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Molecular Communication in Fractional Diffusive Channel
Author 1, Author 2, and Author 3

Abstract—The molecular communication system with
anomalous/fractional diffusion inside a one-dimensional (1-
D) environment is considered. The time-dependent diffusivity
is incorporated in terms of the power-law diffusivity, and
the expression of first passage time density (FPTD) is
derived. Further, the peak pulse time and peak concentration
corresponding to the derived FPTD function are obtained.
Moreover, the analysis is extended in terms of the average
probability of error and throughput for the anomalous dif-
fusion channel. The analytical results are validated through
simulations.

Index Terms—Anomalous diffusion, fractional diffusion
equation, molecular communication and throughput.

I. INTRODUCTION

Molecular communication (MolCom) is an evolving
communication technology, where the molecules are used
as an information carrier to exchange the information
between the transmitter (TX) and receiver (RX) [1]. In the
available MolCom literature, the most widely used channel
for study is the diffusive channel, i.e., the displacement of
particles occurs solely due to Brownian motion [2]. In the
simplest case of diffusion, the mean square displacement
(MSD) of a particle in Brownian motion scales linearly
with time. For this reason many works in MolCom have
considered diffusive channels where the MSD of particles
varies linearly with time. However, this linear dependence
is not true in general, and in certain applications the MSD
of particles varies non-linearly with time and in these cases
the motion of a particle is known as non-Brownian motion.
In such diffusion processes, the MSD is considered to scale
as a fractional exponent of time, and the processes are
known as fractional diffusion processes [3].

The anomalous/fractional diffusion is observed in nu-
merous spatially disordered systems such as in plasmas
and turbulent fluids, and in biological media with traps,
receptor binding sites or macro-molecular crowding [4].
Extensive literature on anomalous diffusion can be found
in [5], [6] and references therein, where various models
and analytical methods have been proposed to describe
the mechanisms of anomalous diffusion. The analytical
modeling of anomalous diffusion is generally classified
in one of four ways [5]: (i) fractional Brownian motion
(fBm), (ii) scaled Brownian motion (SBM), (iii) Levy
flight, (iv) continuous-time-random-walk (CTRW). The
first two classes follow a Gaussian model, whereas the
latter two classes fall into the category of non-Gaussian
models [6]. In CTRW, a tagged particle waits for a random
time-step between two consecutive jumps. The CTRW
can be Markovian or non-Markovian, as determined by
the waiting time distribtuion (WTD). For example, ex-
ponential WTD corresponds to the Markovian CTRW,
whereas any non-exponential WTD corresponds to a non-
Markovian CTRW. Moreover, the CTRW is always a non-

Gaussian process. However, an SBM is always a Gaussian
process and holds the non-Markovian property due to
the power-law time dependent diffusion coefficient [7].
Further details of each model can be found in [5]–[7] and
references therein.

In a fractional diffusive medium, the analysis of Mol-
Com is a challenging task. Recently, several works in the
literature, including [8]–[12], have analyzed the fractional
diffusive channel in MolCom systems. The first-passage-
time-density (FPTD) function for the fractional diffusive
medium has been obtained in [8] using the Caputo frac-
tional derivative and the channel has been analyzed in
terms of bit error rate. In [9], the authors considered the
super-diffusive channel as a special case of fractional dif-
fusion and provided a technique for optimum detection at
the RX. An online event detection method which can cope
with fractional diffusion without knowing the statistical
knowledge of channel conditions was proposed in [10].
The stochasticity of an anomalous diffusive channel is an-
alyzed in [11]. Recently, authors in [12] used H-diffusion
modeling to analyze the anomalous diffusion phenomenon
in MolCom with a timing modulation method.

We note that in [8], [11], [12], authors have used the
generalized space-time fractional diffusion equation with
a composite fractional time derivative that involves the H-
function. In [9], sub-diffusive behavior was only analyzed
with the CTRW model. However, handling the Fox’s H-
function is analytically complex when compared to the
SBM model1, which uses a Gaussian distribution for the
spatiotemporal distribution of particles. The analysis of
a fractional diffusive channel using an SBM model is
computationally less complex and analytically tractable,
yet is still an open problem in the MolCom literature.
Moreover, the pulse peak time and pulse peak response
are important metrics for analyzing MolCom channels.
The analytical study of these metrics is also yet to be
done for an anomalously-diffusive channel. Furthermore,
in [14], [15] and references therein, the error probability
and information rate have been analyzed for the nor-
mally diffusive channel, however these metrics for an
anomalously-diffusive channel are still unexplored. Based
on these motivations, our main contributions in this paper
are as follows:

1) We consider the anomalous diffusion phenomenon
for molecule propagation inside a 1-D fractional
diffusive channel2, and the FPTD is derived con-

1The water diffusion in brain tissue as measured by MRI can be
analyticaly modeled using the SBM model [13].

2The MolCom channel can be approximated as a 1-D channel when the
length of channel is much greater than its height, such that the molecules
diffuse more along x-axis than y-axis [16]. Such approximations are valid
in several MolCom applications such as lab-on-chip [17] and nanoporous
flow systems [18].
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sidering the power-law diffusivity. Further, the ex-
pression for cumulative density function (CDF) of
hitting probability of molecules is also derived.

2) The expressions for pulse peak time corresponding
to the spatiotemporal probability density function
(PDF) of molecules, and FPTD are obtained. Fur-
thermore, the corresponding pulse peaks are derived.

3) Using the optimal detector developed for normal
diffusion in [14], [15], the anomalously-diffusive
communication channel is analyzed in terms of
average probability of error and throughput.

The derived analytical expressions are verified using
Monte-Carlo and particle-based simulation approaches.

II. FRACTIONAL DIFFUSION CHANNEL MODEL

The anomalous diffusion of molecules is mathematically
governed by a fractional diffusion equation. One of the
simplest ways to define anomalous diffusion is using time-
dependent diffusivity in which the instantaneous diffusion
coefficient D(t) of molecules is time-varying and depends
on effective diffusion coefficient (Df ) as [6]

D(t) = αtα−1Df , (1)

where α is the anomalous diffusion exponent and ranges
over 0≤ α≤ 2. The parameter α defines three types of
diffusion phenomena, a) normal diffusion (α= 1) corre-
sponds to ordinary Brownian motion, and b) sub-diffusion
(α ≤ 1), and c) super-diffusion (α ≥ 1) correspond to
the SBM [6]. The impulsive release of the molecules is
considered at a point xo and time to, which satisfies the
initial conditions c(x, t = to|xo) = δ(x = xo), where
c(x, t) denotes the PDF of spatiotemporal distribution of
molecules, and δ denotes an impulse function. Let us
consider xa is a perfectly absorbing point along the x-axis,
and imposes the boundary condition c(x = xa, t) = 0, i.e.,
the tagged molecule is completely absorbed upon reaching
xa. For the given initial conditions, according to Fick’s
second law of diffusion the evaluation of concentration
for particles with SBM in a 1-D medium is given by [3,
eq. (1.66)] as

∂c(x, t|xo)
∂t

= αtα−1Df
∂2c(x, t|xo)

∂x2
. (2)

Note that the above equation is also known as effective
Fokker-Planck equation for SBM. When xa → ∞, i.e.,
without the absorbing point in the medium, the solution
of (2) can be obtained as

c(x, t|xo) =
1√

4πDf tα
exp

(
− (x− xo)2

4Df tα

)
. (3)

Remark: It can be observed that the PDF shown in (3)
follows the standard Gaussian distribution with variance
σ2
m = 2Df t

α, and is non-Markovian due to the power law
diffusivity [7]. Moreover, the MSD of particles is equal to
σ2
m i.e.,

〈
x2
〉
∼ 2Df t

α = 2Df t
2H , where H denotes

the Hurst exponent and 0 ≤ H ≤ 1 [5]. In anomalous
diffusion, the Hurst exponent related to α as H = α

2 , is
an important parameter in SBM and fBm, as it defines the
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Fig. 1: Effect of anomalous diffusion on, (a) the PDF of spa-
tiotemporal concentration, for the parameters: Df = 100µm2/s,
and t = 2 s, and (b) FPTD function of molecules for the
parameters: Df = 5µm2/s, and xa=10µm.

different types of anomalous diffusion as 0 < H < 1/2,
H = 1/2, and 1/2 < H < 1, corresponding to sub-
diffusion, normal diffusion, and super-diffusion, respec-
tively [5].

Lemma 1. The FPTD for a tagged molecule arrival at the
point xa originating from the point xo in a 1-D anomalous
diffusive environmental is derived as

fp(t) =
|xa − xo|√
4πDf tα+2

exp

(
−(xa − xo)2

4Df tα

)
. (4)

Proof. The proof is given in Appendix-A.

Fig. 1 shows the PDF given in (3) and FPTD derived in
Lemma 1 which describes and compares the characteristics
of three types of diffusion phenomena: normal diffusion
(α = 1), sub-diffusion (α ≤ 1) and super-diffusion (α ≥
1). In Fig. 1(a), it is assumed that there is no absorbing
point in the channel. The Monte-Carlo simulations are
performed for 105 realizations. In this figure, it can be
observed that the spatiotemporal concentration for sub-
diffusion phenomenon has a light-tailed distribution when
compared to the other two diffusions, on the other hand
super-diffusion has a heavy-tailed distribution. In other
words, higher α leads to a larger MSD.

Fig. 1(b) shows the FPTD function derived in (4) and
verified using particle-based simulations (PBS) for 104

realizations. For PBS the total time-interval is chosen as
20 s and the location of each molecule is traced in small
time-steps ∆t = 0.1 s until it reaches the absorbing point.
The displacement of a single molecule follows the normal
distribution ∆x ∼ N (0, σ2

m), where σ2
m = 2Df (∆t)

α

[3]. From Fig. 1(b) it can be observed that for sub-
diffusion, the FPTD function is more dispersed due to its
lower mean square displacement compared to the other
two diffusion phenomena. Moreover, the super-diffusion
achieves a higher PDF peak faster when compared to the
other two diffusion phenomena due to a higher MSD.

Lemma 2. The pulse peak time corresponding to the
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FPTD function and spatiotemporal PDF are obtained as

tp,1 =

(
αd2

2Df (α+ 2)

) 1
α

, and tp,2 =

(
d2

2Df

) 1
α

, (5)

respectively, where d is the distance between the release
and absorbing points of a molecule, and the corresponding
peak values are

fp(tp,1) =

√
α+2

2πα

(
2Df (α+2)

d2α

) 1
α

exp

(
−(α+2)

2α

)
, (6)

and cp(tp,2) =
1

d
√

2πe
, (7)

respectively.

Proof. The pulse peak time of the FPTD function is
obtained by differentiating (4) with respect to the variable
t and equating it to zero, i.e., ∂fp(t)∂t = 0. We get

exp

(
−d2

4Df tα

)
d

t
√

4πDf tα

[
αd2

4Df tα
− (α+ 2)

2

]
= 0.

(8)

After some mathematical simplifications of (8), the pulse
peak time tp,1 results in (5) and after substituting the value
of tp,1 into (4) the peak response is obtained as (6). For
the normal diffusion case (α = 1), the pulse peak time
tp,1 = d2/6Df . The peak time tp,1 and corresponding
peak fp(tp,11) is shown in Fig. 1(b) using the black circle
(‘◦’) marker which closely matches with the simulations.

To obtain the peak pulse time corresponding to the
spatiotemporal PDF (c (x, t, xo)), we differentiate (3) and
equate it to zero, resulting in (5). Note that for α = 1
(normal diffusion) the pulse peak time is tp,2 = d2

2Df
, which

is the same as that given in [19].

III. COMMUNICATION CHANNEL MODEL

A TX and a RX positioned at xo and xa, respectively,
are considered in the 1-D anomalous diffusive medium.
The TX transmits binary information towards the RX using
information-carrying molecules having instantaneous dif-
fusion coefficient D(t) as given in (1). The communication
channel between the nanomachines is divided into K time-
slots i.e., binary sequence BK1 = {b[1], b[2], . . . , b[K]} is
transmitted in K time-slots, where b[j] denote the symbol
transmitted in the jth time-slot and j ∈ {1, 2, . . .K}. The
jth time-slot is defined as the time period [(j − 1)τ, jτ ],
where τ is the duration of one slot. For transmission
of binary information, on-off-keying (OOK) method is
used. In OOK at the beginning of each time-slot, the TX
emits Qs number of molecules with prior probability β1
for transmission of information symbol ‘1’ or remains
silent for transmission of information symbol ‘0’ with
prior probability β0. Let the binary sequence B̂

K

1 =
{b̂[1], b̂[2], . . . , b̂[K]} denote the received information at
RX, where b̂[j] denotes the jth received bit corresponding
to the transmitted bit b[j]. For the mathematical ease and in
line with the assumptions in [20], the nanomachines are

considered to be perfectly synchronized. The molecules
emitted from TX follow 1-D anomalous diffusion and
reach the RX at random times. Further, we assume that
the motion of each particle is independent and also they
independently reach the RX. Let pj−i denote the probabil-
ity that molecules are transmitted in ith time-slot from TX
and arrive in the jth time-slot at RX. The probability pj−i
can be obtained using the FPTD fp(t) derived in (4) as
pj−i =

∫ (j−i+1)τ

(j−i)τ fp(t)dt = [F (j − i+ 1)τ − F (j − i)τ ],
where F (t) is the CDF derived in Lemma 1.

IV. PERFORMANCE ANALYSIS OF ANOMALOUS
DIFFUSIVE COMMUNICATION CHANNEL

The number of molecules received at the receiver in
the jth time-slot that were transmitted in the ith time-
slot follows a Binomial distribution. For a large number
of transmitted molecules and low arrival probability, the
total number of received molecules is approximated as a
Poisson-distributed random variable (r.v.). Let N [j] be the
total number of molecules received at RX in the jth time-
slot, which as a sum of Poisson random variables is also
a Poisson r.v. i.e., N [j] ∼ P

(
λb[j][j]

)
, b[j] ∈ {0, 1},

where, λb[j][j] = b[j]Qsp0+
∑j−1
i=1 b[j−i]Qspi is the total

expected number of molecules at RX for the transmitted
bit b[j]. Here, the first and second terms are expected
number of intended and inter-symbol-interference (ISI)
molecules, respectively. The terms p0 and pi denote the
arrival probabilities of molecules in the intended and
interfering time-slots, respectively. Based on the number of
molecules received at RX, the decision rule corresponding
to the optimal decision threshold η∗[j] is defined as3

b̂[j] =

{
1, if N [j] ≥ η∗[j],
0, otherwise.

(9)

1) Average Probability of Error: Without prior knowl-
edge of symbol transmission, the expression for proba-
bility of error for OOK, in the jth time-slot, for given
possible ISI sequence Bj−11 is obtained as [14], [15]

Pe[j|Bj−11 ] = Pr(̂b[j] = 0|b[j] = 1,Bj−11 )Pr(b[j] = 1)

+ Pr(̂b[j] = 1|b[j] = 0,Bj−11 )Pr(b[j] = 0), (10)

where the terms Pr(̂b[j] = 0|b[j] = 1,Bj−11 ) and Pr(̂b[j] =
1|b[j] = 0,Bj−11 ) are defined as

Pr(̂b[j] = 0|b[j] = 1,Bj−11 ) =

bη[j]c∑
l=1

e−λ1[j](λ1[j])l

l!
,

Pr(̂b[j] = 1|b[j] = 0,Bj−11 ) = 1−
bη[j]c∑
l=1

e−λ0[j](λ0[j])l

l!
,

3The expression for optimal threshold η∗[j] which optimizes
the system error performance was derived in [14] as η∗[j] =

ln(β0/β1)+Qsp0
ln(λ1[j])−ln(λ0[j])

. We note that the value of η∗[j] depends on the value
of pj−i, which depends on the value of anomalous diffusion exponent
α. Thus, anomalous diffusion affects the value of η∗[j].
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where bΦc gives the largest integer less than or equal
to Φ, and η is an arbitrary decision threshold. The
end-to-end average probability of error in the jth
time-slot, P e[j], is obtained by averaging Pe[j|Bj−11 ]
over all possible realizations of Bj−11 , i.e., P e[j] =∑

Bj−1
1 ∈χ Pr(Bj−11 )Pe[j|Bj−11 ], where χ is the set of all

possible realizations of Bj−11 , and Pr(Bj−11 ) is the proba-
bility of occurrence of Bj−11 .

2) Throughput: Let b[j] and b̂[j] be two discrete ran-
dom variables that represent the transmitted and received
symbols in the jth time-slot, respectively. The conditional
mutual information in the jth time-slot between b[j] and
b̂[j] can be obtained as

I(b[j]; b̂[j]|Bj−11 ) =
∑

b[j]∈{0,1}

∑
b̂[j]∈{0,1}

Pr(̂b[j]|b[j],Bj−11 )

× Pr(b[j]|Bj−11 ) log2

Pr(̂b[j]|b[j],Bj−11 )

Pr(̂b[j]|Bj−11 )
, (11)

where

Pr(̂b[j] = 0|Bj−11 ) = Pr(̂b[j] = 0|b[j] = 0,Bj−11 )β0

+ Pr(̂b[j] = 0|b[j] = 1,Bj−11 )β1

= (1−Pf [j|Bj−11 )])β0+(1−Pd[j|Bj−11 )])β1,

and, Pr(̂b[j] = 1|Bj−11 ) = Pf [j|Bj−11 )]β0+Pd[j|Bj−11 )]β1,
here Pf [·] = Pr(̂b= 1|b= 0), and Pd[·] = Pr(̂b= 1|b= 1),
denote the probability of false alarm and probability of
detection, respectively. Now the maximum mutual infor-
mation (Iβm|B

j−1
1 ) = max

β
(I(b[j]; b̂[j]|Bj−11 ) is obtained

by differentiating (11) with respect to the prior probability
β1 = β and put equal to zero. After some mathematical
simplifications, the prior probability βm at which mutual
information is maximum can be obtained as

βm =
Pf [j|Bj−1

1 ]
(
2Θ + 1

)
− 1

(Pf [j|Bj−1
1 ])]− Pd[j|Bj−1

1 ]) (2Θ + 1)
, (12)

where Θ , H(Pd[j|Bj−1
1 ])−H(Pf [j|Bj−1

1 ])

Pd[j|Bj−1
1 ]−Pf [j|Bj−1

1 ]
, and H(a)

denotes the binary entropy function. After putting
βm in (11) and some mathematical simplification, the
closed form expression for the term (Iβm|B

j−1
1 ) =

H(q0[j])−(1−βm)H(Pf [j|Bj−11 ])−βmH(Pd[j|Bj−11 ]),

where q0[j] , Pr(̂b[j] = 0) and q1[j] , Pr(̂b[j] = 1). The
throughput of the channel is defined as the maximum
of the average mutual information Î about the decision
threshold η[j] and can be expressed as [21]

C = max
η[j]

(Î) bits/slot, (13)

where average mutual information Î considering
all the possible realizations is given as
Î = 1

K

∑K
j=1

∑
Bj−1
1 ∈χ(Iβm|B

j−1
1 )/2j−1.

3) Numerical Analysis: Analysis of the anomalous dif-
fusive channel is carried out in terms of average mutual
information and average probability of error, which is
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Fig. 3: Throughput (cf. (13)) as a function of anomalous
coefficient α for the given value of time-slot duration τ .

shown in Fig. 2. The system parameters4 chosen are : Df

= 5 µm2/s, τ = 3.3 s, Qs ∈ {100, 200, 103}, d = 10 µm, α
= [0.5−2], ∆t = 0.001 s, β = 0.5, and K = 5. To calculate
the number of molecules at RX, we use the CDF derived
in Lemma 1. Subsequently, Monte-Carlo simulations are
performed for 103 realizations to validate the expressions
of P e and Î , and it can be observed that the simulation
results corroborate the analytical expressions. One can
observe from Fig. 2 that for super-diffusion the average
probability of error is minimal compared to the sub-
diffusion and normal-diffusion phenomena. Moreover, the
average mutual information is maximum in case of super-
diffusion compared to the two other diffusion phenomena.
Also, for the given value of α, the average probability
of error achieves its minimum value and corresponding
mutual information achieves its maximum value at the
optimal threshold η∗. Fig. 3 shows the effect of anomalous
coefficient α on the throughput C for the number of
transmitted molecules Qs = 200. This figure reveals that
as the value of α increases, the value of C increases for any
given time-slot duration. Numerically, for τ = 3.33 s, we
obtain C = 0.0631 bits/slot for α = 1 (normal-diffusion)
and C = 0.045 bits/slot for α = 0.5 (sub-diffusion)
and the value C increases to 0.297 bits/slot for α = 2
(super-diffusion). Furthermore, the value of C increases

4It is worth noting that the chosen system parameters make the Poisson
approximation of the Binomial distribution more accurate than the normal
approximation [22].
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to C = 0.81 bits/slot for τ = 5 s, for the case of super-
diffusion.

V. CONCLUSION

A molecular communication system with anomalous
diffusion inside a 1-D environment is considered. The
expressions of FPTD, peak pulse time, and peak con-
centration have been derived. Furthermore, the analysis
was extended to find the average probability of error
and throughput for the anomalous diffusive molecular
communication channel.

APPENDIX A
PROOF OF LEMMA 1

Let xo and xa be the emitting and absorbing points
for the tagged molecule. Let T be the first passage time
which is defined as T = inf{t : x(t) = xa}. The survival
probability Ps(t) is defined as the probability that the
tagged molecule has remained at a position x ≤ xa for
all times up to t, and is given by [23]

Ps(t) =

∫ xa

−∞
c(x, t, xo, xa)dx , (14)

where c(x, t, xo, xa) denotes the PDF satisfying absorbing
boundary condition (c(xa, t) = 0) in (3) and is given as

c(x, t, xo,xa) =
1√

4πDf tα

[
exp

(
− (x−xo)2

4Df tα

)

− exp
(
− (x−(2xa−xo)2

4Df tα

)]
. (15)

The survival probability Ps(t) after solving (14) is ob-

tained as Ps(t) = erf
(

xa−xo
2
√
Df tα

)
. For the absorbing

boundary condition, i.e., c(xa, t) = 0, the FPTD can be
obtained by differentiating survival probability Ps(t) with
respect to t as fp(t) = −∂Ps(t)∂t . Differentiating (14) with
respect to the t leads to (4). For α = 1, (4) can be
simplified as

fp(t) =
d√

4πDf t3
exp

(
−d2

4Df t

)
, (16)

where d , |xa − xo| denotes the Euclidean distance
between molecule emtting and absorbing points. One can
note that (16) is the PDF of FPTD for a normally-diffusive
1-D medium [2]. Furthermore, the corresponding cumula-
tive density function is obtained as F (t) =

∫ t
0
fp(t

′
) dt

′
=

1
αerfc

(
d√

4Df tα

)
.
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