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STJMMAHT

In the first part of this thesis se prove that any (orientation- pre­
serving )hoaeomorphism of a (orientable )oonneoted sum of 3-manifolds oaa 
be written as a product g»f where f preserves factors and g is a composi­
tion of loop haaeonorphisas and permutations of factors .The method yields 
results about the higher hoaotopy groups of the space of automorphisms of 
a general 3-manifold.

In the second part we give a calculus of links to classify 4-manifolds 
similar to Kirby* s calculus for 3-manifolds .using UnV pictures with certain 
identified links and corresponding allowable moves.We also consider a stable 
classification of 4-nsr-lf old3 using such link pictures.
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AUTOMORPHISMS OF 3-MANIFOLDS AND REPRESENTATIONS OF 4-MANIFOLDS

Introduction

This thesis is in two parts. In part I we shall consider the structure 

of the automorphism group of a connected sum of 3-manifolds and in 

part II apply some of the results of part I to obtain a simple link 

calculus to represent 4-manifolds.

Part I starts by reviewing Gluck's computation of the automorphism 
1 2group of S *S (the automorphism group is the group of isotopy classes

oof homeomorphisms) and extending the result-to the "twisted" S -bundle 
1 1 2over S , S . We then define three types of automorphisms of a 

connected sum of 3-manifolds, namely "generalised slides", "permutations" 

and "factor preserving automorphisms". "Generalised Slides" are the 

equivalent for a connected sum of handle slides in a handler-body - the 

point is that factors can be slid around as if they were handles.

Our first main theorem (theorem 3.1) proves that the three basic 

types of automorphismsgenerate the group of automorphisms (in fact, any 

automorphism is the composition g.h «here h preserves factors and g 

is a composition of slides and permutations). The method of proof is an 

adaptation of the familiar "ball push" method used by '.minor* in CIS 3. 
(Orientation preserving automorphisms in the orientable case)

In order to obtain a canonical version of the decomposition given 

by the theorem we need to work with automorphisms fixed on a disc.

Indeed we can apply the ".Hatcher's method" [1(3 to make the process in 
theorem 3.2 completely canonical and deduce that there is a split epi- 
morphism from the higher homotopy groups of the spaoe of homeomorphisms 
fixing a dise to the dixeot product of the higher homotopy groups of 
the spaoe of homeomorphlsas fixing a disc of the faotors.



Part I ends with a discussion of special cases. In some cases

we can prove that the relative automorphism group (the group of auto-

morphisms fixing a disc) coincides with the absolute one and in some

cases it doesn't. We also consider standard fibrations [̂ 2] to analyse

the higher homotopy groups of the absolute space of automorphisms in
2 .general and deduce some results on P -irreducible sufficiently large 

3 manifolds.

Finally, we recover some results due to Laudenbach 07^ on the auto-
2 1morphisms of a connected sum of S -bundles over S and extend them to

2 . . ,an arbitrary connected sum of such with P - irreducible sufficiently 

large 3 manifolds.

2In part II we use theorem 3.) in the case of a connected sum of S

bundles over s' to prove that a 4-manifold is determined, up to

homeomorphism, by its full 2-handles. Then we can use the Kirby link

pictures 05) to give a calculus of links to classify orientable 4-

manifolds. We then give a calculus for non-orientable 4 manifolds by

allowing "twisté’on passing through certain identified components of

the link. We also consider the problem of stable classification of 4-
2 2manifolds (under connected sum with an S -bundle over S ).

I would likw to thank ay supervisor Colin Rourke for his help and 
encouragement and also the Instituto Racional de Xnvestigacao Científica, 
(Portugal), for its financial support.

I would also like to thank David Epstein for helpful ocmnants on 
a previous version of part X of the thesis.in particular he suggested 
an improvement to- theorem 2.2(fron an isotopy classification of hcaeo- 
aorphisms to a homotopy olassifioation)The proof of this included in 
the present version is due to Colin Rourke.
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1. PRELIMINAIRES

We assume the.reader is familiar with basic works such as [21]. We 

work in the pj. . category. All manifolds are compact and connected and 

can be with or without boundary. The boundary of a manifold M will be 

denoted by 9M, the interior by int M.

In denotes the n-cube i.e. the subset of points (tj,...,tn) of R n 

with 0<t£Sl for i*>l,2.... n.

We now give some definitions and results which will prove useful 

later on (this ia by no means an exhaustive list but only a list of 

some probably not so well known results).

1.1 A p.l. n-isotopy of M in 0 (MfQ are manifolds) is a p.l. embedding

F : M*In--*.Q*In which commutes with the projections onto the second

factor.

So for any tcln , there is an embedding F s M — >.Q s.t F is given 

by F(x,t) ■ (Ft(x),t) for all xeM. We say F is a level preserving 
embedding.

A 1-isotopy is just called an isotopy. Two embeddings are n-isotopic 

if there is an n-isotopy between them.

1.2 An ambient pi n-isotopy of Q is a

H : Qxin__> Qxln s.t. Hq s Q__►Q is the

Rn).

level preserving p. 1. homeomorphism 

identity (0 is the origin in



1.3 An n-isotopy F of M in Q is fixed on X if X is a subset of M and

Ft/x  “ Fo/x for a11 tein-

We say F has support in U if F fixes M-U. F is mod X or relX if 

it fixes X.

1.4 We say the ambient n-isotopy H : Q*ln — ^Q*In covers or extends

F : M*l"— *. Qxin if the diagram

Qxl

commutes, i.e. Ft = H ^ F q , all teln

1.5 Alexander’s trick N] Any homeomorphism of a ball keeping the 

boundary fixed is isotopic to the identity keeping the boundary fixed.

1.6 (i) Let Bn ,Cn be balls and h0,hj homeomorphisms Bn— * Cn which 

agree on 3Bn . Then h^hj are ambient isotopic mod 3Bn.

(ii) If M is a manifold with compact boundary then any n- 

isotopy of 3M extends to one of M with support in a collar of

3M.

1.7 A p.l. n-isotopy F of M™ in Qp is allowable if for some p.l. (m-1) 
sub-manifold N of 3M, F_1(3Q) - N for all tel". N may be empty or it may 
be the whole of 3M. A p.l. embedding f:MnL-*.QP is allowable if f-1(3Q) 
is a pJL. (m-1) sub-manifold of 3M.



1.8 n-isotopy extension theorem f 13]

If F : M*In— »■ Q*In is an allowable n-isotopy (fixed on YcM)j M 

compact, and F is locally unknotted then there is an ambient n-isotopy 

of Q with compact support (fixed on Y) extending F.

1.9 Any two collars of 3M in M are canonically ambient isotopic

cj,n an
1.10 Let h^ : B ---> C , i-1,2, be homeomorphisms between ball

<f,n . . . .pairs that agree on 3B . Then hj is ambient n-isotopic to hj rel 

3B*n .

1.11 Light bulb trick [8]

2 2Let *:eS be a base point in S . Then any tame arc properly embedded

in S^*i which connects )*}x{0j to {*}xfl^ is ambient isotopic to (*}*I
2

by an ambient isotopy keeping S *{0,1} fixed.

/ / / s / S / S / S / s

I

1.12 Aut M denotes the automorphism group of M i.e. the group of 

homeomorphisms of the manifold M factored out by the normal subgroup of 

those which are pl-iaotopio to the identity .We will see later(l.14) that 
Aut M » TT (PL (M) ,where PL(MUs the space of pl-homeomorphisms of M .Elements 
of Aut M are oalled automorphisms.

If M is orientable we denote by Aut*M the subgroup of AutM consisting 

of the isotopy classes of the orientation preserving homeomorphisms.



1.13 Connected sums and prime decompositions of 3-tnanifolds

We quote some results on 3-manifolds. For proofs and details see

[11]. All manifolds are assumed to be compact and connected.

Let M j,M2 be n-manifolds, B^cintlL n-cells in M., i-1,2,. Let M 

be the space obtained from M j,M2 by removing the interior of and 

identifying 3B| with 9B2 by a homeomorphism which in the case M j,M2 

oriented we require to be orientation reversing . M is called the 

connected sum of M j,M0 and denoted hy M ^ M 2. Connected sum is a well 

defined associative and commutative operation in the category of oriented 

n-manifolds and orientation preserving homeomorphisms. For both oriented 

or non-oriented case there are at most two homeomorphism types for 

M|tiM2 and only one,if one of M j,M2 admits a self-homeomorphism which 

fixes some point and reverses the orientation of a neighbourhood of this 

point [11].

A 3-manifold M is prime if M » M j#M2 implies one of M j i s  a 3-

sphere. It is irreducible if each 2-sphere in its interior bounds a

3 cell. Clearly irreducible manifolds are prime. A prime manifold is

either irreducible or a 2-sphere bundle over S ' (There are only two

2-spheres bundles over S : the trivial or "untwisted one, S *S , and the
1 2non-trivial or "foisted" one which we denote by S ). Connected summing 

with S xS^ or S‘*S to a manifold M has the same effect as "adding a hollowCO
handle" : choose two disjoint 3 cells in M, remove their interiors and 

match the resulting boundaries under an orientation reversing homeomorphism 

in the first case, an orientation preserving homeomorphism in the second 

case.

Let F be a surface in M (2 sided properly embedded) or in 9M, F 

not being the 2-sphere. Then we say F is incompressible if

Ker(1TjF — *TjM) ■ 0. An irreducible manifold which is not a ball is



sufficiently large if and only if there exists an incompressible surface 

in M. — ■-

. . 2A 3-manifold M is said to be P -irreducible if it is irreducible and 

contains no 2-sided projective plane.

Milnor -showed that there exists a unique prime decomposition (under

■#) of oriented 3 manifolds up to homeomorphism and order of factors [18],

Proof of existence was given by Kneser [16], In the non orientable case

although the factorization always exists it is not unique since for any

non orientable manifold M, M +  s'*S^ = M ♦ s'*S^ (for a proof see

Hempèl [11]). From this is follows that we can replace any factorization

M - Mj*- by one satisfying the following conditionjif at least one of
1 2the M. is S *S then M is orientabla. Such a factorization is called normal. 

Hempel Til] proved the uniqueness decomposition for normal factorizations. 

Putting together all these results we get the following:

THEOREM [Ul

For any compact connected 3 manifold (closed or not ) there exists a 

finite normal decomposition into prime manifolds. Given any two normal
i

factorizations H | « ... » ■ M ] » ...» M^, then n-n' and, after possible

reordering, is homeomorphic to Mĵ1 (orientation preserving homeomorphism 

in the oriented category).

*  If M denotes the manifold obtained from M by oapping off each 2- 

sphere component of 3M with a 3 cell B and M ■ Mj If ... is a prime

decomposition of M, then Mj t ... * 4 # ... # B^ is a prime
A 3decomposition of M where there are as many factors of B as the number of

2-spheres in 8M.



The bounded connected sum

If M j,M2 are two n »"ahifolds with boundary the bounded connected sum

f M0 is defined as follows:

r>n-1^r« n  -J___„n-1 _ r . , -|n_l ĵ n-1

so that Dn 1 .is contained in ShJ1. Find embeddings (H.n,n.n-,)£*(M.n,9M£) 
i“l,2 and define (M^,9M.̂ ) , i»l,2 , D̂ , to be respectively

Consider the p.l. half disc H=Dn~'xfO, 1 ] where T)n_ = T-l, 1 ünc  
„n-1 , ; __,„n j _, ...__ n „ n-1,

n-1, ,,n_„n-l(Mi-Hi"f9M.-Di“ i-1,2, 9H -I) T h e n M , 4 k M 2 is, by definition,

M 1^ M2^ w’-t*1 Dj^9Mj, identified with n2^-^2^ by a homeomorphism which 

we require to be orientation reversing if both Mj and Mj are oriented.

M, â M2 is then a p.l n-manifold, orientable if both Mj,M2 are, 
and 9(Mj $ M2) -  gMj 9M2.



1.14 (of[22})

Let T be a submanifold-of the manifold the standard k-simplex
in It*.

(i) PL(MtT) is defined to be the semi-slmplicial complex whose
k kk-slmplloes are p.l. homeomorphisms A xM--- ♦ a iM which commute

k kwith projection onto A  and such that the restriction to xT is
the identity.lt has the obvious boundary and degeneracy maps.

If T«^ we write PL(M).If M is orientable SPL(M.T) denotes 
the subcomplex of orl'-ntatlon preserving homeomorphlsms.If 0 denotes 
the origin in R̂ c,PL(Rlc,0) is usually denoted by PL^.

(ii) Let it! 11-»rf" be the inclusion map,Z a locally flat sub­
manifold of T.T is also a locally flat submanifold of M.

is defined to be the semi-simplioial complex 
whose k-slmplloes are embeddings f t^xT — dfxM which ooemute with 
projection onto and such that

(i) f| Ak x Z . (id x i)|( A k x Z)
(ii) f 1( A k *^M) . &  x i“1(3M)
(ill) given (t,y) e. A  x T there is a closed neighbourhood 

IT of t in A k, a dosed neighbourhood V of y in T* and an
embedding of i 0 x V x D*“n — > A k x M s.t. the image of of is a

1-dosed neighbourhood of f(t,y) in A  x M and the following diagram 
commutes, where T, T' are the projections onto the first factor«

IT x (? k j0|) -- £-- > 0 x (V x D*"n) > 0K I- lc
A k x T  ---±----► A k x K  -> A  k

(This is a local flatness condition)

Qrtgt?,M) has the obvious boundary and degeneracy maps. If Z » $ 
we write Emb(T.M). If M is oriented SEmb^(TtM) is the suboomplex of 
orientation preserving embeddings. PL(M,T) , SPL(M,T) , Emb^l^M) • 
SEmbz(T,rf) are all Kan complexes, hence we oan define their homotopy

m a in .
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2. THE GROUP OF AUTOMORPHISMS OF A 2-SPHKRE BUNDLE OVER p* 1

1 2(1) We consider first the trivial hundle S XS .

THEOREM 2.1

Aut s'xS? . Z2 <® jf2 ®  .

Proof

This was proved by Gluck T81. We give a "geometric idea" of his 

proof:

2 iRegard S as the unit sphere in 3 space and S as the space of

complex numbers modulo 1.

1 2 .  1 2  A homeomorphism of S XR induces an automorphism of Hj(S XS ;2) ■ 2

1 2and an automorphism of HjiS XR ; 2 ) = 2 each of which depends only on

the isotopy class of the homeomorphism. As 2 ^ is the group of automorphisms
1 2  2 2of 2 we get a homomorphism (f) s Aut S XS  ► . Let r s S — S

denote the antipodal map and s : s' *-S* the complex conjugation.
. 1 2is the subgroup of Aut S XS consisting of the isotopy classes of

(id,id), (s,id), (g,r), (id,r). Let p be the isomorphism of with

this subgroup determined by the condition <f>p « I (1«id). Then <f> splits.

We will show that kar <f> = 2^ As a normal subgroup of order mo is
1 2central and <(> splits we get that Aut S XS - Ker " *^*2®02’

Let fcKer <|>.

(a) We first deform f({0)xS^) isotopically until f/{0)xS^ is 

the identity.
2

(1) By general position assume f({0}*S ) intersects
O

{fl)xS in a finite number of simple disjoint closed curves.

We show how to isotope f({0)xS ) so as to reduce the number
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proof:
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complex numbers modulo 1.
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the isotopy class of the homeomorphism. As 72 is the group of automorphisms
1 2  2 2of 2 we get a homomorphism (j) s Aut S * S --*• Z2®Z2. Let r : S — r S

denote the antipodal map and s : S1--yS* the complex conjugation.
. I 2Z2®Z2 is the subgroup of Aut S XS consisting of the isotopy classes of

(id,id), (s,id), (a,r), (id,r). Let p be the isomorphism of 72$Z2 with

this subgroup determined by the condition <J>p - 1 (1-id). Then (¡> splits.

We will show that kar <J> 2^ As a normal subgroup of order wo is
1 1central and <t> splits we get that Aut S *S » Ker <t>*72®Z2 - 

Let feKer <J>.

(a) We first deform f({0}xs^) isotopically until f^{0}*S^ is 

the identity.
2

(1) By general position assume f({0}*S ) intersects 

{0}xs in a finite number of simple disjoint closed curves.

We show how to isotope f({0}*S ) so as to reduce the number
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of intersections. After a finite number of stages 

f({0}*S2) is disjoint from {0}*S2.

Let C be an innermost curve in f({0}*S ) in the

intersection of f({0}xs2) with {0}xs2. Then C bounds a 
2

disc F. in f({0}*S ) with no more intersection curves. C
2also bounds a disc E' in {0}xs s.t. E\>E is a sphere which

1 2separates. Hence E'OE bounds a 3 ball D in S XS as
1 2 . .  9S xg ig prime.

Let O' be a ball neighbourhood of D in S ^ S 2. Then

there exists an isotopy of D' which is the identity on the
2

boundary that "pushes" f({0}xs ) across the ball D 

eliminating the intersection curve C (I.10). Extending 

the isotopy to M by the identity shows what we want .

■ J

Remark

This process of eliminating intersection curves is a special case of 

a general procedure to be used later on.

P

■ !

I
' ' 6
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(2) As after stage (1) the two spheres are disjoint, we 

can isotope one into the other as now the region between 

them is an annulusi (cut S'*S along one of the spheres to 

get a ball with 2 holes. Now the region between the two 

spheres becomes a regular neighbourhood of one of the holes 

hence an annulus by the regular neighbourhood collaring 
theorem. Gluing the holes back again doesn't affect.it.)

j  2
(3) Now we have f | ̂  jx;,2'.{o}xs — ,and as feker^ is a e 
degree one map,this restriction is isotopic to the identity.

1 2  2(b) We can now interpret f, by cutting S XS along (0}*S , as a 
2map of I*S onto itself being the identity on boundary components.

2Regard I*s as the space in between two 2-spheres in 3 space 

and denote by H the north pole.

We now deform^rel 3(I*S ), fi 

identity:
|(6|NJ) I (I*|NJ)

is the

sewn0'

f(I*{n ) is an arc from {0}x{N} to (1}x {n ) that can have little knots. 

By the light bulb trick (1.11), we can unknot them, (the idea is 

to regard the central hall - see picture - as very small so that 

the arc and the ball can he regarded as a piece of string and then 

the knots can be slid off the end) and mdce f(I*{N}) “ IX(N) by 

an isotopy rel 3(I*S2). But as feKer <*>, f|I*{N} must be orientation
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preserving, hence isotopic to the identity. As the isotopies 

used clearly extend tp an isotopy of s'*S2 fixed on {0}*S2 we 

have the required result.

2(c) Let C be a small circle on S about the north pole N. The

union of I*C with the two discs around respectively {0}*{n } and

O M n } hounded by C hounds a regular neighbourhood of I*{N} in 
2I*S . By the regular neighbourhood theorem we can then deform

2isotopically f by an isotopy rel 3(I*S ) s.t f takes I*C onto 

itself. But a homeomorphism of I*C onto itself is isotopic rel3 

to a standard n-tuple twist

l

(parametrize C by the angle P mod 2ir. Then f|I*C is isotopic to one 

of the maps fn (t,B) - (t,P+2wnt).

(d) We continue to deform f until f|I*r is either the identity 

on a standard 1-twist according to n is even or odd (see pictures).

ato***
4

qoS* S 
l



(Pictures shows how to get rid of two twists. Thjsn result follows 

after a finite number of stages.)

Again all the isotopies fix {0}xs2 U (l}xs2 hence extend to
s'xs2.

(e) Let z. denote the homeomorphism of S*xR2 determined by 

c(t,x) » (t,tf>t;(x)) where <(> denotes a rotation of S2 about a 

diameter through the north and south poles, through an angle of 

2ira in some fixed direction. Let K - {0}*S2 U  {I }xs2 U Ixc. tip to 

this point we nave deformed f until f is the identity on

{0}xs2 VJ {1 }*S2 and is z. or the identity on Ixc. (Both c»id Ker <t>
2 2and are the identity on {0}*S U (l}xS ).

LEMMA 2.1

oLet f and g be two homeomorphisms of I*s whose restrictions to the 

boundary are the identity and which agree on I*c, Then f and g are 

isotopic rel 3(I*s2).

Proof

f_ *g|K is the identity. 1*S^ consists of two disjoint open 3-cells 

whose boundaries are non-singular and contained in K. But since f *g 

cannot interchange these 3 cells, the restriction to each cell is a 

homeomorphism which is the identity on the boundary and hence isotopic 

to the identity rel 9(I*S ). Hence f and g are isotopic rel 3(IXS ).Q

(f) It remains to prove that id,e are not isotopic. Gluck uses
t 2 2Pon trjagin homotopic classification of maps of S *s onto S to 

prove that they are not homotopic, hence not isotopic. In fact we 

will give a direct geometric proof that they are not VwiraUpu. in
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Two immediate corollaries of the theorem are the followings 

COROLLARY 2.1

• 1 2Two homeomorphisms of S XS are isotopic iff they are homotopic.

COROLLARY 2.2

i 2 1 1Any homeomorphism of S *S extends to S *B .

(2) s'̂ &S2

. 1 2  . 2  iConsider S ̂ <S , the twisted S —bundle over S, as the space obtained
2 o 2from [-I,l]xs by identifying fl }*S with {l}xs by an orientation rarer- 

sing homeomorphism whose square is the identity (e.g.the antipodal map).

1 2Any homeomorphism of S xs induces an automorphism of 
1 2Hj(S ̂ S ;2) « 2 which depends only on the isotopy class of the homeo­

morphism. As the automorphism group of 2 is 2^ we get a homomorphism
1 2 1 2<f> : Aut S 'xS — ► 2 Let &  be the subgroup of Aut s'xS generated by

the isotopy classes of (id,id) and (a,id).

(i) To see that (s,id) is not isotopic to the identity consider 

the maps

If f * (s,id) q1 has degree -1

f - (id,id) V  has degree 1

hence they are not isotopic



(ii) To see that (l,r) is isotopic to the identity lift the

map to the universal cover Rxs* 1 2 to get a map (l,r) : Rxs2__>R*S2.

If id denotes the lift of the identity obtained by choosing the
rJ rs)

same base point upstairs then ( id) -E>,«(ltr) where
2 2 .K I '• — ?»RXS is the covering translation Sj(t,x) - (t+l,x).

Hence (l,r) is isotopic to the identity in s'^S2.

Now let p be the isomorphism of Z 2 with %C Aut S*_JS2 determined by 

the condition <f>p ■ I. Then <J> splits. <f> is onto. We show that 

Ker <f> - J, and hence that Aut S*XS2 ■ Ker<t>«E_=Z,,«Z,,.L no L L L

THEOREM 2.2

Aut s'xs2 - Z, ®  Z-.ro L L

Proof;

It remains then to show that Ker <f>- ̂ T h e  proof is essentially the 

same as in the orientable case and we only point out the differences.

1 2Let h be a homeomorphism of S *S . h can be deformed isotopxcally

until h({0}xS2) « {0}xs2 as in the orientable case. Then h/{0}xs2 is

either orientation preserving or orientation reversing. In the latter

case apply the above to make it orientation preserving (h/{0}xS up to

isotopy is either the identity or the antipodal map) hence isotopic to
1 2  2the identity. Then cutting S along {0}xs we can think of h as a

2homeomorphism of IXS which is the identity on the boundary. Then, as
1 2before, h is either isotopic to the id or to s  in S XS .

It remains to prove that j, id are not isotopic:



We prove that they are not homotopio,hence not iaotoplo.
2 2Let q:S — '»S be the reflection in a great circle through north

and south poles .Think of S1x S2 as obtained from I xS2 by identifying
•jO(x S2 with ^1^x S2 by q. Let C be the clrole which is the image of
I xjn^ in S £  S ( n denotes the north pole of S )and let * be the

1 2image of ^Otx^nl.Let cbe the self homeomorphism of S'x S which rotates
2S about the north and south poles once during I.Assume w.l.o.g. that the 
rotation is the identity near 0 and 1.

LEMMA 2.2
-e, is not homotopio to the identity.

I s s s L l

Suppose that *; and id were homotopic and w.l.o.g. assume that the
1 2  1 2homotopy is fixed near 0 and I.Let F»S x S x I — >S x S be the given!\/ V

homotopy,FQ-id, F^r. By the relative transversality theorem deform F 
to be transverse to C keeping fixed a neighbourhood of the levels 0 
and I.Let T be F (C) which is a surface in S xS xl with two boundary 
components (the oopies of C in levels O'and 1).

Row deform F further until F/T Is transverse to * in C and let Cq 
be F~1(*) whloh is a system of oirolee and aros on T( in faot one aro
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and n other oirclea).liet Tq be T out along CQ.Then la a surface with 
2n+1 boundary components tone Q  corresponding to the two copies of C and 
the arc,and others which coma in pairs (QifP^) corresponding to the oir - 
cles which Mere cut.

1 2Let Q be the universal cover of S ̂ xS xl.We can regard Q as a subset 
of IR̂  (tRx̂ fclR̂  as a collar on S2 and hence lRxS2xIci^xIe®^ ) and hence 
Zr(Q) (the tangent bundle of Q) has a standard framing.

TQ can be lifted to a surface TQ in Q(sinoe the only obstruction 
to lifting lies inTT^( S1>d32xJl)gf and T^ is the preimage of C

r̂ >
cut at *, which is null homotopic). We now claim that TQ can be framed 
so that the framing agrees with the following framing near [ID :

OL

first vector normal.second 
tangent- smooth at corners 
as shown.

and agrees up to an even number of twists with the oitiard-normd,-tangent fra 
ming near the other couponents(aesume w.l.o.g. n/ 0). This follows by 
an easy argument by induction on the genus of the surface.

C cut at * has a framing given by choosing two perpendicular vectors
2at n in 3 and this pulls back by F to give a normal framing on TQ in

1 2  ^S xS xl and hence on TQ in Q.Thia framing together with the chosen fra-
fO

ming on TQ gives a framing of C(Q) near TQ .We now have two fraaings-
-this one and the standard one. The oomparison nap is a nap A.iT-^80.u 4«

(V
We claim that represents the nan trivial elmaent of H1 (SO^)« 7^

r*j
(and this is impossible slnoe /-/T is then a homology of this to sero).
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Step 1 -̂ /D represent a the non zero element. -—
Since we have assumed F and £■ to be the identity near 0 and 1, every­

thing is standard near the corners of □  and so we can think of □ as made 
of four pieces and measure the oontribuitions separately;

'X/bl gives one twist on the normal framing by definition of C  and 
therefore represents 1 in ^(note that H^SO^) is generated by the image 
1^(S02)- circle group ).

'X/’b gives no twist .
V o  and V d »re related by covering translation(expansion of

plus a reflection) which differ by multiplication by a constant element
of SO.,hence they give the same element in H..4 i

Step 2 ,

As in the proof of step 1 if we had chosen the normal-tangent fra­
ming near and P^ then And A/P^ would give the same element
of H.j ,but the actual framing chosen differs from the normal-tangent fra­
ming by an even number of twists, henoe they still represent the same 
element of H^(SO^),

Hence'X/Q T. represents the nan zero element of H (SO.).Contradiction.
4 a  a

As in the orientable oase the next two corollaries follow ianediatly. 
S1xB^ denotes the twisted 3-dlsc bundle over S1,<-v»

COROLLARY 2.3
1 2  1 1  Any honeomorphlsm of extends to SScB .

COROLLARY 2.4
Two homeomorphlans of s V  are homotopio if and only if they are

laytgplo.
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3. HOMEOMORPHISMS OF 3-MANIFOLPS

X. Let M be a closed 3 manifold P. #. ..#P *  P . . #...*P , thei s 9* i

to study the group of homeomorphisms of M. For simplicity we consider 

M closed although the techniques used are true for M with boundary 

with minor changes. So,unless otherwise stated^manifold will mean 

closed manifold.

We first need some preliminaries lemmas:

LEMMA 3. 1

A parallelization of an orientable 3 manifold determines a choice of 

a standard disc neighbourhood of each point of M.

ranges over an arbitrary neighbourhood of Xq in M. It is known that

for orientable 3 manifolds the tangent microbundle is trivial.

i.e. there exist neighbourhoods E^ of A(M) in M*M and Eq of {0}*M in

normal factorization [11] of M into prime manifolds where Pj ... Pg 

are irreducible, ... are 2 sphere bundles over s'. Our aim is

Proof

The tangent microbundle of M is defined

M.where A  denotes the diagonal map [19], 

Thus the "fibre" over a point where y

F*M and a homeomorphisms h from E0 to E^ making the following diagram

commutative
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MxM

particular homeomorphian h ) determines a choice of a diso for each 
point of M.For each point xQ in M  the fibre in DxM ie a disc 0t ÏÏD.

Te will aay that a choice of something is canonical (e.g. a choice 
of a homeomozphiam satisfying certain conditions,a choioe of a dise,etc) 
if the space of choices is contractible i.e. a choice is defined up to 
an isotopp which in turn is defined up to an isotopy, which is in turn 
defined up to an isotopy and so on.

A unique choice is canonical.

Suppose given an parallelization of K if M is orientable, a paralle­
lization of the orientable double cover otherwise.

CQRÇtfjHT ,jj.
Given an arc in M and an orientation on one end,there exists a cano­

nical extension to an iaotopy of embeddings of a 3-diso in M and a homoto- 
py rel ends between any two such arcs extends canonically to a hoaotopy 
rel ends between the two isotopiss of embeddings.

Proofi

¿action on the first factor). □

If M is orientable, define«T0x1 »dL by where



\

2,1

0(tl— r M Is the aro. If M Is nan orieatable,lift the arc to the orieata­
ble double cover, choosing a lift of one end according to the orientation 
given.We can then as before ,choose in a continuous way a disc for each
point of the arc .Then project Into M. Second part of the corollary is similar.

□

We raaaric that if the aro is an orientation preserving loop we will 
end up with the same disc we have started off with,since we will end up 
in the sane sheet upstairs, hence the lift is a loop.

LEM» 3.2
There are only two choices of extensions of an arc to an laotouv of 

embeddings of a diao in M u p to iaotoov rel ends« the canonical one defi­
ned ter corollary 3.1 and the twisted an el given an orientation of one end).

Let f,b;tDxI--*-MxI be any two such isotopies,fg hQ>f1-h1. f(DxI)
and h(DxI) determine two normal bundles of an aro in Mxl (trivial^ 
of course) .But as ends are fixed,we think of any two such choices as 
two trivialisations of a normal bundle of S1 in Mxl (4manifold). Is 
such trivl all rations are classified by¥(o^)-22 the leans follows.

LEMMA 3.3
Given an isotqjy of esibeddinga of a disc D in M starting with the 

inclusion »there is a canonical extension to an ambient lsotopy of 
M .Hence the final honeonorphism*H^ ,which is well defined up to lsotopy 
rel D, is oanenioal.



*If HiMxl"— - Mxl11 Is an n-isotopy of M,then H^M xjlt H xjl\ la  oallad 
the final honeomorphis»(here In.[o,l]n , 1eln le the point

Proof t

ket h^«D !»M he the isotopy of embeddings.By the iaotopy extension
theorem there la an extension to an lsotopy of M,H. »M— suoh that B.-id.t o
This proves the first part of the lama.

We nos show that such an extension is canonical i
Suppose then that H'-(H£)t€l, is another extension of ht,H'0-id. 

Define a map g ^  from MxIx^O<|UMxIx}lH U M x ^ x l  UD xl2 into Mxl2hy
mapping

MvIx̂ Ô j into MxIx-jO!| by H
JMxf 1\ into Mxlxjlj by H*
Mx^O]xl into Mx^OjxI by id
Dxl2 into Dxl2 by hxid

(h-(ht)t a ,H-(Ht)t^ )
This is possible sinoe both H and H' are extensions of h.

H



By the 2-isotopy extension theorem g ' extends to a 2- isotopy 
G ^  of M with r  -id. 0 2̂V  MxjUxI iMxjlJxI — » Mx-jll(xl gives an istT 
topy rel 1) between and .Henoe is sell defined up to lsotopy 
rel D.

G^2fy Mxlxjsfi defines an lsotopy G^^ between the two extensions
(2)H and H*, through extensions (i.e. each G^ ' is an extension of h)

It remains thus to show that any two such isotopies G ^  and G^2^’
between the extensions H and H' are isotopic through such isotopies
and so on. Define a map g ^  from MxI2xfo\ll MxI2x 1̂{U Mx^ojxl U Dxl3 
by mapping

(2)

MxI2x^ into Mxl2xj0$ by G ^
MxI2x ^ into MxI2x )1¡¿ by G^2^
Mxtyxl into Mx\0}xl by id
Dxl3 into Dxl3 by hxid

( 2 )  ( 2 ) i  >This is possible sinoe both G' ' end Gv ' agree on Dxl .
Again by the 2-is<topy extension theorem g ^  extends to a 3- isotopy
0^  of M with 0^3)—id. G ^ -  Q^3fy lbcl2x s gires an lsotopy between

(2 )  (2 Vthe two isotopies G' ' and Gv ' through such isotopies.
We then oarry on in the same way. P

We suppose giren parallelisations of the faotors or double oorers 
of the faotors , according as they are orientable or not,so*.that dises 
ends of handles or discs used to form the coxmeoted sum are the. standard 
ones In the sense of lemma 3.1. From now an ,unless otherwise stated, 
whenever we talk about oonneoted sums we assume that we hare used standard 
dlsos.

We now described certain types of hcneonorphisas that oan occur
in a 3- manifold.



(1) The generalised slides
We consider two oases although they are essentially the ease(in 

fact the seoand one is a particular case of the first one ).

(i) Suppose M- and D (i^iD <— r ,k-1,2) is the embedded disc
used to form the connected sum, i.e. M- -i^(S) U M2 -i2(D)
(if no confusion arises we will often write as M^-D,k-1 ,2).
Slide the diso in one of the factors , say, along an arc oi .This 
determines an isotâ j of embeddings h^ of a diso in K^,

Let be an extension of the isotopy to For each te[0,l] 
the map f^ defined by in J^-h^D) and by id on I^-i2(D) defines 
a homeomorphism between M and M^-ht(D)y Mj-i^D) where 3 (M^-h^(D)) 
is identified with^iMg-i^D;) by’ h^. This me ns ,for instance in 
the orientable case, if r«D -wD is the standard orientation reversing 
homeamorphlsm such that i^(D) is identified with i2(D) by i2*r*I^ /i^(D) 
then ht(D) is identified with i2(D) by i2*r*h^1/h^(D)»

Denote by iijWMg (or ) the homeomorphio copy of M obtained
nhti

in this way .For each t , f^iM is called an arc, hae.9mgrpt1.il
V

ft is well defined up to Isotopy by lenma 3 .3 and depends only an 
the homotopy class of ttj [o,t] rel ends and on an element of &2 

(corollary 3*1 and lemma 3.2)
In general f^ is not a self homeomorphism of M,but if oL is an 

ori«table loop then as h^ starts and ends with the inclusion t f { 
is a self homeomorphism of M. We then say that f 1 is a loop honeo-
morphism.
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Also note that If IP -M*H, a loop honeomorphlam on M extends to a loop 
homeomorphism on M' by the Identity on N, as we can always as suae the homeo 
morphism on M to be the identity on the disc where we fora the oonneoted 
sum with H.Same considerations for are honeomorphiams.

If the extensions of the arc or loop to an isotopy of embeddings are 
the canonical ones we shall call an arc or loop hameoaorphism,respectively, 
a partial or generalised slide,and we shall sometimes refer to the partial 
or generalised slides as the standard arc or loop homeomorphisms (also we 
shall sometimes omit the word generalised).

Bote that once given the (orientable)loop or the arc, a generalised 
or partial slide is canonical by leans 3.3. .

Remark:
If« is a non orientable loop at the end of the isotopy h^ ,D will have 

its orientation reversed.We can suppose ,w.l.o.g.,that the map h~1*l̂  is 
the standard orientation rever^ig homeomorphism r.Then if admited a self 
homeomorphisa which is r on D,R,say, we could glue R and together alopg 
3D to get a self-homeomorphism of M.However this will not be needed in 
what follows.

(ii) The second case is obtained by sliding one end of the hollow handle 
orientablearound a/loop <*> away from the other end of the handlers sometimes say 

handle instead of hollas handle) .Precisely, if M denotes M-IxS and M, M 
with the two sphere components capped off with 3 balls, is a loop in M 
starting at the centre point of one of those 3 balls and not intersecting 

the other.As before there is an isotopy H. of M that drags the disc I) 
corresponding to that end (see ploture)around the loop starting and 
ending with the identity on that disc.
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Hot« that «• can avoid th« possibility of on« and of th« handle ~ 
kicking th« oth«r by cheosing snail enough standard disos i.«. by 
choosing a suitable trivialisation of th« tangent microbundle.

Final homeomorphlsm is wall defined up to isotopy rel I) and there 
are at most two choices as before. As the loop only meets the hollo* 
handle at one end we can assume that is the identity an the other
disc corresponding to the other end. Then f 1 defined by on M and

2the identity on Ijû defines a self honecnorphisn of M which in the ca- 
se the choice of the isotopy of embeddings of the disc in M  is the ca­
nonical one we call a generalised slide. Hot« that there isn't a self

2honecnorphism of ZxS which Is the identity on one end and r on the 
other,henoe we couldn't get a self hameonorphisa if we slid around a 
nan orientable loop .We could though obtain a partial slide. (Similarly 
to case (i) we have partial slides and given the loop or aro .the gene­
ralised or partial slides are canonical).

If 01 goes around another handle than f 1 is a (hollow)handle slide. 
Again as everything can be assumed to be the identity outsida a compact 
set a slide In a factor of M extends by the identity to a slide onH.



Some remarks

(1) In case (li) we are only interested in slides around oriental)!«
loopsJFct «ere non orientable we would get a homeomorphism between 
M-M *S1X^and .

1 'V I

(2) In the orientable case all slides are orientation preserving 

home omorph i sms.

(3) Any two different choices of homeomorphisms obtained by sliding 

one end of a handle around a loop differ by the homeomorphism

^  defined in section 2 .

(2) Home omorph isms preserving factors

These are the homeomorphisms that when restricted to each factor 

define a self homeomorphism of the factor (In fact the restriction defines 

a homeomorphism of Pj - 3 ball which extends conewise to P^).

If in a decomposition Pj# . ..#Pn , pi “ pj » i 4 j> and the homeo-
4» P+> *+> # # #morphism sends P* to Pj (P^ denotes P^ with the interior of a 3 cell

N iy (v< ft) . . .removed), Pj to P^ and P^ to P^ for k f  i,j we say the homeomorphism

sends factor to factor. Same thing for any composition of these.

(3) Permutations of factors

Suppose M is given as obtained by attaching the different factors to 
3disjoint cells in S . Suppose furthermore that there are some repeated 

factors in the decomposition. We consider homeomorphisms which interchange 

such factors.

Permutations are generated by homeomorphisms which interchange only 

two factors and can be defined as follows:



Suppose Pj-Pj , and let be the respective separating

spheres. Denote by M' the manifold before connecting P£,Pj. 

bound 3 balls B^.Bj i-n M'. Let a be a path between them in the 

sphere part of M' intersecting the balls only in Ipk. in its end 

points. Consider a ball D regular neighbourhood of B.UBjUa in the 

sphere part of M'.

Then there is an isotopy st of M' which is the identity outside D s.t. 

sj interchanges the two balls. S|/M' - (int B-Uint Bj) extends to a 

homeomorphism which interchanges the two factors. If the arc 

homeomorphism thus determined (B^ is slid along a and Bj along a (® a ^f  

see picture) is the standard one we say the homeomorphism thus determined 

is a permutation. Permutations are sell defined up to isotopy.

He now show that these three types of homeomorphisms generate the 

group of homeomorphisms of the manifold:



THEOREM 3.1

Any (orientation preserving) homeomorphism of a(orlentable) 3-manifold 
M can be obtain ad ,up to iaotopy,as a coapoaitioa of the following homéomor­
phisme t

(a) Homeomorphlams prcserv* ng factors ;
(b) Permutations of factors;
(c) Generalised slides.

Proof»
We give here the proof for the orientable case .For the non orientable 

case the proof «ill follow as a corollary of a relative version of the 
theorem(Theorem 3.2)^ where we consider homéomorphisme fixed on a disc-any 
homeomorphisa of a non orientable manifold can be assumed,up to ieotopy 
the identity on a disc.

Thus .from now on «unless otherwise stated «homeomorphisa will mean 
orientation preserving homeomorphism «manifold will mean orientable manifold.

We shall show that given any homeomorphisa f of M then we can find 
another hoaeomorphisa h (not necessarily unique) suet that h*f sends fac­
tors to factors and hence,composing with some permutations we shall get a 
homeomorphism preserving factors .As h is obtained,up to isotopy, by a com­
position of hoaeomorphisms of types (a) and (c) this will prove the theo-

Choosing separating spheres 2.̂ .. .1^ (M-P^ . ao that eachZ ̂
divides M into two parts one of which homeomorphic to P. - 3-ball, which 
we denote by P., (i.e. attach the manifolds P^ to n disjoint standard discs 
in S^). Regard the P^,i^a+1 as(hollow) handles attached.Denote by
S2^  ... S2̂  the belt spheres of these handles and let S be jf I



Cutting M along S »a obtain a non conn acted manifold with (s+1) componanta 
«hare for i£a and ia a 3-aphara with 2n-a holes(conaider B^

with boundary).Let T ba one of tha separating spheres .Than f(T) ia a aphara 
that separates.By general position and tranarersality f(T)ns consists of a 
finite number of simple closed curves.

X

The idea of the proof ia aa follows»
If f(T)DS / we first ahow how to reduce the number of intersections. 

By induction,after a finite number of steps f (T)flS > $ .The next step will 
be to make the separating spheres go to separating spheres.In both oases 
we deform M (and hence f) by a series of isotopiea,partial and generalised 
slides.As partial slides are not self-honeonorphisms of M,ln general,after 
each step we shall probably hare mowed to a homeomorphic copy of M,M* say. 
After hawing the separating spheres back in separating spheres we are in M 
again.

The fact that during the process we mows to a homeomorphic copy of M 
sill be irrelevant in the end as we shall end up with the same copy of M 
and show later that those partial slides can be put together to glwe gene­
ralised slides. Then the theorem will follow.
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Sow* remarks»
As already quoted during the proosss hoaeomorphic co­

py of M obtained by inductively gluing tbe fee tors P^ d-t~.T
lying either in or inside one of the components already gl̂ td in.
We call suoh a copy M* (bearing in Bind that it is not always the see* 
copy .We will often say " ...b y  a hoaeonorphiaa of «*..." meaning "...by 
a hoaeoBorphiSB of M* into another copy of M...". This will hare the 
advantage of simplifying considerably the notation) and write P*i for 
the factor corresponding to P±(notice that P* might be glued to a 
inside P*.-i.e.P* is not, in general ,the image of Pj under the hcaeo- 
morphlsm M —►it*!.

Here ie a typical picture of K*:
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We want this as the beale process «ill be to eliminate Intersection 
curves of f(T)OS and a typical situation «ill be ,for instance, the one 
pictured belo« «here to eliminate an intersection the factor «ill ha-

YV'O'Juld

For example,suppose and A is moved along a loop that goes
through B.Then the picture for the process «ill bet
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Finally aa all tha homeomorphisms and iaotopiaa can be assumed to 
keep the manifold fixed outside some compact set ,«e can always suppose, 
if necessary,that one doesn't destroy the effect of the previous ones- 
this will become clear in the proof.lt will always be assumed that what 
should be kept fixed will be,although sometimes it is not explicitly 
mentianed.Also,for simplicity,we will stll call f the deformed hameomor- 
phism.

(l) Among the intersections of f(T) with S choose an innermost curve 
C in f(T).Then C bounds a 2 cell E,say, in f(T) containing no more in­
tersection curves.EcBj, some j.

(a) Suppose first CcS£ ,some t. Then J-s+1.

D
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Finally as all ths honeomorphisms and lsotopies can be assuned to 
keep the manifold fixed outside some compact set ,we can always suppose, 
if necessary,that one doesn't destroy the effect of the previous ones- 
this will become clear in the proof.lt will always be assumed that what 
should be kept fixed will be,although sometimes it is not explicitly 
mentioned.Also,for simplicity,we will stll call f the deformed homeomor- 
phism.

(1 ) Among the intersections of f(T) with S choose an innermost curve 
C in f(T).Then C bounds a 2 cell E,say, in f(T) containing no more in­
tersection curves.EcBj, some j.

(a) Suppose first CcS^ ,some t. Then j-s+1.

1

D



C divides S. into two 2 discs E',E". Both E'ÜE, e 'u E
9 9

are 2 spheres By the SchoenfliéB theorem both of them -—

divide into 3 balls with possibly some balls

removed. Choose E" or E' s.t. the component of B^.-EfUE
9

(or Ba . - E'UE) bounded by E"UE (E"UE) does not contain
9 9 9

the "other hole "corresponding to h^. Suppose we have 

chosen E'and denote by A the component satisfying the 

required condition.

A is a 3 cell with possibly some balls removed

ALet Bfl+j denote ®8+j with these holes capped off with 3 cells. Then there 

is an isotopy in (1*10) which takes picture (I) to picture (II)

and is the identity outside a 3 ball D neighbourhood of A. Then
extends to a composition of partial slides 
Q,say,(as it has the same effect as sliding 
one factor at a time-w.l.o.g. through cano­
nical discs by the Alexander's trlok-and 
then poshing the ball across)such that 
Q(f(T))flS has less intersection curves.

-  _  tJ

3  ) ~

/

I

In the special case where A is a 3 cell, after an isotopy identity

outside a 3 ball neighbourhood of A we replace f(T) by another sphere
, 2with less intersection curves with S^. (c.f. Theorem 2.1.)



(b) If CcEj j<s we proceed as follows:

Let E',G" be the 2 cells in Ij bounded by C. We consider 

two cases

(i) EcV i
Then E'UE, say, bounds a 3 ball in B . with possibly 

3 8
some points removed. As before by partial slides

we reduce the number of

intersection curves.

(ii) EcBm mSs

rsj
As B = p  where P_ is an irreducible manifold one m m  m
of the 2-spheres E"UE, E'UE bounds a 3-ball with

3 3
possibly some holes.Then prooeed as before to get 
f(T)DXj with less intersection curves.
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(2) Thus after a finite number of stages f(T) lies in int B*, some

j (recall we still denote by f the resulting homeomorphism

M )• If T“^k’ say* ^  choice of separating spheres f(T) 
... * .divides M into two components one of which is homeomorphic 

to Pfc.

We now try to make f(T) » T.

(i) f (T)cint Bj , j<s

Then T - £. for kis. It follows from the fact that P.K J
is prime and irreducible that f(T) divides Pj into two

Ncomponents one of them horaeomorphic to Pj and the other 
£

a collar on 8P. -J J
Hence we can isotope f(T) so as 

to coincide with £. .

(We can assume the isotopy fixed 

outside a collar of it in

M-Pj*).

(ii) f(T)cint Bs+| and T-Ej , j^s

By the Sohoenflies theorem f(T)
*divides B ,. into two components S+ I

each of which is a 3 ball with 

holes and one of them has only 

one hole on it i.e. it is an 

annulus. Then if is the 

boundary of that hole we isotope 

f so as to make f(T) ■ (Hence 

Ph*Pj). We can assume the isotppy
fixed outside 3Bi+j.



(iii) f(T)cint B* and T-E., j>s s-H 3 * J

As T-Zjj j>s, one of the components bounded by f(T) in 
*Bg+j is a ball with two 

holes corresponding to 

the handle h^ say (Then 

P^-Pj). Then after a partial 

slide f(T) - E^.

At this stage we have f:M— >M* where M* -#P* and f(P^) 

f(E^) - it. By further partial slides, we can also assume f(Bg+1) - B*+j J

(i.e. we make the holes go to the corresponding holes)

’ft ftBoth B ^..B are 3 spheres with holes and E.cB. some k. (This follows s+1 s+1 r j k
from the proof). If k£s we make,as before,E^-E^ by an isotopy.

Ho- V r  V i
components.

where A  denotes the mani fold after capping off its sphere

Than by a composition of partial slides 
we can make £.* go to £  ̂ (making the 
holes corresponding to the handles go to 
the corresponding holes in case J>s).

The oases to consider are shown In the 
picture. (This follows from the proof ).
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Finally after a finite number of stages f will send P to P. and —
v ^

2^ fi»e. we are in M again.Then composing with a suitable permu­
tation the homeomorphism will preserve factors, i.e. fiP Ĵ-Pĵ  and f(g^)-^

It remains to prove that all partial slides can be put together to 
give generalised slides(as in the final s t a g e i s  mapped to2^)i.e. that 
we can "permute" the partinl slides in such a way so that we obtain the 
same effect as if we slid one factor at a time around a loop.Onoe the 
separating spheres are already disjoint or coincident *ith their <«■»- 
ges,clearly the order in which we make them coincide is irrelevant as 
each hcaeomorphism can be assumed to be the Identity on either the other 
separating spheres or their images.There are similar considerations for 
the permutations.So let's look closely at stage(l )

Ve have already quoted that the effect of such stage is a composi - 
tion of partial slides.

-  - V  -
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ffe could have elld one factor at a tlae. Aa a partial slide can be 
assumed to be the identity outside the track of the factor ,the order 
in which we slide is irrelevant(see the pictures above)«

Now consider one factor A,say.Again if the next stage is the iden­
tity on A we can interchange the two stages.If not it is because A has 
been moved into another factor B,say, and the next stage moves B (or it 
has been moved out of B.Proof is the same) But this clearly has the same 
effect as moving B first and then A into B(see pictures below)a

( '



3£>-o.

Remarks

(a) In the non orientable case, the non orientable handles must be slid, 

m  the end, around an orientable loop as we end up with the same 

factorization (for if we slide a non orientable handle over an 

orientation reversing handle the handle will become orientable and—i
1 2 1 2s^<s f  S XS ) although in intermediate stages we will probably 

have to use different factorizations.

(b) It follows from the last remark that we don't need to consider 

normal factorizations. If we start with a certain factorization 

we will end up with the same factorization by choice of separating 

spheres : orientable handles must go to orientable handles and non 

orientable handles to non orientable handles.

(c) Also as already observed in the beginning the theorem is true for the

bounded case. If for instance we consider homeomorphisms fixed
n

on the boundary the theorem will follow with the "obvious changes 

using the uniqueness of normal factorizations for 3 manifolds with 

boundary.

COROLLARY 3.2

Any homeomorphism of #S*XS^, #slss^ or i S^xs^-#  extends,
1 *■  ̂ 1 3  ̂ i 3 J ® | 3  ̂ j 3

respectively, to a homeomorphism of #S XB , fr S 3SB or PS *B if S 2$B .
i i i j

Proof

This follows immediately from the facts that any homeomorphism of 
1 2  1 2either S *S or S e x t e n d s ,  handle slides and isotopies extend and

1 2  .also from the fact that any homeomorphism of S XS extends uniquely to a
( y i

homeomorphism of S‘XS by the Alexander trick. O
(~> >

This result has also been obtained by Laudenbach [17]. In fact 

we shall recover some more general results of Laudenbach later on.



II. The Case of homeomorphisms fixed on a disc

We now recast the theorem in a canonical form. We do this by 

working relative to a disc.

Let Aut(M,D) denote the group of isotopy classes of homeomorphisms 

of M which are the identity on a fixed disc, D c— »■ int M, and also 

the isotopies are fixed on D. Call an isotopy mod D a D-isotopy and 

denote by ~ >the D-isotopy equivalence relation, f ]p the D-isotopy 

classes. Similarly define S(M,D), P(M,D) respectively the D-isotopy 

classes of generalissd slides and permutations (whenever possible).

LetM~*P- where, as before, for i<s P. are irreducible and for
n 1 ■—*i>8 P. is a 2 sphere bundle over S . P^ will denote the closure of

Pi-3diso.Given D<— choose separating spheres T.  ̂ satisfying the following

conditions (#P. denotes the connected sum of n prime manifolds P^)l 
n

o 3 3 3Consider S as the union of two 3-balls D D_ (D rD) along their
3 . • •common boundary. On D+ choose n-disjoint 3 balls Bj with boundary

3B - D ? W -  where D? is a 2-disc in 3D^ and D.eD^. Then for j>s form j J 3 J - J +

the connected sum using these balls i.e. 3Bj « .



(Clearly we can also think of 
P^ attached by Ê )

Choose a parallel separating sphere Z.eB. (i.a. the region between
Z. and E. - DTtl is an annulus in B̂ ) and for i$s, attach P^ by

▼era of the factors, according as they are orlentable or not, ao that discs
reends of handles or discs bounded by in both the sphere or in the factors

are the canonical ones in  the sense o f Lerasa 3 .1 .

Let X(Au£ P^jD) denote the D-isotopy classes of home omorphi sms of M 
obtained by gluing up isotopy classes of homeoraorphisms of factors which 
fix a disc (and isotopies fixing a disc). For each factor Aut(P^,D) means 
B̂  - isotopy classes of homeomorphisms of P£ fixing B^. (For i£s think 
of P. attached by the E.). A typical element is denoted by #  f^ where 
f£©Aut(P.,D). The notation X(Aut P^D) is justified as this group is 
clearly isomorphic to the direct product of the (Aut Pj.D).

We now show that theorem 3.1 generalises to this case and that
it can even be strengthened as we will be able to find a well defined
D-isotopy class Cgljj where g is a composition of slidas and permutations
for every D-isotopy class Tf j^eAut (M,D) s.t. g» f preserves factors. This
will allow us to compute Aut(M,D) in terms of P(M,D) S(M,D) and

X(Aut P.,D).
i 1



Choose a parallel separating sphere E.cB. (i.e. the region between 
h  311 °£ i* an annulus in B^and for i$s, attach P^ by

iN
E. (Clearly we can also think of 
P^ attached by Z.)

ca

vers of the factors .according as they are orl eatable or not. so that *«■«—  
ends of handles or discs bounded by* y ̂  in both the sphere or in the factors
are the canonical ones in  the sense of Lexnxna 3 .1 .

Let X(Au£ P.,D) denote the D-isotopy classes of homeomorphisms of M 
i

obtained by glolng up isotopy classes of homeoraorphisms of factors which
fix a disc (and isotopies fixing a disc). For each factor Aut(P£,D) means

- isotopy classes of homeomorphisms of P^ fixing B^. (For i£s think
of P. attached by the E.). A typical element is denoted by #  f. where i i ' i 1
f.®Aut(P-,D). The notation X(Aut P .,D) is justified as this group is 
1 1  i 1

clearly isomorphic to the direct product of the (Aut Pj,D).

We now show that theorem 3.1 generalises to this case and that 
it can even be strengthened as we will be able to find a well defined 
D-isotopy class tglp where g is a composition of slides and permutations 
for every lVisotopy class TfjjjeAuk (M,D) s.t. gp f preserves factors. This 
will allow us to compute Aut(M,D) in terms of P(M,D) S(M,D) and 
X(Aut P^,D).



Choose a parallel separating sphere E.cB. (i.e. the region between
E. and Ej - DtO D7 is an annulus in B.^and for i$s, attach ?£ by

▼era of the factors,according as they are orleatable or not, so that dlaca
r«*ends of handles or discs bounded by 2.̂  in both the sphere or In the factors

axe the canonical ones in the sense o f Learn 3 .1 .

Let X(Au£ ,D) denote the D-isotopy classes of homecmorphisms of M
obtained by gluing up isotopy classes of homeomorphisms of factors which
fix a disc (and isotopies fixing a disc). For each factor AutiPj.D) means

- isotopy classes of homeomorphisms of fixing B .̂ (For iss think.
of P. attached by the E.). A typical element is denoted b y #  f. where l l ' i 1
f£©Aut(P£,D). The notation X(Aut P^.D) is justified as thia group is

i
clearly isomorphic to the direct product of the (Aut P.,D).

We now show that theorem 3.1 generalises to this case and that
it can even be strengthened as we will be able to find a well defined
D-isotopy class [g]D where g is a composition of slides and permutations
for every D-isotopy class Tf 3DeAut (M,D) s.t. g» f preserves factors. Thia
will allow U3 to compute Aut(M,D) in terms of P(M,D) S(M,D) and
X(Aut P.,D).
i 1



THEOREM 3.2

(1) For any homeomorphism f of M which is the identity on a fixed disc 

I) there exists a well defined Tg]peAut(M,D), where g is a 

composition of generalised slides and permutatiotn,euch that g • £  

preserves factors.

(2) Moreover if f j is isotopic to f., rel D, the associated homeo- 

morphisms given by (1) are isotopic rel r>.

Proof;

(a) First part of the proof is essentially the same as in theorem 3.1 but
i

instead of trying to make the sphere f(E.) disjoint from the S. s

and Ej s (iss) we try to make f (int ) disjoint from S j ^  always 
• 3 3making sure that D (D_»D) remains fixed.

Again,for simplicity,we suppose M ia orieatable.

It folloaa from the Alexander's trick,lemma3.3 and oorollary 3*1 
that the homeomorphism ehioh eliminates an innermost curve Is well 
defined up to isotopy. In fact we can suppose it is even canonical, 
as eaoh factor can ba pushed along a collar line,through canonical 
discs,of a oollar structure of the 3-hall B(see pioture)

out . that an innermost curve C bounds a unique disc in f(D^) and 
a unique disc in Pj in the irreducible case. In the sphere bundle 
cases only one of the discs E',E" is such that the component bounded
by K*U E or FVU E does not contain the other hole (cf. theorem 3.1).

3 3
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Thia unlquentss is crucial for the proof of statement (2) of the 
theorem.

(b) Haring already made f(intD^+) disjoint from the belt spheres Sj
of the handles and from the separating spheres^ of the irreducible 
factors,we now need to make f(D^+)-D^+.

It this stage we are in a homeomorphic copy of M denoted by M*
(of theorem 3.1).As before, we make coincide with Z.^,some i,j, 
and holes oorrempondlng to the hollow handles in M* go to corresponding 
holes in H.We hare to consider the following oases pictured below (the 
fact that these are the only oases follows from the proof).

Case 1 shows discs a,l which are ends of a handle and ends b*,b*of a 
probably different handle ln M* .We make them coincide by a
partial slide.Casss II and III show a separating sphere^ of an irre- 
duoible factor and the two possible posltons of a probably different

^  ft fseparating sphere, Z ,ln M .In oase II we use a partial slide, in oa- 
sc III an isotopy(the region b e t w e e n a n d  is a collar).
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Again all the choices are unique up to isotopy rel D (for the 

last case use (1.9); also note that the slides are along arcs in a 

simply connected space so any two choices of arcs are homotopic).

After all these moves we are in M again. We are now ready to
£41

make f(Dj) coincide «1th D^. We consider two cases each of which is

divided into three subcases, 

(a) iSs

( * )

O ;

Let B denote the closure of with both the interiors of the two 

balls corresponding to the hollow handles and the interiors of the balls 

bounded by the Ej (j^3) removed. B is a sphere with some points removed 

(thus H,(B) - 0) .{(istX>£+)cintB.

Again we can assume(rel D).possibly after a permutation.(case in 
picture XI) and partial slides that f(int D^+)n int D^+is empty .Choices 
and homeooorphisos are again unique up to isotopy.



Let B denote B with the 2 sphere X. capped off with a 3 ball.
+Then D., fiDj) bound (resp) 3 balls G ]fG2 with either G jCGj or

z
G2c G,. Also 3G,n3G2 “ D..

Then as a regular neighbourhood of

G jUG2 is a 3 ball, there exists

an isotopy of B rel 3B taking 
a* 7+

f(Bj) to which is the identity
. 3outside that ball and on h_. By

a further isotopy* we can also make
<\J —J
X. go canonically to X^. This extends to a homeomorphism of M and 

again choices are unique .up to isotopy. In fact It la canonical by 
the Alexander'a trick.
f/D^ an orientation preserving self-homeomorphism which is the 

identity on the boundary hence isotopic to the identity (Alexander's 

trick).

(b) i>s

3>.'l <8 >

(r> ( ^ /

Again we have to consider two subcases (see pictures). After a 

permutation we are reduced to subcase I. The only difference is 

that now B is B with the two holes corresponding to the hollow 

handles capped off with balls. TTj(B) ■ TTj (B) « 0 hence any two 

choices of arcs are homotopic, thus the honeonorphiams are unique 
up to Isotopy.

I l t o  i t i U S t f M



Thus, in the end, we will have a homeomorphism fixed on D which will
—3 — * 0

preserve factors. Also as on 3(D+- B^) - S , f is the identity, by a
^ _o ___

further D-isotopy we make f to be the identity on S - (Alexander's 

trick). The proof of statement (1) is now complete as g is well defined 

by all the uniqueness referred relative to choices of homeomorphisms 

(g is the composition of slides and permutations obtained through the 

proof s.t. f preserves factors.) Clearly it also follows that [g)D 

is well defined.

For the proof of statement (2) we refer the reader to the proof of 
Proposition 1 of [10J. The method of proof follows immédiatly for k»1, 
as all our choices are unique up to isotopy.The choice of standard arc 
homemorphisms is crucial here to get a coherent choice all along the iso» 
topy.We remark that in the non orientable case,as we are working rel D, 
the factors must be slid,in the end , along orientable loops,and also 
that in lemma 1 of [10] ws need to choose the intervals 1^ small enough 
so that''nearby curves behave similarly* ' as we want to eliminate inter­
sections in a standard way for all tel..

For example*
The situation showed in the pic­

ture is not allowed for t^.tgd 1^,
1some i,since E. U E bounds a disc t2 t2

with a hole in it while E* U E.
t 1 * 1

doesn't,and hence in the first case 
we should have to use first an arc 
homeomorphisn or a partial slide 
which it would not be the case in 
the second one.

Clearly we can always assume this.Hence the theorem is proved.
Q

We now give some corollaries to the theorem,
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COPOLLARY 3.3

There ie a well defined map» ;Aut(M.Dl-»I Ant(P< ,D) defined br 

^[f]D-[!5*i‘]I) r t k 2- onto and splits by the Inclusion.

Proof

(b is well defined by the theorem. The facts that d> is onto and 

splits by the inclusion are clear. a

Unfortunately </> is not a homomorphism in general: take for instance,

M = ^ rSlxs2» fi a Permutation, f2 = a^a.^ where , i*=1,2,are homeomorphiama 
of Aut(S*xS^,D) with Taj Ip t  Tajilp. Then

d>rf, =  ridiD^  ridin 

<J>rf2 ‘,D = ral1D ^  fa2 nD

and <t>Tf 2° f, 1 “ r a ^ T *  r a ^  4 (<M"f 2]p) °<t>(r f, Ip) = r a , ^ #  ia^p

But <f> as a map of pointed sets (hasepoint being the identity in 

both cases)^has a kernel K . It follows from the proof of theorem 3.2 

that K is the subgroup of Aut(M,T>) generated by the generalised slides 

and permutations.

LEMMA 3.A * (I)

K is the semi-direct product of P(M,D) and S(M,I>).

Proof

(I) S(M.D) is a normal subgroup of K ! It is enough to prove that the 

composition (permutation) slide (permutation) ' .la a (probably different 

slide).

If we denote by the slide obtained by sliding either the factor



P., if P. is irreducible, or the end of the "handle" of P., if P. is 

a 2-sphere bundle over S 1,. along the factor Pfc# ki«i, and by P.^, jjif the 

permutation interchanging P. with (if possible) then it follows 

from the definitions that

(1 ) P . .  U ..  lk  lk -  U. . P . ,  k i  l k

egV-' P .  .Ho. l j  jk = IT.. P .  . 
J k  1 J

( 3 ) P .  .1!, . l j  k i »  II. .P  . .

(4 ) i f  j k " V i f .

proving (I).

(2) We therefore have a split exact sequence

0-- >S( :,P) K^———  P(MtT>)--->0.

where ij, i2 are th>: inclusions and p is the quotient map

K- ^ K/S(M,D) a

i.e. K is the semi-direct product of P(H,T1), S(M,D). (Note that P(M,D)
1 2is not a normal subgroup in general. For example take M S xS and

2
let Pj j t>e the permutation that interchanges the two factors and h the 
homeomorphism obtained by sliding the first handle over the second. Then 

h 'P| is not a permutation. Look at map induced on TÎ . □

Remarks

(1) We cannot do the same with the sequence of maps

0-->K--^AutiM.TO-^XAut^.D)-- »0
i

as neither K nor XAut(P^,D) are normal subgroups (in general) of
i

Aut(M,D). K ii  not normal from the above. To see XAut(P£,D) is not
i 2 1always a normal subgroup, consider M S *S , h a homeomorphism

2
which is the identity on one factor and on the other interchanges

the two ends of the handle. Then if g is a generalised slide which



'

4*

slides the second factor along the first one,g"1»h»g Aut(Pi,D)_
look at the map induced on"lT1 (TT̂ is not abelian). Q

(2) If M-fo-P̂  »here all P^ are irreducible then j Aut(PitD) is a normal
subgroup of Aut (B-P̂ .D) and then Aut (ftP̂  ,D) is the semi-direct product 
of j Aat(PitS) and K, i.e.

jp

0 — Aut(Pi,D^-r^ A u t ( ^ P i,D)<lt-2r:K —  0

is a split exact sequence.(i is the inclusion, p the projection 
Autft-Pj.D)---»Aut (dtPi,D) / xAut(Pi,D) ). D

From theorem 3.2 we can also get some information ab^ut the higher 
homotopy groups of PL(M,D).The deformation described gives a well defined
map ji.Tk PL(M,D)-- ^ * T k PLCP^.D) (in fact for lc-0 we have $ of corollary
3.3 ) defined by 0K([fp » [ g * f ( j  T ”kPL(P^ ,D) means the obvious thing).

THEOREM 3.3

î s'n^PI'itojD)— » y T  lfPL(Pi ,D) is a split epimorphism for lĉ 1

Proof:
The process .described in the theorem 3.1, of taking a homeomorphism 

of M and possibly composing it with slides and permutations till it preser­
ves factors is .actually, canonical when the homeomorphism is isotopio to 
the identity as nan-trivial permutations cannot be involved.We can thus 
appeal to Proposition 1 of[l0] to show that the deformation described in­
duces an epimorphiam PL(M,D) ----» j T k PL(Pi ,D) .Clearly ̂
aplita by the inclusion.

a .

The deformation fails to be an isotopy of one space into another 
becauae of slides of the type described in pictures (III) of pages 41 and 42.

.ifj



Ill Comparing Aut(H,T)> with Aut M

There is a natural map Aut(M,P)--- »Aut(M) which, in the orientable

case, factors through two other maps induced hy inclusions

Aut M

By the disc theorem ij is onto in the orientable case, i is onto 

in the non orientable case. A natural question is to ask if, these 

homomorphisms are into i.e. if Aut+(M) = Aut(M,D), in the orientable 

case, or if Aut M ■ Aut(M,n) in the non orientable case.

V'e first consider the particular cases where M is a 2 sphere 

bundle over S* and show that the answer is affirmative. Then we 

consider the general case and reduce the problem to one involving exact 

■equenoes of two fibrations.

(1) H is a 2-sphere bundle over S*

THEOREM 3.4

Aut (S]xS2,D) = Aut+(s'xR2).

Proofi

1 2  + 1 2i.:Aut(S xs ,D) ---»Aut (S xs ) is onto by the disc theorem. We

whow Ker ij » {id}p.



Let Tflp e Aut(R *R ,r>) s.t f~id (~ mean isotopic to)1 2

By the same sort of arguments as in theorem 3.2 we can assume

rel D, that f sends the belt sphere to the belt sphere. As the 
. . —1 —  2 —  1 2inclusion R *R -Di— *R induces an isomorphism on Hj and Fj and

2 2f~id, f/helt sphere : S --- >-R is a degree one map hence isotopic to
. 1 2the id. Fxtend the isotopy to a B-isotopy of R *R . Then cutting 

1 2S *S along the belt sphere and along D we can think of f as a map from 

a 3-disc B with two holes into itself being the identity on boundary 

components.

Now as in Gluck's proof (Theorem 2.1) we can assume, rel 3B, that f is 

the identity on an arc a between the two holes (see pictures above) and 

in the neighbourhood of that arc it is e; or id.
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Denote by N a regular neighbourhood of a in B. N is homeomorphic 

to D2*I and we can assume that N only meets ■ 3B in D]*{0)U D^x{l} where 
2Dj a disc in the (previous) belt sphere.

oP  \ 
K

Let X be the 2-sphere obtained by removing these 2-discs 
2 2DjX{0}, from the two sphere components of 3B different from 9D,

2and adding 3D|*I along their common boundary (see picture).

c = o

f/X extends uniquely up to isotopy to the 3 ball B bounded by X on

s'xs2.

By the disc theorem there is an isotopy 
3rel 3b s.t the extension is the identity 

on D i.e. the isotopy class of f in 

Aut+s'*S2 is determined by f/X. But by

hypothesis f is isotopic to the identity. 

Hence f/X - id, up to isotopy. (note that f/X is orientation preserving).

■> o 2Thus, up to D-isotopy, f defines a map f : ----»I*S which is

the identity on the boundary, f being orientation preserving.



fill

But by Gluck T81 Aut+(IXB^,3) « 7^ and f is either 7: or id in a
O

neighbourhood of an arc P = !*{*} (*eP ).

If it is the identity we are done because extending the isotopies 
. . 1 2trivially to S XS defines a I)-isotopy of f to the identity.

If not, we know that f restricted to a neighbourhood of the arc 6 

twists a parallel curve once around it and its isotopy class is 

completely determined by this fact.

Now rotating the inside sphere (see pictures) once around its axis 

(through *) has the effect of undoing the twist.

50

I

It i8 clear that we can always choose a,B s.t. we can think of 

^-D as the space obtained b} 

shown in the following picture.

I_2 __
T  *5 -» as the space obtained by identifying the two spheres E,F as

7



Numbers in the inside sphere show how to 

identify E,F to get sf’xR* 2-^. As the 

rotation inside is compatible with the 

identifications and the isotopy in the

identity on 8D , the isotopy of I*S ,
1 2rel 8, defines an isotopy of S *S , rel

I).

Hence f ~ id as required. This i, is an isomorphism and 
D

Autis'xS2,!)) - Aut + (s'xs2) •

THEOREM 3.5

min iiiiMMili

Aut(s'xS2,D) = Autíñ'xR2).

Proof :

As already said it remains to prove that Ker i =}id^. Let 
1 2Aut(R^S ,D) s.t. f-id. Again as in the previous theorems we

can assume, rel D, that f sends the belt sphere to the belt sphere.
2By homology arguments f/helt sphere : R -

1 2  2identity. But in R *S the antipodal map on {0}XS is isotopic to the
2 # 1 2  identity on {0}xs'. That is not the case in ~p for if we cut S

2 2 . along S we would get a homeomorphism of I*S into itself which was

orientation reversing and the identity on a disc, which is Absurd as

I*S in orientable. Hence f/belt sphere is D-isotopic to the identity.

Remaining of the proof is an in the orientable case.'



5A,

(2) The general case

As already mentioned the problem will be reduced to a problem of exact 

sequences of certain fibrations. We consider separately the 

orientable and the non orientable cases.

(a) Orientable case

Let M be an orientable 3 manifold, 0 a 3 disc in int K. We 

have already considered the commutative diagram

Aut+M 2 * Aut M

L

Aut(M,D)

where i.ij.ij are t,le natura  ̂maps and ij is onto by the disc 

theorem. Corresponding diagram without considering isotopies

18

SPL(M) + PL(M)

p l(m ,d )

88

Aut M - ir0(PL(M))

Aut(M,P) - m0 (PL(M,P)) 

Aut+M = ir0(SPL(M,P))



S3

The natural map SPL(M)---»S Fmh(T>,M) defined hy restriction is

a fibration (cf[221) with f;ibre PL(M,T>). Hence we get a long exact 

sequence of homotopy groups:

3
... — »TrnPL(M,D)---*TTnSPL(M)--- jjrn(S Fmh(H,M)) -- > ... (I)

ending up with

3 +---». it R Fmb(n,M)---» Aut(M,H) --- *Aut H --> 0

as wg(S Fmh (D,M)) * 0 by the disc theorem. We also have another fibration 

(cf [221)

j f
SPI.j«---»- SFmb (D,M)---*M (2)

coming from the fibration

S Kmb*(n,M) ---» R Fmb(D,M) -l->Fmh(*,M)

where f is the map that associates to an embedding of T) in M the image of 

the centre point of the disc and using the facts that M=Kmb(*,M) and 

as M is a 3-manifold, R Fmb*(D,M) - R Fmb*(n,B3)-RPI.3.

From the fibration we get a long exact sequence of homotopy groups

V " ‘3
j, f*--». 77 R Fmb(D,M)-- » 71 Mn n

Actually we can show more as lemma 3.1 says: A parallelization of
3 ^

M gives a section s : M ---»SF.mh(D,M) of the fibration SFmh(D,M)---»M.

Thus, for all n, the sequence

0 -- *77 RPL,--- »77 RFmb(n.M) -- >77 Mn J n n (3)

is exact and splits. Therefore

7T SFmb(D.M) - 7T SPL-XTT M n * n 3 n (A)

ii
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Replacing in (1) we get:

-- *lrn(M)XV PIl3 ---* VjPUM,!)) -- - T ^ jCSPLCM))--* (5)

In particular for n-1 as tt,SPL3 = Z2 (t̂ SPLj - TTjSOj for i<3), we have

this sequence Per ij = im 8 by exactness. We look at im9.

A geometric interpretation of 9

A loop in R Emb(D,M) is an isotopy of embeddings h of a disc in M 

starting and ending with the inclusion. Extend the isotopy to an 

isotopy Ht of M. Then 9(rh1) = THj1n . From lemmas 3.2, 3.3, 9 is well 

defined and depends only on the homotopv class of the loop and on an 

element of Z2 which is precisely what says the following diagram obtained 

by combining sequences (1) and (3). 9

9 is completely determined by 9s* and 9,-j*. The first one is the 

canonical automorphism determined by sliding a disc around a loop, the 

latter is the one determined by rotating the disc once around its axis.

(6)

We already know that i. is onto. Our problem was to know Ker i.. From

0

0
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Some particular cases

». For M - 4k s'xs2, ^1» 9J * = 0 
n

. 1 2 .  3Consider #  S xS as obtained by attaching the handles to S
3 3 3n) (T>_-D) along the symmetry axis of D (see picture I). We can 

. 1 2also think of 4k S *S as in picture II where the boundary of the holes 
n

are to be identified as shown. But now we can easily see that the

rotation of the disc once around its axis is compatible with the identi-

fications hence it extends to an ambient isotopy of £ S XS , Thus i»3j#-
n

¿0 and 1»3 -la9a<

2. For M ° #  s'xs2, n>1 , Im Sb., + 0 
n

Let M denote M with the interior of D removed. is a free product

of n copies of 2 and is generated by the loops that go once around 

each handle dBsume the base point is some poiit in for instance its 

centre point, and denote by ctj,...,an the generators of ir̂ .

Generators for are the belt spheres of the handles Bj...Bn and a 

sphere y  parallel to 3D in M (we confound homotopy classes with their 

representatives if no confusion arises). If £j,...,£n denote the homotopy
(V

classes of the separating spheres, y is clearly isotopic in M to

Ej+..

I



iif
ej
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Note that each ’a homologous to zero in M but not isotopic to zero. 

Similarly for y .

Now suppose we have dragged I) once around aj, say. Let Hj be the 
• . . aicorresponding element in ia Ss^. Hj (Bj) is clearly isotopic (rel D)

to Bj + y  (see picture). But Bj + y is not isotopic to y  (as y  -f- 0)
. ~ «,
in M, hence Hj cannot he isotopic to the id, rel T). Thus ia 3s#fO as 
require^.

Remark

Note that the proof doesn't follow for n»l (a fact already known as 
we proved that Aut(s'*S2,D) - Aut+(s'*S2) as Bj + y  ~ P|.



Note that each E. ’ s homologous to zero in M but not isotopic to zero. 

Similarly for y .

Now suppose we have dragged D once around dj, say. Let H. be the
“ lcorresponding element in la 9s*. Hj (Rj) is clearly isotopic (rel D) 

to B| + Y (see picture). But Rj + y is not isotopic to y  (as y /. 0) 

in M, hence Hj cannot he isotopic to the id, rel B. Thus ia ds#^0 as 
require«?.

□

Remark

Note that the proof doesn't follow for n-1 (a fact already known as 

we proved that Aut(s'*S2,D) - Aut+(s'*S2) as R, + y ~ R,.

, v
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From 1^2. we get 

THEOREM 3.6 3

Aut( W S * * s 2,D) i  Aut+(* s 'x s 2) ,  n> 1

3. It follows from Theorem 3.2 that a homeomorphism in X Aut(S*S ,D)
n

which we denote by <)>j# ... ♦ 4>n is D-isotopic to the identity iff 

is isotopic to the identity, i>l,...,n.

Consider homeomorphisms of this form with <f>. «E or id. Is such 

a homeomorphism isotopic to the id? As they induce the id on homology 

we can think of them as homeomorphism of a disc with holes being the 

identity on boundary components (cf th 3.4). Run arcs a. between the 

corresponding holes and as in theorem 3.4 the homeomorphism in the



neighbourhood of the arcs is z. or id 

(in the D-isotopy class). Then make (as 

in th 3.4) the homeomorphism to be the 

identity on the shaded region M  (we are 

still in the D-isotopy class which is 

now completely determined as what is 

left in a ball - i.e. the D-isotopy class of the homeomorphism is 

completely determined by the restriction of the homeomorphism to the 

regular neighbourhoods of the arcs Cij)

If f is such a homeomorphism with at least one 6^ = z. (i.e.

[f)D J4 Tidily) then as clearly [f]D i  1» 9s^,f is not isotopic to the id.

ft. THEOREM 3,7

For M orientable -irreducible sufficiently large Aut(M,D) + Aut*M.

Proof

We show that Sj* i4 0. Let D be the disc, d> the automorphism obtained

by rotating the disc once around it* axis. Let

F = 8D and let U « Fx[0,l!l be a collar on F(F«Fx{0}).

Now the effect on U of the rotation is to rotate

{*}x[o,l]J where * is any point in F different from the

poles, once around the axis keeping end points fixed(

i.e. we get c (cf theorem 2.1) on the collar. But Hendriks T12D showed 
2that for . P -irreducible sufficiently large manifolds (orientable or not) 

this is never D-isotopic to the id. Hence 3j* ^ 0. O

Remarks

(1) We shall be able to prove Hendriks result quoted above later on.

(2) Hendriks calls e a rotation parallel to a sphere (F in this case).
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4
-> TTt Emb(D,M) -2— ^Aut(M.D)

4 >.
TT+M D h k

Aut M --- > 0

Keri ■ la ,3 is completely determined bv <» 3^ , jg 3s,.

Particular cases

t. For M - » s'xs2 la 8.U - 0 
n

Proof is essentially the same as in orientable case

Boundary of the holes arc identified 

as shown. The identification is 

compatible with the rotation of the 

disc once around its axis. O

2. For M«# s'&S2. n>1, lm 3 s. 4 0 
n

Proof is a little bit different as the «. are non orientable.
For simplicity we use 2°^ instead. . i.
Using the same notation as in the orientable case we see that 

2a,
H| (0j) ~ Bj + 2y which is not P-isotopic to Bj for n>l. o



fei

Remark

For n°1 this is not the case

«•nj

CD

V

(G )

Hence we get 

THEOREM 3.8

A u t C ^ s ' x s 2 ,!)) *  A u t ( *  s ' x s 2) n > l . 3

3. Again from Hendriks T121 we get the following.



fel

Remark

For n-1 this is not the case

CQ)
Hence we get 

THEOREM 3.8

Aut(^s'xs2,D) i  Aut(* r 'x s2) n>l. 
n ~  n ~ 3

3. Again from Hendriks f121 we get the following:

; v " ' r *



b X

THEORKM 3.9

2For any non or ientahle P -irreducible sufficiently large 3 manifold 

M, Aut(M,n) *  Aut(K).
O
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IV So—  result a for P -irraduoible sufficiently large fplda

Lot K toe a T-irreducible sufficiently large 3-oanifold.Hatcher shoved [10] 
that if » M ^ , T kPL(H) -0 for k^ 2, and if 3M / 0, 7 kPL(M,D)-0 for k$1. Also as K 
is a K(TT,1) .T-ffM, we have for k^2(1I^1U0.

Suppose for simplicity that H is closed and consider the exact sequence

. . .  ----- >TTM © F p L ^ T T ^ ^ L iM .D )  *  T  n 1 PL(M) . . .  (n>1)

ClT is ahelian for n>1, hence se have direct su— ). n
For manifolds with boundary consider honeomorphis—  keeping the boundary 

fixed.Also consider n>1 so that orientation has no effect on the sequence.

Then from the above we get

T n+1PL3 =TTnPL(M,D) for n}2 (13)

We no» try to calculate T n PL(M,D) for n<2. For simplicity of notation 
we consider M orientable and without boundary (see remarK above). The results 
folio» for the other cases »itb minor changes.

Denote by G(M) the (simplicial) space of homotopy equivalences of M.G(M,x0) 
is the subspace of the ones that fix a point x^ in M.If H has boundary then 
G(M,3M) denotes the space of honotopy equivalences of M which restriot to the 
identity on 2 M. Since M is a K(TT ,1) (F-TM) it is an easy consequence of obstruction 
theory to determine the hoaotopy type of G(M),G(M,xo) at least when c) . One 
finds that

1T00 (M,Xq ) - AatlT^M.x^

(we write TT^M forT^M,^) ).

T qG(M) - Aut1T|M /inner auto— rphisms ofT^M
■ Out IT ,the outer auto— rphism group of^M.

T T ^ M )  • centre of TÎ M. 
and the higher ho— topy groups vanish.

2
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Hatcher [10] proved that the inclusion i«PL(M)----*G(M) (or PL(M,lM)— *G(M,3m ))
is a hoaotopy equivalence. It follows than that i'iPL(Mtz0)— »  G(M,xq) is also a 
homotopy equivalence.

(Consider the ooaautative diagram

G(M,x_) ------ * G(M)----- ► MP * , I“PL(M,xq) ----** PL(M) --±--«. M

■here i,i' are the Indus ions ,f is the restrioticn to a point xQin M and the hori­
zontal lines are fibratians. Then i^ «U^ PL(M,xq) — ‘F h G(M,x^) is an isomor­
phism by the Five lemma).

Replacing in the results above we get

T Q FL(M,x0) - Aut 
T 0 px-(m ) » Out TTjM
T  .,PI*(M) . centre of

How consider again the fibration

PL(M,Xq )---*-PL(M)-£-* M

We get a long exact sequence

.. .T2M-- (.T1PL(M,Xo)-»¥1PL(M)ivlT1M^T»QPL(M,x0)-JroPL(M) (14)
»1o

which ww own writ« aw

... O — » TT1PL(M,Xq ) — ?>■ centre of — >Autll̂ M 2»0utT(jM _ ^ M  (15)

The map osntre o f i s  ,in fact ,the inclusion.This follows from the 
definitions of f and of the isomorphism oentre l^M -l^PL(M). Also piAutl^M —* OutU^H 
is onto as it is the quotient map. Again this follows from the definitions of the 
iscmorphismsT^(M.Xq ) - AutlT,** andTQPL(M) - Outfî M.



Hence we get
T 1PL(Ktx0) -  0

0 -- ».centre of TTjM — » lî M — » Aut IT̂ M — ♦OutH^M

Also as for Jc^2,TT^M -0

T kPL(M,xo) - T kPL(M) -0

We also have another fibration

0 is exact.
(16)

(17)

PL(M^))--- *PL(M,x0) — — #-Eob_ (D,M)
x0

giving long exact sequence of homotopy groups :

(18)

• • *Tk+1Pi<2— ^Ti^P^Mfi») ► T ^ K m .Xq )
(19)

as Emb^ PI^ (cf [22]) .Hence for k<2 we get

- >  ^ 3  ^jPL(M,D)-----> T 1PL(M,i q) — » ^ P l 3 ----- >TqPL(M,D)----- ^ L ( M , x  )-Æ P L,
« u « J i, J
0 0 *2 a2

Thus,
TT1p l(m ,d ) -0

. 71, -^->r0PLM,D) - >TqSPL(M,x0) — »-0 is exact (20)

where ¥QSPL(M,3r ) - Her w (cf reaaxk (l) on pag 50 ).

As ll qPL(M,xq) '» AutT^M we identify Her w with a subgroup of AutTi^M whioh 
we shall note by Aut*TI^M .In this particular case (i.e. M closed orientable) 
A u t ^ M  - T 0SPL(M,x0) (21).

pSummarizing all the results we get for M closed ,orientable, P -irreducible 
sufficiently largei

0 V^PL(M.D) ---»Aut^T 0 is exact (22)



e> 6

and as TT2PL3-C>WPL(MfD),
TTnPL(M,D) -TTn+1 PLj for n}1

The following table compares the homotopy groups of PL(M,D) ,PL(M,xq) and
PL(M):

PL(M,D) '^(M.Xq) PL(M)

ir8 0 — 2̂  -.T\0PLCK,D 1 -» Aut * H,M -* O 
Vkoct Aut^M OutlTjM

T i 0 0 Centre of TT^

T 2 2 0 0

V s 0 0
e • t ►• • e #

T n••• «««
0
ew•

0
*0«

Remarks;

(1) For M non-orientable the only difference is that (21) does not hold 
(and in other places replace SPL by PL). Aut+ T^M will consist of the automor­
phisms which respect the orientation hoaomorphism.

(2) For N with boundary we consider hoaeonorphisms fixed on the boundary 
and as T nPL(M,3li) -0 for n^1 ,we get

T nPL(M,D03M)-li^1PL3 for *$1

0 — *22— <-Ti'0PL(M,»/DM) — ^"^0 PL(«,x0U3m  ) 0 is exact.
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AutG is generated as follows;

(a) the automorphism group of each A.. - we have automorphisms (f>. s.t

p .a. 1 1

(b) For each ordered pair (i,j) ijfj , j>m, l<i,j<n, we have a group of 

automorphisms isomorphic to A^ given by conjugation of Aj by

A^, fixing the other factors. If

a.(̂  A. o i j k )aJm) - a<m> («j>

a (k) (m) _ (k)-1 (m) (k)
j-j j i j i

(c) For ij*j, j<m, l<i<n, we have the automorphisms 

B'».'"’ - .<P> W
b;(k)
ij ) B<k)a<p) - a<p)aP°iJ J J i

00 (p) _ „(P>
,(k) \Yij ** , Wj

ij " ki^a?»0 - a<k)a<p) ( iJ J i J

(d) Split the indices 1,2 ... n into blocks I],^*****^ where for all 

ielj, the A^ are isomorphic (For example I| « (1 ... m} corresponds 

to the infinite cyclic factors). Then we have the symmetric group 

on each block as group of automorphisms; If Aj*Aj then we have 

automorphism ok j defined by

a,.a<k> - a<k>ij i .1
W ..a<k> - a<k>ij J X

_ (m) 
" *1

(we suppose that the isomorphism A.— ► Aj is’given by afk?-— -» a?k )̂ . 

The group is thus generated by permutations (d), proper automorphisms

of the components (a), elementary conjugations (b) and Nielsen



transformations (c).

For a set of defining relations see [73. For ism the group of 

automorphisms (5̂  are known. They are groups of order 2, generated by 

elements 0 . which take a. into a. *.

Aut(M,D)-- ^  Aut tt jM

that associates to a homeomorphism the induced automorphism on 

TTj. (Centre point of D is the base point). He now show that 

in certain cases rr is onto i.e. that we can realise all the 

automorphisms of TTj by automorphisms fixing a disc.

He first remark that the automorphisms (b) (c) (d) correspond

respectively to generalised slides when the whole factor is

slid ' along a curve in another factor^generalised slides when

the end of a handle is slid. along a curve in another factor

and . permutations of factors (all homeomorphisms

can be assumed to be fixed on a disc) . Hence to prove it is

onto we only have to see if the automorphism groups of the

fundamental groups of the factors correspond to homeomorphisms

in the manifold. We also know by theorem 3.2 that the

homeomorphisms of M are generated by generalised slides,

permutations and homeomorphisms of tne factors. Hence the problem

will be to see if the automorphisms of the fundamental group of

the factors can be realised by homeomorphisms of the factors.
1 2He nhal 1 show that is the case if M is4f S *S , n£l,and that the

kernel is a direct sum of Z^'a (one for each factor) and then

l i l

(ii) Consider the homomorphism 
IT

n

ducible sufficiently large.



In general we have a diagram

K  — —--*• Aut(*Tltl 1

\ \

Aul TT(-*? )

where K is the semi-direct product of P(M,D) and S(M,D), M -itP. , i j, ±2 

are the inclusions.

tt. ij is 1-1. This follows by looking at the relations [8 ] (all the 

relations between slides and permutations can be realised geometrically). 

Hence astogether K and X(AutP^,D) generate Aut (#rP. ,D) Ker it = Ker IT.i,i i 1

We now consider some particular cases:

(1) M - s'xs2

1 2  1 2TTj(S xS ) “ 2 and Aut Pj(S xs ) is generated by taking the generator 

x to x *. This is realised by the homeomorphism that interchanges 

the two ends of the handle (see picture), x can be represented by 

a loop that goes once around the handle.

1 2  1 2Hence it is onto and Aut(S *s *D) “ ®  Aut PjiS xs ) as IT splits



\

.*

(2 )  M -  ÜF s 1x s 2

Again it is onto as we only have to see that the automorphisms 

defined by

- 1
k

l * *  k

are realised by homeomorphisms where Xj ... x^ are the generators

of * 7, (Each one can be represented by the loop that goes once 
P

around a handle), and as in case (1) they correspond to interchange 

the two ends of a handle.

We then have

1 2  W0 — >-Ker it ---> Aut(lFS «S ,D ) --- >Aut(* 7) — >0
P

x 2

X(Z2*Aut tt̂ s 'xS2))
P

Ker it - KerCir.ij). But Aut Xj ( s ' x S 2) map; injectively into Aut(* 7),
P

The 72 part corresponds to a rotation parallel to the belt

sphere of the handle (e) which induces the identity on TTj. Hence

we have a 72 coming from each factor i.e. Ker tt - © Z 2. Thus we
P

recover Laudenbach's exact sequence

>®Z, -»AutC* s’xS^D)--- f  Aut(*2)

(3) Ths. °»*«
For an arbitrary 3-manifold M** PA we do not know if Aut(M,D) maps 
onto AutTT^M. We have a diagram:



T-l

x Aut(P ,D)M *

Aatiri(lfVlPi)

As before KerT- KerT*i2 and from (i) and remarks In (ii) le can prove by 
a similar method to (2) the followings

THEOREM 3.10
Let M -ftP̂  and for each P^ let Kp — *■ Aut(P^,D)—*• Qp be the short exact 

sequence where Op -ial^Kp »Kerll, (Tj~sAut(P^ ,D)— »■ Autf ^ P . Then there is a short 
exact sequence

-* Aut(-*P. ,D) -J» G

where G is the subgroup of Aut Tî M generated by (b),(c),(d) and by QD in factors.
1 i -------

a
We now consider certain cases where we know Ep ,Q_ .

*i *i
2(4) M is a P -irreducible sufficiently large 3-manifold

We already know that we have an exact sequence

0 ---? Z2 ----jAut(M,D) J L ^ A u t ^ W  — >0

2(5) M -fP^ where all are P -irreducible sufficiently large 3-manlfolds

"IT maps onto the subgroup G of Aut generated by (b),(o),(d) and
Aut^TTjP^ on factors by (3) and (4).

xKp - xZ2 (or ©  32 as 2^ ia abelian and normal in x 2^ ). The Z^'s parts 
correspond to rotations parallel to the separating spheres which clearly induce 
the identity on Aut ITj &Pj).

Hence we get the exact sequenoe

0 — * @ Z 2 — *Aut(tPltD) X - , . 0  —+ 0  ;



+J

(6) From the results above we get:

THEOREM 3.11
If M»If .where la either a irreducible sufficiently large closed .

1 1 2orlentable 3-manifold or S x S .then the sequence

0 — *• $  Z- Aut(l*P. ,D) G — * 0
t * C 1

is exact where G is the subgroup of Ant generated by (b)t(o)t(a)tAut'V1Pj 
If P  ̂Is P2-irreduclble sufficiently large and AutT^S^x S2 )- gg on factors.
Each g^-factor In the kernel of IT comes either from a rotation parallel to the 
separating v sphere of an Irreducible factor or from a rotation parallel to 
the belt sphere of a handle.

a



PAST II

REPRESENTATIONS OF 4-MAKIFOLDS



T-U

Unless otherwise stated, all manifolds are assumed to be Mapaat and connected.

I. STABLE CLASSIFICATION OF 4-MANIFOLDS

2 2 o 2Let S x S denote the non trivial S - bundle over S .

DEFINITION 1.1

We say that two 4-manifolds M f , M2‘ are stably equivalent if

Mj # tj(S2xS2) #  s,(S2xS2) S M2 =tt=t2 (S2xS2) # s 2 (S2xS2) 

for some t., s. £ 0 . i » 1,2 .i i f *

Denote by ~ the stable equivalence relation. It follows immediately from
o o  9 9Van Kampen's theorem and from the fact that Wj (S xS ) - it (S xSj = 0 that 

a necessary condition for Mj ,M2 to be stably equivalent is that 'n'jMj “ 1T|M 2*

(a) The orientable case

We consider first oriented manifolds.

For any CW x" with fundamental group it there is a natural inclusion

K(tt, 1) for we can build up a model for K(rr,l) by attaching cells to X

to kill higher homotopy groups. Denote by n(X) the class in H (it) « H (K(ir,l))n n
defined by that inclusion. In particular, if X  is an n-manifold that inclusion

defines a natural class TXl in ft ( it)  « ft ( K ( tt, I ) )  the oriented n-bordisms n n
group of K(ir, I) .

We want to relate fî('.i) with stable equivalence classes of oriented 4-manifolds 

with fundamental group ir. We need some preliminary results.

LEMMA 1.1

If X, Y are oriented homotopy equivalent n-circuits’with same orientation 

homomorphism and —  fundamental group tt then n(X) " n(Y) in Hn(ir).
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As X,Y are n-circuits, Hn(X) = Z generated by the homology class of X,[XT,'

Hn 00 ” * generated by TY1. Furthermore, if X,Y are homotopy equivalent and 

if f : X —*■ Y, g : Y — ^ X are such that fg - id^, gf - idx then

f^rx] - rHH , r 6 Z 

g*f*rxl = g*(rrY1) =r.g*[Y]

- id*[X] = [XI

hence, r = ±1 . Similarly, gAFY1 = ±[X1.

Thus, if f : X — ► Y is a homotopy equivalence we can assume, w.l.o.g., that 

f*[X] • [Y] (i.e. the homotopy equivalence commutes with orientation homomorphisms

We say that X,Y have same orientation homomorphism.

Then the diagram

Proof.

K(lT,t)

.where, \,ll are the natural inclusions, commutes up to homotopy and hence 

n(X) - X*rxl - (uf)^rxl - U*f*rxl « W^Yl - n(Y) as required.

COROLLARY 1.1.

If X,Y are homotopy equivalent n-manifolds with homeomorphic'boundaries,
same orientation homomorphism and the homotopy equivalence extends an

orientation preserving homeomorphlam of the boundaries, then u (-Y)) - 0
I 3

in H (ir) where ir ■ ir,X ■ ir.Y.—  n --------  I 1



14,

Let f be the homotopy equivalence extending h, an orientation preserving 

homeofflorph'lsm of the boundaries. We then have commutative diagrams

Proof.

KOTA)

P,\ as before.

Identify K(ifj(X),l) with K(tTj(Y),1) (up to homotopy) using f^ and glue up the 

two natural maps together to obtain a map

p : X u (-7) — >  K(ir, 1)
3

p determines n(X u (-7)) in H (it) . We'll prove n(X u (-Y)) - 0 in H (ir).
3 n 3 n

As X u (-Y) = X u (-X) 3 2X S 3(XxI), by lemma 1,n(X u (-Y)) - n(3(XxI)).
3 3 3

Hence there is a 5-cycle W5 *ith^^-(XU (-T)) 0 <>(XxI) and a map eK(T,l)
B

extending the map on the boundary.

7>Y

■ >T (Y J
V

Form F5 - W5 u X*I. Then 
3

3F^ “ X u (-Y) and as it follows 
3

from Van Kampen's theorem that there 

is a map F^ — > K(ir,l) extending p f

n(X u <-Y)) 
3 □



T *

When r|(X) - r|(Y) in ( tt)  we say X,Y are homologous over tt. 

We now consider the case of 4-manifolds.

THEOREM 1.1

If M j are oriented 4-manifolds with mm id

fundamental group tt, then they are stably equivalent iff they define

the same class in ft̂ (ir).

( *Remarks : (1) by the class defined by M we mean the natural

class defined above.

(2) If Mj » ^2 define the same class in ft̂ (Tr) we say they 

are bordant over tt.

(3) The proof of the theorem will use arguments from [ 5 1.

Proof:

(a) Suppose first that TM, 1 - fM„l in ft. (it). Then there exists aI s  2 s 4

a 5-manifold W "5 with boundary 9W5 = Mj u M 2 (disjoint union) and a map 

W5 — ^  K(tt,1) extending the natural maps M^« —  ■> K(ir,I) i = 1,2. We then
l

have a commutative diagram

where jj,j_ are tl,e i-nclusi°ns*

Let s. : ttjW tt|Mi be the split map



Perform surgery on W5 to make j|)fc, j^  isomorphisms (i.e. kill the normal 

subgroup Ker Sj = Ker s2 of l^W . The normal subgroup in question is the 

normal closure of a finite number of elements)to get a new cobordism, 

between Mj , M 2 with iTjW*’ = tr . Consider a handle decomposition of W 1̂ .

By connectedness assume there are no 0,5 handles and cancel 1,4 handles 

using the fact that ^(W'.M.) = 0 Y 211. We can thus assume that w ' 5 has 

only 2,3 handles. As rr̂ Mj tt̂ V  is an isomorphism it follows that the

2 -handles must be attached by null homotopic curves in and,as dim = 4 

the effect of adding these handles to Mj is to change it to

M " M| tj (S2xS2) # Sj(S2xS2) some tj,Sj > 0.

As 3-handles are dual 2-handles, M can also be obtained from Mj by attaching 

2-handles by null homotopic curves. Hence

M - M, *  t](S2xS2) *  s2 (S2><S2) s M 2 4 t2(S2xS2) # s2 (S2xS2)

some s^.t^ - 0 , as required.

2 2 2 2(b) For the converse, it is enough to show that adding S *S or S xS 

to Mj.say, doesn't change its cobordism class.



We can assume w.l.o.g. that M ( — ■ > K(ir,1) maps a ball B to the base

point * in K(lT, I). We use this ball to form the connected sum and map the 

whole of S2xS2 (or S2xS2) to *

>3

Q>.

c

K C T T .i )

. —  2 2 2 2 2 2 This defines a map Kj : M( # S(£)S -- *  K (n»0 ( S ^ R  means either SxS

2 2 . 2 2 — or S AS as convenient J. It remains thus to show that TM-K, 1 « fM, *  S.x S ,K,1" I I  V~/ I
5 — 2 2in We construct a cobordism R between Mj and M ( # S(~)^ and a map

F : R5 — ► K(tt, 1) s.t. F/Mj = K f , F/Mj *  S ^ S 2 = K f .

Let R  =  M . x l  u  2-handle,

Then 3R =*MtxO u M t -#r sksljliip all

the region B*I u  ( S ? x  - 4 ball) to *.
3

This extends clearly to the required F. _

If Mj, Mj are oriented closed 4-manifolds with t a k  fundamental group it, mtmm 

• M M a M i t M H l i k M i  and homologous over tt we can resolve the homology 

to have only a finite number of points of singularities (as oriented bordism/

groups flj, ^ 3 are all zero) each of which has for a link an orientable
24-manifold. As « 2 is detected by the index and index (IP - 1, we can

2 2 •resolve the singularities by adding some copies of CP or - CP to the links :



Denote by X the homology and by MQ, M with a ball removed.

Then cutting out tubes from the links to Mj c 3x^ and replacing them by 

(®?2)q x I or (“*̂ *2̂ 0 * i;we can kill the obstruction index and resolve 

the homology to a 5-m.^nifold. Also, every time we have links with opposite 

sign,instead of piping them to the boundary^e can pipe them together away from 

the boundary. Clearly it is not affected and the 5 manifold then obtained

THEOREM 1.2

If Mj, M 2 are homotopy equivalent oriented closed 4-manifolds (with same 

orientation homomorphism) then they are stably equivalent.

Remark This result was suggested by Kirby, without proof, in a

private communication.



« 1

Let ir - ir] M f - tt] M 2- By lemma 1.1 n(M,) = n(M2> in H^CItX if tii))Hence by 
2

the above, Mj ±OP is bordant to M 2 over ir. But as Mj, M 2 are homotopy

equivalent, index Mj ” index M2 and so we must have an equal number of 
2,

and -dP ‘s. Then we can resolve all the singularities away from the boundary 

of the homology to get a cobordism over it between Mj , M 2 as required. a

COROLLARY 1.2

Two homotopy equivalent oriented 4-manifolds with homeomorph-Lc.boundaries _ 

same orientation homomorphism and the homotopy equivalence extending an 

orientation preserving h i n nniiii irti’lm  mi the boundaries, are stably equivalent.

Proof.

Same as above using corollary 1.I instead of lemma 1.1. D

THEOREM 1.3 

For any group tt

S?4 (ir) « Z ©  H4 (tt)

Proof.

(If tt iSjfor instance,any finitely presented group, then there is a 

4-manifold with fundamental group tt.)

It follows from what we have said before that there is an exact sequence
4of abelian groups (note that we don't need to have M with fundamental 

4 4group tt but M and a map M — ► K(ir, 1)).

» ¿ --1— ► n4(") — j--* Ha (it)

Proof.

where is the natural map and _i is defined by sending I to the class of



sa,

*P with the trivial map to K(ir, 1) . 2 2 As index ŒP = 1 and CP doesn't

bound i(l) is non-zero and therefore im i = 2 . i splits by the index 

map. Hence i is onto. Also j is onto as there are no obstructions to 

resolve a 4-homology to a 4-manifold (an algebraic argument can be 

found in Conner and Floyd "Differentiable periodic maps" Springe*, 

Berlin 1964). Hence v,c have in fact a split exact sequence

In particular, for any oriented 4-manifold M with tt̂ = tt its stable 

equivalence class is determined by the index and the natural class r| (M)

(b) The non-orientable case

In this case we have to work in the category of spaces over and

consider bordism and homology with "twisted coefficients" which can be 

defined as follows:

0 L fijOO — — *  h 4 ( tt) 0

Thus
aft, ( tt) = 2 ©  Ĥ (ir) as required.

in Ĥ (ir)

Let M be an n-manifold. ww : ir M ----y 2, its orientation homomorphism

Considering then the diagram

K(ïï.t) -,K<

n

where it “ tt.M, and defining two such diagrams to be bordant or homologous

respectively by the "obvious things" we get resp. the bordism groups



these groups can be interpreted as bordism or homology classes, resp, of 

singular n-circuits in K(tt,1) where both the circuits, bordisms and the 

homologies are locally orientable and the orientation homomorphisms commute 

with

Denote again by t|(M) the natural class in H.n(TT,M) . The corresponding results 

in this case are :

LEMMA 1■ 1*

If X.Y are non-orientable homotopy equivalent over 2 2 n-circuits with — t  

fundamental group 7T and same orientation homomorphism then r\ (X) = n(Y) 

in fl̂ (ir).

Proof.

Let f : X — *■ Y be a homotopy equivalence over 2 ^ . This means we have

a homotopy commutative diagram where 

g is the homotopy inverse and also 

the homotopies are homotopies over 

K(*2 ,1).

In particular, X and Y are homotopy equivalent in the usual sense.

Then the same proof as in the oriented case (1̂  (X ;K(Z2,1)) “ 2 ) working 
in the category of spaces over X(Z2>1) gives the result. °

COROLLARY 1.1*

If X,Y are non-orientable homotopy equivalent (over 12> n-manifolds with 

honeomorphlfc boundaries same orientation homomorphisms and the homotopy

or the homology groups lî Crr) with twisted coefficients. Geometrically,

equivalence extends a homeomorphlsm of the' boundaries, then



Proof.

As before with the obvious changes. ^

Case of non-orientàble 4-manifolds

For non-orientable 4-manifolds there is a bordism invariant - the reduction 

mod 2 of the Euler cha*acteristic denoted hy X2 ’

As X(M) = dim HgCM'.Z^ - dim + dim H2 (M;Z2> - dim H3 (M;32)

+ dim Ha (M;32)

where H^(M;Z2) is considered as a vector space over Z2 it follows from 

Duality that X(M) = dim H2 (M;Z2) mod 2.

THEOREM I.1'

If M j, M2 are non-orientable 4-manifolds with fundamental group ir and same

orientation homomorphisms then they are stably equivalent iff they define

the same class in ------------------ 4

Proof.

As in the orientable case but working in the category of spaces over 

K(Z2,1).

THEOREM 1,2'

If_Mj, M 2 are homotopy equivalent over Z^, non-orientable closed 4-manifolds 

with same orientation homomorphisms then they are stably equivalent.
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ri(X u Y) = 0 in where ir = tTjX = 7̂  Y.
3

Proof.

As before with the obvious changes. ^

Case of non-orientàble 4-manifolds

For non-orientable 4-manifolds there is a bordism invariant - the reduction 

mod 2 of the Euler characteristic denoted by x

As X(M) = dim - dim Hj (MJZ2) + dim H 2 (M;a ) - dim H3 (M;32)

+ dim H^(M;a'2>

where H^(M‘Z2) is considered as a vector space over 2 2 it follows from 

Duality that x(M ) = dim H2 (M;?2) mod 2.

THEOREM 1. 1 1

If M j, M 2 are non-orientable 4-manifolds with fundamental group tr and same

orientation homomorphisms then they are stably equivalent iff they define

the same class in ------------------ 4

Proof.

As in the orientable case but working in the category of spaces over

K(2 2,l).

THEOREM 1.2’

If Mj, M 2 are homotopy equivalent over 2 ^ , non-orientable closed 4-manifolds 

with same orientation homomorphisms then they are stably equivalent.
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Let ir - TtjMj = ifjM^ By lemma 1.1' n(M,) = n(M2) in H*(ir). As the classes

are all locally orientable and the singularities appearing in a homology are

all local,we can resolve a homology between Mj, M 2 at the expenses of 
. . 2introducing some ±CP s as before. But as for M non-orientable,

2 '2 . 2M ** (IP =■ M # (-CP ) (slide CP along a non-orientable curv^ we get after
. . 2 resolving the homology, that either M| It (IP is hordant to over it or

MjfMj are bordant over tt. (If there are an even number of singularities we

pipe them together in pairs away from the boundary. If not, we pipe all

except one away from the boundary).

As Mj - M2, dim H 2(Mj) = dim H2 (M2), hence X2 (M|)

X2 (Mj #  c p2) = x 2 (m ,) + i 7« x 2 (m 2), M j #- cp 2, m 2

Hence Mj ,M2 are bordant over it as required.

Similarly we get :

COROLLARY 1.2*

Two homotopy equivalent over 2 ^ non-orientable 4-manifolds with homeomorphlc 

boundaries, same orientation homomorphisms and the homotopy equivalence 

extending a homeomorphlsmon the boundaries are stably equivalent.

Proof.

• X2(M2) - B u t  a s  

c a n n o t  b e  b o r d a n t  o v e r  IT.

D

THEOREM 1.3'

For any group it and for every non-trivial homomorphism tt -- *  we have

fi£(u) = Z2(» H*(ir).



8É>

It follows from the discussion above that there is an exact sequence

22— nj<ir> — hJ(tt)

defined similarly to the orientable case, i(l) is the class determined by 
2(IP . Hence lm 1* Also, as before, j is onto and as we have an exact

sequence of abelian groups

0 ----> Z 2 --- i— > ^(ir) --- -̂-> H*(x) ----0

As mod 2 reduction of the Euler characteristic defines a split map

---- >■ 2 2

M ---- *■ X(M)
2

we get ^ ( tt) = ^ © H ^ O r )  as required. □

This result together with theorem 1.1' prove the following';

Stable equivalence classes of non-orientable 4-manifolds with fundamental 

group v are in 1- 1 correspondence with the elements of and are

determined by the reduction mod 2 of the Euler characteristic and by a 

"natural" 4-dimensional homology class with twisted coefficients.

Proof.

SOME REMARKS AND EXAMPLES.

2 2(1) We need at most one S *S in the stable equivalence as
_2 2 2 „2 _ „2 „2 . 2 „2S xs #  S xs - S «S #  S *S

3Proof : we use the language of T15 1 .To a framed link in S we can

associate a 1 -connected A-manifold with boundary by attaching 2 handles 
4on the boundary of B along the framed link.Components of the framed 

link represent 2 spheres corresponding to the second homology classes 

of the 4-manifold. Hence there is a 1-1 correspondence between framed
3links in S and 1-connected 4-manifolds with boundary which admit handle



decompositionswith only handlesof indexSL. We also say that the link

represents the boundary pf the 4-manifold, In cases where the boundary
3

is S , capping off with a 4-ball we may also say that the link represents 

the closed 4-manifold thus obtained. Both S2*S2 and S2*S2 are such 

cases and their link pictures are

• Q Q ' < 2 r ) ’

. . 2 2 2 2 A link picture for S «S *  S *S is then given by

. . 2 2 2 2 ; a link picture for S S *S is

GDl CCD1O c

We now prove that they are equivalent by Kirby's band moves - band moves 

correspond in the 4-manifold to 2-handle slides and hence the 4-manifold 

is not affected,up to ■ homeomorphism.

c o ,
1 i

Another proof can be found in T24 1•



(2) Cappell and Shaneson found a homotopy IRP^, HP^, s.t. there is no 

tjt > 0  s.t. HP #  t(S xs ) = 1R p #  t'(S2xS2). We know in fact 

from theorem z' and from the first remark that for some t,t'

H P4 #  t ( S 2x S 2 )  #  S 2x S 2 S .  #  t ’ ( S 2x S 2 )  #  S 2x S 2 .

(3) If M,N are homologous over it and index M ° index N + k, k > 0
2then Nt M # k(-tP ) are bordant over u.

89

Proof:

We first show that CP2 *  (-dP2) 4k (-dP2) = S2xS2 4k (-CP2) = S2xS2 #  (-dP2),
o

using link pictures (another proof in T 2/p). A link picture for dP 

is given by (-CP2 with -1)( O  also represents S^).

CP2 4t (-CP2) 4k (-dP2) = 1

2 2 2 S *S #  ("CP ) c z y
1

Now the result follows immediately. Cl

(4) We give some examples where stable equivalence classes are determined 

by the index for oriented manifolds.

(a) tt 0 » Z as Ĥ (ir) - 0.



S3

This is, in fact, Wall's result T23 1 that any two simply connected 

oriented 4-manifolds with same quadratic form (and hence the same 

index) are stably equivalent. Wall proves also that no S *S are 

needed. For simply connected oriented 4 manifolds to have isomorphic 

quadratic forms is equivalent to say that they are homotopy equivalent.

Wall showed then that they are, in fact, h-cobordant and it follows
. 2 2from this fact that there are no S xS in the stable equivalence.

(b) For tt = 1 or tt = 2 as H. (it) = 0 in both cases, we have 1____  ____ £ 4_____________________

homology is periodic of period 2 and hence

For IT, =1 P
(  * i odd
i P
l  0 i even

i > 0  p > 1  T 11 \

Then (a) • (b) and theorem 3 give the following result!

Two oriented closed 4 manifolds with tt « 0, 1 or H are stably 
______________________________________ !______________ £___________
equivalent iff they have the same index.



2. A LINK REPRESENTATION FOR 4-MANIFOLDS.

3As already quoted there is a 1-1 correspondence between framed links in S
a  w  ee.

and 4 manifolds with boundary which admit^handle decomposition with only 

handles of index 2. In this section we try to generalise this result to 

arbitrary 4 manifolds and give a 'link representation' of any closed 

4 manifolds. We then define a series of "allowable moves" in the link 

picture that will enable us to see when two different link pictures 

represent the same 4 manifold.. Finally, we consider the stable case.

We assume the reader is familiar with n and refer to it for definitions

and details. We will deal with the orientable and non-orientable cases 

separately.

The orientable case

I. Let M be a closed oriented 4 manifold with a given nice handle 

decomposition which, w.l.o.g. : we can assume to have only one and

one ̂  handle (Recall all our manifolds are connected.) If we remove from
4 . . -M the 0,1,3,4 handles we obtain a cobordism M between a connected sum of

4 2 2 3i_ copies of S**s (i 2 0 - In the case i = 0, # S*xS denotes S, by

convention) where _i is the number of 1-handles of j , and a connected sum

of j copies of S*xS2 ( j S 0) where j is the number of 3-handles in*^Pj.

The cobordism M has then only 2 handles 3m = 3+M u 3_M where 3+M » #  S* l*S

3_M - #  S*xS2.
i

Conversely given M i.e. given only the full 

2-handles (a full handle is the cobordism 

associated to the attaching of the handle) 

we can recover M uniquely up to homeomorphlsm:



LEMMA 2.1

For any orientable closed 4 manifold given only the cobordism formed by the 

full 2-handles we can recover the manifold uniquely up to (orientation 
preserving) bomeomorphism.

Proof.

The union of (0,1) har.iles (respect .union of 3,4 handles) is homeomorphic to
3 3 3 ,
#  S xB (resp. SlxB''). To prove the lemma it is enough to show that if we
i  j

3 3 3 3
glwe #  S*xB and ̂  S^xB back again by two different homeoraorphisms on their

i j
boundaries we get the same manifold up to homeomorphism. But this follows

immediately from the fact that any homeomorphism on tt S^xs^ extends to a
3 3 k n

homeoraorphisrof #  S^xB .

Remark i We will see later that a sort of converse holds.

2. A link picture for M with a given handle decomposition.

(a) We suppose^w.l.o.g., given an oriented closed 4 manifold M^ with a nice 

handle decomposition ’¿R. f with only one )̂ and handles.

Suppose given a certain link picture of a "¡-connected 4-manifold with boundary. 

Components of the framed link represent 2-spheres corresponding to the second 

homology classes of the 4 manifold. Surgering the 2-spheres corresponding to 

an unknotted circle with O-framing, corresponds to trading a 2-handle in 

for a 1-handle, hence changing the 4 manifold (but not the boundary). We 

can then think of representing a 1-handle ( 2 S*xB^) by putting a dot on such

a circle^ this means that we first attach a 2 handle with O-framing onto 8 ^
2*2 2along the unknot and get B x<5 , then surger Sz from this manifold. (Another

2way of picturing this is by pushing the interior of the spanning disc D of



V3,

3 Athe unknot in S into B , and by removing an open tubular neighbourhood of
2 A *■*

D from B . For instance, a connected sum of S^xBJscan be represented by

disjoint unknotted dotted circles in S (disjoint means separated in SJ by

embedded 2-spheres), meaning that first we attach 2-handles along the curves

with 6 -framing to get |  S *B then we surger' the 2 spheres. Clearly we can

either surger one at a time or all.at the same time as we can always do one
i f

surgery so that doesn't affect the others.

Hence, given M, we consider only the 0 ,1 , 2 handles to get a manifold
4 2Mj with 8Mj = #  SaxS (which by lemma 2.1 determines M uniquely). Then we

trade all 1-handles for 2 -handles and get another 4-manifold with boundary

, with the property of being 1-connected. Following Kirby, we'll then

have a framed link representation of it where disjoint unknotted circles

with 0-framing will appear. Surger the 2-spheres corresponding to those

unknotted circles trading the handles back again - In the picture put a dot

on such circles. Then we get a "link picture" L^of M( and hence of M,

associated to the handle decomposition $  j. This link picture determines M

uniquely up to homeomorphismby lemma 2.1. Converse is not true?for two

different handle decomposition give different link pictures. We call such

a link a special framed link. From now on every time we talk about link

pictures we mean special framed link pictures. We can also consider the

undotted curves as a framed link in M S^xS^. By a framed link L in a closed
K

3 manifold M we mean a finite collection of disjoint PL embeddings 

of S^xD^. Any image of S^xio) will*be called a component of L and the 

associated image si{x), x V 0 , a parallel curve « Framings are determined by 

the parallel curves. (If Mj(M) = 0 then the parallel curves are determined 

by linking numbers). Hence,in our case, when having a numbered link this will



b
m
h
m

tell us how to attach the 2-handles to S3 after trading the 1-handles into 

2-handles and then trading them back again to get the original manifold.

In this sense, the effects on framings obtained by Kirby moves on undotted 

circles are as in T 15 1. Otherwise they are determined by the effect on 

parallel curves.

1

Also think of the link pictures as either representing the closed 4-manifold 

or the boundary of the manifold obtained by removing the 3,4 handles.

We now take a closer look at the trading process which will prove useful 

later on.

(b) Trading a 1-handl. for a 2-handle in an orientable 4-manifold.
3 , ' 3Let M be an oriented 3-manifold. Remove two disjoint 3 balls from M and

identify the resulting boundaries by an orientation reversing homeomorphlsm.

The resulting manifold M' is said to be obtained from M3 by adding an

orientable 1-handle or by surgering an S°.



Corresponding to this surgery there is an elementary cobordism W with 

only one handle:

Form Mxl. Instead of removing S°xD3 from Mxl we glue a 4 ball D^xp^ to

Mx1. D1 xD3 has boundary S°xp3 uD1xS2. We then glue S°xD3 in 3(D1 xD3) to
. 3

S xD in Mxl to obtain a 4-manifold W whose boundary is the disjoint union 

M u M' where M is identified with MxO.

We now show how to replace this cobordism by another cobordism between 

M,M' with only a 2-handle :

S x {p} a „o _2 S xs 3(S°*®3) bounds an arc in M.

The arc may wander around in 

the 3-manifold. .

The attaching sphere of the l-handle h1. S°xS2, can be expressed as the
. _o „ 2  „o _ 2 , . .union S xp u S xp (see picture )

1 3 1



The cells D^*{p} and joined along their boundaries form a sphere Ŝ - in 

M . By orientability and by the regular neighbourhood theorem^S1 has a 

regular neighbourhood of the form D^xp2 u where P^xp2 is a neighbourhood
I g  U I

D^ip) in D^XS2, Dq is a neighbourhood of P^ in M-int(S°x^).

Now if we perform surgery on the 1-sphere , thus obtained^we recapture M.
• • 9This is because the associated cobordism W' has a 2-handle h attached by this 

S1 and as h2,h* are then complementary handles, the effect of doing these two 

surgeries is cancelled, i.e. W u W 1 is the trivial cobordism Mxl.

Considering the situation dually, M' is obtained from M by a l-surgery and w'
2

gives a cobordism between M,M' with only a 2 handle h^ (the dual handle to 

h2 in W').

The shaded region in the picture 
can be considered as either the 

, 2attaching tube of h or the belt
2tube of the dual handle h#.

Thus m ' is obtained from M by surgery along the curve 9p2 which is an
3unknotted circle (with O-framing, if M - S ).

Note that we have changed the cobordism. We say we have traded a I-handle

bv a 2-handle (represented by that unknotted circle).



For simplicity we consider the case when M = S and then try to see the 

effect of trading on the picture of M'.

The two balls are to be removed 

and their boundaries identified 

by an orientation reversing 

homeomorphism

We first note that all the curves attaching spheres of the 2-handles that
2

pass through the I-handle can be assumed to pierce only Dj. We can also

assume that the orientation reversing Jiomooinorphlsta that identifies the
2 2boundaries of the balls maps to D ( (for instance, the reflection through

3the equatorial plane of i  - see picture).

Then when replacing this 1-handle by a 2-handle the curves that pass through 

the handle are completed along the path and ringed by a small curve 

labelled 0 .

—  M'

c'.a I i *

M ’

M
s



97-

A homomorphism between M+

h^ from D^x d  ̂ (D̂  core of 
a 2D'xD,. (See pictures.)

•= M uh*uh^ and M is obtained by shelling first
4 2 . 2l-hamdle) to D'xDj and then shelling h onto

Choice of arc determines the trading but.no matter which choice^the end 

result is always the same as we can suppose that doesn't have little knots

and is unlinked from other curves attaching spheres of 2-handles by sliding
2 o 2around )ft|xSz c S xS (this is in fact the reason why sliding over an unknotted 

curve labelled 0 removes the linking and knotting as any such curve introduces 

a 2-sphere},
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Also by band moves using the circle labelled 0 introduced we unknot and 

unlink the other curves to get the following pictures

the same : only for the unknotting a certain curve has to represent ̂  in ttj) 

(c) I-handle slides and slides of dotted curves.

We have seen, so far, how a 1-handle can be represented by a dotted curve 

coming from the belt sphere of a complementary 2-handle. We now try to see 

the effect of a l-handle slide on the dotted curves and we will show that a 

1-handle slide corresponds to a slide of the dotted circles in the opposite 

direction with a change of sign.



(Cj) First we see that a 1-handle slide in two complementary pairs has the

same effect as a 2-handle slide.

£ A 1-handle with a cancelling 2-handle can pictured as in the following picture*

the 2-balls are to be removed and 

■ ~ » their boundaries identified.The arc 0

becomes a circle,attaching sphere of 

the 2-handle.

Of course, this is a simplified picture, the arc 13 may wander around and have 

little knots. The same comment for the pictures that follow. However, as 

this doen't affect the proof we picture the simpliest case .J .

Proof. ( cf [5 ] )

\ *
V

I ' b a rre l

r
' -Z-

Z  H c v n d it

I?



(c2) Next we see how the dual circles of the 2-handles are slid in the 

opposite direction.

If the 2-handle is represented by its attaching sphere a the dual circle 

a*, the attaching sphere of the dual handle, (i.e. our dotted curve) is 

represented by a simple curve a* linking a only once

a.
am

Then the effect of the slide on the dual circles can be pictured as follows.

a +b

-- bVo*

Dual circles after the slide are (a+b)* = a*
*  *  *(b) = b - a as required.

(...) means image off...) after the slide.

(c^) Another picture of what happens without considering the complementary 

2-handles in the following*.





Given a link picture of a 4 manifold we can then read off from the link 

a presentation for tt̂ (M^) as follows!

Orient the curves of the link. Each 1—handle gives a generator which can be 

represented by an oriented unknotted circle linking the dotted circle once

(d) Link pictures and presentations of the fundamental group.

Attaching spheres of the 2-handles determine the relations.They can be read 

off from the picture ar suggested below:



1 0 ? »

Tietze moves and handle moves.

Given two finite presentations of a group it is known that by a sequence 

of moves - the Tietze moves - one can pass from one presentation to the other.

Tietze moves are the following!

(I) add a generator and a relation which expresses that generator as

a word in other generators

(I) ' inverse

(II) add a relation which is a consequence of other relations

(II)' inverse.

Some of these moves can be done by handle moves. However, cancellation is not

always possible as the following counter-example shows:

Picture I represents the Mazur Manifold M. M is contractible and 
2 “ 1(a : a a ■ l) is a presentation for ttj (Here we have the link pictures 

representing manifolds with boundary). Picture II is a link picture for 

the 4-ball B^. A presentation for TTj (B^) is given by (a : a = l). If it 

were possible to pass from one representation to the other by handle moves 

this would lead to M^ £? B^ which is false (Uj (3M^) f  0 ).

Remarks : Cancellation can be done when homotopy implies isotopy.



Move II can be done by introducing a complementary (2^3) pair and then sliding 

the 2-handle over other 2 -handles till we get the relation - this is possible 

since the new relation is a consequence of the other relations of the 

presentation.

Move I replaces a presentation (x;r) by (x,y ; r,yw(x) ') where y is a 

generator not in x (x denotes the generators, r the relations) expressible as 

a word w(x) in the generators x. It can be done by handle moves in the link 

pictures as follows:

< < 2  can be assumed to be in a 1-connected part, hence can be numbered 

otherwise take para^^e  ̂curve).

(b) Slide the new 1-handle over the other 1-handle} according to the word 

In the picture dotted circles slide in the opposite directions and with a 

change of sign

e.g. if y - x,x2
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3. Relation between the links pictures given hy two handle decompositions.

The next natural question is to ask if there is any relation between the links 

pictures associated with two different handle decompositions.

0,4-handles and 1^ the associated link picture.

We now define an equivalence relation on the link pictures associated to a 

manifold M generated by the following r - moves*.

(a) Trivial slides of the dotted curves over the dotted curves, 

i.e. slides of this type ---

We have so far, associated a link picture to for a given handle decomposition.

Let, then^ 2  be another nice handle decomposition which as before has only one

(b) Slides of undotted curves over dotted curves

(c) Slides of undotted curves over undotted curves

(d) Introducing or deleting

(e) Introducing or deleting
0 (  ( o 'r (same comment whenever 

this appears)

(f) 3Isotopxes of the link picture in S .



Given a link picture of a 4 manifold we can then read off from the link 

a presentation for Wj CM4) as follows:

Orient the curves of the link. Each 1-handle gives a generator which can be 

represented by an oriented unknotte.d circle linking the dotted circle once

(<0 Link pictures and presentations of the fundamental gr o u p .

Attaching spheres of the 2-handles determine the relations.They can be read 

off from the picture a' suggested below:

t W ndil
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Tietze moves and handle moves.

Given two finite presentations of a group it is known that by a sequence 

of moves - the Tietze moves - one can pass from one presentation to the other.

Tietze moves are the following!

(X) add a generator and a relation which expresses that generator as 

a word in other generators

(I) ' inverse

(II) add a relation which is a consequence of other relations 

(II)' inverse.

Some of these moves can be done by handle moves. However, cancellation is not 

always possible as the following counter-example shows:

Picture I represents the Mazur Manifold M. M is contractible and 

{a : a a * ll is a presentation for Xj (Here we have the link pictures 

representing manifolds with boundary). Picture II is a link picture for 

the 4-ball B . A presentation for iTj (B^) is given by (a : a » l). If it 

were possible to pass from one representation to the other by handle moves 

this would lead to M^ B^ which is false (Wj (3M^) s* 0 ).

Remarks : Cancellation can be done when homotopy implies isotopy.



lo H

Move II can be done by introducing a complementary (2^3) pair and then sliding 

the 2-handle over other 2 -handles till we get the relation - this is possible 

since the new relation is a consequence of the other relations of the 

presentation.

Move I replaces a presentation (x;r) by (x,y ; r,yw(x) ') where y is a 

generator not in x (x denotes the generators, r the relations) expressible as 

a word w(x) in the generators x. It can be done by handle moves in the link 

pictures as follows:

(a) Introduce a complementary (1,2) pair. This changes (x;r) to (x,y : r,y).

( < 9  can be assumed to be in a I-connected part, hence can be numbered 

otherwise take ^  parallel curve).C P
(b) Slide the new 1-handle over the other l-handlej according to the word ». 

In the picture dotted circles slide in the opposite directions and with a 

change of sign

e.g. if y - x,x2
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3. Relation between the links pictures given by two handle decompositions.
, 4We have so far, associated a link picture to M for a given handle decomposition. 

The next natural question is to ask if there is any relation between the links 

pictures associated with two different handle decompositions.

Let, then^ 2  be another nice handle decomposition which as before has only one 

0,4-handles and L 2 the associated link picture.

We now define an equivalence relation on the link pictures associated to a 

manifold M generated by the following f - moves*.

(a) Trivial slides of the dotted curves over the dotted curves, 

i.e. slides of this type

(b) Slides of undotted curves over dotted curves

(c) Slides of undotted curves over undotted curves

(d) Introducing or deleting

(e) Introducing or deleting
O  (  "

cunt*
(same comment whenever 
this appears)

3(f) Isotopies of the link picture in S .
J
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Moves (a-e) correspond, respectively, to 1-handle slides (in the opposite 

direction), isotopy of the attaching sphere of the 2-handle (dotted curves 

bound discs), 2-handle slides, introducing or cancelling (1,2) complementary 

pairs and introducing or cancelling complementary (2,3) pairs. Move (f) 

corresponds to an isotopy of the attaching curves of the handles. (Note 

move (c) is a particular case of (f)). Thus vv/uof them changes the 

(orientation preserving)homeomorphism ¿lass o'f' M.

If two link pictures are related by T-moves we say they are T-equivalent.

We now show that Lj,Lj are T-equivalent!

(a) First we will see that at the expenses of some handle moves any 

bbmeomorphism h: M — ► M^up to isotopy preserves the 3 and 4-handles.

By the disc theorem, we can assume that the 4-handle in goes to the 

4 handle in Considering then the dual decompositions, 3,2 handles

give a presentation for ir(. Let (x^ ... xn ; r) iyj ... y^ ; s) be the 

corresponding presentations for ^  respectively, y^ * w.(x) i « 1,.. . 

so by a sequence of Tietze moves I we change(introducing complementary (2,3) 

pairs and sliding handles) so that the new presentation has generators 

Xj ... xn> ŷ  ... y^. Similarly as x^ = w!(y) we change 80 as t 0 get a 

new presentation with generators yj ... y<̂  Xj ... x r (Relations can be 

different !).

We denote still by Lj, L^ the new link pictures, ̂ , $ 2 , *>e new handlebody

decompositions and h the new homeomorphlsm.'j^^have now the same number Of 3 -handles.



4o4

Let F., i = 1,2, be the union of the 4,3 handles. Both are howeomorphic

to the same connected sum (along the boundary) of S^XB^'s, hut the way this 

connected sum is embedded in M might be different. However, there is no 

problem, in our case, as we have already made sure that the 3 handles give 

(by reading off in the dual decomposition) the same elements of tt̂ , and as 

in dimension 4, homotopy implies ‘ (ambient) isotopy, there is an ambient 

isotopy of M which carries the cocore of the 3 handles in 'J to the cocbi*e 

of the 3 handles in Then by the regular neighbourhood theorem there

is also an ambient isotopy of M which carries Fj onto Fj as required. Thus 

we can assume h pressrves the 4,3 handles.

Then M - F, = M - F
h/

(b) Let W. * M - F. i - 1,2 and let W S W. , i - 1,2.l l l * ’

Wj, give two handle decompositions of W with associated link pictures 

Lj, 1-2' Using the basic -tarting theorem of Cerf theory r 3 1 T 5 3 (transfer 

to the smooth category and use transversality) , we can assume that the two 

handle decompositions are related by a sequence of the following moves!

(I) Births and deaths of complementary handle pairs.

(2) Handle slides.



We note the following :

(i) As the two handle decompositions have only 0,1,2 handles we will 

have to introduce and cancel the same number of (2,3) and (3,4) 

complementary pairs.

(ii) We can assume all the births take place first all the deaths last — 

move (f).

(iii) We can eliminate 0-handles (and dually 4-handles) at the expenses of 

some 1 (resp.3) handle slides (move (a)). So we are reduced to:

(1) Introducing and cancelling complementary (1,2) and (2,3) pairs.

In the link picture ; introduce or cancel

(2) 2-handle slides - these correspond to slides of undotted 

curves - move (c)

(3) 1 handle slides - move (a)

(4) 3 handle slides - we don't see them in the link picture 

and by remark(t3 all 3 handles disappear in the end.

i.e. L|, Lj are equivalent by r-moves.

l iohopy
(Recall we are always working up to-I^BMapy hence move(b) is allowed).

As Tietze move I can be done by r-moves (e) and slidings of 3-handles 

don't affect the link picture we have proved the following :

THEOREM 2.1

Orientation preserving homeomorphlsm classes of oriented closed 4-manifolds

correspond bijectively to equivalence classes of "special framed links" in 
3 rh*S , where equivalence class is generated by i-moves.



4. Stable equivalence and link pictures.

2 „2We now "stabilise" our result by allowing connected summing with S <S
2 2 or S *S .

The stable equivalence relation on the special framed link pictures is then

generated by T-moves and by introducing or deleting & > '  o O '
2 2 2 2(corresponding^resp. to connected summing with S *S or S *S ). If two 

link pictures are in the same class we will say that they are T^-equivalent. 

Hence we have :

THEOREM 2.2

Orientation preserving stable homeomorahlsmclasses of oriented closed 

4-manifolds correspond bijectively to T^-equivalence classes of special
3framed links in S .

In particular, if n is the fundamental group of an oriented closed 4-manifold
3

certain T^-equivalence classes of special framed links in S are in 1-1 

correspondence with the elements of

The non-orientable case

Let M be a non-orientable closed 4-manifold, a nice handle decomposition 

of it with only one 0,4 handles. As in the orientable case as any homeomorphism 

of #  S*xS2 #  S^xS2 extends, the cobordism formed by the full 2-handles
k ~ j

determines the manifold uniquely up to homeomorphism.

We would like to associate, as in the orientable case, a special framed link 

picture to (m \  ) and then define an equivalence class on such pictures so

that homeomorphispiclasses of non-orientable manifolds are in 1-1 correspondence 

with such equivalence classes.



The main problem is that unlike the orientable case, we cannot trade a 

non-orientable 1-handle for a'2-handle (recall that in the orientable case

However, we will show that a "certain similarity" between the two cases will 

enable us to choose an "unknotted curve" to "represent" «he non-orientable 

l-handlef.

Once we have the link pictures for a certain handle decomposition we relate the 

pictures given by two different handle decompositions. As in the orientable 

case (proof is the same) we can assume that the 3 and 4-handles are embedded 

in the same way and thus we only have to interpret on the pictures the moves 

that relate the decompositions : slides and births and deaths of complementary 

pairs.

Finally we will consider the stable case.

1. Representing the non-orientable 1-handles.

We first note that we cannot trade a non-orientable 1-handle into a 2*-handle

as S* » D*x(pt) u DÎ. (cf notation of orientable case) is a non-orientable
3 0

curve and so it cannot be the attaching sphere of a 2-handle.

this fact was used to represent a 1-handle by an unknotted dotted curve)

But we still can assume that Dq 

doesn't have little knots in it

and that two handles do not link 

our S* by sliding around one of

the end8 of the handle/.



Think of attaching a non-orientable l-handle to a manifold as removing 

two 3-balls from it and identifying their boundaries along an orientation 

preserving map (e.g. the identity).

k
i

/ *

. . . 2 2 Consider a meridian and let Dj,D2

be the 2-discs into which it 
. . 2divides S , Clearly we can assume 

that all the curves attaching 

spheres of the 2-handles that pass 

through the handle pierce only one

— _ . i, _ , of the discs, D, , say.Tru 2 boil's cou To m t h o  9 j ’ J
(vXC»> r u v v ir»c\ H ^ x n  V ) c w n ^ ( V U j t A

v.cXi Lru cvm c-v*,*>Vc«ti*n ^uu^iOt r«
V \O or«^ io '« '«e x^\Vvi V n > °

We can therefore think of replacing picture I by the following:

where the curves piercing the l-handle are joined up along a simple path r  

(dotted in picture I) with a half twist and ringed by a double dotted circle 

(corresponding to the meridian that separates Dj from Dj) with the following

conventions:



(aj) As any curve attaching sphere of a 2-handle passing between the two 

ends of the 1-handle can be unlinked from other curves, as already 

mentioned.we allow trivial slides over the double dotted curve to 

unlink and unknot things (trivial types of slides with no effect 

on the framings). Move (Sj) is therefore

-any 2 handle can slide over o  without alteration 

of framing. (as it corresponds to an isotopy of attaching curve)

( a 2)  As we pass through the 1 handle the space twists : a left hand 

twist in one side becomes a right hand twist in the other and 

vice versa.

i.e. these two pictures are equivalent.

The best way to visualise this is to consider the disc D bounded by 
the dotted curve *tthaa as we pass through the disc from one aide to 
another the space twists.

2. A special t-framed link picture for a non-orientable closed 
and a relation between any two such link pictures.

Given non-criastable dosed 4-a*aifold with a nice handle decomposition 
we represent orientable 1-handles and 2-handles as in the orientable case 
(no difference in the arguments) JTon-orientable 1-handles are represented



U 3

as just described with conventions (a,),(a2). We then have what we call 

a "special t-framed link" (t is for twisted). Framings on the undotted

need to represent 1 , 2 handles in the link picture , and also we can assume 

that the link pictures of two different handle decompositions are related 

by slides of 1,2,3 handles and introducing and cancelling complementary (1,2) 

or (2,3) pairs.

(i) 1-handle slides.

Whenever a 1-handle slides over a non-orientable handle it becomes either 

orientable or non-orientable if it was respectively non-orientable or 

orientable before the slide. We claim that again, 1-handle slides correspond 

to slides of the dotted and double dotted circles in the opposite direction. 

To see this look at (c^) (cf orientable case) where it was shown that the 

dotted circles slide in opposite direction without using the complementary 

handles (which we cannot use for the non-orientable handles since they do 

not exist). Same proof works for non-orientable handles.

Thus 1-handle slides can be pictured as follows:

curves are given by parallel curves. As in the orientable case we only

<r— *



(ii) 2-hand le 3 1 ides and i sotopies of attaching curves.

2-handle slides are the same as in the orientable case and as already said 

any 2 handle can slide over or with no alteration on framings

(effects of slides on framings are determined by parallel curves.)

(iii) 3—handle slides — again we don't see them in the pictures.

(iv) Introducing or deleting complementary (1,2) pairs - in the picture :

introducing or deleting o

Call Pt-moves the r-moves together with a1— â  but with move (f) repla­
ced by isotopies of the link picture subject to (a^). Pt-moves generate 
an equivalence relation in special framed t-link pictures and as none of 
them changes the homeomorphism class of the manifold,from the above we get ?

THEOREM 2.3.

Homeomorphism classes of non-orientable 4-manifolds are in 1-1 correspondence
3with equivalence classes of special framed t-link pictures in S where the 

equivalence class is generated by f^-moves.

3. The stable case

Again, as in the orientable case, if we allow introducing or deleting 

or and define T® moves to be moves plus these we get s

THEOREM 2.4

Stable homeomordhismclasses of non-orientable closed 4-manifolds are in
01-1 correspondence with ^  -equivalence classes of special framed

3t-link pictures in S .

introducing or deleting

( v )  Introducing or deleting complementary (2,3) pairs - in the picture : 

introducing or deleting
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