑌 (𝑚, ℓ) = 𝑋 (𝑎0, . . . , 𝑎𝑚ℓ−1), where 𝑎𝑖 = 2 ⌊𝑖/ℓ ⌋ , 𝑚 ≥ 1, and



Re-pairing brackets LICS ’20, July 8–11, 2020, Saarbrücken, Germany

ℓ ≥ 1. In particular, 𝑌 (ℓ) = 𝑌
(
⌊ℓ · log ℓ⌋, ℓ

)
. (Notice that

𝑍 (𝑛) = 𝑋 (1, . . . , 1) = 𝑌 (1, 𝑛).) Our method applies both to
𝑌 (ℓ) and 𝑍 (𝑛), giving the bounds in equation (1) on page 3.

We give a proof overview below; details are provided in
the full version of the paper. We use a tree representation
of re-pairings. Informally, this tree tracks the sequence of
mergers of erased intervals. This sequence, indeed, is natu-
rally depicted as an ordered rooted (binary) tree as shown in
Fig. 2(a).

+ −

+ −

+ −
++−+−−

++−+−−

++−+−−

++−+−−
1 2 3 4 5 6

(a)

+ −
+

−

−
+ −

+

(b)

+ +−+−−+−

Figure 2. (a) Tree representation of the re-pairing (2, 3),
(4, 6), (1, 5) for the word 𝑍 (2); (b) for the word 𝑍 (2)+−,
a fragment of the tree associated with the factor +−−+.

This tree is essentially a derivation tree for a word in an
appropriate matrix grammar. Edges of a rooted tree are di-
vided into levels according to the distance to the root. We
think of this distance as a moment of time in the derivation
process. The derived word can be read off the tree by follow-
ing the left-to-right depth-first traversal. Formal definitions
can be found in the full version of the paper.

Our proof of Theorem 4 is inductive, and one of the ideas is
what the induction should be over. Observe that every factor𝑤
of a Dyck word𝑊 induces a connected subgraph, which we
call a fragment; see Fig. 2(b). Thewidth of a tree or a fragment
is defined in natural way: it is the maximum number of edges
at a level of the tree. For example, the fragment shown in
Fig. 2(b) has width 2.
Our inductive statement applies to fragments. Fix a

Dyck word 𝑊 ; in the sequel we specialize the argument
to 𝑍 (𝑛) and 𝑌 (ℓ). Denote by 𝐿(𝑊,𝑘) the maximum length
of a factor𝑤 associated with a fragment of width at most 𝑘
in trees that derive the word𝑊 . Put differently, given𝑊 ,
consider all possible trees that derive𝑊 . Fragments of width
at most 𝑘 in these trees are associated with factors of the
word𝑊 , and 𝐿(𝑊,𝑘) is the maximum length of such a factor.

Note that in this definition the width of the (entire) trees is
not restricted.
It is clear from the definition that the sequence of num-

bers 𝐿(𝑊,𝑘) is non-decreasing: 𝐿(𝑊, 1) ≤ 𝐿(𝑊, 2) ≤ · · · ≤
𝐿(𝑊,𝑘). We obtain upper bounds on the numbers 𝐿(𝑊,𝑘)
by induction. For 𝑍 (𝑛), we show that 𝐿(𝑍 (𝑛), 𝑘) ≤ 𝑂 (𝑛) ·
𝑘𝑂 (𝑘) · 𝐿(𝑍 (𝑛), 𝑘 − 1)𝑂 (𝑘) for big enough 𝑛 and 𝑘 . Here and
below, implicit constants in the asymptotic notation do not
depend on 𝑛 and 𝑘 . From this we get

𝐿(𝑍 (𝑛), 𝑘) ≤ 2𝑘𝑂 (𝑘 ) ·log𝑛 .

We observe that if width(𝑊 ) ≤ 𝑘 , then |𝑊 | ≤ 𝐿(𝑊,𝑘 + 1).
Since |𝑍 (𝑛) | = Θ(2𝑛), it follows that every derivation tree of
the word 𝑍 (𝑛) must have width 𝑘 satisfying 𝑛 ≤ 𝑘𝑂 (𝑘) · log𝑛,
that is, width(𝑍 (𝑛)) = Ω(log𝑛/log log𝑛). (Notice that this
lower bound is doubly logarithmic in |𝑍 (𝑛) |, as stated in,
e.g., equation (1).)
For 𝑌 (ℓ), we show a stronger inequality, 𝐿(𝑌 (ℓ), 𝑘) ≤

poly(ℓ, 𝑘) · (𝑐𝑘)ℓ · 𝐿(𝑌 (ℓ), 𝑘 − 1), which is sufficient for a
lower bound of width(𝑌 (ℓ)) = Ω(ℓ).

To prove the inductive upper bound on 𝐿(𝑊,𝑘), we need
to show that narrow fragments cannot be associated with
long factors. For this purpose we use two ideas.

Combinatorial properties of increases and drops in
𝒁 (𝒏) and 𝒀 (ℓ). Denote by Δ(𝑢) the difference ℎ( 𝑗) − ℎ(𝑖),
where 𝑖 and 𝑗 are the start and end positions of the factor
𝑢. (Recall that ℎ(·) denotes the height of a position in the
word.) The value Δ(𝑢) is the increase in height on the factor.

The first property is that every factor of 𝑍 (𝑛) of length 𝑥
contains a sub-factor −𝑑 with 𝑑 ≥ log𝑥 −𝑂 (1). The second
combinatorial property of 𝑍 (𝑛) is as follows: for sufficiently
large 𝑥 and every two factors 𝑢 and −𝑥 of the word 𝑍 (𝑛), if
Δ(𝑢) ≥ 𝑥 and 𝑢 is located to the left of −𝑥 , then the distance
between these factors is at least 2𝑥 . Here and below the
distance between the factors is the length of the smallest
factor of𝑊 containing both of them.
For the word 𝑌 (ℓ), similar properties hold, but the func-

tions log𝑥 and 2𝑥 are replaced by the functionsΩ(ℓ ·(𝑥/9)1/ℓ )
and Ω((𝑥/2ℓ)ℓ ), respectively.

Balance within a single time period. Consider a fac-
tor𝑤 of the word𝑊 associated with a fragment of width at
most 𝑘 (in a tree derivation that generates𝑊 ). Denote this
fragment 𝐹 . We will assume here that𝑤 is the maximal factor
associated with 𝐹 , i.e., all signs derived by 𝐹 are included
in 𝑤 . (In the example shown in Fig. 2(b), the factor should
be +−−+− not +−−+.)
Notice that, in a Dyck word, every − is matched by a

+ somewhere to the left of it. Thus, for a factor −𝑑 , there
exists a factor 𝑢 to the left of −𝑑 with a matching height
increase: Δ(𝑢) ≥ 𝑑 . We strengthen this balance observation
and “relativize” it, ensuring that both factors appear inside𝑤 .
More precisely, we identify a pair of matching factors −𝑑 ,



LICS ’20, July 8–11, 2020, Saarbrücken, Germany Dmitry Chistikov and Mikhail Vyalyi

𝑢 (with a slightly smaller height increase in 𝑢) which also
satisfies the following conditions:

(a) 𝑑 is large enough (of magnitude indicated by the first
combinatorial property, relative to𝑤 ),

(b) the factors 𝑢 and −𝑑 are derived during overlapping
time intervals,

(c) the factor 𝑢 sits to the left of −𝑑 and inside𝑤 , and
(d) the sub-fragment associated with the factor between

𝑢 and −𝑑 has width strictly smaller than the width of
the entire fragment 𝐹 .

These conditions enable us to upper-bound the distance be-
tween 𝑢 and −𝑑 through a function of 𝐿(𝑊,𝑘 − 1). On the
other hand, this distance is lower-bounded by the second
combinatorial property. Comparing the bounds shows how
to bound |𝑤 |, and thus 𝐿(𝑊,𝑘), from above by a function of
𝐿(𝑊,𝑘 − 1).

6 An application: Lower bounds for
commutative NFA

In this section we link the re-pairing problem for Dyck words
to the descriptional complexity (number of states in NFA) of
the Parikh image of languages recognized by one-counter
automata (OCA).
We will use the standard definition of nondeterminis-

tic finite automata (NFA). A formal definition of OCA (see,
e.g., [7]) is not required for our arguments, and we explain
the relevant intuition below.

. . .q0

a0 | +1

q1

a1 | −1

q2

a2 | +1

qn−1

an−1 | (−1)n−1

c0,1 c1,2
c2,n−1

c0,2 c1,n−1
c0,n−1

Figure 3. One-counter automaton H𝑛 .

We consider a slightly simplified version of complete lan-
guages introduced by Atig et al. [7] (see Section 1). Each of
them is over the alphabet

{𝑐𝑖 𝑗 : 0 ≤ 𝑖 < 𝑗 < 𝑛} ∪ {𝑎𝑖 : 0 ≤ 𝑖 < 𝑛}
and can be recognized by an OCA H𝑛 with 𝑛 states in Fig. 3.
We will assume throughout that 𝑛 is even. In what follows,
we need only the Parikh image 𝐻𝑛 of 𝐿(H𝑛). We call 𝐻𝑛 the
hard set (for each 𝑛). This is the set of 𝑛(𝑛+1)/2-dimensional
vectors (𝒚, 𝒙) = (𝑦𝑖 𝑗 : 0 ≤ 𝑖 < 𝑗 < 𝑛; 𝑥𝑖 : 0 ≤ 𝑖 < 𝑛) of
nonnegative integers that satisfy the following conditions:
(H1) 𝑦𝑖 𝑗 ∈ {0, 1} and the directed graph on vertices [𝑛] =

{0, 1, . . . , 𝑛 − 1} with the set of edges
{(𝑖, 𝑗) such that 𝑦𝑖 𝑗 = 1}

consists of a monotone path from 0 to 𝑛 − 1 (i.e., one
with 𝑖 < 𝑗 in each edge) and possibly some isolated
vertices; we call such paths chains;

(H2) (balance) the vector 𝒙 = (𝑥𝑖 ) belongs to the cone 𝐾 of
balanced vectors:

𝐾 =

{
(𝑥0, . . . , 𝑥𝑛−1) :

𝑛−1∑
𝑖=0

(−1)𝑖𝑥𝑖 = 0;

𝑘∑
𝑖=0

(−1)𝑖𝑥𝑖 ≥ 0, 0 ≤ 𝑘 < 𝑛 − 1
}
;

(H3) (compatibility) if 𝑥 𝑗 > 0 for some 𝑗 > 0, then 𝑦𝑖 𝑗 = 1
for some 𝑖; if 𝑥 𝑗 > 0 for some 𝑗 < 𝑛 − 1, then 𝑦 𝑗𝑘 = 1
for some 𝑘 .

Example 1. Let 𝑛 = 6. Consider a chain with the edge set
{(0, 1); (1, 4); (4, 5)}. We have 𝑦01 = 𝑦14 = 𝑦45 = 1, and the
other 𝑦𝑖 𝑗 are zero. For this setting of 𝒚, the variables 𝑥0, 𝑥1,
𝑥4, and 𝑥5 may assume non-zero values, and 𝑥2 = 𝑥3 = 0 by
the compatibility condition. The balance condition is then
equivalent to

𝑥0 − 𝑥1 + 𝑥4 − 𝑥5 = 0; 𝑥0 − 𝑥1 ≥ 0. □
The meaning of the numbers 𝑥𝑖 and𝑦𝑖 𝑗 is that they specify

the number of occurrences of letters 𝑎𝑖 and 𝑐𝑖 𝑗 on accepting
paths ofH𝑛 (see Fig. 3). Chains defined in condition (H1) are
just paths in the transition diagram of H𝑛 from the initial
state to the final state. Recall that an OCA is an automa-
ton equipped with a nonnegative integer counter, initialized
with 0. A computation traverses the transition diagram of
H𝑛 , incrementing and decrementing the counter according
to the labels of the loops. Negative values are prohibited,
i.e., decrement is not possible if the counter value is zero;
whereas at the end of the computation, the counter value
must be zero (condition (H2)). Clearly, to read a symbol 𝑎𝑖 ,
the automaton should visit state 𝑞𝑖 (condition (H3)).
An NFA recognizes a language with Parikh image 𝐻𝑛 iff

for each vector (𝒚, 𝒙) ∈ 𝐻𝑛 the NFA has an accepting path
with these counts of occurrences, and for all other vectors no
such path exists. There exists [7] an NFA with 𝑛𝑂 (log𝑛) states
that recognizes a language with Parikh image 𝐻𝑛 . Our goal
is to prove that this superpolynomial dependency on 𝑛 is
unavoidable.
Theorem 5. Let 𝜎𝑛 be an arbitrary Dyck word of length
≤

√
𝑛/8. Suppose an NFA A𝑛 recognizes a language with

Parikh image 𝐻𝑛 . Then the number of states of A𝑛 is at least
𝑛Ω (width(𝜎𝑛)) .

Corollary 2. If an NFAA𝑛 recognizes a language with Parikh
image 𝐻𝑛 , then its number of states is 𝑛Ω (

√
log𝑛/log log𝑛) .

Corollary 2 follows from Theorems 4 and 5.
Since 𝐻𝑛 is the Parikh image of a language recognized by

an OCA with 𝑛 states, it follows that there is no polynomial
translation from OCA to Parikh-equivalent NFA.



Re-pairing brackets LICS ’20, July 8–11, 2020, Saarbrücken, Germany

Our proof of Theorem 5 makes three steps:

1. In the NFA for 𝐻𝑛 we find accepting paths 𝜋𝐹 , param-
eterized by sets 𝐹 (𝐹 ⊆ [𝑛], |𝐹 | = |𝜎𝑛 |), and extract
re-pairings of 𝜎𝑛 from them. Roughly speaking, the pa-
rameter 𝐹 determines the set of indices 𝑙 for which the
path 𝜋𝐹 has 𝑦𝑘𝑙 = 1 or 𝑦𝑙𝑘 = 1 for some 𝑘 ; conceptually
this is the set of states visited by the OCA H𝑛 .
Intuitively, as 𝜋𝐹 goes through any strongly connected
component (SCC) in the NFA, the re-pairing erases
(some) pairs (2𝑖, 2 𝑗 + 1), where {2𝑖, 2 𝑗 + 1} ⊆ 𝐹 , such
that a cycle in this SCC reads letters 𝑎2𝑖 and 𝑎2𝑗+1. To
find a bijection between even and odd indices (which is
a necessary step in the construction of the re-pairing),
we use the Birkhoff—von Neumann theorem on doubly
stochastic matrices (see, e.g., [50, p. 301]).

2. With every SCC 𝑉 in the NFA, we associate an auxil-
iary set 𝐵(𝑉 ) ⊆ [𝑛]. Intuitively, 𝐵(𝑉 ) corresponds to
the information that the NFA must keep in its memory
when it is in 𝑉 . These sets 𝐵(𝑉 ) have the following
property: 𝐵(𝑉 ) ⊆ 𝐹 for every path 𝜋𝐹 which visits 𝑉 .
We show that each path 𝜋𝐹 must visit an SCC 𝑉𝐹 for
which |𝐵(𝑉𝐹 ) | ≥ width(𝜎𝑛)/3.

3. By making 𝐹 range in a family F of sets with low in-
tersection, we ensure that no other path 𝜋𝐹 ′ can visit
the SCC 𝑉𝐹 . So the NFA has at least |F | SCCs, and
therefore at least |F | states. The low intersection prop-
erty means that |𝐹1∩ 𝐹2 | ≤ 𝑑 for all distinct 𝐹1, 𝐹2 ∈ F .
We choose 𝑑 = width(𝜎𝑛)/3 − 1; the family F of size
𝑛Ω (𝑑) can be obtained by the Nisan—Wigderson con-
struction [40].

We give more details in the following subsections.

6.1 Graph of strongly connected components
We first make several observations about the structure of
the transition graph of an NFA A = A𝑛 which recognizes a
language 𝐿(A) with Parikh image 𝐻𝑛 . Denote by𝑄0,𝑄1, . . . ,
𝑄𝑠 the (strongly connected) components in the transition
graph of the automaton A which are reachable from the ini-
tial state and from which a final state is reachable. Assume
without loss of generality that A has no other strongly con-
nected components. Suppose the initial state of A belongs
to the component 𝑄0.
The first observation is that every edge labeled 𝑐𝑖 𝑗 on a

path from the initial state to a final state goes from one
strongly connected component to another because 𝑦𝑖 𝑗 ≤ 1
by the condition (H1).
The second observation concerns directed cycles in the

transition graph of the automaton A. Let 𝐶 be such a cycle.
Denote by 𝑥 (𝐶)

𝑖
the number of edges in this cycle that are

labeled by the symbol 𝑎𝑖 . The balance condition (H2) implies
the following statement.

Claim 6. For the edges of every cycle𝐶 in the transition graph
of the automaton A, the vector (𝑥 (𝐶)

𝑖
: 0 ≤ 𝑖 < 𝑛) belongs to

the cone of balanced vectors 𝐾 .

We construct, based on the transition graph ofA, another
graph B—the condensation of A, also known as the graph
of strongly connected components. The vertices of this graph
are strongly connected components in the transition graph
of A. The edges of B correspond to the edges of A between
different components. An edge in B has label (𝑖, 𝑗) if the cor-
responding transition in A has label 𝑐𝑖, 𝑗 ; and no label if the
transition in A has label Y or 𝑎𝑖 for some 𝑖 . By construction,
the graph B may have parallel edges and is acyclic.

Vertices of B that contain initial (resp. final) state(s) of the
NFA A are called initial and final, respectively. A path from
the initial vertex to a final vertex in B is a complete path.
Recall that chains are defined earlier in this section, on

page 8, when we describe condition (H1).

Claim 7. Let 𝜋 be a complete path in the graph B. Then the
labels on (the edges of) this path induce a chain on the set [𝑛].
By Claim 7, the edges of every complete path 𝜋 in the

graph B induce a chain. We will denote the set of elements
of [𝑛] visited by this chain by𝐶 (𝜋). For every complete path,
{0, 𝑛 − 1} ⊆ 𝐶 (𝜋). Note that since every chain is essentially
a monotone path, it is uniquely determined by the set of
numbers from the set [𝑛] that it visits (i.e., the set of elements
of [𝑛] that are incident to at least one edge on the chain).

6.2 Sets associated with strongly connected
components

Consider, in the graph B, a path from the initial vertex to
a vertex 𝑣 . Take all labels from the edges of this (incom-
plete) path. These labels form a subgraph of a chain and are
therefore a disjoint union of non-intersecting paths: from
number ℓ0 to 𝑟0; from ℓ1 to 𝑟1; . . . ; from ℓ𝑡 to 𝑟𝑡 .

Claim 8. Let 𝑣 be a vertex in the graph B. Then for every
path in B from the initial vertex to 𝑣 the set of numbers

ℓ0 < 𝑟0 < ℓ1 < 𝑟1 < · · · < ℓ𝑡 < 𝑟𝑡 (5)
is the same.

Sketch of the proof. Observe that any path from the initial
vertex to 𝑣 and any path from 𝑣 to a final vertex are comple-
tions of each other.
Assume for the sake of contradiction that for paths 𝜋

and 𝜋 ′ from the initial vertex to 𝑣 the sequences
ℓ0 < 𝑟0 < ℓ1 < 𝑟1 < · · · < ℓ𝑡 < 𝑟𝑡 ,

ℓ ′0 < 𝑟
′
0 < ℓ ′1 < 𝑟

′
1 < · · · < ℓ ′𝑡 ′ < 𝑟

′
𝑡 ′

are different. Consider the first difference and suppose it is
the left endpoint of a segment. Without loss of generality,
ℓ𝑖 < ℓ ′𝑖 . Take some path 𝜋 ′′ from 𝑣 to a final vertex. The
unions 𝜋 ∪ 𝜋 ′′ and 𝜋 ′ ∪ 𝜋 ′′ should induce chains on [𝑛]; but
a simple case analysis shows that this is impossible. □



LICS ’20, July 8–11, 2020, Saarbrücken, Germany Dmitry Chistikov and Mikhail Vyalyi

The set (5) specifies a system of (closed) intervals inside
[𝑛]: [ℓ0, 𝑟0], [ℓ1, 𝑟1], . . . , [ℓ𝑡 , 𝑟𝑡 ]. Numbers in the interior of
any of these intervals, i.e., inside the interval but except
the two endpoints, are internal for a vertex 𝑣 ; and numbers
outside the intervals are external.

Example 2. If the endpoints of the intervals are {1, 3, 6, 9},
then numbers 2, 7, 8 are internal, 0, 4, 5 are external, and the
numbers 1, 3, 6, 9 are neither.

A path from the initial vertex to 𝑣 always visits all end-
points of the intervals, and may also visit some numbers
internal for 𝑣 . Similarly, a path from 𝑣 to a final vertex al-
ways visits all endpoints of the intervals, and may also visit
some numbers external for 𝑣 .

For each vertex 𝑣 , we now define four subsets of [𝑛]:
• 𝑆 (𝑣) is the set of all numbers 𝑖 ∈ [𝑛] such that the
corresponding component inA contains an edge with
label 𝑎𝑖 ;

• 𝐼 (𝑣) is the set (5) from Claim 8;
• 𝐿(𝑣) is the set of all internal numbers for 𝑣 that are
visited by all paths from the initial vertex to 𝑣 ;

• 𝑅(𝑣) is the set of all external numbers for 𝑣 that are
visited by all paths from 𝑣 to final vertices.

Finally, we define
𝐵(𝑣) = 𝑆 (𝑣) ∪ 𝐼 (𝑣) ∪ 𝐿(𝑣) ∪ 𝑅(𝑣).

Claim 9. For every vertex 𝑣 in the graphB and every complete
path 𝜋 that visits 𝑣 , the inclusion 𝐵(𝑣) ⊆ 𝐶 (𝜋) holds.
Sketch of the proof. We have 𝐼 (𝑣) ⊆ 𝐶 (𝜋) by Claim 8, and
𝐿(𝑣) ⊆ 𝐶 (𝜋) and 𝑅(𝑣) ⊆ 𝐶 (𝜋) directly from the definitions.
The inclusion 𝑆 (𝑣) ⊆ 𝐶 (𝜋) requires a separate proof, which
is based on standard cut-and-paste arguments. □

Intuitively, Claim 9 links the information the NFAA must
“remember” in each control state 𝑣 to features of the paths
that 𝑣 belongs to.

It will be important in the sequel that the sets 𝐿(𝑣), 𝑅(𝑣),
and 𝑆 (𝑣) for vertices 𝑣 on a complete path are related. This
connection is characterized as follows.

Claim 10. Let a vertex 𝑣1 be visited by some complete path
before another vertex 𝑣2. (The vertices 𝑣1 and 𝑣2 may coincide.)
Then the set 𝐿(𝑣1) contains all numbers from 𝑆 (𝑣2) that are in-
ternal for 𝑣1, and the set 𝑅(𝑣2) contains all numbers from 𝑆 (𝑣1)
that are external for 𝑣2.

Proof. Suppose 𝑣1 occurs before 𝑣2 on some complete path 𝜋 ;
also suppose that the number 𝑖 is internal for 𝑣1 and belongs
to 𝑆 (𝑣2). We show by contradiction that 𝑖 ∈ 𝐿(𝑣1). Assume
that there is a path 𝜋 ′ from the initial vertex to 𝑣1 that has no
edges with labels of the form (𝑥, 𝑖) and (𝑖, 𝑥). Denote by 𝜋 ′′

the part of the path 𝜋 from 𝑣1 to the final vertex. Then 𝜋 ′∪𝜋 ′′

is a complete path, the vertex 𝑣2 is visited by this path, but
𝑖 ∉ 𝐶 (𝜋 ′ ∪ 𝜋 ′′), because 𝑖 is internal for 𝑣1. This contradicts
Claim 9, and in particular the inclusion 𝑆 (𝑣) ⊆ 𝐶 (𝜋).

The second assertion is proved in a similar way. □

6.3 Strategy for the rest of the proof
In the following subsection, we describe a construction that
produces paths 𝜋 in the graph B with ‘predetermined’𝐶 (𝜋).
Our construction will have the following properties:

• Each path 𝜋 is originally chosen based (in a certain
way) on a Dyck word 𝜎 ; we show how to obtain from 𝜋

a re-pairing of 𝜎 (based on Claim 12 below).
• The width of this re-pairing will bound the cardinality
of the set 𝐵(𝑢) from below, for some vertex 𝑢 = 𝑢 (𝜋)
on the path 𝜋 (Claim 13).

• Many (different) paths 𝜋 will be chosen and it will be
ensured that the sets𝐶 (𝜋) have low pairwise intersec-
tion (Subsection 6.5).

Now suppose that the vertex 𝑢 = 𝑢 (𝜋) for a path 𝜋 is visited
by another such path, say 𝜋 ′. Then the intersection of the sets
𝐶 (𝜋 ′) and 𝐶 (𝜋) includes 𝐵(𝑢) by Claim 9. On the one hand,
the cardinality |𝐵(𝑢) | is greater than or equal to the width
of the re-pairing (times a constant factor); on the other hand,
no two sets 𝐶 (𝜋 ′) and 𝐶 (𝜋) may overlap a lot. Therefore,
with a careful choice of parameters, vertices 𝑢 = 𝑢 (𝜋) are
not shared by the paths 𝜋 (that is, each 𝑢 can only belong
to one 𝜋 ), and so the NFA A should have at least as many
strongly connected components as we can choose paths 𝜋 .

6.4 From NFA and Dyck word to re-pairing
Let 𝜎 be a Dyck word of length 𝑠 ≤ 𝑛

2 . As everywhere in
this section, we assume that 𝑛 is even. Based on the word 𝜎 ,
we identify a family of sets that will be useful throughout
in the sequel. Conceptually, for each set 𝐹 in this family, the
OCA H𝑛 visits exactly the states 𝐹 ⊆ [𝑛] = {0, 1, . . . , 𝑛 − 1}
in some accepting computation.

Definition 1 (well-formed sets). We call a set 𝐹 ⊆ [𝑛] of
size 𝑠 well-formed if, for some auxiliary set 𝐺 ⊆ [𝑛2 ] of the
same size with {0, 𝑛2 − 1} ⊆ 𝐺 , the set 𝐹 is determined by
the following rule. Sort the elements of𝐺 in ascending order.
Suppose the 𝑖th least element is equal to 𝑗 ; then 𝐹 contains
the number 2 𝑗 if 𝜎 (𝑖) = +1 and the number 2 𝑗 + 1 otherwise.

Note that, here and below, the dependence on 𝜎 is not
reflected in the notation. Since 𝜎 , as a Dyck word, begins
with a +1 and ends with a −1, we have {0, 𝑛 − 1} ⊆ 𝐹 for
every well-formed 𝐹 .

Remark 4. The correspondence between the elements of the
set 𝐹 and the symbols of the word 𝜎 defined in this way is
a bijection. We will refer to the symbols in the word 𝜎 by
specifying the corresponding numbers from the set 𝐹 .

We now associate with the word 𝜎 a family of vectors from
the hard set 𝐻𝑛 as follows. These vectors will be determined
by some well-formed set 𝐹 and some nonnegative integer _;
we will denote them (𝒚𝐹 , 𝒙𝐹 (_)).



Re-pairing brackets LICS ’20, July 8–11, 2020, Saarbrücken, Germany

Definition 2 (vectors (𝒚𝐹 , 𝒙𝐹 (_))). Given a well-formed 𝐹
and _ ≥ 0, we set 𝑦𝑖 𝑗 = 1 if 𝑖 and 𝑗 are two adjacent elements
(in ascending order) in the set 𝐹 , otherwise 𝑦𝑖 𝑗 = 0; 𝑥𝑖 = _ if
𝑖 ∈ 𝐹 , otherwise 𝑥𝑖 = 0.

Example 3. Let 𝜎 = 𝑍 (2) = ++−+−−; 𝑠 = |𝜎 | = 6 and 𝑛 =

16; 𝑠 ≤ 𝑛
2 = 8. The set 𝐹 = {0, 2, 7, 10, 13, 15} is well-formed,

as witnessed by the auxiliary set 𝐺 = {0, 1, 3, 5, 6, 7} ⊆ [8].
The vector (𝒚𝐹 , 𝒙𝐹 (_)) satisfies the equations 𝑦0,2 = 𝑦2,7 =

𝑦7,10 = 𝑦10,13 = 𝑦13,15 = 1 and 𝑥0 = 𝑥2 = 𝑥7 = 𝑥10 = 𝑥13 =

𝑥15 = _, and all other components of this vector are 0.

The vectors (𝒚𝐹 , 𝒙𝐹 (_)) defined in this way belong to the
hard set 𝐻𝑛 : conditions (H1) and (H3) hold by construction,
and condition (H2) by the fact that the word 𝜎 is a Dyck
word.

Let 𝐹 be any well-formed set, 𝐹 ⊆ [𝑛]. We now find, for
this 𝐹 , a complete path 𝜋𝐹 in the graph B, as follows.

For every _, the transition graph of the NFAA has at least
one path 𝜏 (_) from the initial state to a final state on which
the labels form a word with Parikh image (𝒚𝐹 , 𝒙𝐹 (_)), i.e.,
each symbol 𝑐𝑖 𝑗 occurs 𝑦𝑖 𝑗 times and each 𝑎𝑖 occurs 𝑥𝑖 times.

Decompose the path 𝜏 (_) into cycles and a simple path in
a greedy way, by reading the sequence of states 𝑞0, 𝑞1, . . . , 𝑞𝑡
of the automaton A specified by the path 𝜏 (_), from left to
right. Suppose we have constructed a partial decomposition

𝜏 (_) = 𝑞0𝛾0 (_)𝑞1 (_)𝛾1 (_) . . . 𝑞𝑚 (_)𝑞𝑖+1 . . . 𝑞𝑡 ,
where 𝑞𝑚 (_) = 𝑞𝑖 . We find the last occurrence of 𝑞𝑖 in the
sequence 𝜏 (_): 𝑞𝑘 = 𝑞𝑖 and 𝑞 𝑗 ≠ 𝑞𝑖 for all 𝑗 > 𝑘 . The subse-
quence 𝑞𝑖+1, 𝑞𝑖+2, . . . , 𝑞𝑘 = 𝑞𝑖 forms a cycle in the transition
graph of the automaton A; denote this cycle 𝛾𝑚 (_). After
this, set 𝑞𝑚+1 (_) = 𝑞𝑘+1. Alternatively, if the state 𝑞𝑖 never
occurs further on the path 𝜏 (_), we set 𝛾𝑚 (_) be the empty
cycle and 𝑞𝑚+1 (_) = 𝑞𝑖+1. In this way we obtain a total de-
composition

𝜏 (_) = 𝑞0𝛾0 (_)𝑞1 (_)𝛾1 (_) . . . 𝑞𝑇 (_)𝛾𝑇 (_), (6)

where all 𝑞𝑚 (_) are distinct states ofA which together form
a simple path in the transition graph. In particular,𝑇 does not
exceed |𝑄 (A)|, the number of states of the automaton A.
Since the set of possible values of the parameter _ is infi-

nite, there exists a sequence 𝜏∗
𝐹
= (𝑞0, 𝑞1, . . . , 𝑞𝑇 ) of distinct

states of the NFA A that coincides with infinitely many se-
quences (𝑞0, 𝑞1 (_), . . . , 𝑞𝑇 (_)) that occur in the decomposi-
tion (6). (Note that here the set 𝐹 is fixed and the parameter _
ranges over nonnegative integers.)
The sequence 𝜏∗

𝐹
corresponds to a complete path in the

graph B up to the choice of parallel edges. Choose these
edges, and thus a complete path 𝜋𝐹 , in such a way that 𝜋𝐹
corresponds (in the graph B) to infinitely many values of
the parameter _. Denote the vertices of this path

𝑣
(𝐹 )
0 , 𝑣

(𝐹 )
1 , . . . , 𝑣

(𝐹 )
𝑇
.

The following claim holds by definition of the vectors 𝒚𝐹 .

Claim 11. 𝐶 (𝜋𝐹 ) = 𝐹 for every well-formed 𝐹 .

We next connect accepting paths in the automatonA and
re-pairings of the word 𝜎 . We construct such a re-pairing
based on the sets 𝑆 (𝑣 (𝐹 )

𝑖
), where the vertices 𝑣 (𝐹 )

𝑖
are as above

and the sets 𝑆 (·) are defined in Subsection 6.2.
Claim 12. Every well-formed set 𝐹 can be decomposed as a
union of disjoint sets {ℓ𝑖 , 𝑟𝑖 }𝑠/2𝑖=1 such that for all 𝑖 there is a 𝑘
with {ℓ𝑖 , 𝑟𝑖 } ⊆ 𝑆 (𝑣 (𝐹 )𝑘

). For each pair (ℓ𝑖 , 𝑟𝑖 ), the corresponding
pair of signs in 𝜎 is formed by a plus and a minus, and the
plus occurs to the left of the minus.

Proof. For each label (𝑖, 𝑗) on the edges of the path 𝜋𝐹 , we
have {𝑖, 𝑗} ⊆ 𝐹 by Definition 2. By Claim 9, 𝑆 (𝑣 (𝐹 )

𝑘
) ⊆ 𝐶 (𝜋𝐹 ),

and 𝐶 (𝜋𝐹 ) = 𝐹 by Claim 11.
It is clear that each cycle 𝛾𝑚 (_) lies in some strongly con-

nected component of the transition graph of A. Note that
the balance condition holds for every cycle in the transition
graph of the automaton A (by Claim 6), and thus for each
𝛾𝑚 (_). Since the vector 𝒙𝐹 (_) belongs to the cone of bal-
anced vectors as well, the balance condition also holds for
the multiplicities of the labels 𝑎𝑖 on the other edges of the
path 𝜏 (_). Moreover, the number of these (other) edges can-
not exceed |𝑄 (A)|, simply because the states in the sequence
𝜏∗
𝐹
are all distinct.
Therefore, if we take the expansion of the vector 𝒙𝐹 (_) as

a nonnegative linear combination of the generators of the
cone 𝐾 , this expansion can be split into two terms as follows:

𝒙𝐹 (_) =
∑
𝑘

∑
(𝑖, 𝑗) :{𝑖, 𝑗 }⊆𝑆 (𝑣 (𝐹 )

𝑘
)

𝑢
(𝑘)
𝑖 𝑗

(_)𝒆𝑖, 𝑗 +
∑
(𝑖, 𝑗)

𝑣𝑖 𝑗 (_)𝒆𝑖, 𝑗 . (7)

Here the vectors
𝒆𝑖, 𝑗 = (0, . . . , 0︸  ︷︷  ︸

𝑖

, 1, 0, . . . , 0︸  ︷︷  ︸
𝑗−𝑖−1

,−1, 0, . . . , 0), 𝑖 even, 𝑗 odd, 𝑖 < 𝑗

(8)
generate the cone of balanced vectors (the proof can be found,
e.g., in the full version of the paper), the outer summation in
the first term enumerates all vertices 𝑣 (𝐹 )

𝑘
on the path, and the

second term puts together the contribution of the edges not
included in the cycles 𝛾𝑖 (_). We thus have 𝑣𝑖 𝑗 (_) ≤ |𝑄 (A)|.

Denote by 𝑍 even
𝐹

the intersection of 𝐹 with the set of even
integers and by 𝑍 odd

𝐹
the intersection of 𝐹 with the set of

odd integers. Notice that if 𝑢 (𝑘)
𝑖 𝑗

(_) > 0 or 𝑣𝑖 𝑗 (_) > 0, then
𝑖 ∈ 𝑍 even

𝐹
and 𝑗 ∈ 𝑍 odd

𝐹
, and that |𝑍 even

𝐹
| = |𝑍 odd

𝐹
| = 𝑠/2. Also

denote
𝑢𝑖 𝑗 (_) =

∑
𝑘

𝑢
(𝑘)
𝑖 𝑗

(_),

then the coefficients of the expansion (7) satisfy the equations∑
𝑖∈𝑍 even

𝐹

𝑢𝑖 𝑗 (_) +
∑

𝑖∈𝑍 even
𝐹

𝑣𝑖 𝑗 (_) = _, 𝑗 ∈ 𝑍 odd
𝐹 ,∑

𝑗 ∈𝑍 odd
𝐹

𝑢𝑖 𝑗 (_) +
∑

𝑗 ∈𝑍 odd
𝐹

𝑣𝑖 𝑗 (_) = _, 𝑖 ∈ 𝑍 even
𝐹 ,



LICS ’20, July 8–11, 2020, Saarbrücken, Germany Dmitry Chistikov and Mikhail Vyalyi

by definition of the vector 𝒙𝐹 (_). (Each equation in this
system corresponds to one coordinate of 𝒙𝐹 (_).)

Since there are infinitelymany possible values of _, and the
coefficients 𝑣𝑖 𝑗 (_) are upper-bounded by the number of states
of the automaton A, it follows that the matrices (𝑢𝑖 𝑗 (_)/_)
of dimension (𝑠/2) × (𝑠/2) (in which the rows are indexed
with even numbers from 𝐹 , and the columns by odd numbers
from 𝐹 ) have a limit point, (𝑢∗𝑖 𝑗 ), as _ → ∞. (Recall that we
picked the path through B in such a way that it corresponds
to infinitely many values of _.) We see from expansion (7)
that if𝑢∗𝑖 𝑗 > 0, then the set {𝑖, 𝑗} is contained in some 𝑆 (𝑣 (𝐹 )

𝑘
).

Moreover, we have∑
𝑖∈𝑍 even

𝐹

𝑢∗𝑖 𝑗 = 1,
∑

𝑗 ∈𝑍 odd
𝐹

𝑢∗𝑖 𝑗 = 1.

These conditions mean that (𝑢∗𝑖 𝑗 ) is a doubly stochastic ma-
trix of size (𝑠/2) × (𝑠/2). By the Birkhoff—von Neumann
theorem (see, e.g., [50, p. 301]), it is a convex combination of
permutation matrices. Take some permutation matrix that
occurs in this convex combination with a positive coefficient.

This permutation matrix specifies a bijection 𝛼 : 𝑍 even
𝐹

→
𝑍 odd
𝐹

between even and odd indices from 𝐹 . The bijection has
the following properties. If 𝛼 (2𝑖) = 2 𝑗 + 1, then 2 𝑗 + 1 > 2𝑖 ,
since𝑢2𝑖,2𝑗+1 (_) = 0 for 𝑖 > 𝑗 (see equation (8)). Furthermore,
every pair {2𝑖, 𝛼 (2𝑖)} is included in some set 𝑆 (𝑣 (𝐹 )

𝑘
) by ex-

pansion (7). Since 𝑍 even
𝐹

∪ 𝑍 odd
𝐹

= 𝐹 , we obtain the equality⋃
𝑘

𝑆 (𝑣 (𝐹 )
𝑘

) = 𝐹

and the required partitioning of the set 𝐹 into pairs
(2𝑖, 𝛼 (2𝑖)). Now recall that even numbers in 𝐹 correspond
to pluses in the word 𝜎 and odd numbers to minuses. This
correspondence is bijective by the construction of the set 𝐹 .
This completes the proof. □

Define a linear order on the pairs of signs identified by
Claim 12. Roughly speaking, this will be the order in which
the pairs {ℓ𝑖 , 𝑟𝑖 } occur along the path 𝜋𝐹 . More precisely, fix
for each 𝑖 some specific index 𝑘𝑖 such that {ℓ𝑖 , 𝑟𝑖 } ⊆ 𝑆 (𝑣 (𝐹 )𝑘𝑖

);
it exists by Claim 12. If 𝑘𝑖 < 𝑘 𝑗 then the pair (ℓ𝑖 , 𝑟𝑖 ) must
appear in the linear order before the pair (ℓ𝑗 , 𝑟 𝑗 ). If 𝑘𝑖 = 𝑘 𝑗
then the pairs can be ordered arbitrarily. This linear order
on the pairs gives us a re-pairing 𝑝𝐹 of the word 𝜎 .

Claim 13. width(𝑝𝐹 ) ≤ 3max𝑘
��𝐵(𝑣 (𝐹 )

𝑘
)
��.

Proof. In this argument, we identify the signs of the word 𝜎
with the corresponding numbers from the set 𝐹 . Recall that
𝐵(𝑣) = 𝑆 (𝑣)∪𝐼 (𝑣)∪𝐿(𝑣)∪𝑅(𝑣). The idea behind the assertion
is as follows. When the re-pairing has (just) erased all the
pairs included in the sets 𝑆 (𝑣 (𝐹 )1 ), 𝑆 (𝑣 (𝐹 )2 ), . . . , 𝑆 (𝑣 (𝐹 )𝑡 ), the set
of all erased signs is the union of intervals whose endpoints
are specified by the set 𝐼 (𝑣 (𝐹 )𝑡 ), plus perhaps the signs that
correspond to 𝑅(𝑣 (𝐹 )𝑡 ), but except the signs that correspond

to 𝐿(𝑣 (𝐹 )𝑡 ). (This property is based on Claim 10.) At all other
points in time, the set of all erased signs is almost the same—
except possibly for signs in one of the sets 𝑆 (𝑣 (𝐹 )

𝑘
). We will

now make this precise and provide justification.
Consider, for some 𝑡 , the first time point in the re-pairing

when the pairs included in the sets 𝑆 (𝑣 (𝐹 )1 ), 𝑆 (𝑣 (𝐹 )2 ), . . . , 𝑆 (𝑣 (𝐹 )𝑡 )
have all been erased. The set 𝐼 (𝑣 (𝐹 )𝑡 ) defines intervals

[ℓ0, 𝑟0]; [ℓ1, 𝑟1]; . . . [ℓ𝑚−1, 𝑟𝑚−1], 𝑚 =
1
2
��𝐼 (𝑣 (𝐹 )𝑡 )

��.
Suppose the number 𝑖 ∈ 𝐹 belongs to one of these intervals
and has not been erased yet. We then obtain from Claim 10
that 𝑖 ∈ 𝐿(𝑣 (𝐹 )𝑡 ) ∪ 𝐼 (𝑣 (𝐹 )𝑡 ). Similarly, if a 𝑗 ∈ 𝐹 does not
belong to these intervals and has been erased already, then
𝑗 ∈ 𝑅(𝑣 (𝐹 )𝑡 ) by the same claim. Therefore, every sign in the
word 𝜎 that has been erased by this time either is covered
by one of the𝑚 intervals, or belongs to the set 𝑅(𝑣 (𝐹 )𝑡 ); all
the signs inside these𝑚 intervals have been erased, except
maybe the elements of the set 𝐿(𝑣 (𝐹 )𝑡 ). But this means that
the set of all erased signs is a union of at most

1
2
��𝐼 (𝑣 (𝐹 )𝑡 )

�� + ��𝐿(𝑣 (𝐹 )𝑡 )
�� + ��𝑅(𝑣 (𝐹 )𝑡 )

�� ≤��𝐼 (𝑣 (𝐹 )𝑡 )
�� + ��𝐿(𝑣 (𝐹 )𝑡 )

�� + ��𝑅(𝑣 (𝐹 )𝑡 )
�� =��𝐼 (𝑣 (𝐹 )𝑡 ) ∪ 𝐿(𝑣 (𝐹 )𝑡 ) ∪ 𝑅(𝑣 (𝐹 )𝑡 )

��
intervals; so the width of the re-pairing at this time point
does not exceed this quantity. (Whether the endpoints of the
intervals are erased is irrelevant.)

Now consider an intermediate time point, when the pairs
included in the sets 𝑆 (𝑣 (𝐹 )1 ), 𝑆 (𝑣 (𝐹 )2 ), . . . , 𝑆 (𝑣 (𝐹 )

𝑡−1) have all been
erased, and so have some of the pairs included in the set
𝑆 (𝑣 (𝐹 )𝑡 ). The width of the re-pairing at this time point cannot
differ bymore than 2

��𝑆 (𝑣 (𝐹 )𝑡 )
�� from the samewidth at the time

point when the pairs included in the sets 𝑆 (𝑣 (𝐹 )1 ), 𝑆 (𝑣 (𝐹 )2 ),
. . . , 𝑆 (𝑣 (𝐹 )𝑡 ) have all been erased, because, when a pair is
erased, this can change (increase or decrease) the number of
intervals by at most 2.
In summary, at no point in the re-pairing can its width

exceed the quantity��𝐼 (𝑣 (𝐹 )𝑡 ) ∪ 𝐿(𝑣 (𝐹 )𝑡 ) ∪ 𝑅(𝑣 (𝐹 )𝑡 )
�� + 2

��𝑆 (𝑣 (𝐹 )𝑡 )
�� ≤

3
��𝐼 (𝑣 (𝐹 )𝑡 ) ∪ 𝐿(𝑣 (𝐹 )𝑡 ) ∪ 𝑅(𝑣 (𝐹 )𝑡 ) ∪ 𝑆 (𝑣 (𝐹 )𝑡 )

��,
where 𝑡 is chosen appropriately depending on the time point.
In particular, taking the maximum over all time points, we
obtain the desired inequality. □

6.5 Putting everything together: Proof of
Theorem 5

We now obtain a lower bound on the number of states of
the NFA A from the construction described in the previous
subsections. We will pick in the set [𝑛2 ] an appropriate big



Re-pairing brackets LICS ’20, July 8–11, 2020, Saarbrücken, Germany

enough family G of subsets with low pairwise intersection:
whenever𝐺1,𝐺2 ∈ G and𝐺1 ≠ 𝐺2, it should be the case that
|𝐺1 ∩𝐺2 | ≤ 𝑑 . The parameter 𝑑 will be chosen later.
There exist such families of cardinality𝑛Ω (𝑑) . Wewill use a

construction by Nisan and Wigderson [40], modified slightly.
We will assume 𝑛 to be sufficiently large, because for

small 𝑛 the statement of the theorem holds trivially (since
the constant in Ω(·) can be chosen appropriately).

Pick an (odd) prime 𝑝 in the interval between
√
𝑛/8 − 1/2

and
√
𝑛/2 − 2. For sufficiently large 𝑛, there are primes in

this interval due to Bertrand’s postulate (see, e.g., [3]). Also
pick a subset 𝐷 of size |𝜎𝑛 | − 2 in the finite field F𝑝 , where
𝜎𝑛 is the Dyck word from the statement of the theorem. This
is possible, because |𝜎𝑛 | − 2 ≤

√
𝑛/8 − 2 ≤

√
𝑛/8 − 1/2.

Embed F𝑝×F𝑝 into [𝑛2 ]\{0,
𝑛
2−1} arbitrarily. Themembers

of the family G are obtained from the graphs of univariate
polynomials of degree (strictly) less than 𝑑 − 1 restricted to
the subset 𝐷 , by applying this embedding and adding the
numbers 0 and 𝑛

2 − 1. There are 𝑝𝑑−1 such polynomials in
total; if 𝑑 − 1 ≤ 𝑝 , then different polynomials give rise to
different subsets in the family G, because the graphs of any
two polynomials of degree < 𝑑 − 1 can have an overlap of
size < 𝑑 − 1 only. This gives us a family G of 𝑝𝑑−1 = 𝑛Ω (𝑑)

subsets of [𝑛2 ], each of size |𝐷 | + 2 = |𝜎𝑛 | = 𝑂 (𝑛1/2), with
pairwise intersection of at most 𝑑 .

Let now F be the family of all well-formed sets obtained
according to Definition 1 from auxiliary sets𝐺 ∈ G. We have
𝐹 ⊆ [𝑛] and |𝐹 | = |𝜎𝑛 | for all 𝐹 ∈ F . Moreover, |F | = |G|
and F also has pairwise intersection of at most 𝑑 .
Denote𝑤𝑛 = width(𝜎𝑛). We have constructed in Subsec-

tion 6.4 a path 𝜋𝐹 in the graph B for each well-formed set 𝐹 ,
and in particular for each 𝐹 ∈ F . By Claim 13, this path
satisfies the inequality

max
𝑘

��𝐵(𝑣 (𝐹 )
𝑘

)
�� ≥ 𝑤𝑛/3.

Therefore, there is a vertex 𝑢 (𝐹 ) = 𝑣 (𝐹 )
𝑘

for which |𝐵(𝑢 (𝐹 ) ) | is
at least𝑤𝑛/3. By Claim 9, this set is included into𝐶 (𝜋𝐹 ) = 𝐹
(see Claim 11). Pick

𝑑 = 𝑤𝑛/3 − 1,

then the vertex𝑢 (𝐹 ) cannot be visited by any other path 𝜋𝐹 ′ ≠

𝜋𝐹 due to the upper bound on the pairwise intersection of
the subsets from F . (If it is, then 𝐵(𝑢 (𝐹 ) ) ⊆ 𝐶 (𝜋𝐹 ′) = 𝐹 ′

and |𝐹 ∩ 𝐹 ′ | ≥ 𝑤𝑛/3 = 𝑑 + 1. Therefore, |𝐹 ∩ 𝐹 ′ | ≥ 𝑑 + 1
and 𝐹 = 𝐹 ′, which is a contradiction.) Note that 𝑑 − 1 ≤ 𝑝 ,
as needed in the argument from the previous paragraph,
because 𝑝 = Ω(𝑛1/2) and 𝑑 = 𝑂 (log

√
𝑛/8) = 𝑂 (log𝑛) by

Theorem 1.
We have thus identified for each path 𝜋𝐹 , 𝐹 ∈ F , a unique

vertex of the graph B that is visited by no other path from
this family. So the number of vertices in the graph B, i.e., the
number of strongly connected components in the transition
graph of the NFA A, cannot be less than the number of

members of the family F , that is,
𝑝𝑑−1 = 𝑛Ω (𝑤𝑛) = 𝑛Ω (width(𝜎𝑛)) .

The number of states of A cannot be less than that either,
and this is exactly the assertion of Theorem 5.

7 Open problems
Our work suggests several directions for future research.
The first is computing the width of 𝑍 (𝑛) as well as of other
words, closing the gap between the upper and lower bounds.
Obtaining super-constant lower bounds (for infinite families
of words, both constructively and non-constructively) seems
particularly difficult.
Our lower bound on the width of 𝑌 (𝑛) leaves a gap be-

tween 𝑛Ω (
√
log𝑛/log log𝑛) and 𝑛𝑂 (log𝑛) for the size of blowup

in an OCA to Parikh-equivalent NFA translation, and our
second problem is to close this gap. We do not know if small-
width re-pairings can be converted into small NFA; thus,
stronger lower bounds on the NFA size (avoiding re-pairings)
might be possible.
The third problem is to recover a proof of Rozoy’s state-

ment that the Dyck language 𝐷1 is not generated by any ma-
trix grammar of finite index [47], or equivalently by any two-
way deterministic transducer with one-way output tape [45].
We expect that our lower bound construction for the width
can be extended appropriately.

Last but not least, our re-pairing game corresponds to the
following family of deterministic two-way transducers T𝑘
generating Dyckwords. The input to a transducer T𝑘 encodes
a derivation tree of width 𝑘 , in the sense defined in Section 5.
Symbols correspond to layers of the tree; there are 𝑂 (𝑘2)
symbols in the alphabet that encode the branching and𝑂 (𝑘2)
symbols that encode the positions of a pair of brackets (+ and
−). The transducer T𝑘 simulates a traversal of the tree and
outputs the generated word; it has 𝑂 (𝑘) states. All words of
width at most 𝑘 are generated by T𝑘 .

Our final problem is to determine if there exist smaller
transducers that generate all Dyck words of length 𝑛,
𝐷1∩{+,−}𝑛 , and do not generate any words outside𝐷1. Here
𝑛 is such that all words of length 𝑛 have width at most 𝑘 .

Acknowledgments
We are grateful to Georg Zetzsche for the reference to Ro-
zoy’s paper [47].
This research has been supported by the Royal Society

(IEC\R2\170123). The research of the second author has been
funded by the Russian Academic Excellence Project ‘5-100’.
Supported in part by RFBR grant 17-51-10005 and by the
state assignment topic no. 0063-2016-0003.

References
[1] Parosh Aziz Abdulla, Mohamed Faouzi Atig, Roland Meyer, and

Mehdi Seyed Salehi. 2015. What’s Decidable about Availability Lan-
guages?. In FSTTCS’15 (LIPIcs), Vol. 45. 192–205.



LICS ’20, July 8–11, 2020, Saarbrücken, Germany Dmitry Chistikov and Mikhail Vyalyi

[2] Samuel Abraham. 1965. Some questions of phrase-structure gram-
mars I. Computational Linguistics 4 (1965), 61–70.

[3] Martin Aigner and Günter M. Ziegler (Eds.). 2009. Proofs from THE
BOOK. Springer.

[4] Rajeev Alur and Pavol Cerný. 2010. Expressiveness of streaming string
transducers. In FSTTCS’10. 1–12.

[5] Rajeev Alur and Pavol Cerný. 2011. Streaming transducers for algorith-
mic verification of single-pass list-processing programs. In POPL’11.
599–610.

[6] Rajeev Alur and Mukund Raghothaman. 2013. Decision Problems for
Additive Regular Functions. In ICALP’13 (Proceedings, Part II). 37–48.

[7] Mohamed Faouzi Atig, Dmitry Chistikov, Piotr Hofman, K. Narayan
Kumar, Prakash Saivasan, and Georg Zetzsche. 2016. The complexity
of regular abstractions of one-counter languages. In LICS’16. 207–216.

[8] Félix Baschenis, Olivier Gauwin, Anca Muscholl, and Gabriele Pup-
pis. 2016. Minimizing Resources of Sweeping and Streaming String
Transducers. In ICALP’16. 114:1–114:14.

[9] Barron Brainerd. 1967. An Analog of a Theorem about Context-Free
Languages. Information and Control 11, 5/6 (1967), 561–567.

[10] Dmitry Chistikov and Mikhail Vyalyi. 2019. Re-pairing brackets.
arXiv:1904.08402 [cs.FL]

[11] Stephen A. Cook and Ravi Sethi. 1976. Storage Requirements for
Deterministic Polynomial Time Recognizable Languages. J. Comput.
Syst. Sci. 13, 1 (1976), 25–37.

[12] Jürgen Dassow, Gheorghe Păun, and Arto Salomaa. 1997. Grammars
with Controlled Derivations. InHandbook of Formal Languages, Volume
2. Linear Modeling: Background and Application. Springer, 101–154.

[13] Laure Daviaud, Pierre-Alain Reynier, and Jean-Marc Talbot. 2016. A
Generalised Twinning Property for Minimisation of Cost Register
Automata. In LICS’16. 857–866.

[14] Joost Engelfriet and Hendrik Jan Hoogeboom. 2001. MSO definable
string transductions and two-way finite-state transducers. ACM Trans.
Comput. Log. 2, 2 (2001), 216–254.

[15] Javier Esparza. 1997. Petri Nets, Commutative Context-Free Grammars,
and Basic Parallel Processes. Fundam. Inform. 31, 1 (1997), 13–25.

[16] Javier Esparza, Pierre Ganty, Stefan Kiefer, and Michael Luttenberger.
2011. Parikh’s theorem: A simple and direct automaton construction.
Inf. Process. Lett. 111, 12 (2011), 614–619.

[17] Javier Esparza, Pierre Ganty, and Tomás Poch. 2014. Pattern-Based
Verification for Multithreaded Programs. ACM Trans. Program. Lang.
Syst. 36, 3 (2014), 9:1–9:29.

[18] Javier Esparza, Michael Luttenberger, and Maximilian Schlund. 2014.
A Brief History of Strahler Numbers. In LATA’14 (Lecture Notes in
Computer Science), Vol. 8370. 1–13.

[19] Emmanuel Filiot and Pierre-Alain Reynier. 2016. Transducers, logic
and algebra for functions of finite words. SIGLOG News 3, 3 (2016),
4–19.

[20] Pierre Ganty and Rupak Majumdar. 2012. Algorithmic Verification
of Asynchronous Programs. ACM Trans. Program. Lang. Syst. 34, 1,
Article 6 (May 2012), 48 pages.

[21] Seymour Ginsburg and Edwin H. Spanier. 1968. Derivation-Bounded
Languages. J. Comput. Syst. Sci. 2, 3 (1968), 228–250.

[22] Hermann Gruber and Markus Holzer. 2006. Finding Lower Bounds for
Nondeterministic State Complexity is Hard. Electronic Colloquium on
Computational Complexity (ECCC) 13, 027 (2006). Conference version
in: Developments in Language Theory (DLT) 2006; Lecture Notes in
Computer Science, vol. 4036, pp. 363–374, Springer.

[23] Jozef Gruska. 1971. A Few Remarks on the Index of Context-Free
Grammars and Languages. Information and Control 19, 3 (1971), 216–
223.

[24] Christoph Haase and Piotr Hofman. 2016. Tightening the Complex-
ity of Equivalence Problems for Commutative Grammars. In STACS
(LIPIcs), Vol. 47. 41:1–41:14.

[25] Matthew Hague and AnthonyWidjaja Lin. 2012. Synchronisation- and
Reversal-Bounded Analysis of Multithreaded Programs with Counters.
In CAV (Lecture Notes in Computer Science), Vol. 7358. Springer, 260–
276.

[26] Jochen Hoenicke, Roland Meyer, and Ernst-Rüdiger Olderog. 2010.
Kleene, Rabin, and Scott Are Available. In CONCUR (Lecture Notes in
Computer Science), Vol. 6269. Springer, 462–477.

[27] Markus Holzer and Martin Kutrib. 2008. Nondeterministic Finite
Automata-Recent Results on the Descriptional and Computational
Complexity. In CIAA’08. 1–16.

[28] Juraj Hromkovic. 1997. Communication Complexity and Parallel Com-
puting. Springer.

[29] Juraj Hromkovic, Holger Petersen, and Georg Schnitger. 2009. On the
limits of the communication complexity technique for proving lower
bounds on the size of minimal NFA’s. Theor. Comput. Sci. 410, 30-32
(2009), 2972–2981.

[30] Dung T. Huynh. 1983. Commutative Grammars: The Complexity of
Uniform Word Problems. Information and Control 57, 1 (1983), 21–39.

[31] Dung T. Huynh. 1985. The Complexity of Equivalence Problems for
Commutative Grammars. Information and Control 66, 1/2 (1985), 103–
121.

[32] Eryk Kopczynski. 2015. Complexity of Problems of Commutative
Grammars. Logical Methods in Computer Science 11, 1 (2015).

[33] Eryk Kopczynski and Anthony Widjaja To. 2010. Parikh Images of
Grammars: Complexity and Applications. In LICS. 80–89.

[34] Michel Latteux. 1979. Substitutions dans le EDT0L Systèmes Ultral-
inéaires. Information and Control 42, 2 (1979), 194–260.

[35] Thomas Lengauer and Robert Endre Tarjan. 1980. The Space Com-
plexity of Pebble Games on Trees. Inf. Process. Lett. 10, 4/5 (1980),
184–188.

[36] Michael Conrad Loui. 1979. The space complexity of two pebble games
on trees. Technical memorandum TM-133. Laboratory for Computer
Science, Massachusetts Institute of Technology (MIT).

[37] Friedhelm Meyer auf der Heide. 1981. A Comparison of two Variations
of a Pebble Game on Graphs. Theor. Comput. Sci. 13 (1981), 315–322.

[38] Anca Muscholl. 2017. A Tour of Recent Results on Word Transducers.
In FCT’17. 29–33.

[39] Anca Muscholl and Gabriele Puppis. 2019. The Many Facets of String
Transducers (Invited Talk). In STACS (LIPIcs), Vol. 126. 2:1–2:21.

[40] Noam Nisan and Avi Wigderson. 1994. Hardness vs Randomness. J.
Comput. Syst. Sci. 49, 2 (1994), 149–167.

[41] Jakob Nordström. 2013. Pebble Games, Proof Complexity, and Time-
Space Trade-offs. Logical Methods in Computer Science 9 (2013), 1–63.
Issue 3.

[42] Jakob Nordström. 2015. New Wine into Old Wineskins: A Survey of
Some Pebbling Classics with Supplemental Results. http://csc.kth.se/
~jakobn/research/PebblingSurveyTMP.pdf

[43] Rohit J. Parikh. 1966. On Context-Free Languages. J. ACM 13, 4 (1966),
570–581.

[44] Vaclav Rajlich. 1972. Absolutely Parallel Grammars and Two-Way
Finite State Transducers. J. Comput. Syst. Sci. 6, 4 (1972), 324–342.

[45] Brigitte Rozoy. 1985. About two-way transducers. In FCT’85. 371–379.
[46] Brigitte Rozoy. 1986. Outils et Résultats Pour Les Transducteurs Bous-

trophedons. ITA 20, 3 (1986), 221–249.
[47] Brigitte Rozoy. 1987. The Dyck Language 𝐷′

1
∗ Is Not Generated by

Any Matrix Grammar of Finite Index. Inf. Comput. 74, 1 (1987), 64–89.
[48] Arto Salomaa. 1969. On the Index of a Context-Free Grammar and

Language. Information and Control 14, 5 (1969), 474–477.
[49] John E. Savage. 1998. Models of Computation: Exploring the Power of

Computing. Addison-Wesley. http://cs.brown.edu/people/jsavage/
book/

[50] Alexander Schrijver. 2003. Combinatorial optimization. Springer.
[51] Jeffrey Shallit. 2009. A Second Course in Formal Languages and Au-

tomata Theory. Cambridge University Press.

https://arxiv.org/abs/1904.08402
http://csc.kth.se/~jakobn/research/PebblingSurveyTMP.pdf
http://csc.kth.se/~jakobn/research/PebblingSurveyTMP.pdf
http://cs.brown.edu/people/jsavage/book/
http://cs.brown.edu/people/jsavage/book/

	Abstract
	1 Introduction
	2 Basic definitions
	3 Simple bounds and simple re-pairings
	3.1 Proof of the Theorem 1

	4 Upper bound for complete binary trees
	5 Lower bounds
	6 An application: Lower bounds for commutative NFA
	6.1 Graph of strongly connected components
	6.2 Sets associated with strongly connected components
	6.3 Strategy for the rest of the proof
	6.4 From NFA and Dyck word to re-pairing
	6.5 Putting everything together: Proof of Theorem 5

	7 Open problems
	Acknowledgments
	References

