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Abstract
Transfer learning uses knowledge learnt in source domains to aid predictions in a target domain. When source and target
domains are online, they are susceptible to concept drift, which may alter the mapping of knowledge between them. Drifts in
online environments can make additional information available in each domain, necessitating continuing knowledge transfer
both from source to target and vice versa. To address this, we introduce the Bi-directional Online Transfer Learning (BOTL)
framework, which uses knowledge learnt in each online domain to aid predictions in others. We introduce two variants of
BOTL that incorporate model culling to minimise negative transfer in frameworks with high volumes of model transfer. We
consider the theoretical loss of BOTL, which indicates that BOTL achieves a loss no worse than the underlying concept
drift detection algorithm. We evaluate BOTL using two existing concept drift detection algorithms: RePro and ADWIN.
Additionally, we present a concept drift detection algorithm, Adaptive Windowing with Proactive drift detection (AWPro),
which reduces the computation and communication demands of BOTL. Empirical results are presented using two data stream
generators: the drifting hyperplane emulator and the smart home heating simulator, and real-world data predicting Time To
Collision (TTC) from vehicle telemetry. The evaluation shows BOTL and its variants outperform the concept drift detection
strategies and the existing state-of-the-art online transfer learning technique.

Keywords Online learning · Transfer learning · Concept drift

1 Introduction

Online learning (OL) is an important field of machine
learning research which allows supervised learning to be
conducted on data streams [9, 30]. Learning from data
streams can be challenging, particularly in environments
that are non-stationary in their nature, which can cause
concept drift [9]. Concept drift occurs when the underlying
concept changes over time, causing changes to the
distribution of data, and requires predictive models to be
updated or discarded to maintain effective predictions. To
build accurate models, many real-world applications require
large amounts of training data, which is often limited if
concept drifts occur [24].
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Transfer learning (TL) is another prominent field of
machine learning research, which allows models to be learnt
in domains where training data is readily available, and
used where it is limited to build more effective predictors
[24]. TL has typically been conducted offline, limiting
its use in real-world online environments [36]. It may
be desirable to use on-device learning to personalise the
functionalities of user facing applications, where a rich
history of data may not be available locally due to memory
limitations, and drifts may be encountered frequently.
Predictive performances could be enhanced using TL in an
online setting by using knowledge learnt from other data
streams to aid the target predictor.

The Online Transfer Learning (OTL) framework, devel-
oped by Zhao et al. [36], was proposed to enable TL to
be used within an online setting. Current versions of OTL
assume the source is in an offline environment [10, 12,
32], ignoring the possibility of concept drift occurring in a
source domain.

In this paper, we propose the Bi-directional Online Trans-
fer Learning (BOTL) framework,1 which considers source
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and target domains to be online. This has three benefits over
existing approaches. Firstly, individual concepts are learnt
in a source domain, using concept drift detection strategies,
and transferred to other domains to improve their predictive
performance [9].

Secondly, as new concepts are encountered in a source
domain, additional knowledge of the new concept is
transferred to other domains. Thirdly, knowledge can
be transferred bi-directionally, enabling more effective
predictions to be made in both source and target domains.
Specifically, we:

– Introduce the BOTL framework, enabling each domain
to benefit from online TL in a regression setting,

– Consider the theoretical loss of BOTL, showing
predictions made by BOTL are no worse than the
underlying concept drift detection algorithm,

– Introduce a novel drift detector, AWPro, which has
combined benefits of RePro [34] and ADWIN [3], and

– Show the performance of BOTL exceeds an existing
state-of-the-art online transfer learning technique and
existing concept drift detection algorithms with no
knowledge transfer using a variety of datasets.

We evaluate BOTL in a regression setting using two
synthetic datasets and one real-world dataset containing
both sudden and gradual drifts. We use BOTL in
conjunction with three concept drift detection strategies
to identify the underlying drifts occurring locally in each
domain, namely RePro [34] and ADWIN [3], and a
novel drift detection algorithm, Adaptive Windowing with
Proactive drift detection (AWPro). AWPro combines key
characteristics exhibited by ADWIN and RePro that are
beneficial to the BOTL framework when used within
applications that have computational and communication
limitations.

We compare BOTL with a state-of-the-art online TL
framework, the Generalised Online Transfer Learning
(GOTL) framework, which assumes the source is offline
[12].

The remainder of this paper is organised as follows.
Section 2 outlines related work. Section 3 formulates the
setting in which BOTL is used. Section 4 presents the
proposed framework, and the theoretical loss of BOTL is
presented in Section 5. Section 6 specifies the datasets used
to investigate the applicability of underlying concept drift
detection strategies, and evaluate the BOTL framework.
Section 7 outlines the three concept drift detection strategies
and discusses their limitations for use in BOTL. Section 8
presents empirical results of BOTL using a variety of
datasets, highlighting the beneficial characteristics of
concept drift detection strategies, robustness to noise, and
applicability to real-world data. Finally, Section 9 concludes
the paper.

2 Related work

Online TL combines OL and TL. The aim of TL is to
use knowledge learnt for a predictive task in one domain,
referred to as the source, to improve the effectiveness of
predictions in another domain, referred to as the target
[23]. There are three distinct types of TL: inductive,
transductive, and unsupervised [1, 5, 24]. Inductive TL is
used when source and target predictive tasks are different.
Knowledge is transferred from the source to induce a
supervised predictive function in the target [5]. Typically,
large amounts of labelled target data are required to create
a mapping between domains [24]. Unsupervised TL is
applied in a similar way, but to unsupervised learning tasks,
such as clustering [24]. Transductive TL is used when the
source and target predictive tasks are the same, transferring
knowledge to improve the predictive performance in a target
domain where no labelled data is available [1]. TL can be
further categorised as homogeneous, where the domains of
source and target are the same, or heterogeneous, where
they differ [36]. In this paper, we consider a homogeneous
setting, and use inductive TL to improve the predictive
performances within both source and target domains.

It is desirable for many modern applications, such as
smart home heating systems, to predict future events from
historical data. However, applications are often limited by
memory constraints, preventing a complete history of data
being retained [11]. Additionally, due to the dynamic and
non-stationary environment of data streams, the underlying
concept may evolve or drift over time [18]. Concept drift is
a change in the distribution of the observed data, or a change
in the mapping between observations and response variables
[15]. If the underlying concept changes, the previously built
model may no longer make effective predictions, requiring
the model to be modified or re-learnt [9].

To maintain effective predictions, concept drift detection
algorithms are frequently used in OL. Concept drift
detection algorithms typically use a sliding window to
maintain a subset of recent instances, usually used to update
or rebuild the predictive model. Strategies to update a model
include ensemble learning approaches, where the window
of recent instances is used to create a new model and
combined with previously learnt models to improve the
predictive performance. Model predictions are aggregated;
for example, Dynamic Weighted Majority (DWM) uses a
mean weighted by the models’ estimated performance [19].

Alternatively, concept drift detection algorithms such as
ADWIN [3] use the window of data to detect concept
drifts, and once a drift has been detected, a new predictive
model can be learnt that represents the current concept
independently of previous concepts. A challenge associated
with these concept drift detection strategies is that every
time a concept is encountered, a new model must be learnt,
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and data must be collected to build each model, even if
that concept has previously been encountered. RePro [33]
uses an approach similar to ADWIN, but retains a history
of concepts and concept transitions to prevent learning
new models for recurring concepts [34]. This prevents the
need to collect new data each time a recurring concept is
encountered; however, data must still be collected to build
models for new concepts. For many real-world applications,
particularly those that are user facing, knowledge obtained
from other data streams could enhance predictions when
new concepts are encountered through the use of online TL.

Existing online TL frameworks aim to transfer knowl-
edge learnt from an offline source to an online target for
classification tasks. OTL [36] combines the offline source
model with the online target model using a weighting mech-
anism that is updated with respect to the performance of the
source and target models on a sliding window of data in
the target domain. Other online TL frameworks [10, 17, 31]
use similar strategies to combine transferred models specifi-
cally for classification tasks, and cannot easily be adapted to
regressive settings. GOTL [12] extends the OTL weighting
mechanism such that online TL can be used for both classi-
fication and regression. The weighting mechanism used by
GOTL incrementally updates in steps to obtain weightings
for source and target models. If the step size, �, used to
modify the weights is small enough, the ensemble of source
and target models approximates the optimal weight combi-
nation [11]. However, if the step size is too small, it may take
substantial time for the weights to update to their desired
values, making predictions unreliable during this period.

The field of online TL relates to Online Multi-task
Learning (OMTL) [22, 25, 26], and Multistream Regression
(MSR) [14]. MSR can be seen as a special case, where
the source and target data streams are drawn from the
same underlying distribution, and all concepts encountered
in the target domain have previously been encountered in
the source [6]. This means the models transferred from
the source can be used to make predictions in the target
without requiring a target learner. This is unrealistic for
many real-world applications as although source and target
domains may be similar, it is unlikely the data streams are
drawn from the same distribution. The goal of OMTL is to
minimise the cumulative global loss across all domains [21],
whereas online TL aims to minimise the predictive losses
within each individual domain. Considering loss in this
way is beneficial when applied to tasks such as application
personalisation, where each domain represents a different
user, and prediction errors should be minimised for that
specific individual.

Although online TL has been actively studied [10, 12,
31, 32, 35, 36], existing approaches assume the source is
offline. We propose BOTL, which considers both source and
target in online environments, as might be expected in real-

world applications such as smart home heating, or vehicle
personalisation such as Adaptive Cruise Control (ACC).

3 Problem formulation

Let domain D consist of a feature space χ, where xt ∈
R

m is the instance observed at time t such that xt =
{xt1, . . . , xtm} ∈ χ. Given domain D, a task consists of
the target response variable, y ∈ Y , where y ∈ R, and a
regression function, f : χ → Y , which is learnt to map
observed data to the target concept [24]. The knowledge
learnt in a source domain, DS , can be transferred to the
target domain, DT , and used to enhance predictions [30].

Online TL aims to learn the target predictive function,
f T , that effectively predicts the response variable, yT

t ∈
YT , for each instance, xT

t ∈ χT, observed in the target
data stream, such that ŷ

′Ti
t = f T

i (xT
t ). Model transfer

is used to enhance the target predictor by combining
knowledge learnt in the local domain with knowledge
learnt from other domains. For example, if we consider
the scenario of application personalisation, where each
domain represents an individual user, each instance, xt , may
describe the user’s current environmental setting. If we wish
to personalise application functionality by predicting some
unknown value, yt , we may be able to utilise knowledge
learnt from another user, f S

j , to enhance the predictive
performance of the target learner. Identifying concept drift
in the source, S, allows models to be transferred, f S

j where
j = 1 . . . k, for each of the k concepts encountered in S.

BOTL aims to minimise the predictive error in the target
domain by combining knowledge learnt from the target data
stream with models previously learnt in a source domain.
Focusing on minimising the loss with respect to the local,
or target, domain makes BOTL highly applicable to the
task of application personalisation, where predictions are
made to benefit a specific individual. To achieve this, if
we have a source domain, DS , that has previously learnt
models f S

1 , . . . , f S
j , and a target domain, DT , that has

previously learnt models f T
1 , . . . , f T

i , at time t , then models
f S

1 , . . . , f S
j , should be made available to the target domain

such that the target learner can benefit from the knowledge
learnt in the source domain, DS . As both domains are
online, and knowledge transfer is bi-directional, the models
f T

1 , . . . , f T
i should also be made available to the source

domain, DS , such that the source learner can benefit from
the knowledge learnt in the target domain, DT .

In this paper, the source and target domains are
considered to be homogeneous, such that they share the
same underlying feature space, χS = χT, and YS = YT .
Although the domains are homogeneous, the underlying
concepts to be learnt within source and target domains may
not be equivalent; therefore, models from a source domain
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may not be relevant to the current target concept. BOTL
provides a mechanism to combine models and maximise the
impact of transferred models on the target. In presenting
BOTL, we use the notation detailed in Table 1.

4 Bi-directional Online Transfer Learning

To utilise knowledge of distinct concepts, BOTL hinges
upon a sliding window-based concept drift detection
algorithm. BOTL uses drift detection strategies that employ
batch learners to create base models, fi, from a window of
data within a domain. With small windows, batch learners
are susceptible to overfitting; however, larger window sizes
can cause a reduction in sensitivity to gradual drifts [9].
Alternatively incremental, or online, learners can be used.
However, during periods of gradual drifts, data belonging
to a new concept may be used to incrementally update
the base learner, preventing a drift from being detected.
This is problematic for the BOTL framework as a pair
of consecutive concepts present in one domain may not
exist in another domain, meaning transferred models may
be less effective than if they were learnt using data from
individual concepts. In this paper, we use three concept drift
detection algorithms, RePro [34], ADWIN [3], and a novel
drift detection algorithm, AWPro, detailed in Section 7.

Table 1 Notation

Definition

Dα Domain α: target, T , or source, S

χα Data stream α

Yα Response variables of α

xt ∈ χα The t th observed instance in χα

yt ∈ Yα The response variable of instance xt

M Knowledge base of models

f α
β : χα → Yα Model β learnt in domain α

FM : χT → YT Meta-model of M

ŷt Prediction using FM(xt )

ŷ
′αβ
t Prediction using f α

β(xt )

W Sliding window of instances

Wmax Maximum window size (RePro)

Wmin Minimum window size (ADWIN, AWPro)

errt Predictive error of instance xt

errW Predictive error across W

λl Loss threshold (RePro)

λd Drift threshold (RePro)

λr Recurrence threshold (AWPro)

δ Confidence value (ADWIN, AWPro)

λcperf Performance culling threshold

λcMI Mutual Information culling threshold

Although BOTL uses knowledge learnt from other
domains to improve the predictive performance of the
target learner, concept drift detection is conducted solely
using the locally learnt model. Conducting drift detection
independently of any knowledge transfer is necessary as the
use of transferred knowledge may enhance the predictive
performance across the current window of target data,
hindering drift detection.

A common challenge encountered by TL frameworks is
negative transfer [24], which occurs when an ineffective
model is transferred between domains. To address this,
BOTL adopts the notion of model stability, introduced by
Yang et al. [33], to determine if a locally learnt model
should be transferred to other domains. Yang et al. deem
a model to be stable if it has been learnt across 2Wmax

instances; however, this does not guarantee that the model
is able to make good predictions in the local domain.
Therefore, BOTL only considers a model to be stable if it
has been used to make predictions across 2Wmax instances
without a drift being detected. Unstable models are not
transferred, preventing them from negatively impacting
the target predictor. Defining model stability in this way
prevents BOTL from transferring models that have been
learnt from short, noisy periods of data, for example, during
drifting periods as one concept changes to another. Once
a model is considered to be stable, it is transferred to
other domains to aid their respective predictors, as shown
in Algorithm 1. This means that the models transferred by
BOTL are limited to those that have successfully learnt a
concept in their local domain.

Knowledge transfer is achieved in BOTL by communicating
models across domains. When model f S

j is received from a
source domain, it is added to the set of transferred models,
M , and combined with the target predictor, f T

i , to enhance
the overall predictive performance. Our instantiation of
BOTL uses an Ordinary Least Squares (OLS) regressor
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as a meta learner to combine the available models such
that the squared error of the predicted values, ŷ, across W

is minimised. Other regression meta-learners that are less
prone to overfitting on small windows of data, such as Ridge
Regression [4], could be used in place of OLS. In this paper,
we have chosen to use OLS as the meta-learner as it does
not require additional parameters which would have to be
determined from domain expertise or parameter tuning prior
to learning in each data stream.

Each transferred model, f S
j ∈ M , and the current target

model, f T
i , are used to generate a new window of data.

Each sample x′
t in the newly generated window of data is

of the form x′
t = {ŷ′S1

t , . . . , ŷ
′Sk
t , ŷ

′Ti
t }, where ŷ

′Sj

t for all
j = 1, . . . , k is the predicted value of source model f S

j

on instance xt from the original window of target data, and
ŷ

′Ti
t is the predicted value of the locally learnt target model,

f T
i , learnt using the underlying concept drift detection

algorithm for the current concept, ci . This window of model
predictions is used by the OLS meta-learner to obtain the
overarching predictive function:

ŷt = FM(x′
t )

= w0 +
⎛
⎝

k∑
j=1

wjf
S
j (xt )

⎞
⎠ + w(k+1)f

T
i (xt ). (1)

As the OLS meta-learner is prone to overfitting when
the window size is small and the number of base learners
is large, the BOTL framework only uses the current target
model, f T

i as input to the meta-learner. Other historical
models learnt within the data stream are excluded from
the meta-learning process as the underlying concept drift
detection strategy deems the current target model, f T

i , to be
the most relevant with respect to the current concept.

4.1 Bi-directional transfer

BOTL considers the scenario where all domains are online,
therefore distinctions between source and target can be
disregarded. In this paper, BOTL conducts peer-to-peer
model transfer, allowing knowledge transfer to enhance
the predictive performances of all domains. When a newly
learnt model is stable, it is transferred to all other domains
in the framework, and each domain updates its model set,
M , when a concept drift is encountered.

Real-world applications, such as smart home heating
system personalisations, may be comprised of a large
number of domains, rapidly increasing the number of
models to be transferred as the number of domains grow.
Such applications can suffer in predictive performance
due to the curse of dimensionality, where the number of
input features to the OLS meta learner becomes large in

comparison with the window size [8]. To combat this, we
introduce culling to BOTL, referred to as BOTL-C.

4.2 Model culling

Culling transferred models from the model set, M , helps
prevent the OLS meta-learner overfitting when a large
number of models have been transferred and only a small
window of data is available. This could be achieved by
limiting the maximum number of models used by the meta-
learner. However, due to the dynamic nature of the online
environment, the maximum number of models that will
prevent the meta-learner overfitting cannot be known in
advance. Therefore, a conservative estimate would have
to be made, requiring additional domain expertise. Using
a conservative estimate may prevent beneficial transferred
knowledge from being used to aid the target predictor.

Alternatively, transferred models can be evaluated on
the current window of data in order to discard transferred
models that are considered to be the least beneficial to the
target learner. We achieve this by introducing two variants of
BOTL-C. Firstly, BOTL-C.I reduces the number of models
available to the OLS meta-learner by temporarily removing
transferred models from the model set, M , when their R2

performance across the current window of data drops below
a threshold, λcperf . These models can be considered to
be the least beneficial to the target learner as they achieve
poor predictive performance on the current window of data.
Culled models are re-added to M when a concept drift is
encountered to enhance predictions of future concepts in the
target domain. Although this method of culling is naı̈ve, it
can reduce the impact of negative transfer.

In scenarios with high volumes of model transfer, BOTL-
C.I requires a high λcperf to sufficiently reduce the number
of models to prevent the OLS meta-learner overfitting. This
can be detrimental as a high proportion of the transferred
models containing useful information are culled and no
longer available to enhance the predictive performance of
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the target learner. To overcome this, BOTL-C.II, outlined
in Algorithm 2, evaluates transferred models based on
both performance and diversity, metrics commonly used
in ensemble pruning [37]. Initially, BOTL-C.II reduces
the impact of negative transfer by culling models that
achieve an R2 performance less than λcperf , on W . A
low λcperf value is preferred, ensuring transferred models
containing some useful information are retained. Using a
low threshold may not sufficiently reduce the model set,
M , to prevent overfitting; therefore, a second round of
culling is performed based on model diversity. BOTL-C.II
measures the diversity between transferred models using
Mutual Information (MI). MI allows models that obtain
similar predictions on the current window of data to be
identified [7]. If two transferred models have a high MI,
using both models in the meta-learning process will provide
little benefit to the target learner as a high MI indicates the
predictions of the two models on the current window of data
are highly correlated. Therefore, no additional knowledge
is provided to the target learner by keeping both in the
model set. If two transferred models have a MI greater than
λcMI , BOTL-C.II culls the model that performs worse. This
enables redundant models to be removed from the model
set, helping to prevent the OLS meta-learner overfitting.
A high λcMI should be selected as the window of locally
available data is often small; therefore if a complex concept
is to be learnt, the target learner may benefit from utilising
knowledge transferred from similar concepts. However, if
this threshold is too high, the model set, M , will not be
reduced sufficiently to prevent overfitting.

Culling thresholds, λcperf and λcMI , could be updated as
the data stream progresses using cross-validation, allowing
alternative culling parameter values to be compared during
the meta-learning process. However, due to the online nature
of the data streams, instances within a window cannot
be considered independent; therefore, the i.i.d. assumption
cannot be made [13], as three consecutive instances in the
window, xt−1, xt , and xt+1, are likely to be dependent.
Therefore, any validation set created from the window has
some dependence on the training set. This can cause cross-
validation to provide an overestimate of the performance of
culling parameters. Additionally, using cross-validation for
this purpose would require p ∗ k models to be trained and
validated every time the meta-learner is updated, where p

is the number of culling parameter values compared, and k

is the number of folds. As the BOTL framework is to be
used in domains with concept drifts, the meta-learner must
be updated regularly. Therefore, the use of cross-validation
would significantly increase the computation and storage
requirements of the BOTL framework, while overestimating
the performance of the culling parameters considered. This
would limit the use of BOTL in applications that require on-
device learning, or have limited computational resources.

Within this paper, naı̈ve culling approaches are used where
the values of culling parameters are chosen in advance,
mitigating the need for cross-validation.

4.3 Initialisation

For any underlying concept drift detection algorithm, an
initial window of data, W , is required to create the first
predictive model, f T

1 . Prior to obtaining this data, no
predictions can be made as no local knowledge has been
learnt. BOTL allows models transferred from other domains
to be used to make predictions during this period. Models
transferred are initially weighted equally to obtain:

ŷt = 1

|M|
|M|∑
j=1

f S
j (xt ). (2)

Before the first target model, f T
1 , has been learnt and

only a small amount of data has been observed, the OLS
regressor can create a model, FM , using only source
models, f S

j . This approach is prone to overfitting due to the
small amount of data available but may be preferred over
making no predictions or using Eq. 2 over the entire initial
window of data.

The BOTL-C variants help reduce overfitting within this
initial period; however, as the amount of available data is
small, all transferred models may have R2 performances
below the culling threshold. In this scenario, both BOTL-
C variants select the best k transferred models, where k <

|W |, regardless of the culling threshold. In this paper, we
select k = 3.

5 BOTL loss

Theorem 1 BOTL has a squared loss less than or equal
to the model learnt locally using a concept drift detection
algorithm with no knowledge transfer:

L (f T
i ) ≥ L (FM), (3)

where L (f T
i ) denotes the squared loss of the local model,

f T
i , created using a concept drift detection algorithm, and

L (FM) is the squared loss of the OLS meta-learner, FM ,
created using the set of k models transferred from the
source, {f S

1 , . . . , f S
k } and the current target model, f T

i .

Proof We measure loss over the local window of data, W ,
using the mean squared error of predictions:

L (·) = 1

|W |
|W |∑
t=1

(
yt − ŷt

)2
, (4)
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where yt is the response variable for instance xt , and ŷt is
the predicted value. If no transfer is used, the local model,
f T

i , is used to predict ŷt for each instance xt such that
ŷt = f T

i (xt ).
BOTL uses the set of models, M , to obtain predictions

ŷ
′Ti
t and all ŷ

′Sj

t for instance xt , using the locally
learnt model, f T

i , and each of the j transferred model,
f S

j ∈ {f S
1 , . . . , f S

k }, respectively.
Predictions are used to create a meta-instance, x′

t , which
the OLS meta-learner, FM , uses to obtain an overarching
prediction:

ŷt = FM
(
x′
t

)

= FM
(
〈f S

1 (xt ), . . . , f
S
k (xt ), f

T
i (xt )〉

)

= FM
(
〈ŷ′S1

t , . . . , ŷ
′Sk
t , ŷ

′Ti
t 〉

)
, (5)

where

FM
(
x′
t

) = w0 +
j=k∑
j=1

wj ŷ
′Sj

t + w(k+1)ŷ
′Ti
t . (6)

Weights w0, . . . , w(k+1) are assigned to each prediction,
ŷ

′n
t , for each model n in M , where |M| = (k + 1), to obtain

an ensemble prediction, ŷt , for instance xt by solving the
optimisation problem that minimises the squared error of
FM :

min
w0,...,w(k+1)

|W |∑
t=1

⎛
⎝yt −

⎛
⎝w0 +

j=k∑
j=1

wj ŷ
′Sj

t + w(k+1)ŷ
′Ti
t

⎞
⎠

⎞
⎠

2

. (7)

FM is used to make predictions, ŷt , for instance xt , using
Eq. 6. Using Eq. 4, we can rewrite the loss of FM as:

L (FM) = 1

|W |
|W |∑
t=1

⎛
⎝yt −

⎛
⎝w0 +

j=k∑
j=1

wj ŷ
′Sj

t + w(k+1)ŷ
′Ti
t

⎞
⎠

⎞
⎠

2

. (8)

If we constrain the optimisation problem in Eq. 7 to
obtain the meta-learner FM∗

by fixing the weights, wa , such
that the weight associated with the locally learnt model f T

i

is 1, while all others are 0, we obtain a meta-model of the
form:

FM∗ (
x′
t

) =
⎛
⎝0 +

j=k∑
j=1

0ŷ
′Sj

t + 1ŷ
′Ti
t

⎞
⎠ , (9)

giving the loss function:

L (FM∗
) = 1

|W |
|W |∑
t=1

(
yt − ŷ′T

t

)2
, (10)

equivalent to only using the locally learnt model,
L (FM∗

) = L (f T
i ). As the optimisation problem in Eq. 7

is convex:

L (FM∗
) ≥ L (FM). (11)

Finally, as the constrained optimisation problem in Eq. 9
is equivalent to using only the locally learnt model, f T

i , the
loss of BOTL is less than or equal to the loss of the locally
learnt model.

6 Experimental set-up

Many benchmark datasets have been created to evaluate
concept drift detection algorithms [16, 27, 28]; however,
most are categorically labelled. In order to evaluate BOTL
in a regression setting, we present a modification to the
benchmark drifting hyperplane dataset [20]. Additionally,
a simulation of a smart home heating system was created
using data from a UK weather station to derive desired
heating temperatures for a user. The use of such data enables
BOTL to be evaluated on data streams containing drifts
that are typical within real-world environments. Finally,
we evaluate the performance of BOTL using a following
distance dataset,2 created from vehicular data, and used to
predict the Time To Collision (TTC). An overview of the
dataset characteristics is shown in Table 2.

6.1 Drifting hyperplane

For this benchmark data generator, an instance at time t , xt ,
is a vector, xt = {xt1, xt2, . . . , xtn}, containing n randomly
generated, uniformly distributed, variables, xtn ∈ [0, 1].
For each instance, xt , a response variable, yt ∈ [0, 1], is
created using the function yt = (xtp + xtq + xtr )/3, where
p, q, and r reference three of the n variables of instance
xt . This function represents the underlying concept, ca to
be learnt and predicted. Concept drifts are introduced by
modifying which features are used to create y. For example,
an alternative concept, cb, may be represented by function
yt = (xtu + xtv + xtw )/3, where {p, q, r} 	= {u, v, w}
such that ca 	= cb. We introduce uniform noise, ±0.05, by
modifying yt for each instance xt with probability 0.2.

A variety of drift types have been synthesised in this
generator including sudden drift, gradual drift and recurring
drifts. A sudden drift from concept ca to concept cb is
encountered immediately between time steps t and t + 1
by changing the underlying function used to create yt and
yt+1. A gradual drift from concept ca to cb occurs between
time steps t and t + m, where m instances of data are
observed during the drift. Instances of data created between
t and t + m use one of the underlying concept functions
to determine their response variable. The probability of an
instance belonging to concept ca decreases proportionally
to the number of instances seen after time t while the

2Data generators, sample vehicle data, and reproducibility documen-
tation are available at: https://github.com/hmckay/BOTL

https://github.com/hmckay/BOTL
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Table 2 Dataset characteristics

Dataset Characteristic Dataset type Drift type # streams Avg. #xt per Drifts per

Sudden/gradual stream stream

SuddenA Uniform noise Synthetic �/ – 6 10,000 20

SuddenB Sensor failure Synthetic �/ – 6 10,000 20

SuddenC Intermittent sensor failure Synthetic �/ – 6 10,000 20

SuddenD Sensor deterioration Synthetic �/ � 6 10,000 20

GradualA Uniform noise Synthetic – / � 6 11,900 20

GradualB Sensor failure Synthetic �/ � 6 11,900 20

GradualC Intermittent sensor failure Synthetic �/ � 6 11,900 20

GradualD Sensor deterioration Synthetic – / � 6 11,900 20

Heating Weather data Hybrid �/ � 5 17,664 NA

Following Vehicular data Real-world �/ � 17 1909 NA

probability of it belonging to cb increases as we approach
t + m. Recurring drifts are created by introducing a concept
cc that reuses the underlying function defined by a previous
concept, ca , such that we achieve conceptual equivalence,
cc = ca . Datasets generated in this way, containing uniform
noise, are denoted by SuddenA and GradualA for sudden
and gradual drifting data streams respectively.

We also create variations of the drifting hyperplane data-
sets that introduce problems that may be encountered when
using BOTL in real-world environments. The first variation
simulates sensor failure. In this scenario, a feature vector, i,
is set to 0 from time t for the remainder of the data stream
with probability 0.001, such that xti = 0. In the scenario
where feature i is used to create the response variable y, we
modify two other feature vectors, j and k, such that xtj =
xti /4 and xtk = 3xti /4. This ensures that the underlying
concept can still be learnt from the data. We denote datasets
generated in this way as SuddenB and GradualB for sudden
and gradual drifting data streams.

The second variation simulates intermittent sensor
failure, where once the feature vector i has been selected
to fail, the feature value at time step t is set to 0 such that
xti = 0 with probability 0.3. Datasets generated using this
scenario are denoted as SuddenC and GradualC for sudden
and gradual drifting data streams respectively.

The third variation introduced emulates the deterioration
of a sensor. Sensor deterioration is captured by including
noise depending on the time step t such that xti = xti ±
(0.2(t/|χ|)), where 0.2 is the maximum amount of noise
added to instance xti and |χ| is the number of instances in
the dataset. This means that as the data stream progresses,
more noise is added to an individual feature, simulating
the gradual deterioration in accuracy of a sensor over
time. Additionally, the probability of a sensor deteriorating
increases as the data stream progresses, such that the
probability of a feature being selected for deterioration at

time t is 0.001(t/|χ|). Datasets generated in this way are
denoted as SuddenD and GradualD for sudden and gradual
drifting data streams respectively.

6.2 Heating simulation

A simulation of a smart home heating system was created,
deriving the desired room temperature of a user. Heating
temperatures were derived using weather data collected
from a weather station in Birmingham, UK, from 2014
to 2016. This dataset contained rainfall, temperature and
sunrise patterns, which were combined with a schedule,
obtained from sampling an individual’s pattern of life, to
determine when the heating system should be engaged.
The schedule was synthesised to vary the desired heating
temperature based on time of day, day of week and
external weather conditions, creating complex concepts.
To create multiple domains, weather data was sampled
from overlapping time periods and used as input to the
synthesised schedule to determine the desired heating
temperatures. Due to the dependencies on weather data,
each stream was subject to large amounts of noise.
Concept drifts were introduced manually by changing the
schedule; however, drifts also occurred naturally due to
changing weather conditions. By sampling weather data
from overlapping time periods, and due to seasonality,
data streams follow similar trends, ensuring predictive
performance can benefit from knowledge transfer. By using
complex concepts, dependent on noisy data, the evaluation
of BOTL on this data is more indicative of what is
achievable when used in real-world environments.

6.3 Following distance

This dataset uses a vehicle’s following distance and speed
to calculate TTC when following another vehicle. Vehicle
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telemetry data such as speed, gear position, brake pressure,
throttle position and indicator status, alongside sensory
data that infer external conditions, such as temperature,
headlight status and windscreen wiper status, were recorded
at a sample rate of 1 Hz. Additionally, some signals
such as vehicle speed, brake pressure and throttle position
were averaged over a window of 5 seconds to capture
a recent history of vehicle state. Vehicle telemetry and
environmental data can be used to predict TTC and
used to personalise vehicle functionalities such as ACC
by identifying the preferred following distance, reflecting
current driving conditions. Data was collected from 4
drivers for 17 journeys which varied in duration, collection
time and route. Each journey is considered to be an
independent domain and BOTL enables knowledge to be
learnt and transferred across journeys and between drivers.
Each data stream is subject to concept drifts that occur
naturally due to changes in the surrounding environment
such as road types and traffic conditions.

7 Drift detection strategies

BOTL relies on a concept drift detection algorithm, local
to each domain. Although any sliding window-based drift
detection strategy can be used, it is desirable for the
chosen strategy to learn as few models as possible to
represent concepts in the data stream. Limiting the number
of models learnt in each domain reduces the number of
input features to the OLS meta-learner, helping to prevent
overfitting caused by the curse of dimensionality [8].
Additionally, reducing the number of models needing to be
transferred across domains reduces the communication and
computational overhead of combining knowledge, which
may impact the feasibility of using BOTL in real-world
applications that require on-device learning.

Drift detection strategies that employ single model-based
approaches, instead of ensemble techniques, reduce the
number of models used to represent a single concept. If
an ensemble-based drift detector was used, such as DWM
[19], or Adaptive Windowing Online Ensemble (AWOE)
[29], the knowledge learnt to represent a single concept may
be encompassed across multiple models in the ensemble.
Therefore, all models, and their ensemble weights, would
need to be transferred across domains. Additionally, the
number of models learnt in each domain can be reduced
by allowing the reuse of previously learnt models when
concepts reoccur [33]. To achieve this, a history of models
can be retained to prevent redundant models being learnt
locally, and transferred across domains.

We consider three concept drift detection techniques to
underpin BOTL. Firstly, we adapt RePro [34] to a regres-

sion setting; secondly we apply ADWIN [3]; and thirdly we
propose a new concept drift detection algorithm, Adaptive
Windowing with Proactive drift detection (AWPro) which
combines elements of RePro and ADWIN. Each of these
drift detection strategies are dependent on user-defined
parameters, which require domain expertise to select appro-
priate values. Within this section, we discuss the impact
of user-defined parameters on each concept drift detection
strategy, and how this effects their applicability as the drift
detection algorithm within domains for BOTL. To highlight
this, we evaluate RePro, ADWIN and AWPro on synthetic
drifting hyperplane datasets, generated with uniform noise,
containing sudden and gradual drifts, simulated smart home
heating data, and real-world vehicle following distance data.

7.1 RePro

We consider an adaptation of RePro [34] for regression as an
underlying drift detector. Although RePro requires domain
expertise to select appropriate parameter values, including
window size, Wmax , drift threshold, λd , and loss threshold,
λl , it encapsulates key characteristics that allow few models
to be learnt in each domain. RePro is a sliding window-
based detection algorithm that learns a single model for
the current concept [33]. Additionally, RePro prioritises
the reuse of existing models over learning new models by
retaining a history of previously learnt models, HT , and
concept transitions, T MT , to proactively determine which
concept is likely to occur next [34].

RePro was initially developed specifically for classifica-
tion tasks; therefore, modifications are required for regres-
sion settings, shown in Algorithm 3. The original RePro
algorithm detects drifts by measuring the target models’
classification accuracy across the sliding window, W . When
the classification accuracy drops below an error threshold a
drift is detected [34]. If the window is full, |W | = Wmax ,
but the classification accuracy does not drop below the error
threshold, the sliding window is maintained by discarding
one incorrectly classified instance, and all subsequent cor-
rectly classified instances. To apply RePro to regression, the
sliding window must be maintained; however, the notion
of a correctly classified instance must be altered as small
inaccuracies are inevitable in regression settings due to
noise. To overcome this, ε-insensitivity can be used, allow-
ing for a small margin of error between the prediction and
response variable. To maintain a sliding window (lines 11–
14), we introduce a loss threshold, λl that allows instance
x(t−|W |) to be discarded from the window if the predicted
value, ŷ′

(t−|W |) satisfies:

|ŷ′
(t−|W |) − y(t−|W |)| ≤ λl .
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The R2 performance of the target model, f T
i , across W

is used to detect drifts (line 8). A drift is said to have
occurred when the performance of the target model drops
below a predefined drift threshold, λd , akin to observing the
classification accuracy dropping below an error threshold.

The original formulation of RePro used the notion
of a stable learning size, specifying how much data is
required to learn a stable model. This was necessary for
the simulated classification tasks presented by Yang et al.
[34] as small window sizes were required to allow drifts to
be detected quickly. However, this meant that insufficient
instances were available in the window to learn a model
that adequately represented the current concept [33]. Yang
et al. suggest a stable learning size of 3Wmax [34]. As real-
world environments are often considerably more noisy than
simulated or synthetic environments, using a small window
size can cause drifts to be falsely detected; therefore, a
larger window size is necessary [3]. Increasing the window

size also increases the stable learning size; however, if the
stable learning size is increased, the data used to create
a model may encapsulate multiple underlying concepts.
To overcome this challenge, our adaptation of RePro for
regression defines a stable model to be one that is learnt
from Wmax instances and is used to make predictions over
2Wmax instances without a drift being detected.

To proactively determine future concepts, RePro main-
tains a transition matrix, T MT , to determine the likelihood
of encountering a recurring concept. To prevent the reuse
of unstable models that make poor predictions, only those
that are considered to be stable are added to the transition
matrix. If the transition matrix indicates that it is equally
likely that two or more concepts may be encountered next,
RePro evaluates the performance of each model on the cur-
rent window of data and selects the model with the highest
accuracy. If the transition matrix does not indicate a likely
successor concept, each historical model is considered for
reuse. A new model is only learnt when all historical mod-
els perform worse than the drift threshold λd , as shown in
Algorithm 4.

7.1.1 Parameter selection

The characteristics of RePro as a drift detection strategy
are desirable for BOTL; however, the selection of parameter
values, Wmax , λd and λl , may not be intuitive. Given
an online data stream, trade-offs must be considered for
each parameter. For example, selecting a large window
size, Wmax , allows more data to be retained to build local
target models, increasing their accuracy and stability [2].
However, a window size that is too large may cause RePro
to react slowly to concept drifts, and may retain data from
multiple concepts, preventing a model from being created to
represent each concept independently. Alternatively, using
a small window size may allow RePro to react quickly
to drifts as a smaller window size may encapsulate a
sample of data that is more representative of the current
distribution of the data stream. However, selecting a window
size that is too small may prevent a representative sample
being retained to build a model that effectively represents
the current concept, reducing the overall performance of
RePro.

The drift and loss thresholds, λd and λl , determine
RePro’s sensitivity to concept drift. Small drift thresholds
and large loss thresholds decrease RePro’s sensitivity to
concept drifts as small λd values allow the performance
of a model to greatly decrease before a drift is detected,
while large λl values allow instances to be removed from
the sliding window while a model’s predictive error is
high.

Large λd and small λl values increase RePro’s sensitivity
to drifts. As RePro becomes more sensitive to concept drifts,
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it also becomes more likely that the window of data, W ,
used to build a model for the newly encountered concept
contains instances belonging to the previous concept.
Models built using data belonging to both the previous,
and new, concepts exhibit high predictive errors. As RePro
monitors the model performance to detect drifts, this can
cause RePro to repeatedly detect drifts and create unstable
models immediately after a concept drift, and during periods
of gradual drift. The repeated creation of unstable models
increases computation; however, these models are not added
to the transition matrix, T MT , or the model history,
HT , and therefore do not greatly impact the overarching
performance of RePro across the data stream and do
not impact the communicational overhead of knowledge
transfer. Due to this, selecting values for λd that are too
large, and values for λl that are too small, may prevent
RePro from creating stable models that can be added to
the model history where drifts are falsely detected in the
presence of noise.

7.2 ADWIN

ADWIN, presented by Bifet et al. [3], detects drifts by
monitoring changes in the distribution of a data stream. For
use in a regression setting, the distribution of predictive
error is monitored across a sliding window. Instead of using
a fixed length sliding window, the size of the window is
determined according to the rate of change observed in the
online data stream [3].

ADWIN operates on the principal that if two large enough
sub-windows have distinct enough means, the expected

values within each sub-window will differ [3, 9]. A drift is
said to be detected when:

|μ̂W0 − μ̂W1 | ≥ εcut, (12)

where μ̂W0 and μ̂W1 are the means of sub-windows W0 and
W1, and εcut is defined by the Hoeffding bound:

εcut =
√

1

2m
· ln

4|W |
δ

, (13)

where m is the harmonic mean of the sub-windows, m =
2

1/|W0|+1/|W1| , and δ is a confidence value, defined by the
user, which determines the sensitivity of drift detection [3,
9].

ADWIN can be used by BOTL, as presented in
Algorithm 5, to detect drifts within the data stream by
monitoring the distribution of the predictive error of the
locally learnt model, f T

i :

|f T
i (xt ) − yt |.
Once a drift is detected, a new model is learnt locally,

f T
i+1, using the second sub-window such that W = W1 (lines

9–15). Monitoring the distribution of predictive error allows
drifts to be detected rapidly. However, if two consecutive
concepts are dissimilar, drifts are frequently detected when
only a small number of instances from the new concept
have been observed; therefore, the data contained in the
sliding window, W , after a drift is detected is unlikely to
be representative of the new underlying concept. To address
this, our implementation of ADWIN for BOTL only creates
a new model, f T

i+1, once Wmin instances belonging to the
new concept have been observed, such that |W | = Wmin

(lines 12–15). Until sufficient data has been observed to
build a model that adequately represent the new concept,
the previously learnt model, f T

i , must continue to be used to
make predictions.

7.2.1 Parameter selection

Using ADWIN in this way requires two user-defined
parameters, the minimum window size, Wmin, and the
confidence value, δ. Similarly to RePro, domain expertise is
required to select these parameter values.

As ADWIN uses a dynamic sliding window, the
minimum window size parameter, Wmin, does not directly
impact ADWIN’s ability to detect concept drifts. Instead
Wmin is only used to determine how much data should be
retained to build a model that adequately represents the
current concept [2]. Similar to RePro’s Wmax parameter,
large values of Wmin allow more data to be made available
to the local target learner, f T

i , creating an accurate and stable
model [2]. However, if Wmin is too large, the data contained
within the window may encapsulate data from multiple
concepts, preventing individual models being learnt for each
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concept. Small values of Wmin ensure the data used to build
a model is representative of the current distribution of data.

ADWIN detects drifts by monitoring the distribution
of predictive error; therefore, Wmin can indirectly effect
ADWIN’s ability to correctly detect concept drifts and
overarching performance. If Wmin is too small, it may
cause a model to be learnt that overfits and has high
predictive error. As ADWIN monitors the change in
distribution of predictive error, using a model that initially
has a high predictive error may prevent or delay the
detection of a concept drift as no significant change in
the distribution of predictive error is observed during
periods of drift. However, large Wmin values increase the
number of instances observed before a new model can
be learnt, prolonging the use of the previously learnt
model, decreasing the overarching predictive performance
of ADWIN across the data stream.

The confidence value, δ, is used to determine ADWIN’s
sensitivity to concept drifts through the εcut threshold
(Eqs. 12 and 13). High values of δ increases drift sensitivity;
however, in noisy data streams, this can cause drifts to
be falsely detected due to the increased variability of sub-
window means, μ̂W0 and μ̂W1 . To overcome this, lower
values of δ can be chosen; however, this may prevent
drifts from being detected in domains containing similar
consecutive concepts, or slow gradual drifts, where the
sub-window means do not change greatly.

7.3 AWPro

The use of RePro as a concept drift detection algorithm
can be computationally demanding due to the creation of
high volumes of unstable models, caused by its inability
to detect the precise point of drift within the sliding
window. ADWIN allows this point to be identified by
splitting the sliding window into two sub-windows where
the first sub-window contains instances belonging to the
old concept, which can be discarded, while the second sub-
window contains instances belonging to the new concept.
However, if the number of remaining instances in the
second sub-window is small, ADWIN must wait until
sufficient instances have been observed before a new model
can be learnt, negatively impacting the performance of
ADWIN. Additionally, ADWIN does not reuse previously
learnt models; therefore, models must be re-learnt for
recurring concepts. This increases the number of models
transferred between domains when ADWIN is used as the
underlying concept drift detection algorithm for BOTL, and
prevents previously learnt models from being used to make
predictions when few instances from a recurring concept
have been observed.

To reduce computation from creating unstable models,
while also preventing duplicate models being learnt for
recurring concepts, we introduce an alternative concept drift
detection strategy, AWPro, presented in Algorithm 6, which
combines desirable characteristics from ADWIN and RePro
that better suit the BOTL framework.

AWPro uses ADWIN to monitor the change in distribu-
tion of predictive error, allowing the drift detection strategy
to partition instances belonging to different concepts within
a dynamic sliding window. Concept drifts are identified
using Eqs. 12 and 13, which use a confidence value, δ, to
determine the sensitivity to changes in the distribution of
the predictive error (line 10). Once a model is learnt, RePro
is used to identify stable models, which are retained in the
model history, HT , and the transition between concepts is
added to the transition matrix, T MT (lines 25–26). A stable
model is one that is used to make predictions over 2Wmin

instances without a drift being detected.
When a concept drift is encountered, AWPro drops the

first sub-window of instances, W0, such that all instances
in the window belong to the new concept, W = W1. If the
remaining data in the window is less than 1

2Wmin instances,
a temporary model is created (lines 13–15). Although
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these temporary models are akin to unstable models learnt
using RePro, the window used to build these models only
contains instances belonging to the new concept. Having
few instances available increases the likelihood of learning
a model that is not representative of the entire concept;
however, this may be preferable to ADWIN’s approach
of continuing to use a model that represents the previous
concept, or RePro’s approach where a model may be learnt
from data belonging to both concepts. Once a temporary
model has been learnt, incoming instances continue to be
added to the window.

If 1
2Wmin or more instances have been observed after a

drift, the proactive nature of RePro is used by AWPro to
determine if an existing model can be reused to represent
the current concept (lines 16–20). This allows AWPro to
identify an existing model, using Algorithm 7, that has
already been learnt to be used for predictions prior to a
full window of instances being observed. AWPro uses a
recurrence threshold that determines if an existing model
can be reused, λr , which acts in that same way as the
drift threshold, λd , defined by RePro, when considering the
reuse of existing models. If a model’s R2 performance is
greater than the recurrence threshold, λr , it is reused, and
the process of detecting concept drifts through monitoring
changes to the distribution of predictive error is resumed.
However, if no model exists, the use of the temporary model
continues until Wmin instances of the new concept have been
observed.

Finally, if Wmin instances have been observed after a
concept drift, and a temporary model is still being used
to make predictions, AWPro uses the transition matrix and
historical models to identify existing models that could
be reused now a more representative sample of data is
contained within the window. If no existing model exceeds
the recurrence threshold, λr , a new model is learnt using the
Wmin most recently observed instances.

7.3.1 Parameter selection

AWPro relies on three user-defined parameters: the
confidence value, δ, the window size, Wmin, and the
recurrence threshold, λr . As AWPro adopts ADWIN’s
approach to detecting concept drifts, many of the challenges
of parameter selection specified with respect to ADWIN for
the confidence value, δ, and the window size, Wmin, are also
applicable to AWPro. However, instead of waiting for Wmin

instances to be observed after a drift is detected, AWPro
uses the recurrence threshold, λr , to determine if an existing
model can be reused.

Parameter λr effects AWPro in two ways. If large values
are chosen for λr , the likelihood of reusing a historical
model decreases, as a historical model must exhibit low
predictive error in order to be selected for reuse. Therefore,
high λr values will increase the number of models learnt by
AWPro. To increase the reuse of models in the presence of
recurring concepts smaller values should be chosen for λr .
However, if λr is too small, an existing model may be reused
for a concept that has not previously been encountered,
lowering the overarching predictive performance of AWPro.
This may hinder the detection of concept drifts as the
predictive error across the sliding window of data may
initially be high, therefore identifying concept drifts through
monitoring changes to the distribution of predictive error
becomes challenging.

7.4 Impact of parameter values

In order to investigate how BOTL is impacted by parameters
defined by each drift detection strategy, we consider
the performance of the underlying drift detectors in
addition to the number of both stable and unstable models
created.3 Parameter values should be chosen with the
aim of maximising the performance of the underlying
drift detector, while reducing both the number of stable
and unstable models, therefore minimising unnecessary
computation, and reducing communication overheads.

The first parameter considered was the loss threshold, λl ,
used by RePro, which determines how close a prediction
must be to the response variable in order for it to be
discarded from the sliding window. As the hyperplane
datasets are synthetic, and response variables are in the
range [0,1], we used λl = 0.01, allowing for a 1% error in
predictions. The heating simulation and following distance
datasets do not have a definitive range for their respective
response variables; therefore, a percentage of error could
not be used. As these are examples of BOTL being used

3Further analysis of the impact of user defined parameters is available
at: https://github.com/hmckay/BOTL

https://github.com/hmckay/BOTL
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by a user facing application, λl was selected by considering
errors that would not be noticeable to a user. For the heating
simulation datasets, we used λl = 0.5 as a prediction
error of 0.5 ◦C would not be detectable by an individual.
Similarly, we used λl = 0.1 for the following distance
datasets, allowing for a predictive error of 0.1 s. These loss
thresholds are used by RePro throughout the remainder of
this paper.

Drift sensitivities and window sizes must also be chosen
for RePro, ADWIN and AWPro. To consider how predictive
performance and the number of models created are effected
by parameter values, we varied both drift sensitivity and
window size for each drift detection strategy.

Figure 1 displays results of varying drift sensitivities
for each drift detection strategy. These results used a fixed
window size for each dataset type, representative of the
results presented in Fig. 2, which were obtained by varying
window size. Figure 1 uses a window size of 30 instances for
hyperplane datasets, 480 instances for heating simulation
datasets and 90 instances for following distance datasets.

Figure 1 indicates higher drift sensitivity values typically
obtained a higher performance across all drift detectors;
however, the number of unstable models was also larger.
Lowering the drift sensitivity introduced a slight decrease
in performance but significantly reduced the number of
unstable models, particularly in the case of RePro, shown in
Fig. 1a; therefore, a trade-off between performance and the
number of models created is necessary.

If we are concerned solely with the performance of
the underlying drift detector, then RePro obtained the best
performance overall. RePro, shown in Fig. 1a, outperformed
ADWIN, Fig. 1b, and AWPro, Fig. 1c, due to its drift
detection mechanism. Unlike ADWIN and AWPro, RePro
monitors the predictive performance of the current model,
and detects drifts when its performance drops below the
drift threshold, λd . This means poorly performing models
are replaced as new instances of data are observed, until
a model that achieves a performance greater than λd is
learnt. ADWIN and AWPro only monitor the distribution
of predictive error, regardless of how poorly the model
performs; therefore, a poorly performing model will only
be replaced when a change in the distribution of predictive
error is observed.

Although RePro uses a sliding window to capture
the most recent instances, it does not detect the precise
point a drift occurs within the window. This means that
RePro frequently builds models from windows containing
instances belonging to both the previous, and new concept,
causing unstable models to be learnt. As RePro monitors
the performance of each model, unstable models are
often created in quick succession during gradual drifts,
or immediately after sudden drifts. This is highlighted
in the annotations in Fig. 1, which show the percentage

of models that were considered stable and useful for
knowledge transfer. RePro created significantly more
unstable models, wasting computation that may mean it
is infeasible in environments with limited computational
resources. ADWIN and AWPro may be more applicable in
these environments as they allow the precise point of drift
to be identified using a dynamic sliding window, therefore
reducing the number of unstable models.

Although ADWIN created fewer unstable models, it can-
not reuse existing models in the presence of recurring
concepts; therefore, a larger number of stable models were
learnt. This is detrimental to BOTL as it increases the com-
munication required for knowledge transfer. Additionally,
BOTL relies upon a meta-learner to combine the knowl-
edge transferred across domains. Transferring redundant, or
duplicate models, across domains can negatively impact the
overarching performance of BOTL as it increases the num-
ber of input features to the meta-learner, increasing the like-
lihood of overfitting caused by the curse of dimensionality
[8].

AWPro combines ADWIN’s drift detection strategy with
RePro’s ability to prioritise the reuse of existing models.
This combats communication overheads and reduces the
risk of overfitting introduced by transferring redundant
models. Although the percentage of models that were
considered stable was higher on average for ADWIN,
AWPro created both fewer stable and unstable models
due to the prioritisation of reusing existing models when
drifts are encountered. This makes AWPro more applicable
to environments that require minimised computation and
communication overheads.

By considering performance and the number of stable
and unstable models learnt, we selected a drift sensitivity
value λd = 0.5 for RePro as the performance obtained
across all datasets remained high, and the percentage
of models learnt that are considered stable increased
drastically compared with using drift sensitivity values
λd = 0.6 and λd = 0.7.

The percentage of models learnt by ADWIN that
are considered stable varied little across drift sensitivity
values within the hyperplane datasets; however, a drop
in performance was observed when δ > 0.02 and δ >

0.002 for sudden and gradual drifting datasets respectively.
Additionally, an increase in the percent of models that were
considered stable was observed in the heating simulation
datasets at δ = 0.02, while no significant change in
performance or number of stable or unstable models was
observable in the following distance datasets. Therefore, a
drift sensitivity value δ = 0.02 was selected for ADWIN.

As AWPro is based upon the drift detection mechanism
used by ADWIN, observations in changes to performance
with varying drift sensitivities were similar. To enable fair
comparisons, we also used δ = 0.02 for AWPro.
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Fig. 1 Performance and number of stable models created by RePro,
ADWIN and AWPro with varying drift sensitivities (drift threshold,
λd , confidence value, δ, and confidence value, δ, respectively). Anno-
tated with the total number of models learnt and percent that are

considered stable. Window sizes of 30 are used for Sudden and Grad-
ual drifting hyperplane datasets, 480 for heating simulation datasets
(capturing instances across a period of 10 days), and 90 for following
distance datasets

In addition to the impact of drift sensitivity, we
considered the selection of an appropriate window size.
Figure 2 presents the results obtained when varying window
size for each drift detection strategy. This parameter
determines how much data is made available to learn a new
model in the presence of concept drift, and how much data

is retained in order to detect drifts. The results presented
in Fig. 2 used a fixed drift sensitivity value for each drift
detector, representative of the results presented in Fig. 1,
and displayed in Table 3, to enable fair comparison. Across
synthetic sudden and gradual drifting hyperplane datasets,
RePro, ADWIN and AWPro (Fig. 2a, b and c respectively)
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Fig. 2 Performance and number of stable models created by RePro,
ADWIN and AWPro with varying window sizes, Wmax for RePro and
Wmin for ADWIN and AWPro. Annotated with the total number of

models learnt and percent that are considered stable. Drift sensitivi-
ties of λd = 0.6, δ = 0.02 and δ = 0.02 have been used for RePro,
ADWIN and AWPro respectively across all datasets

maintained similar ratios of stable to unstable models,
regardless of window size; however, the performance of the
drift detection strategy typically decreased as the window
size increased. This phenomenon is observed due to the

presence of simple underlying concepts in the synthetic
data streams; therefore, effective predictive models can
be learnt from little data. Increasing the window size
decreased predictive performance in these datasets as it
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Table 3 Window size and drift sensitivity parameters used by RePro,
ADWIN and AWPro to obtain results presented in Section 8

RePro ADWIN AWPro

Wmax λd λl Wmin δ Wmin δ λr

SuddenA 30 0.5 0.01 30 0.02 30 0.02 0.5

GradualA 30 0.5 0.01 30 0.02 30 0.02 0.5

Heating 10 days 0.5 0.5 ◦C 10 days 0.02 10 days 0.02 0.5

Following 90 s 0.5 0.1 s 90 s 0.02 90 s 0.02 0.5

delayed drift detection. However, a significant increase in
performance is observed as the window size increased for
each drift detection strategy for the real-world following
distance data streams as the concepts to be learnt are
more complex, and therefore require more data to be
made available to the target learner in order to build a
predictive model that effectively represents the current
concept [2]. Figure 2 highlights that the performance
and ratio of stable to unstable models are significantly
affected by the window size. However, all drift detection
strategies perform similarly, indicating that the window size
is dependent on the data stream to be learnt from, rather
than the drift detection strategy. From the results presented
in Fig. 2, we selected window sizes of 30 instances
for sudden and gradual drifting hyperplane datasets, 480
instances for smart home heating simulation datasets which
encapsulates 10 days of observations and 90 instances for
following distance datasets which encapsulates 90 s of
observations.

AWPro has an additional parameter, λr , which deter-
mines if a historical model can be reused. As its function-
ality is similar to how λd is used by RePro to identify
recurring concepts, this parameter value for AWPro has
been selected based on the analysis of RePro in Figs. 1
and 2 to allow fair comparisons between the drift detection
strategies.

To ensure fair comparisons, we selected a single window
size per data stream to be used by all concept drift detection
strategies, and a single drift sensitivity value per drift
detection strategy to be used across different data streams.
The parameter values displayed in Table 3 were used to
obtain the results presented in Section 8. Overall, parameter
values were selected such that the window size is small
to allow swift drift detection, but ensures sufficient data
is retained to build an effective predictive model. This
was inferred by considering the percentage of models that
were considered stable. Drift sensitivity parameters were
selected that not only prioritised high performance, but
also took into account communicational and computational
overheads. This was inferred by considering the number of
both stable and unstable models.

8 Experimental results

We compared BOTL, using RePro, ADWIN and AWPro
as the underlying concept drift detectors, against each of
the concept drift detection strategies with no knowledge
transfer, and an existing state-of-the-art online transfer
learning (GOTL) framework [12], using the drifting
hyperplane, heating simulation, and following distance
datasets. BOTL is model agnostic; however, in order to
make comparisons between BOTL and existing techniques,
all implementations used ε-insensitive Support Vector
Regressors (SVRs) as base learners.

The underlying concept drift detection strategies, RePro,
ADWIN and AWPro, are used to determine a baseline
performance threshold, obtained when no knowledge is
transferred [33]. For each of these drift detection strategies,
parameter values were chosen based on the discussion
outlined in Section 7.4 such that each drift detection strategy
aims to balance the trade-off between performance and
computational and communication overheads.

GOTL was designed to learn from an offline source;
however, as we are considering the implications of both
domains being online, we used the underlying concept
drift detection strategies to detect individual concepts in
the source domain. This is necessary as many online
applications cannot retain an entire history of data,
preventing a single model from being learnt across the entire
data stream. We used the drift detection strategies to identify
the model that had been used in the source for the largest
proportion of the data stream, and therefore is considered
to be the most stable. GOTL transferred this model from
the source domain to the target to enhance the effectiveness
of the target predictor. A small step size, � = 0.025, was
chosen, as suggested by Grubinger et al. [11], which slowly
modified the weights used to combine source and target
models.

When evaluating GOTL, experiments were conducted
such that each data stream was paired with every other
data stream as source and target domains respectively. Due
to only transferring the most stable model when using
GOTL, learning in the target domain only commenced once
learning in the source domain had completed such that the
most stable source model could be identified and transferred
to the target domain. Additionally, the performance of
GOTL presented in this section takes into account both
the performance of the source and target domains, as
GOTL requires learning in the source, without knowledge
transfer prior to learning in the target, whereas BOTL
allows both domains to benefit from knowledge transfer
simultaneously.

BOTL combines knowledge via the OLS meta-learner
and therefore no additional parameters are required;
however, the BOTL-C culling parameters must be defined.
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We set λcperf = 0 for BOTL-C.I, thereby discarding
models that performed worse than the average predictor
(R2 < 0). To ensure BOTL-C.II used a more aggressive
approach to model culling, we increased λcperf to 0.2.
Additionally, as small window sizes were used to enable
swift drift detection, we used λcMI = 0.95 to allow
knowledge of similar concepts to be retained by the meta-
learner to aid predictions of complex concepts. However,
models with extremely high mutual information were not
both retained, as little to no beneficial knowledge would be
provided to the meta-learner if both remained in the model
set, M .

When evaluating BOTL and BOTL-C variants, all data
streams for a given experiment were used as source
domains with bi-directional transfer. Repeat experiments

were conducted by randomising the ordering and interval
between the commencement of learning in each domain.
For the baseline concept drift detection strategies without
knowledge transfer, all data streams were learnt from
independently.

8.1 Drifting hyperplane

We considered the effectiveness of BOTL on synthetic
data created using the drifting hyperplane data generator
containing two types of drift: sudden and gradual. We
conducted four experiments on each type of drift using the
drifting hyperplane data generator, investigating the impact
of different types of noise that may be encountered when
using BOTL in real-world environments.

Table 4 Drifting hyperplanes: average performance (R2, PMCC2, RMSE) and number of models used by the meta learner (|M|) to make
predictions using no knowledge transfer, GOTL, BOTL and BOTL-C variants for six sudden drifting domains, where * indicates p < 0.01 in
comparison with RePro and GOTL, and italicised values indicate the highest R2 performance

RePro ADWIN AWPro

R2 PMCC2 RMSE |M| R2 PMCC2 RMSE |M| R2 PMCC2 RMSE |M|

(a) SuddenA: sudden drifting hyperplanes with uniform noise

noTransfer 0.830 (± 0.003) 0.859 0.076 1 0.755 (± 0.009) 0.761 0.091 1 0.698 (± 0.015) 0.703 0.100 1

GOTL 0.814 (± 0.002) 0.844 0.079 1.5 0.745 (± 0.004) 0.752 0.092 1.5 0.685 (± 0.007) 0.690 0.102 1.5

BOTL *0.903 (± 0.002) 0.904 0.057 29.9 *0.888 (± 0.003) 0.889 0.061 46.9 *0.887 (± 0.003) 0.888 0.062 19.0

BOTL-C.I *0.894 (± 0.002) 0.895 0.060 10.1 *0.881 (± 0.003) 0.882 0.063 14.0 *0.861 (± 0.004) 0.862 0.068 5.7

BOTL-C.II *0.888 (± 0.002) 0.888 0.061 3.8 *0.867 (± 0.003) 0.868 0.067 2.2 *0.842 (± 0.007) 0.843 0.072 2.0

(b) SuddenB: sudden drifting hyperplanes with single sensor failure

noTransfer 0.825 (± 0.002) 0.849 0.074 1 0.723 (± 0.016) 0.732 0.092 1 0.661 (± 0.023) 0.677 0.101 1

GOTL 0.811 (± 0.002) 0.836 0.077 1.5 0.718 (± 0.006) 0.725 0.093 1.5 0.664 (± 0.010) 0.676 0.101 1.5

BOTL −2e+20 (± 8e+19) 0.606 9e+8 30.9 −4e+19 (± 1e+19) 0.598 4e+8 47.1 −7e+20 (± 2e+20) 0.586 1e+9 20.4

BOTL-C.I −3e+20 (± 1e+20) 0.817 8e+8 10.0 −9e+19 (± 2e+19) 0.663 5e+8 13.7 *0.862 (± 0.006) 0.863 0.065 5.9

BOTL-C.II *0.890 (± 0.002) 0.890 0.059 4.1 *0.870 (± 0.002) 0.871 0.064 2.6 *0.845 (± 0.007) 0.846 0.069 2.1

(c) SuddenC: sudden drifting hyperplanes with intermittent single sensor failure

noTransfer 0.833 (± 0.004) 0.859 0.074 1 0.778 (± 0.004) 0.787 0.085 1 0.765 (± 0.005) 0.774 0.087 1

GOTL 0.817 (± 0.002) 0.843 0.077 1.5 0.770 (± 0.002) 0.780 0.087 1.5 0.752 (± 0.003) 0.762 0.090 1.5

BOTL *0.907 (± 0.002) 0.908 0.055 30.7 *0.892 (± 0.002) 0.894 0.059 48.9 *0.893 (± 0.002) 0.895 0.059 19.9

BOTL-C.I *0.900 (± 0.002) 0.900 0.057 10.7 *0.885 (± 0.002) 0.886 0.061 16.0 *0.876 (± 0.002) 0.878 0.064 6.6

BOTL-C.II *0.891 (± 0.003) 0.891 0.060 4.4 *0.869 (± 0.002) 0.870 0.066 2.3 *0.859 (± 0.003) 0.860 0.068 1.9

(d) SuddenD: sudden drifting hyperplanes with gradual sensor deterioration

noTransfer 0.827 (± 0.004) 0.854 0.074 1 0.770 (± 0.001) 0.778 0.085 1 0.647 (± 0.031) 0.664 0.103 1

GOTL 0.809 (± 0.002) 0.838 0.078 1.5 0.764 (± 0.001) 0.773 0.087 1.5 0.649 (± 0.014) 0.662 0.104 1.5

BOTL −3e+20 (± 6e+19) 0.304 2e+9 31.8 −4e+20 (± 1e+20) 0.299 1e+9 48.9 −7e+21 (± 2e+21) 0.299 7e+9 19.7

BOTL-C.I −1e+21 (± 4e+20) 0.312 3e+9 10.0 −3e+19 (± 5e+18) 0.312 6e+8 13.4 −1e+19 (± 6e+18) 0.790 1e+8 5.7

BOTL-C.II *0.891 (± 0.003) 0.891 0.059 3.9 *0.868 (± 0.003) 0.869 0.065 2.6 *0.843 (± 0.004) 0.845 0.070 2.2
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Firstly, we used drifting hyperplane datasets containing
uniform noise, denoted by datasets SuddenA and GradualA
for the sudden drifting, and gradual drifting hyperplane
datasets respectively. Secondly, we considered the impact of
single sensor failure. Datasets of this nature are denoted as
SuddenB and GradualB. Thirdly, we introduced the scenario
of intermittent single sensor failure, denoted by SuddenC
and GradualC. These datasets allowed us to investigate
the use of BOTL within unreliable environments. Finally,
we emulated single sensor deterioration by increasing the
amount of noise associated with a feature vector throughout
the data stream. Datasets containing this variant of sensor
failure are denoted by SuddenD and GradualD for sudden
and gradual drifting data streams.

For each variant of experiments, six data streams were
created for each drift type. Each data stream contained five
concepts, occurring four times throughout the data stream,
with drifts encountered every 500 time steps. Sudden drifts
occurred immediately, and gradual drifts occurred over a
period of 100 time steps. Each data stream shared at most
three concepts with another domain, ensuring some models
transferred were useful to the target learner, while others
were not. Data streams were separated such that transfer
occurred only between domains of the same drift and noise
type.

Tables 4 and 5 present the results obtained by the concept
drift detection algorithms, with no knowledge transfer,
GOTL and BOTL variants, for the sudden and gradual

Table 5 Drifting hyperplanes: average performance (R2, PMCC2, RMSE) and number of models used by the meta learner (|M|) to make
predictions using no knowledge transfer, GOTL, BOTL and BOTL-C variants for six gradual drifting domains, where * indicates p < 0.01 in
comparison with RePro and GOTL, and italicised values indicate the highest R2 performance

RePro ADWIN AWPro

R2 PMCC2 RMSE |M| R2 PMCC2 RMSE |M| R2 PMCC2 RMSE |M|

(a) GradualA: gradual drifting hyperplanes with uniform noise

noTransfer 0.797 (± 0.001) 0.822 0.078 1 0.711 (± 0.010) 0.714 0.093 1 0.710 (± 0.010) 0.715 0.093 1

GOTL 0.792 (± 0.001) 0.820 0.079 1.5 0.712 (± 0.005) 0.717 0.093 1.5 0.710 (± 0.005) 0.718 0.093 1.5

BOTL *0.904 (± 0.001) 0.905 0.054 34.2 *0.901 (± 0.002) 0.902 0.054 45.5 *0.893 (± 0.003) 0.894 0.057 19.0

BOTL-C.I *0.897 (± 0.002) 0.897 0.056 15.1 *0.894 (± 0.002) 0.895 0.056 19.4 *0.876 (± 0.004) 0.877 0.061 7.9

BOTL-C.II *0.881 (± 0.003) 0.882 0.060 7.1 *0.872 (± 0.004) 0.872 0.062 4.0 *0.861 (± 0.005) 0.862 0.064 3.4

(b) GradualB: gradual drifting hyperplanes with single sensor failure

noTransfer 0.797 (± 0.001) 0.821 0.081 1 0.703 (± 0.019) 0.711 0.097 1 0.639 (± 0.021) 0.646 0.107 1

GOTL 0.784 (± 0.001) 0.808 0.084 1.5 0.706 (± 0.008) 0.715 0.097 1.5 0.641 (± 0.010) 0.649 0.107 1.5

BOTL −2e+19 (± 7e+18) 0.451 2e+8 39.6 −2e+17 (± 6e+16) 0.447 4e+7 46.1 −8e+18 (± 1e+18) 0.445 2e+8 20.7

BOTL-C.I −1e+21 (± 3e+20) 0.557 1e+9 15.3 −2e+18 (± 7e+17) 0.630 1e+8 16.2 −2e+18 (± 8e+17) 0.826 5e+7 7.6

BOTL-C.II *0.876 (± 0.003) 0.876 0.063 6.0 *0.852 (± 0.006) 0.852 0.069 3.0 *0.823 (± 0.007) 0.824 0.075 2.7

(c) GradualC: gradual drifting hyperplanes with intermittent single sensor failure

noTransfer 0.794 (± 0.003) 0.818 0.078 1 0.695 (± 0.015) 0.698 0.094 1 0.698 (± 0.015) 0.704 0.093 1

GOTL 0.778 (± 0.002) 0.802 0.080 1.5 0.695 (± 0.007) 0.700 0.094 1.5 0.697 (± 0.007) 0.704 0.094 1.5

BOTL *0.899 (± 0.003) 0.900 0.054 34.0 *0.876 (± 0.008) 0.877 0.060 44.9 *0.875 (± 0.008) 0.876 0.060 21.3

BOTL-C.I *0.894 (± 0.003) 0.895 0.056 14.8 *0.861 (± 0.010) 0.862 0.063 18.5 *0.857 (± 0.009) 0.858 0.064 8.8

BOTL-C.II *0.882 (± 0.003) 0.883 0.059 6.7 *0.842 (± 0.009) 0.843 0.067 4.5 *0.841 (± 0.009) 0.841 0.068 3.4

(d) GradualD: gradual drifting hyperplanes with gradual sensor deterioration

noTransfer 0.806 (± 0.003) 0.828 0.090 1 0.691 (± 0.007) 0.694 0.114 1 0.640 (± 0.010) 0.643 0.122 1

GOTL 0.791 (± 0.002) 0.813 0.093 1.5 0.685 (± 0.004) 0.691 0.114 1.5 0.640 (± 0.005) 0.643 0.122 1.5

BOTL −9e+19 (± 1e+19) 0.148 1e+9 36.0 −3e+20 (± 1e+20) 0.149 1e+9 44.3 −8e+20 (± 1e+20) 0.148 3e+9 22.3

BOTL-C.I −5e+20 (± 2e+20) 0.393 1e+9 12.6 −3e+19 (± 1e+19) 0.565 3e+8 13.3 −4e+19 (± 1e+19) 0.601 3e+8 6.8

BOTL-C.II *0.890 (± 0.003) 0.890 0.068 5.7 *0.869 (± 0.007) 0.870 0.073 3.8 *0.845 (± 0.007) 0.846 0.080 2.8
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drifting hyperplane datasets respectively. These results
indicate that GOTL obtained slightly poorer performances
in comparison with the concept drift detectors without
knowledge transfer, despite the most stable source model
being transferred to the target domain. Although knowledge
transfer was not beneficial to GOTL, at least one of the
BOTL variants was able to outperform RePro, ADWIN,
AWPro and GOTL with statistical t tests achieving p

values < 0.01, highlighting the importance of transferring
knowledge of multiple concepts bi-directionally.

The performance increase of BOTL over GOTL (p <

0.01) on datasets containing uniform noise (SuddenA,
GradualA), and intermittent sensor failure (SuddenC,
GradualC), can be attributed to the availability of all source
models in the target domain. Additionally, GOTL’s step-
wise weighting mechanism prevents the influence of a
model changing drastically over a small period of time.
This means a large amount of data must be observed after
each drift to converge on an approximation of the optimal
weights. To overcome this, a larger step size could be
used; however, this may prevent or hinder convergence.
BOTL overcomes this by using the OLS meta learner to
minimise the squared error of the combined predictor with
instantaneous effect.

The performances of BOTL-C variants were also
significantly better than the underlying drift detection
algorithms and GOTL on these data streams, obtaining t test
values of p < 0.01; however, they performed slightly worse
than BOTL. Figure 3 highlights the aggressive nature of the
culling techniques used by BOTL-C.I and BOTL-C.II on a
sudden drifting hyperplane data stream with uniform noise.
It shows BOTL used at least four times more models than

BOTL-C variants and highlights correlations between the
number of models used and performance. When the number
of models used was small, the predictive performance of
BOTL-C variants decreased. This performance decrease
can be attributed to the aggressive nature of these culling
mechanisms. Culling based on model performance alone
prohibited the inclusion of a diverse set of models, reducing
the overall predictive performance of the meta learner.
When BOTL-C variants retained a larger proportion of the
transferred models, a performance similar to BOTL was
achieved.

However, BOTL and BOTL-C.I were not able to out-
perform RePro, ADWIN, AWPro or GOTL in the data
streams containing single sensor failure (SuddenB, Gradu-
alB) and gradual sensor deterioration (SuddenD, GradualD).
Although BOTL and BOTL-C.I obtained significantly lower
R2 performances, their PMCC2 performance values were
impacted less significantly. This indicates that the poor
performance of BOTL and BOTL-C.I on these data streams
can be attributed to the transfer of high volumes of mod-
els, causing the OLS meta learner to overfit. To overcome
this, the performance culling threshold, λcperf , could be
increased for BOTL-C.I, further restricting the number of
models used as input to the meta learner. The more aggres-
sive nature of the culling technique used by BOTL-C.II
meant it outperformed the concept drift detection strategies
with no knowledge transfer and GOTL.

Overall, RePro was able to achieve a better performance
across all drifting hyperplane data streams compared with
ADWIN and AWPro. This was caused by RePro monitoring
the performance of a model to detect concept drifts,
whereas ADWIN and AWPro monitor the distribution

Fig. 3 Sudden drifting
hyperplanes: R2 performance
and number of models used by
BOTL and BOTL-C variants
using two SuddenA data streams
where vertical lines indicate
concept drifts
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Table 6 Heating simulations: average performance (R2, PMCC2, RMSE) and number of models used by the meta learner (|M|) to predict desired
heating temperatures across five domains using no knowledge transfer, GOTL, BOTL and BOTL-C variants, where * indicates p < 0.01 in
comparison with the concept drift detection algorithm and GOTL, and italicised values indicate the highest R2 performance

RePro ADWIN AWPro

R2 PMCC2 RMSE |M| R2 PMCC2 RMSE |M| R2 PMCC2 RMSE |M|

noTransfer 0.633 (± 0.002) 0.651 2.521 1 0.635 (± 0.013) 0.655 2.509 1 0.612 (± 0.009) 0.633 2.590 1

GOTL 0.666 (± 0.005) 0.677 2.397 1.5 0.656 (± 0.005) 0.670 2.434 1.5 0.618 (± 0.006) 0.635 2.567 1.5

BOTL *0.744 (± 0.006) 0.747 2.104 8.6 *0.746 (± 0.007) 0.749 2.097 7.4 *0.746 (± 0.007) 0.749 2.093 8.2

BOTL-C.I 0.664 (± 0.028) 0.693 2.377 5.6 *0.739 (± 0.006) 0.742 2.126 4.8 *0.737 (± 0.006) 0.740 2.134 5.3

BOTL-C.II 0.653 (± 0.028) 0.683 2.415 1.7 *0.702 (± 0.011) 0.710 2.264 1.2 *0.727 (± 0.005) 0.730 2.175 1.4

of predictive error. Detecting drifts in this way was
beneficial to RePro, as unstable models were repeatedly
learnt and discarded until the sliding window of data
contained instances that were representative of the current
concept. Although the use of RePro as the underlying drift
detector outperformed ADWIN and AWPro, the difference
in performance across these drift detection strategies was
not statistically significant; therefore, the computational
overhead of repeatedly learning unstable models may
impact RePro’s applicability as the underlying drift detector
for BOTL in real-world environments.

8.2 Heating simulation

Lower performances were observed across the heating sim-
ulation datasets due to containing more complex concepts,
and additional noise, in comparison with the drifting hyper-
plane datasets. The addition of knowledge transfer, using
GOTL and BOTL, provided an increase in performance in
comparison with using the concept drift detection strategies,
with no knowledge transfer, as shown in Table 6. GOTL,
BOTL and BOTL-C variants, using each drift detector, per-
formed better than the drift detection strategy alone, with
GOTL achieving statistical t test p values of p < 0.01 over
RePro with no knowledge transfer.

The use of GOTL in this setting highlighted the
advantage of knowledge transfer when concepts were more
complex, preventing the underlying concept drift detectors
from building effective models on the window of available
data. This meant the knowledge transferred helped enhance
the performance of the target predictor, even when only
a single model was transferred using GOTL. Whereas
using GOTL in environments that have simple concepts
to be learnt, such as those present in the hyperplane
datasets, provided little to no benefit. Transferring multiple
models provided a significant benefit as all BOTL variants
performed better than GOTL with a t test p value < 0.01,
for all concept drift detection strategies.

8.3 Following distance

Finally, we evaluated BOTL on real-world data using the
following distance dataset, where the task was to predict
TTC. Due to the real-world nature of this data, concept drifts
occurred frequently and data streams were noisy.

Table 7 shows the performance of drift detectors, GOTL
and BOTL variants across seven data streams. These results
highlight GOTL was less suitable when the relationship
between source and target concepts were unknown. Variants
of BOTL and BOTL-C that used RePro or AWPro as drift

Table 7 Following distances: average performance (R2, PMCC2, RMSE) and number of models used by the meta learner (|M|) to predict TTC
across seven domains using no knowledge transfer, GOTL, BOTL and BOTL-C variants, where * indicates p < 0.01 in comparison to the concept
drift detection algorithm and GOTL, and italicised values indicate the highest R2 performance

RePro ADWIN AWPro

R2 PMCC2 RMSE |M| R2 PMCC2 RMSE |M| R2 PMCC2 RMSE |M|

noTransfer 0.547 (± 0.002) 0.572 0.600 1 0.441 (± 0.022) 0.502 0.676 1 0.430 (± 0.025) 0.514 0.681 1

GOTL 0.602 (± 0.007) 0.657 0.558 1.5 0.419 (± 0.011) 0.560 0.676 1.5 0.487 (± 0.013) 0.603 0.634 1.5

BOTL 0.636 (± 0.011) 0.674 0.546 5.2 −2e+15 (± 3e+14) 0.406 1e+7 10.1 *0.653 (± 0.013) 0.680 0.537 5.0

BOTL-C.I 0.655 (± 0.012) 0.685 0.532 3.2 −1e+14 (± 4e13) 0.604 1e+6 5.1 *0.660 (± 0.009) 0.680 0.530 3.0

BOTL-C.II *0.662 (± 0.011) 0.686 0.524 1.1 *0.641 (± 0.017) 0.662 0.542 1.6 *0.691 (± 0.009) 0.701 0.507 1.3
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Fig. 4 Following distances: PMCC2 performance (with standard
error) and number of models used by concept drift detection strategies
with no knowledge transfer, BOTL and BOTL-C variants as the
number of domains increase

Fig. 5 Following distances: R2 performance (with standard error) and
number of models used by the concept drift detection strategies with
no knowledge transfer, BOTL and BOTL-C variants as the number of
domains increase
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detectors performed better than their respective baseline
drift detector and GOTL, achieving statistical t test p

values of p < 0.01. However, the BOTL and BOTL-C.I
implementations that used ADWIN as the underlying drift
detector were not able to outperform the drift detector with
no knowledge transfer, or GOTL. Although these variants
of BOTL performed poorly, BOTL-C.II using ADWIN as
the underlying drift detector outperformed ADWIN and
GOTL, achieving statistical t test p values of p < 0.01.
This highlights the importance of preventing the transfer
of redundant models when using BOTL in real-world
environments, as the large numbers of transferred models
likely caused the OLS meta learner to overfit the local
window of data. This observation was also supported by
BOTL-C.II achieving the best performance in comparison
with other BOTL variants.

To investigate scalability, Figs. 4 and 5 display the
average PMCC2 and R2 performance respectively per
domain, and the number of models used by the OLS meta
learner to make predictions as the number of domains
in the framework increased. For settings with a small
number of domains, BOTL and BOTL-C variants achieved
similar PMCC2 and R2 performances, outperforming
their respective baseline concept drift detection algorithms.
However, as the number of domains expanded, and the
number of models transferred increased, the PMCC2

performance of BOTL dropped below the performance of
the concept drift detection algorithm with no knowledge
transfer. Although PMCC2 gradually decreased as the
number of sources increased, by considering the R2

performance in Fig. 5, we observe that the average R2

performance decreased drastically. This occurred due to the
nature of these performance metrics. As PMCC2 ranges
between [0, 1], when one domain performed poorly, it did
not greatly impact the average PMCC2 across all domains,
whereas R2 ranges between (−∞, 1]; therefore, when one
domain performed poorly, the average R2 performance
was greatly impacted. The difference between performance
metrics, shown in Figs. 4 and 5, indicates that BOTL and
BOTL-C.I suffered from the OLS meta learner overfitting
the small window of local data when the number of
models transferred was large. Culling using the performance
of transferred models alone (BOTL-C.I) enabled a larger
number of domains to be used in the framework, however
cannot be considered scalable as the performance of BOTL-
C.I decreased below that of the drift detector when more
domains were added. BOTL-C.II culled more aggressively,
using diversity alongside performance, ensuring enough
beneficial knowledge was retained to enhance the target
learners’ performance, while minimising negative transfer
and preventing the OLS meta learner overfitting the small
window of locally available data.

Additionally, Figs. 4b and 5b show the PMCC2 and
R2 performance when ADWIN was used as the underlying
concept drift detector. Compared with Figs. 4a and 5a,
and 4c and 5c, which used RePro and AWPro respectively,
the PMCC2 and R2 performances obtained by ADWIN
reduced quickly, even when a small number of domains
were included. This again highlights the importance of
selecting a concept drift detection strategy that reuses
existing models in the presence of recurring concepts,
instead of relearning and transferring duplicate models.

Overall, these results indicate that the ability to consider
both source and target domains to be online is beneficial.
In doing so, the number of transferred models greatly
increases, requiring culling mechanisms, particularly when
used in noisy real-world data streams, to retain the benefit
of transferring knowledge between domains.

9 Conclusion

Online domains that must learn complex models often have
limited data availability, and are hindered by the presence
of concept drift. We have presented the BOTL framework,
and two BOTL-C variants, that enable knowledge to be
transferred across online domains. We enhanced predictive
performance by combining knowledge transferred from
other online domains using an OLS meta learner, enabling
additional knowledge to be used to minimise the error of the
overarching prediction.

Using RePro as the underlying concept drift detection
strategy ensured effective models were learnt from the
available data; however, RePro may not be appropriate
for use in applications that have computational limitations
due to frequently creating unstable models during, or
immediately after, periods of drift. Applications that
have computational limitations may need to trade-off
performance with computation and use a drift detection
strategy such as ADWIN or AWPro. ADWIN does not reuse
previously learnt models when drifts are detected; therefore,
a number of models transferred between domains increases
when recurring concepts are encountered. This can degrade
the performance of BOTL when the number of domains in
the framework, or volume of models transferred, is large.

Instead, AWPro can be used in settings where recurring
concepts are likely to be encountered, or computational and
communicational resources are limited.

In this paper, we chose RePro, ADWIN and AWPro as
the underlying concept drift detection algorithms. Although
each of these requires some domain expertise to identify
appropriate parameter values, their ability to retain a history
of models to prevent relearning recurring concepts is
a more influential factor to consider when selecting an
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underlying concept drift detector for BOTL. RePro and
AWPro helped to reduce the number of models transferred
between domains and therefore allowed more domains to
be included in the framework before the OLS meta learner
suffered from overfitting.

However, in real-world environments with many
domains, the number of models transferred may need to be
reduced further. BOTL-C variants achieved this using com-
mon ensemble pruning strategies. These pruning strategies
also required culling parameter values to be specified. To
overcome the need to specify these additional parameters,
we will investigate the use of task relatedness to identify
similar concepts across domains without requiring param-
eterised thresholds in future work. This will reduce the
dependency on domain expertise and will allow BOTL to
be used for applications that require scalability to larger
numbers of domains.
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