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Injection locking in self-oscillating magnetometers

Alexander P. Nikitin and Nigel G. Stocks

Injection locking (IL) is a well-known phe-
nomenon that occurs in nonlinear oscillators
subject to external periodic or non-periodic
signals. It is a phenomenon of induced syn-
chronization that occurs when an external
(injection) signal locks the frequency of the
oscillator to the frequency of the external sig-
nal. This form of synchronisation is rela-
tively straightforward to implement because
it does not require specially organised feed-
back as is the case with phase locked loop.
Circuits that exploit IL can have very sim-
ple designs and be applied to a broad range
of applications such as to synchronize frames
and lines in early television sets, to synchro-
nize lasers, to function as a. c. voltmeters,
field-intensity meters, amplifier-limiters and
AM and FM detectors. However, the focus
of this article is the recent application of IL
to magnetic field sensors. This novel appli-
cation highlights the potential benefits of the
IL approach but also some of the complex-
ities and opportunities for further develop-
ment. As with all measurement systems, the
consideration of noise is paramount in the
design of magnetic sensors. Noise reduction
and mitigation strategies are essential. IL can
be employed as a noise mitigations strategy
in magnetometers that utilise self-oscillations

as part of their detection paradigm; it can
stabilize the oscillation frequency, potentially
simplifying the measurement circuitry, and
in some circumstances improve the signal-to-
noise ratio. Here we review some magnetome-
ters that have successfully exploited IL prin-
ciples and highlight design options. We also
propose a new circuit that is simple to imple-
ment and more straightforward to analyse.

Synchronization

IL is a synchronization phenomenon. Follow-
ing many other texts [1, 2, 3, 4] we introduce
synchronization by means of the Van der Pol
(VdP) oscillator driven by a periodic signal.
The Van der Pol oscillator Fig. 1(a) is a

standard LC-resonance circuit with a nega-
tive resistor R̄ that compensates for the en-
ergy loss. The equation for the current is well
known [2, 3, 5],

ẍ− ε(1− αx2)ẋ+ ω2

0
x = ω2B cos(ωt), (1)

where x is the current, ω0 is the natural
frequency of the oscillator, ǫ and α are pa-
rameters, and B and ω are the amplitude
and frequency of the locking signal respec-
tively. If the resonance circuit has a high Q



(i.e. ε ≪ 1), the synchronized oscillations
of the current have an almost cosine form,
A cos(ωt + ϕ), where A is the amplitude of
oscillations and ϕ is the phase. For high Q
systems A and ϕ are almost constant during
one period of oscillation, this enables simpli-
fied equations for the amplitude and phase to
be obtained, [2, 3, 4],

Ȧ =
ε

2

(

1− A2

A2
0

)

A− ω0B

2
sinϕ, (2)

ϕ̇ = ∆− ω0B

2A
cosϕ, (3)

where ∆ = (ω0−ω) (∆ ≪ ω ) is the frequency
detuning, and A0 = 2

√
α is the amplitude of

the non-synchronized oscillations.
When the system is synchronized the am-

plitude A and the phase ϕ are stable, so
Ȧ = 0 and ϕ̇ = 0 and hence Eqs. (2) and (3)
transformed into algebraic equations whose
solutions we denote Ast and ϕst. It is easy to
show that for small B, Ast ≃ A0 and ϕ takes

on discrete values ϕst ≃ arccos
(

2A0∆

ω0B

)

+2πn,

where n is an integer. In addition, we can
find boundaries of the synchronization re-
gion in the parameter space B and ∆ (the
Arnold tongue [4]): ∆ = ω0B

2A0

for ∆ > 0, and

∆ = −ω0B
2A0

for ∆ < 0.
Synchronization is illustrated in

Fig. 1(b,c). Plotted is the oscillator
current x(t) against the periodic locking
signal S(t) = B cos(ωt) for the unlocked
(Fig. 1(b)) and locked cases (Fig. 1(c)).
To take into account the impact of noise

the above analysis has to be modified slightly.
The affect of noise on the amplitude of the
oscillations is modest: A fluctuates near its
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Figure 1: (a) The Van der Pol oscillator cir-
cuit; (b,c) Lissajous figures: plot of circuit os-
cillations, x(t), versus periodic locking signal,
S(t) = B cos(ωt), for (b) unlocked and (c)
locked oscillations; (d) power spectra for dif-
ferent values of the locking signal amplitude.
Parameters are ǫ = 3, ω0 = 1, ω = 0.658,
α = 1 and the noise intensity Dn = 0.001 of
Gaussian white noise that is added to Eq. (1).

stable value Ast [5] and only weakly depends
on parameters B and ω, hence these fluctua-
tions will be neglected in the remaining dis-
cussion. However noise can have a more sig-
nificant impact on the phase. To understand



why we re-write Eq. (3) as,

ϕ̇ = −dU(ϕ)

dϕ
+ξ(t), U(ϕ) = ϕ∆−ω0B

2A
sinϕ,

(4)
where ξ(t) represents the noise in the sys-
tem [5]. These equations can be interpreted
as a Brownian particle diffusing in a tilted
(for ∆ 6= 0) periodic potential U(ϕ) with
potential minima located at the values ϕst.
Noise can induce two different types of dy-
namics: small fluctuations about the poten-
tial minima and large fluctuations caused by
jumps from one potential minima to another,
so called phase jumps. Each jump causes a
change of phase of ±2π, the sign indicates
whether the jump is to the left (-ve) or the
right (+ve). Random phase jumps manifest
as momentary ’slips’ in synchronization and
result in strong phase diffusion [5].

A strategy for reducing phase diffusion is
to reduce the probability of phase jumps. A
simple analysis of Eq. (4) reveals that the
barrier heights between the potential minima
are proportional to B. Thus increasing B
can significantly reduce phase diffusion by in-
creasing the barrier heights. For non-zero de-
tuning ∆ the barrier height, ∆l, for a jump
to the left is different to the barrier height,
∆r, for a right jump to the right. The rate
(probability) of jumps can be estimated with
Kramers’ theory [6] as rl ∝ exp(−∆l/D) and
rr ∝ exp(−∆r/D), where D is the inten-
sity of noise ξ(t). It therefore follows that
rates decrease exponentially with increasing
B. Consequently even modest increases in B
can result in significant reductions in phase
diffusion. This is one of the fundamental

principles behind the use of IL as a noise mit-
igation technique. Removal of phase jumps
stabilises the frequency and reduces the noise
floor. This is clearly shown by the power
spectrum of the system Fig. 1(d) where, for
B = 0.5, IL is observed to sharpen the main
spectral line and reduce the broadband noise
floor.

Magnetometers

The first use of IL in a magnetometer was re-
ported in a superconducting DC SQUID [7]
and then more recently applied to a novel
coupled-core fluxgate magnetometer (CCFG)
[8]. We review these two systems and also
propose a new magnetometer based on a
circuit originally proposed by Takeuchi and
Harada [9].

Each system is governed by a different set
of nonlinear equations and hence the mani-
festation of IL can be quite different between
magnetometers. A comparison reveals a rich
spectrum of behaviours that reflects the dy-
namical complexity of these systems - a com-
plexity that we still do not fully understand.

Although the VdP model serves as a useful
paradigm for understanding the dynamics of
injection-locked magnetometers, it does not
capture all the behaviours observed. The dy-
namics of a magnetometer strongly depends
on the precise nature of the underlying circuit
equations. Nevertheless it is possible to make
some general statements regarding their op-
erating principles. In particular, once locked
the frequency of the oscillations does not de-
pend on the strength of the external target



field. Consequently, field intensity informa-
tion is only encoded by the amplitude and
shape (e.g. duty cycle ) of the oscillations;
circuits can be design that use either or both
mechanisms.

Generally the target magnetic field is a low
frequency periodic or aperiodic signal. As a
concrete example one could consider the (al-
most) regular magnetic field oscillations in
the Earth’s magnetosphere that are typically
about 10 nT [10]. These regular fluctuations
are called geomagnetic pulsations and appear
as nearly sinusoidal waveforms in ground-
station magnetometer records with periods
ranging from 0.5 s to 10 min [10].

DC SQUID

The DC SQUID is a superconducting loop in-
terrupted by two Josephson junctions, Fig. 2.
Its dynamics are described by equations for
the Schrödinger phase differences δi across
the Josephson junctions [7],

τ
dδi
dt

=
Ib
2
+(−1)iIs−I0 sin δi+ξi(t), i = 1, 2,

(5)
where Is is the circulating current, Is =
Φ0

2πL
(δ1 − δ2)− Φe

L
, induced in the loop by an

externally applied magnetic flux Φe, L is the
loop inductance, τ = ℏ/(2eR) is a charac-
teristic time constant (R being the normal
state resistance of the junctions), I0 is the
critical junction current and Φ0 ≡ ℏ/(2e) is
the flux quantum. The independent additive
noise terms ξi(t) account for thermal noise
arising due to the junction resistances and
are modelled as Gaussian and white. The

two experimental control parameters are the
applied magnetic flux Φe and the bias current
Ib, which we take to be symmetrically applied
to the loop. IL is effected by a periodic modu-
lation of the bias current, Ib = Îb+B sin(ωt).
This system has been studied experimen-

tally [11], theoretically and by numeric simu-
lation of Eq. (5) [7, 12, 13] with good agree-
ment found between studies. Additionally,
excellent progress has been made on the theo-
retical description of these systems [7]. Nev-
ertheless, there is still much to understand to
enable optimised designs to fully take advan-
tage of the IL mechanism.

Josephson  junction

Magnetic flux

Ib Ib

current
Biasing

Josephson  junction

Biasing
current

Figure 2: DC SQUID.

Fig. 3 shows the results of numerical simu-
lations in the presence a low frequency target
signal. (All numerical simulations were per-
formed for this paper with a custom software
written in C that used the Runge-Kutta al-
gorithm of 4-th order adopted to stochastic
differential equations [14].) In the unlocked
regime (green curve) the signal is manifest as
a sharp spectral peak at low frequency su-
perposed on a noise floor background. In
the locked case (black curve) the noise floor
is suppressed and sidebands appear on both
sides of the main locking frequency. The side-



bands, which occur due to a strong hetero-
dyne effect, are amplified versions of the tar-
get signal. The amplification gain - defined
as the ratio in dB of the sideband ampli-
tude to the low frequency signal amplitude
- is shown in Fig. 3b. The large gain, previ-
ously reported in [7], suggests signal extrac-
tion should occur at the sideband frequencies
to reduce the hardware requirements of signal
amplification.
It should be noted that the noise floor sup-

pression is also accompanied by a reduction in
the amplitude of the target signal and hence
the signal-to-noise ratio (SNR) is largely un-
changed. Theoretical calculation of the SNR
has so far proved intractably and hence it
still unknown whether SNR enhancements
are possible.

CCFM

Fluxgate magnetometers represent a broad
class of magnetometer that use standard
magnetic hysteresis to detect changes in field
intensity. They are relatively cheap room
temperature devices that can achieve nT ac-
curacy. A number of self-oscillating flux-
gate magnetometers have previously been
proposed, these include: resonance type os-
cillators [9, 15], the blocking oscillator [16]
and the coupled cores fluxgate magnetometer
(CCFM) [17]. This family of oscillators use
the target field to modulate the frequency of
oscillations or the duty cycle: when the fre-
quency is locked, information about the mag-
netic field is coded entirely in the duty cycle.
Here we investigate IL in the CCFM. Its

basic structure is shown in Fig. 4 and typ-
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Figure 3: (a) Power spectra of the circulat-
ing current in the DC SQUID model Eq. (5).
For numerical simulations Eq. (5) was rewrit-
ten into a scaled form: δ̇ = −(2/β)(δ −
πΦex) − cosΣ sin δ and Σ̇ = J − cos δ sinΣ,
where δ ≡ (δ1 − δ2)/2, Σ ≡ (δ1 − δ2)/2,
and J = Jc + Ac + q sin(ωt) + AT sin(ωT t),
Φex = Φe/Φ0. Parameters: Jc = 0.40731,
Ac = 0.002, ω = 0.0479225, q = 0 for free os-
cillations (green curve) and 0.001 for locked
oscillations (black curve), ωT = 0.03125ω,
AT = 0.00015, β = 2, Φex = 0.495, D =
0.000003155. (b) Dependence of the gain for
the left sideband on the amplitude q of the
locking signal. The parameters are as in the
panel (a).



ically includes three identical modules con-
nected in a ring. The volt-current converter
(V-I) injects a current into the primary coil
of a fluxgate (FG) and the instrumentation
amplifier (INA) picks-up the induced voltage
in the secondary coil. This voltage is then
integrated to obtain a signal that is propor-
tional to the magnetization of the core in the
fluxgate before being amplified (GAIN) and
passed to the next module.

V−I FG INA INT GAIN

V−I FG INT GAININA

V−I FG INA INT GAIN

Figure 4: The structure of the CCFM (see
text).

Following [17] the model of the CCFM can
be written,

ẋ1 = −x1 + tanh [c(x1 + λx3 +Hx)] + ξ1(t),

ẋ2 = −x2 + tanh [c(x2 + λx1 +Hx)] + ξ2(t),

ẋ3 = −x3 + tanh [c(x3 + λx2 +Hx)] + ξ3(t),

(6)

where xi is a voltage proportional to the mag-
netization in the i-th core, c and λ are param-
eters, ξi(t) is a Gaussian white noise with zero
mean and noise intensity D. Autonomous
(self) oscillations of the CCFM are shown in
Fig. 5.
The impact of IL on the CCFM is shown

in Fig. 6. Unlike the DC SQUID there is no
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Figure 5: Free oscillations of x1 (black), x2

(blue) and x3 (green) in the CCFM. Param-
eters are λ = −0.56, c = 3, and the noise
intensity is D = 0.0001.

signal amplification due to heterodyning but
a signal-to-noise ratio (SNR) improvement is
observed due to the reduction in the noise
floor. This can be quantified by an SNR gain
defined as,

∆SNR = 10 log10

(

P1

N1

/
P0

N0

)

, (7)

where P0, N0 are the spectral powers of the
signal peak and background respectively in
a narrow frequency band centred about the
target signal frequency; the subscript zero in-
dicates unlocked oscillations. P1 and N1 are
the same quantities but for the locked case.

The SNR improvement has previously been
reported in experiments and numerical sim-
ulations of Eq. (6) [8, 18]. The CCFM has
been studied theoretically [17] but, similar to
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Figure 6: (a) Power spectra for free and
locked oscillations in the CCFM. Parameters:
λ = −0.56, D = 0.0001; the locking fre-
quency ω = 0.628 is 3 times greater than
the natural frequency of the oscillator; the
frequency of the target signal is ωT = ω/32;
the amplitude of the locking and target sig-
nal are q = 0.3 and AT = 0.003 respectively.
The locking signal is added to the target sig-
nal AT cos(ωT t) + q cos(ωt). (b) SNR as a
function of q.

the DC SQUID, no closed form solution for
the SNR exists. The difficulty in obtaining
such results limits the ability to optimise sys-
tem design but equally leaves opportunity for
further discoveries and advances to be made.

Modified Takeuchi and Harada

magnetometer

V−I
C

R
L

FG DA

1 2 3 4

Figure 7: Electric circuit of the magnetome-
ter.

A striking difference between the DC
SQUID and CCFM magnetometers is the
method of coding used to represent the mag-
netic intensity information. The heterodyn-
ing effect observed in the DC SQUID strongly
suggests that information is encoded in the
amplitude of the oscillations, in contrast the
CCFM is designed to utilise the duty cycle.
To investigate whether SNR improvements

can be observed in other duty-cycle based
magnetometers we propose a novel system
(see Fig. 7) derived from a magnetometer
invented by Takeuchi and Harada (TH) [9].
The design has been modified to explicitly
utilise the duty cycle and to facilitate theoret-
ical tractability. Another potential practical
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Figure 8: Typical shapes of oscillations. (a)
Oscillations of the current IL in the inductor.
(b) Oscillations of voltage in the FG coil and
rectangle oscillations of current in the output
of the magnetometer. Numerical simulations
of Eqs. (8) and (9) were produced for nor-
malized parameters: k = 10, b = 1, L = 1,
R = 0.01, C = 1, µ0 = 1, µm = 10, Sl = 1,
l = 1, n = 1, Vp = 2.

advantage of this system is its use of reso-
nant amplification to increase the current in
the driving coil. This significantly reduces on
board power consumption compared to other
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Figure 9: Power spectrum of free and locked
oscillations in a presence of a low frequency
signal. The power spectrum background is
reduced due to the IL. Numerical simulations
of Eqs. (8) and (9). Parameters: k = 10,
b = 1, L = 1, R = 0.1, C = 1, µ0 = 1,
µm = 10, Sl = 1, l = 1, n = 1, Vp = 2.

fluxgate designs; a property that is important
for portable measurement systems or when
used as a remote sensor node.

In contrast to the original TH circuit, the
new design utilises two coils to achieve high
Q thus circumventing the need for a large
number of turns on the nonlinear core. This
improves shielding and simplifies fabrication.
Duty cycle coding is achieved through the
use of a Schmitt trigger. The mathemati-
cal model of this magnetometer is much sim-
pler than the original TH circuit and hence
is more amenable to analysis.

The resonance circuit can be described by
the following equations for the current IL in



the inductor (inductance L) and the voltage
UC across the capacitor (capacitance C),

İL = (UC −RIL)

(

L+ n
∂Φ

∂IL

)

−1

,

U̇C =
IF − IL

C
, (8)

where Φ is the magnetic flux in the core of the
fluxgate and IF is the positive feedback cur-
rent required to induce stable self-oscillation
of the circuit. It is assumed that two coils
(the inductor and fluxgate) in the circuit are
inductive uncoupled (axis are orthogonal).
Because the current IL is proportional to the
voltage across the resistor UR, we can esti-
mate IL from measurement of UR at point 1 of
the circuit (Fig. 7), i.e. IL = UR/R. Typical
oscillations of the current IL in the resonance
circuit are shown in Fig. 8(a). The voltage
in the fluxgate coil can be measured at the
output of the differential amplifier (point 2)
and is shown in Fig. 8(b).
From Fig. 7 it is observed that the current

in the fluxgate coil is identical to IL therefore
we can write,

V = n
dΦ

dt
= n

∂Φ

∂IL

dIL
dt

. (9)

Accurate modelling of the magnetic flux Φ
is not straightforward, indeed, many mod-
els [19] have been proposed. However, if the
core is made of a high permeability soft mag-
netic material with a narrow hysteresis loop,
it is possible to use the anhysteretic approx-
imation based on the arctan function

Φ = SlB(H, Il) = Sl

µ0µm

k
arctan(k(H+bIL))

(10)

where µ0 is the vacuum permeability, µm is
a maximum relative permeability of the core
material during major hysteresis cycle, and
the parameter k is a coefficient of proportion-
ality, H is a target magnetic field; b = n/l,
n is the number of turns in the coil, l is the
length of the coil and Sl is its cross sectional
area. Substitution of Eq. (10) and Eq. (8)
into Eq. (9) gives an approximation for the
voltage in the fluxgate coil,

V = n2
Sl

l

µmµ0(UC −RIL)

L[1 + k2(H + bIL)2] + µmµ0

.

(11)

The voltage V is processed by the differen-
tial amplifier and then passed to the Schmitt
trigger via the summator where the injection
locking signal s(t) is added (point 3). The
two thresholds of the Schmitt trigger are cho-
sen such that one is positive Vp and the other
negative Vm = −Vp. This transforms the in-
tervals between positive and negative pulses
into rectangle pulses (point 4 in Fig. 7) from
which the duty cycle, and hence field inten-
sity, can be obtained. The rectangular output
current is shown in Fig. 8(b).

Given the duty-cycle is proportional to the
DC magnetic field H , it follows that the av-
erage of the output signal is also proportional
toH . This DC current component is fed-back
to the coil of the fluxgate and hence results in
an additional DC magnetic field that is pro-
portional to H . This positive DC feedback
leads to an improved sensitivity of the mag-
netometer to weak magnetic fields. The DC
stability criteria is out of the scope of this
paper.

If the magnetic field is not static and H



oscillates with sufficiently low frequency, we
may ignore the term dH/dt in the expansion

dΦ

dt
=

∂Φ

∂IL

dIL
dt

+
∂Φ

∂H

dH

dt
≃ ∂Φ

∂IL

dIL
dt

,

and use Eqs. (8) and (9) for numerical simu-
lations.
To proceed further the noise sources have

to be modelled. These arise from the ther-
mal noise of the resistor, noise in the core of
the fluxgate and noise from the Schmitt trig-
ger. We assume the thermal noise is small
and hence can be neglected. The noises in
the fluxgate core and the Schmitt trigger
both impact the precise times of the thresh-
old crossings and hence can be modelled as
a common noise applied to the thresholds.
This noise gives rise to fluctuations in the fre-
quency of oscillation (when not locked) and
the duty cycle. Fluctuations in the LCR cir-
cuit are small and hence the period of oscil-
lation of the LCR circuit can be used as a
reference for the estimation of the temporal
fluctuations.
We now estimate the SNR gain due to in-

jection locking. Let τ1 and τ2 be the du-
rations of the positive and negative rectan-
gle pulses respectively. The intervals can
then be further decomposed into the follow-
ing sub-intervals, τ1 = δ1 + ∆1 − δ2 and
τ2 = δ2 + ∆2 − δ3 where the parameters ∆1

and ∆2 are the averaged durations of the
positive and negative pulses. We have in-
troduced identically distributed random vari-
ables δk with variance σδ to model the tempo-
ral noise (jitter) due to threshold noise. We
note that Z0(τ1 − τ2) codes the value of the
target magnetic field. It is straightforward

to find estimates of its mean and variance as
m = Z0(∆1 −∆2) and σ2 = 6σ2

δZ
2
0
. We now

introducing a quantity similar to the SNR,
η = m2/σ2, that for free oscillations gives
ηfree = (∆1 −∆2)

2/6σ2

δ .

The locking signal s(t) should be chosen
to suppress noise but preserve the target sig-
nal i.e. the locking signal should stabilise the
period but not impact the duty cycle. This
can be achieved using pulses applied to point
3 in the circuit. An example of such a sig-
nal is s(t) = B

∑

∞

n=−∞
δ(t − nT ), where T

is a period closely related to the frequency
of the free oscillations and δ(·) is the Dirac
delta function. In this scenario the temporal
jitter associated with one of the thresholds
is removed due to the locking. If the period
is locked to the positive going oscillation this
would yield δ1 = 0 and δ3 = 0. Recalculating
the mean and variance over a complete cycle
yields, m = Z0(∆1−(T−∆1)) = Z0(2∆1−T )
and σ2 = 4σ2

δZ
2
0 , where it is assumed ∆1 <

T < ∆1 + ∆2. The reduction in σ2 for the
locked case gives rise to an improvement in
the SNR. The SNR gain can be estimated as,

∆SNR =
ηlocked
ηfree

=
3

2

(2∆1 − T )2

(∆1 +∆2)2
(12)

In the limit T → ∆1 +∆2 this approaches
∆SNR = 1.5.

In Fig. 9 spectra for free and locked oscilla-
tions are shown. It is observed that the SNR
is improved by about 2-3 dB in good agree-
ment with the estimates obtained in this sec-
tion.



Conclusion

In this paper we have reviewed the IL tech-
nique in different magnetometer systems and
introduced a novel fluxgate magnetometer
circuit. IL impacts magnetometers in differ-
ent ways depending on the precise detail of
the design. The DC SQUID magnetometer
showed strong nonlinear mixing (heterodyn-
ing) between the locking signal and the nat-
ural frequency of oscillation, giving rise to a
large amplification of the target signal at the
heterodyne frequency. Such effects are ex-
pected when the locked oscillations are per-
turbed in an additive manner by the target
magnetic field. In contrast, the two magne-
tometers that utilised the duty-cycle to code
the target signal did not display amplification
via heterodyning; rather they showed SNR
gains due to the lowering of the spectral back-
ground.

It is highly likely that improved designs
that utilise amplitude or duty cycle coding
(or both) exist. We hope this paper will stim-
ulate research in this direction and encourage
further theoretical studies of these systems.
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