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AMERICAN MATHEMATICAL SOCIETY
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S 0002-9939(XX)0000-0

SOLUTION TO A PROBLEM OF NIRENBERG CONCERNING
EXPANDING MAPS

DEAN IVES AND DAVID PREISS

(Communicated by Stephen J. Dilworth)

ABSTRACT. By constructing a map of a separable Hilbert space into itself that
is continuous, expanding, non-surjective, and equal to the identity on the unit
ball we answer a problem stated by Louis Nirenberg.

1. INTRODUCTION

We answer the following problem, which was stated (in an equivalent form) by
Louis Nirenberg in [7, End of Section 5.2].

Problem N. If the range of a continuous, expanding map T of a separable Hilbert
space H into itself has non-empty interior, is T surjective?

Recall that T is said to be expanding if ||Tx — Ty|| > ||x — y|| for every z,y € H.
Of course, since T may be multiplied by an arbitrary constant, in this problem it is
equivalent to require that it is c-expanding for some ¢ > 0 (i.e., ||[Te—Ty| > c|lz—y||
for every z,y € H).

Obviously, the above problem may be, and has been, asked for general Banach
spaces and/or for maps between different spaces. On various levels of generality,
a number of papers, including [2, 3, 10] provide additional conditions under which
Nirenberg’s problem is said to have positive answer. However, most of these results
do not use the assumption that the range of T" has non-empty interior, and so are in
fact answers to a related but different question: Under what additional conditions
is an expanding map 7 : X — Y surjective? As far as we see, all assumptions of
Problem N are used only in the result of [1] that T is surjective provided that it is
everywhere Fréchet differentiable and satisfies limsup, _,, || 7"(y) — 7"(z)|| < 1 for
every .

In general Banach spaces the answer to Problem N is known to be negative:
By a clever construction Jean-Michel Morel and Heinrich Steinlein [5] find a coun-
terexample in the space £; of absolutely convergent sequences. In a Hilbert space,
Janusz Szczepaniski [8, 9] modified their construction to obtain several ‘almost
counterexamples’. For example, for any € > 0, he constructed a continuous map
F. : {5 — {5 that is one-to one, non-surjective, satisfies ||Frx — Foy|| > ||z — y||
whenever ||y|| ¢ (1,1 +¢) and ||F.z| = c||z| for every x, and its range contains
the unit ball.
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2 DEAN IVES AND DAVID PREISS

Here we show that Problem N has negative answer even in Hilbert spaces. More
generally, for any 1 < p < oo we will find a continuous, non-surjective, c-expanding
(for a suitable ¢ > 0, for example for ¢ = 1/10) map T": L, (0, 00) — L, (0, 0), where
Ly(0,00) is equipped with the norm [|lz|| := ([, |«(t)[Pdt)'/?, which is equal to the
identity on the unit ball (Theorem 4). Since L,(0, 00) is isometric to L,(0,1) (see,
for example, [4, Theorem 2.7.3]), our examples immediately transfer to these more
usually considered spaces. The Hilbert space example required for the Nirenberg’s
problem is, of course, obtained by specifying p = 2. For interest, we slightly
strengthen it in Theorem 5: We modify T to get a continuous, non-surjective,
expanding (so ¢ = 1) map of a separable Hilbert space into itself, which is equal to
the identity on the unit ball. We also notice that all our proofs apply, without any
modification, to real as well as complex spaces.

Our arguments start from an interpretation of some of the ideas of Jean-Michel
Morel and Heinrich Steinlein [5], which we briefly indicate as follows. For z € ¢;
(with the usual basis ey, e, ... ) they join the identity T« :=  when ||z|| < 1 to the
shift Ta := Y ;°, xi_1e; when [|z|| > 2, by choosing for every 1 < ||z| < 2 suitable
n=n, € Nand a,,8; > 0 with a, + 8, = 1, and defining

n—1 00
(1) Ty = E i€ + QpTpen + BeTneni1 + E Ti_1€4.
i=1 i=n+2

Although this is not always true, one could imagine that n, — oo when ||z|| — 1
and n, — 0 when ||z|| — 2, and that the splitting of the n-th coordinate using o,
and (3, was done in such a way that T becomes continuous. (As pointed out in [6],
T is even Lipschitz.) The proof that T is expanding is rather delicate: in particular,
when trying to estimate the distance between T'x and Ty when n, is much smaller
than n,, the values (Tz); — (T'y); = ;-1 — y; for ny +2 < i < ny — 1 look like
they cannot be estimated in any way that could contribute to the lower estimate
by ¢||x — y||. For this, the choice of n,, ay, B, is subject to the requirement

@ [y =2 el
i=1

Thanks to working in ¢1, this equality allows an estimate of the ‘bad term’ by
3l — Iyl + g, m s — il (see [5, inequality (4)]). 1f [[lo]] - yl| is smal
compared to ||z — y|, this leads to a lower estimate of || Tz — Ty||, and if it is not,
it suffices to use that T' preserves the norm. In a modified form, we will reuse this
argument in the proof of our main estimate in Theorem 4 (iv).

The main difference between our approach and [5] is that for ||z|| > 1 we wish
to replace (1) (ignoring for a moment the splitting of z,,) by

n (o)
(3) Tx := inei + Z Ti 1€, (i)

i=1 i=n+1
where ¢,, : N = N are strictly increasing and have disjoint ranges. The disjointness
of the ranges of ¢, should allow an easier estimate of the corresponding part of
Tz — Ty||, although in the case when n, is much smaller that n, we still have
some differences |z; — ;| where ¢ # j. However, it seems rather difficult to make
the map T defined by any formula similar to (3) continuous. One reason for this is
the discontinuity of n,, which we solve by working in L,(0, c0) and replacing the
first sum in (3) by 219 ,(,)) where r is continuous. (By 1g we denote the indicator
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function of the set E.) The second sum would be naturally replaced by distributing
the values of 21 (,(4),00), Which leads to

(4) Tz := 21(0,1(2)) + (T1(r(z),00)) © Un,

where v, are suitable maps defined on mutually disjoint sets G,, (so in some sense
are inverses to the maps ¢, from (3)). However, (4) still contains the discontinuous
quantity n = n,. We will solve this difficulty by smoothing, and so get

(5) Ty = xl(of(g;)) + Z y(n — r(x))(xl(r(m)@O)) 0 Yn,
neN

where + is a suitable continuous function with compact support.

It remains to explain how to choose r(z) so that for some ¢ > 0 the map T
defined by (5) satisfies | Tax — Ty|| > ¢||lx — y||. For that, we return to (2), which in
our space would be [[21(g o)) |l =2 — ||z, and write it as

(6) 121 (r(2),00) || = ().

We are almost free to choose e(x). A rather minor restriction is the need for conti-
nuity of (z), which we solve by a simple averaging trick in (8). More importantly,
this freedom together with the choice of v is used to obtain a lower estimate of
|Tz — Tyl||. More precisely, the choice of v is made so that for any z,y with
r(x) < r(y) either there is n such that y(n — r(x)) = v(n — r(y)) = 1 or there is n
such that y(n—r(x)) =0 and y(n—7r(y)) = 1. (See Lemma 1.) With one exception,
this allows us to obtain, for Cases 1 and 2 in the proof of Theorem 4 (iv), a lower
estimate of the norm of Tx — Ty by restricting it to a set in which (Tx — Ty)(t)
is not appearing as the difficult term z(u) — y(v) where u # v. In the exceptional
case the choice of ¢ leads to showing that ||z — y|| is much bigger than e(z) + (y)
(Lemma 2 (v)), whilst (6) implies that ||(Tax —Ty) — (z —y)| is bounded by a fixed
multiple of e(x) 4 e(y), which easily gives the required lower estimate of | Tx — Tyl||
for Case 3 in the proof of Theorem 4 (iv).

2. PROOFS AND RESULTS

From now on we will fix 1 < p < oo and denote X := L,(0,00). As usual, we
will treat elements x € X as functions and, for example, write 2(t) = 0 for t € E
instead of x(t) = 0 for almost all ¢t € E. When G C (0,00) is a measurable set,
we denote by |G| its Lebesgue measure, and by Pg the standard projection of X
onto {z : 2(t) = 0 for t ¢ G} defined by changing to zero the values x(t) for t ¢ G.
When 0 < r < s < oo, we simplify the notation by letting P, s := P, 5); when r > s
this means that P, is identically zero.

When G C (0,000) is a measurable set of infinite measure, we define the function
Ye 1 (0,00) — (0,00) by ¥¢(t) = [(0,t) N G|. Then |G Nyg'(E)| = |E| for every
measurable set E C (0,00), and so

™ Lowar= [ oten

whenever E C (0,00) and g : (0,00) — [0, 00) are measurable.
Finally, to avoid possible unpleasant surprises, we agree that 0 belongs to the
set N of natural numbers.
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Fix a continuous function v : [—o0, co] — [0, 1] with support in (—3/2,3/2) such
that v(¢) = 1 if and only if ¢t € [—1,1]. We list the properties of  that will be used
in what follows.

Lemma 1. For any r € [0,00),
(i) if y(n—7r) =1, then |n—r| <1, in particular r <n+1;
(ii) y(n —r) =0, when |n —r| > 3/2;
(iii) there are at most three values of n € N such that v(n —r) # 0;
(iv) for any s € [r,00) at least one of the following statements holds:
(a) there is k € N such that v(k —r) =~vy(k —s) = 1;
(b) there is k € N such that y(k —r) =0 and y(k — s) = 1.

Proof. The statements (i)—(iii) are obvious. For (iv), let m € N be such that
m < s <m+1; hence y(m —s) =y(m+1—s) =1. So, if y(m —r) =1, (a) holds
with k = m, and if y(m —r) < 1, weuse r < stoget m—r > m—s > —1 and
infer from y(m — r) < 1 that m —r > 1. Hence m + 1 — r > 2, which implies that
v(m+1—7)=0and (b) holds with k =m + 1. O

In the following Lemma we define the key function r(z). It will give the position
up to which the values of Tz are the same as those of x.

Lemma 2. Given any 0 < a < 1 and B > 0, there is a function r : X — [0, 00]
such that

(i) r is finite and continuous on {z € X : |lz| > 1};
(ii) r(x) = oo when ||z| < 1;

the map S : X — X defined by Sz := Py.(3),00 T 15 continuous;

e(x) := ||Sx|| is continuous and satisfies 0 < e(x) < max(0, ||z| — 1);

Proof. For any choice of parameters 0 < a < b < 1 we define a function r satisfying
(i)—(iv), and at the end of the proof explain how to choose a,b so that (v) holds as
well.

Given 0 < a < b < 1 define n : R? — [0, 00) by

n(s,t) = max (0, min(t — a(s — 1),b(s — 1) — t)).

Observe that 7 : R? — [0, 00) is continuous and 7(s, t) > 0 if and only if a(s — 1) <
t < b(s —1); in fact, these are the only properties of n that we will use. We also
remark that a(s — 1) < ¢t < b(s — 1) cannot hold when s < 1, and so 75(s,t) = 0 for
s <1.

For z € X put & (t) := || Pt,0oz|| and for ||z|| > 1 define

Jo~ tn(lll, & (¢)) dt
Jo nllzll, & (1)) dt

To show (i), notice first that &, is continuous, non-increasing, &,(0) = ||z|| and
limy 00 €2(t) = 0. When ||z|| > 1, the functions

g () = n([lz]]; €2 (1)) and v, (t) := tn([lz], & (1))
are non-negative and continuous on [0, c0) and non-zero precisely on the interval
(Ag, By) := &5 (a(|lz]| — 1),b(]|z|| — 1)) # 0. Hence their integrals are finite and
strictly positive, and so r(z) = [ vo(t) dt/ [ uz(t) dt is well defined. For the sake

(8) r(x) =
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of future reference, we also notice that Az u,(t) < v, (t) < Byug(t) for t € (A, By),
hence A, < r(z) < B, and

(9) allz] = 1) < &(r(x)) < b(flzll = 1).

To prove continuity of r, consider a sequence ¥ — z where [|z|| > 1 and choose

to € (0,00) such that &;(to) < a(||z| —1). Since &, converge uniformly to &,
7*(tg) < a(||z|| — 1) for sufficiently large k. For these k the continuous functions
ugr and vye have support in [0,tg]. Since they converge uniformly to u, and v,,
respectively, 7(z*) converge to r(z).

To satisfy (ii), it suffices to define r(z) = oo for ||z|| < 1.

For (iii) and (iv) we first observe that the inequality in (iv) is obvious when
[lz]] <1 since then r(x) = oo and so e(x) = 0, and follows from (9) when |jz|| > 1
since then e(x) = &;(r(z)) and b < 1. This inequality immediately implies that S
and € are continuous at every z with [|z|| < 1. On the set Y := {x € X : ||z > 1},
S is a composition of continuous maps ¢ € Y — (r(x),z) € [0,00) x X and
(t,z) € [0,00) x X = P, oz € X, and so S and ¢ are continuous also on Y.

To prove (v), we notice that e(x) > 0, so [|z|| > 1 and e(z) = &, (r(z)). Hence
by (9), e(z) < b(||lz]| = 1). If ||y|]| < 1, we use this to get

(10) o = yll = [lzll = Iyl = [[=]] =1 = e(z)/b.
If |ly|l > 1, we infer from (9) that
a([lyl = 1) < e(y) < ae(x) < ab((z]| - 1).
Dividing this inequality by a and rearranging leads to
[zl = llyll = (a — ab)(|lz] = 1)/a
and using ||z|| — 1 > e(x)/b once more gives
1)z =yl = Izl = llyll = (a = ad)(||z[| = 1)/a = (a — ab)e(z)/(ab).

We are now ready to explain the choice of a,b for which (v) holds: First choose
0 < b < min(1, (1 — «)/B), and then use lim, ~,(a — ab)/(ab) = (1 — a)/b > S to
choose 0 < a < b so that (a — ab)/(ab) > . Then the right side of (10) as well as
the right side of (11) is > fe(z), as required. O

For n € N choose mutually disjoint measurable sets G, such that |G,,| = co and

oo

Gn C (n+4,00)0 | J(2k, 2k +1).
k=0

For example, we may take Gy, := Jp—, o (2k+27""1,2k+27"). Then, simplifying
the notation by letting v, := v¢q, and defining T,, : X — X by

x(Yn(t)) whente G,

(Thz)(t) := {0 when t € (0,00) \ G,

the equation (7) with g(¢t) := |x(¢)|P gives

0 fewras [ peaopae= [ @aope

Yn H(E)
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We now fix 0 < @ < 1 and 8 > 0, and use the function r from Lemma 2 to define
T: X — X by

(12) Tx := P07T($)x—|—z ’y(n—r(x))Tn(Pr(w))oo:E) = x—Sx—!—Z y(n—r(x))T,(Sx)

n=0 n=0
The following Lemma lists some easy to prove properties of T that will be used
in our arguments.

Lemma 3. For any x € X,

)
(ii) (Tz)(t) =0 when r(z) <t < r(x)+2;
(iii) (Tz)(t) =0 when t € Gy, for somen > r(x) — 1 such that y(n —r(z)) = 0;
(iv) (Tz)(t) =0 if there is t € Gy, such that y(n — r(z)) # 0 and ¥, (t) < r(z);
(v) (Tz)(t) = z(t) fort <r(z);
(vi) (Tx)(t) = (Thx)(t) when y(n —r(x)) =1 and t € G,.
(

Proof. It (T'z)(t) # 0, either ¢ < r(x) or there is m for which ¢ € G,,. Moreover,
when t > r(x), then the latter case has to occur, m is unique and so (12) gives
0 # (Tx)(t) = v(m — 7(2))(Pr(2),00%) (¥m(t)). It follows that i, (t) > r(x) and
v(m —r(x)) # 0, implying m > r(x) — 3/2 and G, C (m +4,0) C (r(z) + 2,0).
These facts and (12) easily imply all statements of the Lemma. O

We are now ready to prove the main result of this note.

Theorem 4. There are 0 < o < 1 and B > 0 such that the map T has the following
properties.

(i) Tz =z for ||z] < 1.

(ii) It is a well defined continuous map of X to X.

(ili) | Tz — z| < 4e(x) for every x € X.

(iv) There is ¢ > 0 such that |Tx — Ty|| > ||z — y|| for any z,y € X.

(v) The T image of {x € X : ||z|| > 1} is nowhere dense in X.
(vi) T is not surjective.

Proof of (i). When ||z|| <1 then Sz = 0 and so the formula (12) defining 7' gives
Tz =x. g

Proof of (ii). On the ball {x € X : ||z|]| < 1}, T is well defined and continuous
by (i).

When = € X and ||z|| > 1, we use continuity of r established in Lemma 2 (i) to
find § > 0 such that |r(y) —r(z)| < 3/2 for ||y — x| < ¢ and infer from Lemma 1 (ii)
that v(n — r(y)) = 0 whenever |y — z|| < § and |n — r(z)| > 3. Hence T is well
defined and, by Lemma 2 (iii), is continuous on the ball {y : ||y—=z|| < §}. Since this
holds for every = with ||z|| > 1, T is well defined and continuous on {z : ||z|| > 1}.

It remains to show that % — z, ||z¥|| > 1 and ||z|| = 1 implies Txz* — z. This
will follow once we prove (iii) since it and Lemma 2 (iv) will show that || Tz —z*| <
4e(z*) — 0. O

Proof of (iii). By Lemma 1 (iii) there are at most three values of n € N for which
v(n —r(z)) # 0. Hence by the triangle inequality, (12) and (%),

Tz — || < [[Sz] + Y v(n = r(@) | Ta(Sa)|| < 4e(). O

n=0
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Proof of (iv). We fix ¢ € (0,1), suppose there are x,y € X such that r(x) < r(y)
and ||Tx —Ty|| < ¢||z — yl|, and obtain various estimates of | Tz — Ty||. At the end
these estimates will allow us to pick particular values of «, 8 and ¢ for which (iv)
holds.

Notice that r(z) < co (which is equivalent to ||z|| > 1), since 7(x) = oo implies
1T — Tyl = |z — 9l > cllz — .

We will consider three cases.

Case 1. There is k € N such that y(k — r(z)) = v(k — r(y)) = 1. In particular,
Lemma 1 (i) implies

(13) r(x) <r(y) <k+1<r(x)+2.

Let Uy = (0, ( ), Uz := (r(x),7(y)), Us := (r(y),00), By := Ur, By := Uy,
Es := G N, (Uz) and Ey := G Ny ' (Us). Since Gy, C (k +1,00) C (r(y),o0)
by the middle inequality in (13), the sets E;, 1 < j < 4, are mutually disjoint. So
we may estimate

(14) | Tz — Ty||? > Z where j;f/ |(Tx — Ty)(¢)|Pdt.

— E;

We express each of the integrals I; with the help of integrals involving = and .

(1) For t € Ey, Lemma 3 (v) gives (Tx — Ty)(t) = (z — y)(t), hence

r(z)
h= [ e nora.

(2) For t € E,, Lemma 3 (v) gives (T'y)(t) = y(t) and (13) together with
Lemma 3 (ii) imply (T'z)(t) = 0. Hence

r(y)
L= / (Bt
r(z)

(3) For t € E3 we have r(z) < ¢y(t) < r(y), hence Lemma 3 (iv) and (vi)
imply (Ty)(t) =0 and (Tz)(t) = (Tkx)(t), respectively. Hence (%) gives

m(y)

b= [ dnepa= [ aaopa= [ e

(4) For t € E4 we have r(z) < r(y) < 9(t), hence Lemma 3 (vi) implies
(T — Ty)(t) = (Tiw — Tyg)(t) = (Tulx — 1)(2). So (x) gives

oo

n= [t —rywra= [ T~ DO = [l
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Adding these estimates, we get from (14) that

r(z)
[Tyl > [ f@-noPa+ [
0 r

r(y)

|@mwm+/u|uwww

r(y)
(z)

+[@wa@pﬁ

r(x) 7(y)
z/‘ Kx—w@Pﬂ+2“f/ (z —y)(6)P dt
0 r(zx)

+[@Kx—wwpﬁ

> 27|z — g

Hence
(15) 1Tz = Tyl = 2 ~P/P ||z —y|| > ||z - y|/2.

By Lemma 1 (iv), in the remaining cases we have k € N such that y(k—r(x)) =0
and (k — r(y)) = 1.

Case 2. If e(z) < e(y)/a, we use k > r(y) —1 > r(z) — 1, v(k — r(z)) = 0 and

Lemma 3 (iii) to infer that (Tz)(t) = 0 for t € Gy. Since (Ty)(t) = (Txy)(t) for
t € G, by Lemma 3 (vi), (%) implies

nh—sz/

Gk

o0

an@muzfmy@WﬁszH

To get from this a more usable estimate, we observe that by (iii),
[z —yll < [Tz =Tyl + 4(e(x) + £(y)) < cllz -yl +4(e(z) +£(y)).
Hence (1 —¢)|jz — y|| < 4(e(z) + e(y)) < 4(1 + a)e(y)/a, and we conclude that
(16) [Tz =Tyl > e(y) = (1 = )z — y[|/(4(1 + @)).
Case 3. If e(y) < ae(z), Lemma 2 (v

lz —yll > Be(x) =
This and (iii) imply
17) Tz =Tyl = [lv — yll = 4(e(z) +£(y) = llz —yll =41 + o)z — yl|/5.

It follows from (15), (16) and (17) that (iv) holds provided «, 8 and ¢ were
chosen so that

0<c<min(1/2,(1 —c)a/(4(1 4+ )),1 —4(1 + a)/B).
To see that such a choice is possible, we may first pick any 0 < o < 1, then find
0 < ¢ < 1/2 small enough to satisfy ¢ < (1 — ¢)a/(4(1 + a)) and finally choose

B> 0sothat ¢ <1—4(1+ «)/B. A particular choice coming from this is & = 4/5,
B =8 and c=1/10. O

Proof of (v). Let Y, :={y € X : y(t) =0 for ¢t € (m,c0)NJ,;~;(2n—1,2n)}. Then
Y., is nowhere dense in X and by Lemma 3 (i), {Tz: z € X, r(z) < m} CY,, for
every m. Hence

implies

)
Ble(@) +e(y)/(1 +a).

M:={Tz:|z|>1} c{ze X |z|=1}u | Ym

m=1
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is a first category subset of X. Finally, using that (iv) implies that M is closed, we
infer from the Baire Category Theorem that it is a nowhere dense subset of X. O

Proof of (vi). By (v) there are points y with ||y|| > 1 that do not belong to the
T-image of {x : ||| > 1}. Since by (i) such points cannot belong to the T-image
of {z : ||z|| <1}, they do not belong to the range of T O

Theorem 4 says that 7" multiplied by 1/c provides a counterexample to Prob-
lem N in any L,(0,00), 1 < p < 0o, and so, as already pointed out, also in L,(0,1).
In the Hilbert space case, which is our main interest, we strengthen this example
by modifying T" in such a way that the resulting map is expanding and equal to the
identity on the unit ball.

Theorem 5. There is a map of a separable Hilbert space into itself that is contin-
uous, erpanding, non-surjective, and equal to the identity on the unit ball.

Proof. We will work in the space H := L5(0,00) and modify the map T from
Theorem 4 to get a map with the required properties.
Let C' = 4/c where c is the constant from Theorem 4, define a : H — [0, 00) by
C when ||z|| > ¢
alz):=<¢1 when ||z|| < ¢/2
1+ (C—-1)2||z]|/c—1) when ¢/2 <|z| <c¢
and Ty : H — H by Tox = a(z)Tx.
We suppose ||z]| < ||ly|| and, considering several cases, estimate || Toxz — Toy||. For
that we will use the simple inequality
law —bv]| > max(allu — vl, (b — a)||v])

when [|u]| < ||v|| and 0 < a < b, which follows by expanding ||a(u — v) — (b — a)v]|?
and using that the scalar product of u — v and v is negative. We also notice that
¢<1,C>4and a(d) = C/2 for d :== (3C —4)¢/(4(C —1)).
Case ||y|| <1: Then Tex =z, Ty = y and 1 < a(z) < a(y), so
[Tox — Toyll = lla(z)z — a(y)yll = a(@)|lz — y[| = [l —y].
Case ||z|| > ¢: Then a(z) = a(y) = C, so
[Tox — Toy| = Cl|Tz = Tyll = Ceflz —yl| = [lz -y
Case d < ||z|| < ¢ and ||y|| > 1: Then a(z) > C/2 and || Ty|| > 1 > || Tx||, so
[Tox — Toyll = a(@)||Tx — Ty|| = Cellz —y[|/2 > [l —yl|
Case ||z|| < d and |ly|| > 1: Then a(y) —a(z) > C/2 and | Ty|| > ||Tz||, so
[Tox — Toyll = ClITyll/2 = Cellyll/2 = [yl + 1 = [l — y].

Since this covers all possible cases for = and y, Ty is expansive. Also, it is
continuous and satisfies Toz = = when ||z|| < ¢/2. To see that it is not surjective,
we use Theorem 4 (v) to find y with ||y|| > 1 that does not belong to the T-image
of {z : ||z|| > 1}. We show that Cy does not belong to the range of Tp. Suppose
for a contradiction that Cy = Toz. Then ||z|| > 1 since otherwise | Toz|| < C||z|| <
C < ||Cy||. Hence Ta = Tox/C =y, contradicting the choice of y.

To finish the proof, it suffices to infer from the above that the map U : H — H

defined by Ux := 2Ty(cx/2)/c is non-surjective, continuous, expansive and equal to
the identity on the unit ball. ([
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