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Abstract: We present a systematic analysis of quantum Heisenberg-, xy- and inter-
change models on the complete graph. These models exhibit phase transitions accompa-
nied by spontaneous symmetry breaking, which we study by calculating the generating
function of expectations of powers of the averaged spin density. Various critical expo-
nents are determined. Certain objects of the associated loop models are shown to have
properties of Poisson–Dirichlet distributions.
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1. Introduction

We study phase transitions accompanied by spontaneous symmetry breaking in quantum
spin systems with two-body interactions on the complete graph. Among models ana-
lyzed in this paper are the quantum Heisenberg ferromagnet, the quantum xy-model,
and the “quantum interchange model” where interactions are expressed in terms of the
“transposition operator”. For these models, we investigate the structure of the space,
�β , of extremal Gibbs states at inverse temperature β = (kT )−1, for different values
of β. Following a suggestion of Thomas Spencer, we analyze the generating function,
�β(h), of correlations of the averaged spin density in the symmetric Gibbs state at in-
verse temperature β, which depends on a symmetry-breaking external magnetic field,
h. The function �β(h) can be viewed as a Laplace transform of the measure dμ on �β

whose barycenter is the symmetric Gibbs state at inverse temperature β. Its usefulness
lies in the fact that it sheds light on the structure of the space of extremal Gibbs states.
We calculate �β(h) explicitly for a class of (mean-field) spin models defined on the
complete graph, for all values of β > 0. It is expected that the dependence of �β(h) on
the external magnetic field h is universal, in the sense that it is equal to the one calcu-
lated for the corresponding models defined on the lattice Zd , provided the dimension d
satisfies d ≥ 3. Moreover, the structure of �β is expected to be independent of d, for
d ≥ 3, and identical to the one in the models on the complete graph. Rigorous proofs,
however, still elude us.

The quantum spin systems studied in this paper happen to admit random loop repre-
sentations, and the functions�β(h) correspond to characteristic functions of the lengths
of random loops. It turns out that these characteristic functions are equal to those of
the Poisson–Dirichlet distribution of random partitions. This is a strong indication that
the joint distribution of the lengths of the random loops is indeed the Poisson–Dirichlet
distribution.

Next, we briefly review the general theory of extremal-states decompositions. (For
more complete information we refer the reader to the 1970 Les Houches lectures of the
late O. E. Lanford III [15], and the books of R. B. Israel [11] and B. Simon [23].) The set,
Gβ , of infinite-volume Gibbs states at inverse temperature β forms a Choquet simplex,
i.e., a compact convex subset of a normed space with the property that every point can be
expressed uniquely as a convex combination of extreme points, (i.e., as the barycenter
of a probability measure supported on extreme points). As above, let �β ⊂ Gβ denote
the space of extremal Gibbs states at inverse temperature β. Henceforth we denote an
extremal Gibbs state by 〈·〉ψ , with ψ ∈ �β . Since Gβ is a Choquet simplex, an arbitrary
state 〈·〉 ∈ Gβ determines a unique probability measure dμ on �β such that

〈·〉 =
∫

�β

〈·〉ψ dμ(ψ). (1.1)

At small values of β, i.e., high temperatures, the set Gβ of Gibbs states at inverse temper-
ature β contains a single element, and the above decomposition is trivial. The situation
tends to be more interesting at low temperatures: the set Gβ may then contain many
states, in which case one would like to characterise the set �β of extreme points of Gβ .

In the models studied in this paper, the Hamiltonian is invariant under a continuous
group, G, of symmetries, and the set Gβ of Gibbs states at inverse temperature β carries
an action of the group G. At low temperatures, this action tends to be non-trivial; i.e.,
there are plenty of Gibbs states that are not invariant under the action of G on Gβ . This
phenomenon is referred to as “spontaneous symmetry breaking”. For the models studied
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in this paper, the space �β of extremal Gibbs states is expected to consist of a single
orbit of an extremal state 〈·〉ψ0 , ψ0 ∈ �β, under the action of G (this is clearly a special
case of the general situation). Then �β � G/H , where H is the largest subgroup of G
leaving 〈·〉ψ0 invariant, and the symmetric (i.e., G-invariant) state in Gβ can be obtained
by averaging over the orbit of the state 〈·〉ψ0 under the action of the group G using the
(uniform) Haar measure on G.

As announced above, we will follow a suggestion of T. Spencer and attempt to
characterise the set�β by considering a Laplace transform�β(h) of the measure on�β

whose barycenter is the symmetric state. We describe the general ideas of our analysis
for models of quantum spin systems defined on a lattice Zd , d ≥ 3; afterwards we will
rigorously study similar models defined on the complete graph. At each site i ∈ Z

d ,
there are N operators �Si = (S(1), . . . , S(N )) describing a “quantum spin” located at
the site i . We assume that the symmetry group G is represented on the algebra of spin
observables generated by the operators {�Si | i ∈ Z

d} by ∗-automorphisms, αg, g ∈ G,
with the property that there exist N × N - matrices R(g), g ∈ G, acting transitively on
the unit sphere SN−1 ⊂ R

N such that

αg(�S · �n) = �S · R(g)�n, ∀�n ∈ R
N . (1.2)

Weassume that the states 〈·〉ψ, ψ ∈ �β, are invariant under lattice translations.Denoting
by 〈·〉�,β the symmetric Gibbs state in a finite domain � ⊂ Z

d , and by � ⇑ Z
d the

standard infinite-volume limit (in the sense of van Hove), we consider the generating
function

lim
�⇑Zd

〈
e

h
|�|

∑
i∈� S(1)

i
〉
�,β

(?)= lim
�⇑Zd

lim
�′⇑Zd

〈
e

h
|�|

∑
i∈� S(1)

i
〉
�′,β

= lim
�⇑Zd

∫
�β

〈
e

h
|�|

∑
i∈� S(1)

i
〉
ψ
dμ(ψ)

=
∫

�β

eh〈S(1)
0 〉ψ dμ(ψ). (1.3)

Here, S(1)
0 is the spin operator S(1) acting at the site 0. The first identity is expected to

hold true in great generality; but it appears to be difficult to prove it in concrete models.
The second identity holds under very general assumptions, but the exact structure of the
space �β and the properties of the measure dμ are only known for a restricted class of
models, such as the Ising- and the classical xy-model. The third identity usually follows
from cluster properties of connected correlations in extremal states.

Assuming that all equalities in (1.3) hold true, we define the (“spin-density”) Laplace
transform of the measure dμ corresponding to the symmetric state by

�β(h) = lim
�⇑Zd

〈
e

h
|�|

∑
i∈� S(1)

i
〉
�,β

=
∫

�β

eh〈S(1)
0 〉ψ dμ(ψ). (1.4)

The action of G on the space Gβ of Gibbs states is given by

〈·〉 → 〈·〉g, where 〈A〉g := 〈αg−1(A)〉,
for an arbitrary spin observable A. As mentioned above, we will consider models for
which it is expected that �β is the orbit of a single extremal state, 〈·〉ψ0 ; i.e., given
ψ ∈ �β , there exists an element g(ψ) ∈ G such that

〈·〉ψ = 〈·〉g(ψ)
ψ0

, (1.5)
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where g(ψ) is unique modulo the stabilizer subgroup H of 〈·〉ψ0 . Then we have that
〈�S0〉ψ · �e = 〈

αg(ψ)−1(�S0 · �e)〉
ψ0

= 〈�S0〉ψ0
· R(g(ψ)−1)�e. (1.6)

Defining the magnetisation as �md(β) = 〈�S0〉ψ0 , we find that the spin-density Laplace
transform (1.4) is given by

�β(h) =
∫

�β

eh �md (β)·R(g(ψ)−1)�e1 dμ(ψ), (1.7)

where �e1 is the unit vector in the 1-direction in R
N ; (actually, �e1 can be replaced by an

arbitrary unit vector in R
N ).

In this paper we study a variety of quantum spin systems for which we will calculate
the function �β(h) in two different ways:

(1) For an explicit class of models defined on the complete graph, we are able to
calculate the function �β(h) explicitly and rigorously.

(2) On the basis of some assumptions on the structure of the set �β of extremal Gibbs
states and on the matrices R(g), g ∈ G, that we will not justify rigorously, we are
able to determine �β(h) using (1.3).

We then observe that the two calculations yield identical results, representing support
for the assumptions underlying calculation (2).

Organization of the paper. In Sect. 2 we provide precise statements of our results and
verify that they are consistent with the heuristics captured in Eq. (1.3). In Sect. 3 we
describe (known) representations of the spin systems considered in this paper in terms
of random loops; we then discuss probabilistic interpretations of our results and relate
them to the Poisson–Dirichlet distribution. In Sects. 4–7,we present proofs of our results.
Some auxiliary calculations and arguments are collected in four appendices.

2. Setting and Results

In this section we describe the precise setting underlying the analysis presented in this
paper. Rigorous calculations will be limited to quantum models on the complete graph.

Let n ∈ N be the number of sites, and let S ∈ 1
2N be the spin quantum number. The

state space of a model of quantum spins of spin S located at the sites {1, . . . , n} is the
Hilbert space Hn = (C2S+1)⊗n . The usual spin operators acting on Hn are denoted by
�S j = (S(1)

j , S(2)
j , S(3)

j ), with 1 ≤ j ≤ n. They obey the commutation relations

[S(1)
j , S(2)

k ] = i δ jk S(3)
j , (2.1)

with further commutation relations obtained by cyclic permutations of 1,2,3; further-
more,

(S(1)
j )2 + (S(2)

j )2 + (S(3)
j )2 = S(S + 1)1. (2.2)

The Hamiltonian, HHeis
n,
 , of the quantum Heisenberg model is given by

HHeis
n,
 = −2

n

∑
1≤i< j≤n

(
S(1)

i S(1)
j + S(2)

i S(2)
j + 
S(3)

i S(3)
j

)
, 
 ∈ [−1, 1]. (2.3)
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The value 
 = 0 corresponds to the xy-model, and 
 = 1 corresponds to the usual
Heisenberg ferromagnet. By 〈·〉Heisn,β,
 we denote the corresponding Gibbs state

〈·〉Heisn,β,
 = 1

Tr [ e−βHHeis
n,
 ]

Tr [· e−βHHeis
n,
 ]. (2.4)

The Hamiltonian of the quantum interchange model is chosen to be

H int
n = −1

n

∑
1≤i< j≤n

Ti, j , (2.5)

where the operators Ti, j are the transposition operators defined by

Ti, j |ϕ1〉 · · · ⊗ |ϕi 〉 · · · ⊗ |ϕ j 〉 · · · ⊗ |ϕn〉 = |ϕ1〉 · · · ⊗ |ϕ j 〉 · · · ⊗ |ϕi 〉 · · · ⊗ |ϕn〉 , (2.6)

where the vectors |ϕi 〉 belong to the space C2S+1, for all i = 1, 2, . . . , n. The transposi-
tion operators are invariant under unitary transformations ofC2S+1 and can be expressed
using spin operators; see [18] or [7, Appendix A] for more details. Recall that the eigen-
values of (�Si + �S j )

2 are given by λ(λ+ 1), with λ = 0, 1, . . . , 2S; hence the eigenvalues
of 2�Si · �S j are given by λ(λ+1)−2S(S +1). Denoting by Pλ the corresponding spectral
projections we find that

Ti, j =
2S∑

λ=0

(−1)λ+1Pλ =
2S∑

λ=0

(−1)2S−λ
∏
λ′ �=λ

2�Si · �S j − λ′(λ′ + 1) + 2S(S + 1)

λ(λ + 1) − λ′(λ′ + 1)
. (2.7)

It is apparent that Ti, j is a linear combination of (�Si · �S j )
k , with k = 0, 1, . . . , 2S. One

checks that

Ti, j =
{
2�Si · �S j + 1

21 if S = 1
2 ,

(�Si · �S j )
2 + �Si · �S j − 1 if S = 1.

(2.8)

If S = 1
2 the quantum interchange model is equivalent to the Heisenberg ferromagnet,

but this is not the case for other values of the spin quantum number S. (The expressions
for Ti, j , with S ≥ 3

2 , look unappealing.) The Gibbs state of the quantum interchange
model is given by

〈·〉intn,β = 1

Tr [ e−βH int
n ]Tr [· e

−βH int
n ] . (2.9)

2.1. Heisenberg and xy-models. First we consider the Heisenberg model with 
 =
1 and arbitrary spin S ∈ 1

2N. In order to define the spontaneous magnetisation, we
introduce a function η : R → R by setting

η(x) = log
( sinh( 2S+1

2 x)

sinh( 12 x)

)
. (2.10)

(At x = 0 we define η(0) = log(2S + 1).) Its first and second derivatives are

η′(x) = 2S+1
2 coth( 2S+1

2 x) − 1
2 coth(

1
2 x),

η′′(x) = 1
4

sinh2( 2S+1
2 x) − (2S + 1)2 sinh2( 12 x)

sinh2( 2S+1
2 x) sinh2( 12 x)

. (2.11)
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Fig. 1. For S = 1
2 , the function gβ(m) with β = 1.8 (left) and β = 2.2 (right). The maximiser m�(β) is

positive when β > 2

Note that this function is smooth at x = 0, where η′(0) = 0. The second derivative is
positive, and η′(±∞) = ±S, so that the equation

η′(x) = m, (2.12)

has a unique solution for all m ∈ (−S, S). We denote this solution by x�(m). Lengthy
calculations yield

x�(0) = 0 ; dx�

dm
(0) = 3

S2 + S
; d2x�

dm2 (0) = 0 . (2.13)

Next, we define a function gβ by

gβ(m) := η
(
x�(m)

)− mx�(m) + βm2, m ∈ [0, S). (2.14)

One finds that

gβ(0) = log(2S + 1); g′
β(0) = 0; and g′′

β(0) = 2β − 3

S2 + S
. (2.15)

Let m�(β) ∈ [0, S) be the maximiser of gβ . From (2.15) we infer that m�(β) > 0 if and
only if β is greater than the critical inverse temperature βc given by

βc = 3/2

S2 + S
. (2.16)

It may be useful to note that, for S = 1
2 , the above definitions simplify considerably:

gβ(m) = βm2 − ( 12 − m) log( 12 − m) − ( 12 + m) log( 12 + m). (2.17)

One easily checks that g′
β(0) = 0, g′′′

β (m) < 0 for allm ∈ (0, 1
2 ), and that g′′

β(0) = 2β−4
is positive if and only if β > 2. It follows that the unique maximiser m�(β) is positive
if and only if β > 2; see Fig. 1. For the symmetric spin- 12 Heisenberg model (S = 1

2
and 
 = 1), the magnetisation m�(β) was first identified by Tóth [26] and Penrose [20].
(See also the recent paper [3] by Alon and Kozma.)

Theorem 2.1 (Isotropic Heisenberg model). For 
 = 1 and arbitrary S ∈ 1
2N, we have

lim
n→∞

〈
exp

{h

n

n∑
i=1

S(1)
i

}〉Heis
n,β,
=1

= sinh(hm�(β))

hm�(β)
, ∀ h ∈ C.



Quantum Spins and Random Loops on the Complete Graph 1635

The proof of this theorem can be found in Sect. 4.
Concerning symmetry breaking, we expect that the extremal states are labeled by

�a ∈ S
2. (The 2-sphere is the orbit of any point on �β under the action of the symmetry

group SO(3), and H = SO(2)). For �a ∈ S
2 we introduce the following Gibbs states:

〈·〉�a,h = lim
n→∞

Tr [· e−βHHeis
n,
 +h

∑n
i=1 �a· �Si ]

Tr [ e−βHHeis
n,
 +h

∑n
i=1 �a· �Si ]

,

〈·〉�a = lim
h↓0〈·〉�a,h . (2.18)

For h �= 0 the states 〈·〉�a,h are extremal by an extension of the Lee-Yang theorem [4,25];
it is reasonable to expect that the limiting states 〈·〉�a are also extremal, although this has
not been proved. (A non-trivial technical issue is whether the limits in (2.18) exist; but
we do not worry about it in this discussion.) Defining m�(β) = 〈S(1)

i 〉�e1 , we have that

〈S(1)
i 〉�a = 〈�a · �Si 〉�e1 = a1〈S(1)

i 〉�e1 = a1m�(β) , (2.19)

where �e1 = (1, 0, 0)T is the unit vector in the 1-direction. Assuming that (1.3) is correct,
we expect that

lim
n→∞

〈
e

h
n

∑n
i=1 S(1)

i

〉Heis
n,β,
=1

= 1

4π

∫
S2

ehm�(β)a1 d�a ≡ sinh(hm�(β))

hm�(β)
. (2.20)

The right side of (2.20) coincideswith the expression in Theorem2.1; so (1.3) is expected
to be correct for this model.

Our next result concerns the Heisenberg Hamiltonians with 
 ∈ [−1, 1). Models
with these Hamiltonians behave just like the xy-model, (
 = 0). For models on the
complete graph, this remains true also for 
 = −1. (However, on a bipartite graph
(lattice), the model with 
 = −1 is unitarily equivalent to the quantum Heisenberg an-
tiferromagnet whose properties are different from those of the xy-model.) We let m�(β)

be the maximiser of the function gβ in (2.14), as before. Let I0(x) = ∑
k≥0

1
(k!)2 (

x
2 )2k

be the modified Bessel function.

Theorem 2.2 (Anisotropic Heisenberg model). For 
 ∈ [−1, 1) and S ≥ 1
2 , we have

that

lim
n→∞

〈
exp

{h

n

n∑
i=1

S(1)
i

}〉Heis
n,β,


= I0
(
hm�(β)

)
, ∀h ∈ C .

The proof of this theorem can be found in Sect. 5. This theorem confirms that the
phase transition signals the onset of spontaneous magnetisation in the 1–2 plane. We
now introduce

〈·〉�a = lim
h↓0 lim

n→∞
Tr [· e−βHHeis

n,
 +h
∑n

i=1 �a· �Si ]
Tr [ e−βHHeis

n,
 +h
∑n

i=1 �a· �Si ]
, for �a ⊥ �e3, |�a| = 1 . (2.21)

As in (2.18), these states are limits of extremal states by the Lee-Yang theory, so they
should also be extremal. With m�(β) = 〈S(1)

i 〉�e1 as before, according to the heuristics in
(1.3), one expects that

lim
n→∞

〈
e

h
n

∑n
i=1 S(1)

i

〉Heis
n,β,


= 1

2π

∫
S1

ehm�(β)a1 d�a ≡ I0
(
hm�(β)

)
. (2.22)
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Since we get exactly what is stated in Theorem 2.2, we are tempted to conclude that the
above heuristics are valid.

2.2. Quantum interchange model. We turn to the quantum interchange model. Recall
that, for S = 1

2 , this model is equivalent to the Heisenberg model. To avoid overlap with
Theorem 2.1, for this model we consider only S ≥ 1. General values of S are inter-
esting because the pattern of symmetry breaking changes; but the calculations become
considerably more difficult.

In order to define the object that plays the rôle of the magnetisation, let φβ be the
function [0, 1]2S+1 → R given by

φβ(x1, . . . , x2S+1) = β

2

(2S+1∑
i=1

x2i − 1
)

−
2S+1∑
i=1

xi log xi . (2.23)

We look for maximisers (x�
1, . . . , x�

2S+1) of φβ under the condition
∑

i xi = 1 and
x1 ≥ x2 ≥ · · · ≥ x2S+1. It was understood and proven by Björnberg, see [7, Theorem
4.2], that the answer involves the critical parameter

βc(S) = 4S

2S − 1
log(2S), (S ≥ 1). (2.24)

The maximiser is unique and satisfies

x�
1 = · · · = x�

2S+1 = 1
2S+1 , if β < βc(S),

x�
1 > x�

2 = · · · = x�
2S+1, if β ≥ βc(S) (2.25)

(see Appendix C). The analogue of the magnetisation is defined as

z�(β) = (2S + 1)x�
1 − 1

2S
= x�

1 − x�
2 . (2.26)

In the following theorem, R denotes the function

R(h1, . . . , h2S+1; x1, . . . , x2S+1) = det
[
ehi x j

]2S+1
i, j=1

∏
1≤i< j≤2S+1

j − i

(hi − h j )(xi − x j )

(2.27)
and if A is an arbitrary (2S+1)×(2S+1)matrix then Ai := 1l⊗· · ·⊗ A⊗· · ·⊗1l, where
A occupies the i th factor. Note that R is continuous: in the numerator, det

[
ehi x j

]θ
i, j=1

is analytic in the variables hi and xi , and it is anti-symmetric under permutations of the
arguments hi and xi , hence it vanishes whenever two or more of the hi ’s or of the xi ’s
coincide.

Theorem 2.3 (Spin-S quantum interchange model). For an arbitrary (2S+1)×(2S+1)
matrix A, with eigenvalues h1, . . . , h2S+1 ∈ C, we have that

lim
n→∞

〈
exp

{1
n

n∑
i=1

Ai

}〉int
n,β

= R(h1, . . . , h2S+1; x�
1, . . . , x�

2S+1).
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We highlight the following two special cases of this result: first, we get that

lim
n→∞

〈
exp

{h

n

n∑
i=1

S(1)
i

}〉int
n,β

=
( sinh( 12hz�)

1
2hz�

)2S; (2.28)

second, if Q denotes an arbitrary rank 1 projector, with eigenvalues 1, 0, . . . , 0, we get

lim
n→∞

〈
exp

{h

n

n∑
i=1

Qi

}〉int
n,β

= (2S)!
(hz�)2S

e
h

2S+1 (1−z�)
∞∑

j=2S

(hz�) j

j ! . (2.29)

The step from Theorem 2.3 to (2.28) and (2.29) is not immediate; details appear in
Sect. 6.

Next, we discuss the heuristics of spontaneous symmetry breaking. The Hamiltonian
of the interchange model is invariant under an SU(2S +1)-symmetry: Given an arbitrary
unitary matrix U on C

2S+1, let Un = ⊗n
i=1U ; then U−1

n H int
n Un = H int

n . As pointed
out to us by Robert Seiringer, the extremal states are labeled by rank-1 projections
on C

2S+1, or, equivalently, by the complex projective space CP
2S (i.e., by the set of

equivalence classes of vectors in C
2S+1 only differing by multiplication by a complex

nonzero number). Given v ∈ C
2S+1\{0}, let Pv denote the orthogonal projection onto v,

and let Pv
i := 1l ⊗ · · · ⊗ Pv ⊗ · · · ⊗ 1l, where Pv occupies the i th factor. The extremal

states are expected to be given by

〈·〉v = lim
h↓0 lim

n→∞
Tr [· e−βH int

n +h
∑n

i=1 Pv
i ]

Tr [ e−βH int
n +h

∑n
i=1 Pv

i ] . (2.30)

As β → ∞, 〈·〉v converges to the expectation defined by the product state ⊗v. These
product states are ground states of H int

n , which gives some justification to the claim that
the states 〈·〉v are extremal. We expect that

lim
n→∞

〈
exp

{1
n

n∑
i=1

Ai

}〉int
n,β

=
∫
CP2S

e〈A1〉v dv. (2.31)

We take the state 〈·〉e1 as the reference state, with vector v = e1 = (1, 0, . . . , 0). At the
cost of some redundancy, the integral over v in CP

2S can be written as an integral over
the space U(2S + 1) of unitary matrices on C

2S+1 with the uniform probability (Haar)
measure: ∫

CP2S
e〈A1〉v dv =

∫
U(2S+1)

e〈U−1
1 A1U1〉e1 dU. (2.32)

Next we consider the restriction of the state 〈·〉e1 onto operators that only involve the
spin at site 1. This restriction can be represented by a density matrix ρ on C

2S+1 such
that

〈A1〉e1 = Tr C2S+1(Aρ). (2.33)

In all baseswhere e1 = (1, 0, . . . , 0), thematrixρ is diagonalwith entries (x�
1, . . . , x�

2S+1)

on the diagonal, where

x�
i = Tr (Pei ρ) = 〈Pei

1 〉e1 . (2.34)
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It is clear that x�
2 = · · · = x�

2S+1, and one should expect that x�
1 is larger than or equal to

x∗
2 . Heuristic arguments suggest that

lim
n→∞

〈
exp

{1
n

n∑
i=1

Ai

}〉int
n,β

=
∫
U(2S+1)

eTr (AUρU−1) dU. (2.35)

By the Harish-Chandra–Itzykson-Zuber formula [12], the right-hand-side of (2.35) is
equal to R(h1, . . . , h2S+1; x�

1, . . . , x�
2S+1) which agrees with the right-hand-side in The-

orem 2.3.

2.3. Critical exponents for the Heisenberg model. Relatively minor extensions of our
calculations for the Heisenberg model (
 = 1) enable us to determine some critical
exponents for that model on the complete graph. To state our results, we introduce the
pressure

p(β, h) = lim
n→∞

1
n log Tr

(
exp(−βHHeis

n,
=1 + h
∑n

i=1 S(1)
i )

)
(2.36)

(more accurately, this is (−β) times the free energy; “pressure” is used by analogy to
the Ising model, where it is justified by the lattice-gas interpretation). Next, we consider
the magnetization and susceptibility

m(β, h) = ∂p

∂h
, χ(β) = ∂m

∂h

∣∣∣
h=0

(2.37)

and the transverse susceptibility

χ⊥
n (β, h) = 1

n

∑
1≤i< j≤n

Tr
(
S(2)

i S(2)
j e−βHHeis

n +h
∑n

i=1 S(1)
i
)

Tr
(
e−βHHeis

n +h
∑n

i=1 S(1)
i
) (2.38)

as well as the limit χ⊥(β, h) = limn→∞ χ⊥
n (β, h) (where we extract a converging

subsequence if necessary).
The following theorem is proven in Sect. 7. Recall the function gβ(m), 0 ≤ m ≤ S,

given in (2.14) (which reduces to (2.17) for S = 1
2 ). We write f ∼ g if f/g converges

to a positive constant.

Theorem 2.4. For the spin-S ≥ 1
2 Heisenberg models the following formulae hold true.

(i) Pressure:
p(β, h) = max

0≤m≤S

(
gβ(m) + hm

)
. (2.39)

(ii) Critical Exponents:

m�(β) ∼
β↓βc

(β − βc)
1/2 , χ(β) ∼

β↑βc
(βc − β)−1 , m(βc, h) ∼

h↓0 h1/3 , (2.40)

and
χ⊥(βc, h) ∼

h↓0 h−2/3 , χ⊥(β, h) ∼
h↓0 h−1 , for β > βc . (2.41)



Quantum Spins and Random Loops on the Complete Graph 1639

We note that the critical exponents (2.40) are exactly the same as for the classical
spin- 12 Curie–Weiss (Ising) model, which has Hamiltonian Hn = − 2

n

∑
i< j S(1)

i S(1)
j ,

see e.g. [8, Ch. 2]. Moreover, in the case S = 1
2 the pressure (2.39) for the quantum

Heisenberg model equals that of the Curie–Weiss model, see [8, Thm 2.8]. Nonetheless,
the models are not identical, as shown by Theorem 2.1: for the Curie–Weiss model a

simple calculation shows that 〈 e h
n
∑

i S(1)
i 〉 → cosh(hm�).

In proving (2.41)wewill use general inequalities relating the transverse susceptibility
to the magnetization, which follow fromWard-identities and the Falk–Bruch inequality.
For details, see Sect. 7.

3. Random Loop Representations

The Gibbs states of quantum spin systems can be described with the help of Feynman–
Kac expansions. In some cases these expansions can be represented as probability mea-
sures on sets of loop configurations. Such cases include Tóth’s random interchange
representation for the spin- 12 Heisenberg ferromagnet. (An early version of this repre-
sentation is due to Powers [21]; it was independently proposed by Tóth in [27], with
a precise formulation and interesting applications.) Another useful representation is
Aizenman and Nachtergaele’s loop model for the spin- 12 Heisenberg antiferromagnet,
and models of arbitrary spins where interactions are given by projectors onto spin sin-
glets [1]. Nachtergaele extended these representations to Heisenberg models of arbitrary
spin [18]. A synthesis of the Tóth- and the Aizenman–Nachtergaele loop models, which
allows one to describe the spin- 12 xy-model and a spin-1 nematic model, was proposed
in [28].

These models are interesting from the point of view of probability theory and they
are relevant here because the joint distribution of loop lengths turns out to be related to
the extremal state decomposition of the corresponding quantum systems. Indeed, some
characteristic functions for the loop lengths are equal to the Laplace transforms of the
measure on the set of extremal states.

The loop models considered in this paper can be defined on any graph �, and in-
volve one-dimensional loops immersed in the space � × [0, β]. Quantum-mechanical
correlations can be expressed in terms of probabilities for loop connectivity. The lengths
of the loops, rescaled by an appropriate fractional power of the spatial volume, are ex-
pected to display a universal behavior: there are macroscopic and microscopic loops,
and the limiting joint distribution of the lengths of macroscopic loops is expected to be
the Poisson–Dirichlet (PD) distribution that originally appeared in the work of Kingman
[13]. This distribution is illustrated in Fig. 2.

Fig. 2. Conjectured form for typical partition given by loop lengths in dimensions d ≥ 3. For some z� ∈ [0, 1],
the partition in [0, z�] follows a Poisson-Dirichlet distribution; the partition in the interval [z�, 1] consists of
microscopic elements
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The Poisson–Dirichlet distribution, denoted by PD(θ ), with θ > 0 arbitrary, can be
defined via the following ‘stick-breaking’ construction: Let B1, B2, . . . be independent
Beta(1,θ )-distributed random variables, thus P(Bi > t) = (1 − t)θ for t ∈ [0, 1].
Consider the sequence Y = (Y1, Y2, . . . ) given by

Y1 = B1; Y2 = B2(1 − B1); . . . Yn = Bn

n−1∏
i=1

(1 − Bi ). (3.1)

The vector X obtained by ordering the elements of Y by size has the PD(θ )-distribution.
Note that

∑
i≥1 Xi = 1 with probability 1, hence the Xi may be regarded as giving a

partition of the interval [0, 1]. To obtain a partition of an interval [0, z�] as in Fig. 2
one simply rescales X by z�. For future reference we note here the following formula,
which will turn out to be relevant for the spin-systems considered in this paper. In [29,
Eq. (4.18)] it is shown that

EPD(θ)

[∏
i≥1

cosh(h Xi )

]
= 1

�(θ/2)

∑
k≥0

�(θ/2 + k)

k! �(θ + 2k)
h2k . (3.2)

The Poisson–Dirichlet distribution first appeared in the study of the random inter-
change model (transposition-shuffle) on the complete graph. David Aldous formulated
a conjecture concerning the convergence of the rescaled loop sizes to PD(1), and he
explained the heuristics; Schramm then provided a proof [22] of Aldous’ conjecture.
Models on the complete graph are easier to analyse than the corresponding models on
a lattice Zd , d ≥ 3; but the heuristics for the latter models is remarkably similar to the
one for the former models; see [9,29]. The ideas sketched here are confirmed by the
results of numerical simulations of various loop soups, including lattice permutations
[10], loop O(N)-models [19], and the random interchange model [5].

3.1. Spin- 12 models. We begin by describing the loop representations of the Heisenberg
models with spin S = 1

2 . These representations are quite well known and contain many
of the essential features, but without some of the complexities that appear for larger spin.

We pick a real number u ∈ [0, 1]. Let � = Kn be the complete graph, with vertices
Vn = {1, . . . , n} and edges En = {{i, j} : 1 ≤ i < j ≤ n

}
. With each edge we associate

an independent Poisson point process on the time interval [0, β/n] with two kinds of
outcomes: ‘crosses’ occur with intensity u and ‘double bars’ occur with intensity 1− u.
We let ρn,β,u denote the law of the Poisson point processes. Given a realization ω, the
loop containing the point (v, t) ∈ Kn × [0, β/n] is obtained by moving vertically until
meeting a cross or a double bar, then crossing the edge to the other vertex, and continuing
in the same vertical direction, for a cross, while continuing in the opposite direction,
for a double bar; see Fig. 3. Periodic boundary conditions are imposed in the vertical
direction at 0 and β/n. In the following, L(ω) denotes the set of all such loops.

Let

Pn,β,2,u(dω) = 1

Z(n, β, 2, u)
2|L(ω)|ρn,β,u(dω), (3.3)

where the normalisation Z(n, β, 2, u) = ∫
2|L(ω)|ρn,β,u(dω) is the partition function.

By En,β,2,u we denote an expectation with respect to this probability measure.
We define the length of a loop as the number of points (i, 0) that it contains; i.e., the

length of a loop is the number of sites at level 0 ∈ [0, β/n] visited by the loop. (According
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Fig. 3. A realization on the complete graph K4 with three loops; the green loop has length 2, the red and blue
loops have length 1

to this definition, there are loops of length 0.) Given a realisationω, let �1(ω), �2(ω), . . .

be the lengths of the loops in decreasing order. We have that
∑

i≥1 �i (ω) = n, for an

arbitrary ω. Thus,
(

�1(ω)
n ,

�2(ω)
n , . . .

)
is a random partition of the interval [0, 1]. We

expect it to resemble the partition depicted in Fig. 2.
One manifestation of the connection between the loop-model and the spin system is

the following identity, valid for 
 = 2u − 1:

〈 e h
n

∑
i S(1)

i 〉Heisn,β,
 = En,β,2,u

[∏
i≥1

cosh
(h�i (ω)

2n

)]
. (3.4)

This is a special case of (3.19) below.

3.2. Heisenberg models with arbitrary spins. An extension of the loop representation
for the Heisenberg ferromagnet (and antiferromagnet, and further interactions) with
arbitrary spin was proposed by Bruno Nachtergaele [18]. As in [28] it can be generalised
to include asymmetric Heisenberg models.We first describe this representation and state
our results about the lengths of the loops. Afterwards, we will outline the derivation of
this representation from models of spins.

We introduce a model where every site is replaced by 2S “pseudo-sites”. Let K̃n be
the graph whose vertices are the pseudo-sites

{
(i, α) : i ∈ {1, . . . , n}, α ∈ {1, . . . , 2S}}

and whose edges are given by

Ẽn = {{(i, α), ( j, α′)} : 1 ≤ i < j ≤ n, 1 ≤ α, α′ ≤ 2S
}
. (3.5)

We require the following ingredients:

• A uniformly random permutation σ of the pseudo-sites at each vertex; namely,
σ = (σi )

n
i=1, where the σi are independent, uniform permutations of 2S elements.
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Fig. 4. Loop representation for Heisenberg models with spins S = 3
2 . The original graph is modified so each

site is now hosting 2S = 3 pseudo-sites. There are random permutations of pseudo-sites between times β
2n

and − β
2n . As before, there is an overall factor 2

#loops. In the realisation above, one loop is highlighted (it has
length 3) and there are three other loops (of length 0, 4, and 5)

• (Independently of σ ) the resultω of independent Poisson point processes in the time
interval [− β

2n ,
β
2n ], for every edge of Ẽn , where crosses have intensity u and double

bars have intensity 1 − u.

Let ρ̃n,β,u denote the measure for the Poisson point process. The measure on the set of
permutations is just the counting measure. Loops are defined as before, except that the
permutations rewire the threads between times β

2n and − β
2n . An illustration is given in

Fig. 4.
The probability measure relevant for the following considerations is the following

measure:

P̃n,β,2,u(σ, dω) = 1

Z̃(n, β, 2, u)
2|L(σ,ω)|ρ̃n,β,2,u(dω). (3.6)

Expectation with respect to P̃n,β,2,u(σ, dω) is denoted by Ẽn,β,2,u . We define the length
of a loop as the number of sites at time 0 visited by it. For any realisation (σ, ω), we
have that

∑
i≥1 �i (σ, ω) = 2Sn.

As we will explain below, this loop model provides a probabilistic representation of
the Heisenberg model with 
 = 2u − 1. The two parts of the following theorem are
equivalent to Theorems 2.1 and 2.2, respectively.

Theorem 3.1. Let z� = m�(β)/S with m�(β) defined above in Eq. (2.15). For any h ∈ C,
we have that

lim
n→∞ Ẽn,β,2,u

[∏
i≥1

cosh
(h�i (σ, ω)

2Sn

)]
=
{
sinh(hz�)/hz�, if u = 1,
I0(hz�), if u ∈ [0, 1).
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We note that the limiting quantities agree with the corresponding expectations with
respect to the Poisson–Dirichlet distributions; more precisely PD(2), for u = 1, and
PD(1), for u < 1. Indeed, setting θ = 2 in (3.2), we find that

EPD(2)

[∏
i≥1

cosh(h Xi )

]
=
∑
k≥0

h2k

(2k + 1)! = sinh(h)

h
, (3.7)

while setting θ = 1 yields

EPD(1)

[∏
i≥1

cosh(h Xi )

]
= 1

�( 12 )

∑
k≥0

�(k + 1
2 )

k!(2k)! h2k = I0(h). (3.8)

Next, we explain how to derive this loop model from quantum spin systems. This
will show that Theorem 3.1 is equivalent to Theorem 2.1.

Following Nachtergaele [18], we consider the Hilbert space

H̃n = ⊗n
i=1 ⊗2S

α=1 C
2. (3.9)

On ⊗2S
α=1C

2, let Psym denote the projection onto the symmetric subspace; i.e.,

Psym = 1

(2S)!
∑

σ∈S2S

U (σ ), (3.10)

where the unitary matrix U (σ ) is the representative of the permutation σ ,

U (σ )|ϕ1〉 ⊗ · · · ⊗ |ϕ2S〉 = |ϕσ(1) ⊗ · · · ⊗ |ϕσ(2S)〉. (3.11)

One can check that rank(Psym) = 2S+1. Let Psym
n = ⊗n

i=1Psym and H̃sym
n = Psym

n H̃n .
Since dim H̃sym

n = (2S + 1)n , there is an embedding

ι : Hn = (C2S+1)⊗n → H̃n = H̃sym
n ⊕ (H̃sym

n )⊥, (3.12)

with the property that
A → ι(A) = A ⊕ 0. (3.13)

With each pseudo-site (i, α) one associates spin operators S( j)
i,α , j = 1, 2, 3, given by

( 12×) Pauli matrices, tensored by the identity. Let

R( j)
i = Psym

n

2S∑
α=1

S( j)
i,α . (3.14)

Then ι(S( j)
i ) = R( j)

i . The Hamiltonian is

H̃n = −2
∑

1≤i< j≤n

(
R(1)

i R(1)
j + R(2)

i R(2)
j + 
R(3)

i R(3)
j

)

= −2Psym
n

∑
1≤i< j≤n
1≤α,α′≤2S

(
S(1)

i,α S(1)
j,α′ + S(2)

i,α S(2)
j,α′ + 
S(3)

i,α S(3)
j,α′
)
. (3.15)
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Notice that H̃n = ι(Hn). We introduce the transposition operator T(i,α),( j,α′) and the

“double bar operator” Q(i,α),( j,α′); in the basis where S(1)
i,α = 1

2

(
1 0
0 −1

)
, it has matrix

elements
〈a| ⊗ 〈b|Q(i,α),( j,α′)|c〉 ⊗ |d〉 = δa,bδc,d . (3.16)

Let u = 1
2 (
 + 1); we have that

2
(
S(1)

i,α S(1)
j,α′ + S(2)

i,α S(2)
j,α′ + 
S(3)

i,α S(3)
j,α′
) = uT(i,α),( j,α′) + (1 − u)Q(i,α),( j,α′) − 1

2 . (3.17)

The loop expansion can be carried out as in [27, Theorem 2], [1, Proposition 2.1 (iii)],
[18], and [28, Section III. B]. In order to formulate the relation between quantum spins
and random loops, we need the notion of space-time spin configurations s = (

si,α(t)
)
,

taking values in {− 1
2 ,

1
2 }, and indexed by integers 1 ≤ i ≤ n, 1 ≤ α ≤ 2S and by

real numbers 0 ≤ t < β. Given a realisation (σ, ω), we let �(σ, ω) denote the set of
space-time spin configurations s that take constant values along the loops of (σ, ω), and
that are left-continuous at the points of discontinuity. Notice that

|�(σ, ω)| = 2|L(σ,ω)|. (3.18)

Proposition 3.2. Let 
 = 2u − 1. For all functions f : [− 1
2 ,

1
2 ]2Sn → C that have

convergent Taylor series, we have

〈
f ({S(1)

i,α })〉n,β,

= 1

Z̃(n, β, 2, u)

∫
ρ̃n,β,2,u(dω)

∑
σ

∑
s∈�(σ,ω)

f
({si,α(0)}).

It immediately follows from this proposition that

〈
exp

{h

n

n∑
i=1

S(1)
i

}〉
n,β,


= Ẽn,β,2,u

[∏
i≥1

cosh
(h�i (σ, ω)

2n

)]
. (3.19)

In particular, Theorem 3.1 follows from Theorems 2.1 and 2.2, which are proven in
Sects. 4 and 5, respectively.

3.3. The quantum interchange model. The interchange model has a loop-representation
very similar to Tóth’s representation of the spin- 12 Heisenberg ferromagnet, which was
described in Sect. 3.1. Indeed, the measure appropriate for this model is obtained by
replacing Eq. (3.3) by

Pn,β,θ,u=1(dω) = 1

Z(n, β, θ, 1)
θ |L(ω)|ρn,β,1(dω), (3.20)

where θ = 2S + 1. Note that we set u = 1, meaning we have only crosses (no double-
bars), and that we replace the weight 2|L(ω)| by θ |L(ω)|.

We write h = (h1, . . . , hθ ) and

qh(t) = 1
θ

(
eh1t + · · · + ehθ t). (3.21)

Recall the function R defined in (2.27).
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Theorem 3.3. For any fixed h = (h1, . . . , hθ ) we have, as n → ∞,

En,β,θ,1

[∏
i≥1

qh(
1
n �i )

]
→ R(h1, . . . , hθ ; x�

1, . . . , x�
θ ), (3.22)

where (x�
1, . . . , x�

θ ) is the maximizer of φβ(·), as above.

Again, the result is equivalent to a statement about the spin system. In this case it
is equivalent to Theorem 2.3, since we have the identity (that follows from Proposition
3.2)

〈
exp

{1
n

n∑
i=1

Ai

}〉int
n,β

= En,β,θ,1

[∏
i≥1

qh(
1
n �i )

]
(3.23)

if A has eigenvalues h1, . . . , hθ .
The two special cases (2.28) and (2.29) have the following counterparts. We use the

notation

qS(t) = 1
θ

(
e−St + e−(S−1)t + · · · + eSt) = sinh( θ

2 t)

θ sinh( 12 t)
, (3.24)

which corresponds to hi = (−S + i − 1). For all h ∈ C, we have that

lim
n→∞En,β,θ,1

[∏
i≥1

qS( h
n �i )

]
=
[ sinh( 12hz�)

1
2hz�

]2S
, (3.25)

and

lim
n→∞En,β,θ,1

[∏
i≥1

1
θ
(eh�i /n + θ − 1)

]
= exp

( h
θ
(1 − z�)

)∑∞
j=θ−1

1
j ! (hz�) j

1
(θ−1)! (hz�)θ−1

. (3.26)

Moreover, the limiting quantities agree with the corresponding Poisson–Dirichlet
expectations, in this case PD(θ ). In Appendix D we show that

EPD(θ)

[∏
i≥1

qh(z
� Xi )

]
= exp

(− 1−z�

θ

∑
i hi

)
R(h1, . . . , hθ ; x�

1, . . . , x�
θ ). (3.27)

In particular,

EPD(θ)

[∏
i≥1

qS(h Xi )

]
=
[ sinh( 12h)

1
2h

]2S
, for θ = 2S + 1 (3.28)

and

EPD(θ)

[∏
i≥1

1
θ
( eh Xi + θ − 1)

]
=
∑∞

j=θ−1
1
j !h

j

1
(θ−1)!hθ−1

. (3.29)
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4. Isotropic Heisenberg Model: Proof of Theorem 2.1

The proof uses standard facts about addition of angular momenta, which for the reader’s
convenience are summarised in Appendix A. We also use a simple result about conver-
gence of ratios of sums where the terms are of exponentially large size, Lemma B.1 in
Appendix B. To lighten our notation, we use the shorthand �� = (�(1), �(2), �(3)) =∑n

i=1
�Si for the total spin, and ��2 = (�(1))2 + (�(2))2 + (�(3))2. Note that HHeis

n,β,
 =
− 1

n
��2 + 1

n (1 − 
)(�(3))2, in particular HHeis
n,β,
=1 = − 1

n
��2.

Let L M,n be the multiplicity of M as an eigenvalue of �(3) given in Proposition A.1.
To prove Theorem 2.1, the main step is to obtain the asymptotic value of L M,n − L M+1,n
for large M, n. Recall the definitions of η(x) and x�(m) in Eqs. (2.10) and (2.12) (note
that x�(m) has the same sign as m).

Proposition 4.1. For m ∈ (−S, S),

L�mn�,n − L�mn�+1,n = (1 − e−x�(m) )
(
1 + o(1)

)
√
2πη′′(x�(m)) n

en[η(x�(m))−mx�(m)] , as n → ∞ .

Proof. We consider the generating function

�(z, n) =
Sn∑

M=−Sn

zM+Sn L M,n = (1 + z + · · · + z2S)n . (4.1)

Here we used (A.2). By Cauchy’s formula,

L M,n = 1

(M + Sn)!
dM+Sn

dzM+Sn
�(z, n)

∣∣∣
z=0

= 1

2π i

∮
(1 + z + · · · + z2S)n

zM+Sn

dz

z
, (4.2)

where integration is along a contour that surrounds the origin. We choose the contour to
be a circle of radius ex , x ∈ R. Then, assuming that mn is an integer, we have

Lmn,n − Lmn+1,n = 1

2π

∫ π

−π

[
1 + ex+iϕ + · · · + e2S(x+iϕ)

e(m+S)(x+iϕ)

]n(
1 − e−(x+iϕ)

)
dϕ

= 1

2π

∫ π

−π

(
1 − e−(x+iϕ)

)
en[ϒm (x+iϕ)] dϕ, (4.3)

where

ϒm(x+iϕ) = log
(1 + ex+iϕ + · · · + e2S(x+iϕ)

e(m+S)(x+iϕ)

)
= log

( sinh( 2S+1
2 (x + iϕ))

sinh( 12 (x + iϕ))
e−m(x+iϕ)

)
.

(4.4)
The latter identity follows easily from the formula for geometric series. It is clear from
the first expression that Reϒm(x + iϕ) attains its maximum at ϕ = 0, for each fixed x .
Furthermore, we have that ϒm(x) = η(x)−mx , so the minimum of ϒ(x) along the real
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line satisfies the equation η′(x) = m. As observed before, the unique solution is x�(m).
A standard saddle-point argument then yields

Lmn,n − Lmn+1,n = 1

2π
enϒm(x�(m))

∫ π

−π

(
1 − e−(x+iϕ)

)
en[ϒm (x�(m)+iϕ)−ϒm(x�(m))] dϕ

= (
1 + o(1)

)(
1 − e−x�(m)

)
enϒm(x�(m))

∫ ∞

−∞
e− 1

2 nϒ ′′
m(x�(m)) ϕ2

dϕ

=
(
1 − e−x�(m)

)(
1 + o(1)

)
√
2πϒ ′′

m(x�(m)) n
enϒm (x�(m)) . (4.5)

Since ϒ ′′
m(x) = η′′(x), the proposition follows. ��

With this result in hand, the proof of Theorem 2.1 is straightforward:

Proof of Theorem 2.1. We will write 〈·〉 for 〈·〉Heisn,β,
=1.We assume that Sn is an integer;
(the case of half-integer values being almost identical). Using Proposition A.1, we get

〈
e

h
n �(1) 〉 = 〈

e
h
n �(3) 〉 =

Sn∑
J=0

(
L J,n − L J+1,n

)
e

β
n J (J+1)

J∑
M=−J

e
h
n M

Sn∑
J=0

(
L J,n − L J+1,n

)
e

β
n J (J+1)

=

Sn∑
J=0

(
L J,n − L J+1,n

)
e

β
n J (J+1) sinh( h

2
2J+1

n )

2J+1
n n sinh h

2n

Sn∑
J=0

(
L J,n − L J+1,n

)
e

β
n J (J+1)

. (4.6)

By Proposition 4.1 we have that (L�mn�,n − L�mn�+1,n)e
β
n J (J+1) = exp

(
n[gβ(J/n) +

ε1(J, n)]), for some ε1(J, n) → 0. Hence, using Lemma B.1,

〈
e

h
n �(3) 〉 = (

1 + o(1)
) sinh(hm�)

hm�
, (4.7)

as claimed. ��
Remark 4.2. Letting S → ∞ in Theorem 2.1, with the appropriate rescaling h →
h/S and β → β/S2, and using the results of Lieb [16] we recover the corresponding
generating function for the classical Heisenberg model. The limit is sinh(hμ�)/hμ�

where μ� ∈ [0, 1] is the maximizer of

log
[ sinh(x(μ))

x(μ)

]
− μx(μ) + βμ2 (4.8)

and x(μ) is the unique solution to coth(x) − 1
x = μ. Note that μ� is positive if and only

if β > 3
2 .
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5. Anisotropic Heisenberg Model: Proof of Theorem 2.2

As before we use the shorthand �� = (�(1), �(2), �(3)) = ∑n
i=1

�Si and we write 〈·〉 for
〈·〉Heisn,β,
. Recall that HHeis

n,β,
 = − 1
n

��2 + 1
n (1 − 
)(�(3))2.

Proof of Theorem 2.2. Again, we assume that Sn is an integer. Recall that we are con-
sidering the models with 
 ∈ [−1, 1). Then

〈 e h
n �(1) 〉 = Tr

(
e

h
n �(1)

e
β
n

��2−(1−
)
β
n (�(3))2

)
Tr
(
e

β
n

��2−(1−
)
β
n (�(3))2

) . (5.1)

Using Propositions A.1 and 4.1, the denominator of (5.1) can be written as

Sn∑
J=0

J∑
M=−J

(L J,n − L J+1,n) e
β
n J (J+1)−(1−
)

β
n M2 =

Sn∑
J=0

en[gβ( J
n )+ε1(J,n)] , (5.2)

where ε1(J, n) → 0, as n → ∞, uniformly in J ; (the sum over M has 2J + 1 terms).
The numerator of (5.1) can be written as

Sn∑
J=0

e
β
n J (J+1)

J∑
M=−J

e−(1−
)
β
n M2 ∑

α

〈J, M, α| e h
n �(1) |J, M, α〉. (5.3)

Here the vectors |J, M, α〉 are simultaneous orthonormal eigenvectors of the operators
��2 and�(3), andα is amultiplicity index labelling irreducible subspaces; seeProposition
A.1. We recall that �(1) = 1

2 (�
+ + �−), where the ladder operators �± are defined in

Proposition A.1. Since the operators �± leave each irreducible subspace invariant, the
last factor on the right side of Eq. (5.3) does not depend on the index α. Hence expression
(5.3) can be written as

Sn∑
J=0

en[gβ( J
n )+ε1(J,n)] A(J, n) (5.4)

where

A(J, n) =
∑J

M=−J e−(1−
)
β
n M2 〈J, M, α0| e h

n �(1) |J, M, α0〉∑J
M=−J e−(1−
)

β
n M2

, (5.5)

for an arbitrary α = α0, and where ε1(J, n) is the same quantity as in (5.2). Next, we
note that

〈J, M, α0| e h
n �(1) |J, M, α0〉 =

∑
k≥0

1

k! (
1
2h)k〈J, M, α0|( 1n �+ + 1

n �−)k |J, M, α0〉.
(5.6)

Expanding ( 1n �+ + 1
n �−)k and using that

�±|J, M, α0〉 = √
J (J + 1) − M(M ± 1) |J, M ± 1, α0〉, (5.7)
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we create a sum of terms labelled by sequences {δ1 = ±, . . . , δk = ±} given by

1

nk
〈J, M, α0|�δk · · ·�δ1 |J, M, α0〉
= 1I

{∑k
i=1 δi = 0 and − J ≤ M +

∑ j
i=1 δi ≤ J for all j ≤ k

}

·∏k
j=1

√
J (J+1)

n2
− 1

n2
(
M +

∑ j−1
i=1 δi )(M +

∑ j
i=1 δi ) . (5.8)

Note that only even values of k give nonvanishing contributions to (5.6). Moreover, the
values of the factors

〈J, M, α0| e h
n �(1) |J, M, α0〉

are between 1 and eSh . Hence, using Lemma B.1, wemay restrict the sum over J in (5.4)
to those values of J satisfying |J/n −m�| < ε, for any ε > 0. Similarly we may restrict
the sum over M in the numerator of A(J, n) to those values that satisfy |M/n| < ε.

Assuming that |J/n − m�| < ε and that |M/n| < ε, the last product in (5.8) is seen
to be bounded by [

(m� + ε)2 + (ε + k
n )2
]k/2

. (5.9)

We first consider a range of temperatures with the property that m�(β) = 0. It then
follows from a rather crude estimate that

0 ≤ 〈J, M, α0| e h
n �(1) |J, M, α0〉 − 1 ≤

∑
k≥1

1

k! (
1
2h)k2k(2ε + k

n )k . (5.10)

The sum on the right side of this inequality is uniformly convergent, provided ε is small
enough and n is large enough. It can be made arbitrarily small by choosing ε small
enough and n large enough. It follows that, under the assumption that m� = 0, A(J, n)

is of the form A(J, n) = 1 + ε2(J, n), with ε2 → 0, as n → ∞, uniformly in J . By
Lemma B.1, this completes our proof for the case that m� = 0.

Next, we consider the range of temperatures with m�(β) > 0. We pick a sufficiently
small ε < m�. The number of sequences (δi )

k
i=1 satisfying the constraints in (5.8) is

bounded by
( k

k/2

)
. Hence

〈J, M, α0|( 1n �+ + 1
n �−)k |J, M, α0〉 −

(
k

k/2

)
m(β)k

≤
(

k

k/2

)[(
(m� + ε)2 + (ε + k

n )2
)k/2 − (m�)k

]
, (5.11)

and therefore

〈J, M, α0| e h
n �(1) |J, M, α0〉 −

∑
k≥0
even

( 12hm�)k 1

( k
2 !)2

≤
∑
k≥0
even

( 12h)k

( k
2 !)2

([
(m� + ε)2 + (ε + k

n )2
]k/2 − (m�)k

)
. (5.12)



1650 J. E. Björnberg, J. Fröhlich, D. Ueltschi

One can check that the sum on the right side of this inequality converges uniformly in
n, for n large enough. It can be made as small as we wish by choosing ε small enough
and n large enough.

To prove a lower bound,we take K so large that
∑

k>K
even

( 12hm�)k 1
( k
2 !)2 < ε. Continuing

to assume that |J/n − m�| < ε and |M/n| < ε, we find that the number of sequences
(δi )

k
i=1 satisfying the constraints in (5.8) equals

( k
k/2

)
, provided that k ≤ K < (m�−2ε)n.

The last product in (5.8) is at least
[
(m� − ε)2 − (ε + k

n )2
]k/2

. Thus

〈J, M, α0| e h
n �(1) |J, M, α0〉 −

∑
k≥0
even

( 12hm�)k 1

( k
2 !)2

≥ −ε +
∑

0≤k≤K
even

( 12h)k

( k
2 !)2

([
(m� − ε)2 − (ε + K

n )2
]k/2 − (m�)k

)
. (5.13)

Taking n large enough and ε small enough, the sum on the right side of this inequality can
be made as small as we wish. This proves that A(J, n) = I1(hm�)/( 12hm�) + ε2(J, n),
for some ε2 → 0, uniformly in J. This completes the proof of our claim. ��

6. Interchange Model: Proof of Theorem 2.3

When studying the interchangemodel we prefer to use the probabilistic representation in
our proof. Thus we prove the statements in Theorem 3.3, which is equivalent to Theorem
2.3. Our proof relies on the fact that the loop-representation involves random walks on
the symmetric group Sn . For this reason, there are (group-) representation-theoretic tools
available to analyse our models. Specifically we will make use of tools developed by
Alon, Berestycki and Kozma [2,6]. A similar approach has been followed in [7] in a
calculation of the free energy and of the critical point of the model. In this section, we
will also use the connection between representations of Sn and symmetric polynomials.

Next, we summarise some relevant facts about symmetric polynomials and repre-
sentations of Sn ; see [17, Ch. I] or [24, Ch. 7], for more information. By a parti-
tion we mean a vector λ = (λ1, λ2, . . . , λk) consisting of integer-entries satisfying
λ1 ≥ λ2 ≥ · · · λk ≥ 1. If

∑
j λ j = n then we say that λ is a partition of n and we write

λ � n. We call �(λ) = k the length of λ, and if j > �(λ) we set λ j = 0. We consider
two types of symmetric polynomials in the variables x = (x1, . . . , xr ). We begin by
defining the power-sums

p0(x) = 1, pm(x) =
r∑

i=1

xm
i , for r ≥ 1, and pλ(x) =

k∏
j=1

pλ j (x). (6.1)

Next, we define the Schur-polynomials

sλ(x) =
det

[
x

λ j+r− j
i

]r
i, j=1∏

1≤i< j≤r (xi − x j )
. (6.2)

Note that sλ(x) is indeed a polynomial: the determinant in the numerator is a polynomial
in the variables xi which is anti-symmetric under permutations of the variables, hence
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divisible (in Z[x1, . . . , xr ]) by ∏1≤i< j≤r (xi − x j ). In particular, sλ(·) is continuous
when viewed as a function C

r → C.
Power-sums and Schur-polynomials appear naturally in the representation theory of

the symmetric groups Sn . Recall that the irreducible characters of Sn are indexed by
partitions λ � n. As usual, we denote an irreducible character of Sn by χλ; χλ(μ) then
denotes its value on a permutation with cycle decomposition μ = (μ1, . . . , μ�) � n.
The following identity holds:

pμ(x1, . . . , xr ) =
∑
λ�n

�(λ)≤r

χλ(μ)sλ(x1, . . . , xr ), (6.3)

see, for example, [17, I.(7.8)]. We apply this identity for the arguments xi = ehi , with
hi ∈ C and r = θ . Recall that

qh(t) = 1
θ

(
eh1t + · · · + ehθ t). (6.4)

For a partition μ = (μ1, . . . , μ�), let

fh(μ) = pμ(eh1 , . . . , ehθ ) = θ�
θ∏

j=1

qh(μ j ). (6.5)

From (6.3) we have that

fh(μ) =
∑
λ�n

�(λ)≤θ

χλ(μ)sλ(e
h1 , . . . , ehθ ). (6.6)

In light of this we will use the notation

f̂h(λ) = sλ(e
h1 , . . . , ehθ ), for λ � n, �(λ) ≤ θ. (6.7)

By continuity of the Schur-polynomials we have that

f̂0(λ) = sλ(1, . . . , 1) =
∏

1≤i< j≤θ

λi − i − λ j + j

j − i
, (6.8)

where we use the notation 0 = (0, . . . , 0).
Recall the definition of the function R from Theorems 2.3 and 3.3.

Lemma 6.1. Consider a sequence of partitions λ � n such that λ/n → (x1, . . . , xθ ).
Then, for any fixed h, we have that

f̂h/n(λ)

f̂0(λ)
→ R(h1, . . . , hθ ; x1, . . . , xθ ). (6.9)

Proof. Let ε j = θ− j
n + (λ j/n − x j ), so ε j → 0 as n → ∞ for all j . The left-hand-side

of (6.9) equals

sλ(eh1/n, . . . , ehθ /n)

sλ(1, . . . , 1)
= R(h1, . . . , hθ ; x1 + ε1, . . . , xθ + εθ )

∏
1≤i< j≤θ

hi − h j

n(ehi /n − eh j /n)
.

(6.10)
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Indeed, the identity holds whenever all the hi are different. Hence by continuity of the
left side and of the function R it holds in general if we adopt the rule that any factor in
the last product on the right side is interpreted as = 1 if hi = h j . Since R is continuous
and the product converges to 1, as n → ∞, the result follows. ��
Proof of Theorem 3.3. We write Eθ for Eθ,n,1, E for E1, and σ for the random permu-
tation under E. Using the decomposition (6.6), we have that

Eθ

[∏
i≥1

qh(
1
n �i )

]
= E[ fh/n(σ )]

E[ f0(σ )] =
∑

λ f̂h/n(λ)E[χλ(σ )]∑
λ f̂0(λ)E[χλ(σ )] . (6.11)

The sums in the numerator and the denominator on the right side range over λ � n, with
�(λ) ≤ θ . It has been shown by Berestycki and Kozma in [6] that

E[χλ(σ )] = dλ exp
{β

n

(
n

2

)
[r(λ) − 1]

}
, (6.12)

where dλ is the dimension of the irreducible representation of Sn with character χλ(·)
and r(λ) = χλ((1, 2))/dλ is the character ratio at a transposition. Furthermore, it has
been shown in [7] that

dλ exp
{β

n

(
n

2

)
[r(λ) − 1]

}
= exp

(
n[φβ(λ/n) + ε1(λ, n)]), (6.13)

where ε1(λ, n) → 0, uniformly in λ � n, with �(λ) ≤ θ . Note, moreover, that
1
n log f̂0(λ) =: ε2(λ, n) has the same property. Thus

Eθ

[∏
i≥1

qh(
1
n �i )

]
=
∑

λ en[φβ(λ/n)+ε1+ε2] f̂h/n(λ)

f̂0(λ)∑
λ en[φβ(λ/n)+ε1+ε2] . (6.14)

The theorem then follows from Lemmas 6.1 and B.1. ��
Let us now show how to deduce form these results the special cases (3.25) and (3.26),

(which are equivalent to (2.28) and (2.29)). For (3.25) we set hi = h(−S + i − 1). From
the Vandermonde determinant we get that

det
[
eh(−S+i−1)x j

]θ
i, j=1 =

( θ∏
j=1

e−hSx j
)
det

[
(ehx j )i−1]θ

i, j=1

=
∏

1≤i< j≤θ

e− h
2 (xi+x j )

(
ehx j − ehxi

)
, (6.15)

where we have used (θ − 1)
∑

j x j = ∑
i< j (xi + x j ). Hence the right side of (3.22),

with hi = h(−S + i − 1), equals

∏
1≤i< j≤θ

(
e− h

2 (x�
i −x�

j ) − e
h
2 (x�

i −x�
j )
)
( j − i)

h(i − j)(x�
i − x�

j )
=

∏
1≤i< j≤θ

sinh
( h
2 (x�

i − x�
j )
)

h
2 (x�

i − x�
j )

. (6.16)
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Here, all factors with 2 ≤ i < j ≤ θ equal 1. We therefore get

θ∏
j=2

sinh
( h
2 (x�

1 − x�
2)
)

h
2 (x�

1 − x�
2)

=
[ sinh( h

2 z�)

h
2 z�

]θ−1
, (6.17)

as claimed.
Next we observe that (3.26) follows by applying Theorem 2.3, with h1 = h and h2 =

h3 = . . . = hθ = 0. The proof involves careful manipulation of some determinants;
here we only outline the main steps.

Let us first obtain an expression for R(h1, . . . , hθ ; x�
1, . . . , x�

θ ) that takes into account
that x�

2 = · · · = x�
θ . For simplicity, we write x = x�

1 and y = x�
2, and, in the expression

for R, we set x1 = x, x2 = y, x3 = y + ε, . . . , xθ = y + kε, where k = θ − 2.
After performing suitable column-operations we may extract a factor εk(k+1)/2 from the
determinant, which cancels the corresponding factor from the product. Letting ε → 0,
we conclude that, for x = x�

1 and y = x�
2, R(h1, . . . , hθ ; x�

1, . . . , x�
θ ), equals

exp
(
y
∑

i hi
)
(θ − 1)!(y − x)−(θ−1) det

[
(ehi (x−y) − h−1

i )δ j,1 + h j−2
i

]θ
i, j=1

×
∏

1≤i< j≤θ

(h j − hi )
−1. (6.18)

Continuing with the proof of (3.26), we set, in (6.18), h1 = h and h2 = 0, h3 =
ε, . . . , hθ = kε, (with k = θ − 2). This time we perform suitable row-operations to
obtain

det
[
(ehi (x−y) − h−1

i )δ j,1 + h j−2
i

]θ
i, j=1

∏
1≤i< j≤θ

(h j − hi )
−1 → (−h)−(θ−1) Dk , (6.19)

as ε → 0, where x, y are as above, and

Dk =

∣∣∣∣∣∣∣∣∣∣∣∣∣

eh(x−y) 1 h h2 · · · hk

1 1 0 0 · · · 0
x − y 0 1 0 · · · 0

1
2 (x − y)2 0 0 1 · · · 0

...
...

1
k! (x − y)k 0 0 0 · · · 1

∣∣∣∣∣∣∣∣∣∣∣∣∣

= eh(x−y) −
k∑

j=0

1

j ! (h(x − y)) j , (6.20)

which proves our claim.

7. Critical Exponents: Proof of Theorem 2.4

Proofs of (2.39) and (2.40). The expression (2.39) is verified using similar calculations
to Theorem 2.1. Indeed, we have that
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p(β, h) = lim
n→∞

1
n log Tr

(
e−βHHeis

n,β,
=1+h
∑n

i=1 S(3)
i
)

= lim
n→∞

1
n log Tr

( Sn∑
J=0

(
L J,n − L J+1,n

)
e

β
n J (J+1)

J∑
M=−J

ehM
)

= lim
n→∞

1
n log Tr

( Sn∑
J=0

en[gβ(J/n)+h J/n+ε1(J,n)] )

= max
0≤m≤S

(
gβ(m) + hm

)
, (7.1)

as claimed (here ε1(J, n) → 0).
We now turn to the critical exponents, starting with m�(β) for β ↓ βc. Recall that

m�(β) is the maximizer of gβ(m). Differentiating gβ(m) at m = m� we find

0 = g′
β(m�) = dx�

dm
η′(x�(m�)) − m� dx�

dm
− x�(m�) + 2βm� = 2βm� − x�(m�). (7.2)

The last step used the definition (2.12) of x�(m). Thus m�(β) satisfies 2βm� = x�(m�)

and in particular m� is proportional to y(β) := x�(m�(β)), hence we look at the be-
haviour of y = y(β) as β ↓ βc. Using

m� = η′(y) = θ
2 coth(

θ
2 y) − 1

2 coth(
1
2 y) (7.3)

and Taylor exanding coth(z) = 1
z + z

3 − z3
45 + O(z5) we get

y = 2βm� = 2β
( 1
12 y(θ2 − 1) − 1

720 y3(θ4 − 1)
)
+ O(y5). (7.4)

Dividing by y, using βc = 6/(θ2 − 1), and rearranging we get

y2 · β(θ4 − 1)

360
= β − βc

βc
+ O(y4) (7.5)

which shows that y = y(β) and hence m�(β) goes like (β − βc)
1/2 as β ↓ βc.

Next, m(β, h) is the maximizer of gβ(t) + ht , thus it satisfies g′
β(m) + h = 0, that is

2βm(β, h) − x�(m(β, h)) + h = 0. (7.6)

To compute the susceptibility we differentiate (7.6) in h, giving

∂m

∂h

(dx�

dm
− 2β

)
= 1. (7.7)

Take β < βc so that m(β, h) → 0 as h ↓ 0, and use dx�

dm (0) = 12/(θ2 − 1) = 2βc as in
(2.13). This gives

χ(β) = ∂m

∂h

∣∣∣∣
h=0

= 1

2(βc − β)
, β < βc. (7.8)

Finally, looking at (7.6) again, set β = βc and consider x(h) := x�(m(βc, h)) as
h ↓ 0. As earlier we have, using the Taylor series for coth,

m(βc, h) = η′(x(h)) = x(h)

2βc
− x(h)3

θ4 − 1

720
+ O(x(h)5). (7.9)
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Putting this into (7.6) gives

h = x(h)3 · 2βc
θ4 − 1

720
+ O(x(h)5) = x(h)3

(
θ2+1
60 + o(1)

)
, (7.10)

and hence x(h) ∼ h1/3 as h ↓ 0. Finally, putting the asymptotics for x(h) into (7.6)
again gives

2βc · m(βc, h) =
( h

θ2+1
60 + o(1)

)1/3 − h (7.11)

hence m(βc, h) ∼ h1/3 as claimed. ��
To prove (2.41) we will use the following result.

Theorem 7.1. Consider a quantum spin systems on a general (finite) graph �, with spin
S ≥ 1

2 and Hamiltonian given by

H� = −
∑

i, j∈�

Ji, j
(�Si · �S j − uS(3)

i S(3)
j

)− h
∑
i∈�

S(1)
j , with Ji, j , h ∈ R, u ∈ [0, 1].

(7.12)
Write 〈·〉β,h = Tr (· e−βH� )/��(β, h), where ��(β, h) = Tr

(
e−βH�

)
is the parti-

tion function, and consider the magnetization M�(β, h) = 1
|�|
∑

i∈�〈S(1)
i 〉β,h and the

transverse susceptibility χ⊥
� (β, h) = 1

|�|
∑

i, j∈�〈S(2)
i S(2)

j 〉β,h. Write

M := 1√|�|
∑
i∈�

S(2)
i . (7.13)

Then

χ⊥
� (β, h) ≥ 1

βh M�(β, h) ≥ χ⊥
� (β, h) − 1

2β
√

h
√

χ⊥
� (β, h)

〈[M, [H,M]]〉
β,h . (7.14)

Proof. Let U (ϕ) := eiϕ
∑

i∈� S3i denote the unitary operator representing a rotation in
the 1–2 plane of spin space through an angle ϕ, at each site i ∈ �. Thus, for all i ∈ �,

U (ϕ)S(1)
i U (−ϕ) = cos(ϕ) S(1)

i + sin(ϕ) S(2)
i ,

U (ϕ)S(2)
i U (−ϕ) = − sin(ϕ) S(1)

i + cos(ϕ) S(2)
i . (7.15)

Note that

H(ϕ) := U (ϕ)HU (−ϕ) = H − h
∑
i∈�

(
S(1)

i [cos(ϕ) − 1] + S(2)
i sin(ϕ)

)
. (7.16)

We introduce the Duhamel correlations
[
A · B(t)

]
β,h := 1

��(β,h)
Tr
(

A e−tβH B e−(1−t)βH ), t ∈ [0, 1], (7.17)

and

(A, B)β,h :=
∫ 1

0

[
A · B(t)

]
β,hdt. (7.18)



1656 J. E. Björnberg, J. Fröhlich, D. Ueltschi

Differentiating both sides of the identity

〈− sin(θ)S(1)
i +cos(θ)S(2)

i 〉β,h = 〈U (ϕ)S(2)
x U (−ϕ)〉β,h = Tr

(
S(2)

i e−βH(−ϕ)
)
/��(β, h)

(7.19)
with respect to ϕ and setting ϕ = 0, we get the Ward identity

〈S(1)
i 〉β,h = βh

∑
j∈�

∫ 1

0

[
S(2)

i S(2)
j (t)

]
β,hdt. (7.20)

We see that (7.20) gives

M�(β, h) = βh
∫ 1

0

[MM(t)
]
β,hdt = βh(M,M)β,h . (7.21)

It is well known and easy to prove that the function f (t) := [MM(t)
]
β,h is convex in t

and (by the cyclicity of the trace) periodic in t with period 1. Thus f (t) ≤ f (0) = f (1)
for all t ∈ [0, 1]. This implies that

M�(β, h) ≤ βh
[MM(0)

]
β,h = βhχ⊥

� (β, h), (7.22)

which is the first of the claimed inequalities (7.14).
For the other part we will use the Falk–Bruch inequality. First, there exists a positive

measure μ on R such that

F(s) := [MM(s)
]
β,h =

∫
est dμ(t) (7.23)

(note that M∗ = M). Then we have that

b :=
∫ 1

0
F(s)ds ≡ (M,M)β,h =

∫
et − 1

t
dμ(t),

c := 1
2

(
F(0) + F(1)

) ≡ 〈M2〉β,h =
∫

et + 1

2
dμ(t),

a := F ′(1) − F ′(0) ≡ β
〈[M, [H,M]]〉

β,h =
∫

t (et − 1)dμ(t). (7.24)

Define the probability measure ν on R by

dν(t) := 1
a t (et − 1)dμ(t), (7.25)

and consider the concave function φ : [0,∞) → [0,∞) given by

φ(t) := √
t coth

( 1√
t

)
. (7.26)

By Jensen’s inequality we have

φ
( 4b

a

) = φ
( ∫ 4

t2
dν(t)

)
≥
∫

φ
( 4

t2
)
dν(t) =

∫
2
t coth

( t
2

)
dν(t) = 4c

a . (7.27)

Using that φ(t) ≤ t +
√

t we get b ≥ c − 1
2

√
ab, which using b ≤ χ⊥

� (β, h) from (7.22)
gives

1
βh M�(β, h) ≥ χ⊥

� (β, h) − 1
2β

√
h
√

χ⊥
� (β, h)

〈[M, [H,M]]〉
β,h (7.28)

as claimed. ��
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Proof of (2.41). We use Theorem 7.1 with |�| = n, u = 0 and Ji, j = 1
n for i �= j (and

Ji,i = 0). Note that M�(β, h) → m(β, h) as n → ∞ for h > 0, also note that we should
replace βh in (7.14) by h to account for the slightly different conventions in (2.36) and
(7.12).

We need an upper bound on the double commutator
[M, [H,M]]. Writing

hi, j = −Ji, j �Si · �S j − h
2n (S(1)

i + S(1)
j ) (7.29)

we have that

[H,M] = 1√
n

n∑
i, j=1

[hi, j , S(1)
i + S(1)

j ] (7.30)

and hence

[M, [H,M]] = 1

n

n∑
i, j=1

[S(1)
i + S(1)

j , [hi, j , S(1)
i + S(1)

j ]]. (7.31)

The operator norm of hi, j is at most c/n for some constant c, hence the operator norm
of [M, [H,M]] is bounded by a constant. This gives that, for some constant C > 0,

χ⊥(β, h) ≥ 1
h m(β, h) ≥ χ⊥(β, h)

(
1 − C

√
βh
(
χ⊥(β, h)

)−1/2)
. (7.32)

If β = βc then m(βc, h) ∼ h1/3 by (2.40), and if β > βc then m(β, h) is bounded below
by a positive constant. These facts give (2.41). ��
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Appendix A: Addition of Angular Momenta

Wesummarize standard facts about addition of n spins. Recall that �� = ∑n
i=1

�Si denotes
the total spin and that ��2 commutes with �(1),�(2) and �(3).

Proposition A.1. For S ≥ 1
2 we have:

http://creativecommons.org/licenses/by/4.0/
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(a) The set of eigenvalues of �(3) is

E(�(3)) = {−nS,−nS + 1, . . . , nS}, (A.1)

and the multiplicity of M ∈ E(�(3)) is

L M,n =
S∑

σ1,...,σn=−S

δσ1+···+σn ,M . (A.2)

(b) The set of eigenvalues of ��2 is

E( ��2) =
{

{J (J + 1) : J = 0, 1, . . . , nS} if nS is an integer;
{J (J + 1) : J = 1

2 ,
3
2 , . . . , nS} otherwise.

(A.3)

(c) Let HJ be the eigensubspace for the eigenvalue J (J +1) ∈ E( ��2), and HJ,M be the
eigensubspace where ��2 has eigenvalue J (J + 1) and �(3) has eigenvalue M. Then

1
2J+1 dim(HJ ) = dim(HJ,M ) = (L J,n − L J+1,n)1I{|M | ≤ J }. (A.4)

Proof. Part (a) is immediate, usingHn � span{(ωx )1≤x≤n : ωx ∈ {−S,−S+1, . . . , S}},
and Si |ω〉 = ωi |ω〉.

For (b), let �± = �(1) ± i�(2). Then [�(3), �±] = ±�± and [�+, �−] = 2�(3).
Further,

�±�∓ = ��2 − (�(3))2 ± �(3). (A.5)

The operators on the left side are nonnegative and this implies that |M | ≤ J . If |M〉 is
eigenvector of �(3) with eigenvalue M , then

�(3)�±|M〉 = (�±�(3) ± �±)|M〉 = (M ± 1)�±|M〉. (A.6)

Further, if |M〉 ∈ HJ ,

‖�±|M〉‖2 = J (J + 1) − M(M ± 1). (A.7)

Then �±|M〉 is eigenvector of �(3) with eigenvalue M ± 1, unless M = ±J in which
case it is zero. It follows that eigenvalues of�(3) inHJ are−J,−J +1, . . . , J . Together
with the claim (a), we get (b).

For (c), let |J, M, α〉 denote the eigenvector of ��2 and �(3) with respective eigen-
values J (J + 1) and M ; the third index, α, runs from 1 to dim(HJ,M ). Observe that
[ ��2, �±] = 0. Then �±|J, M, α〉 ∈ HJ,M±1, and, using (A.5), �±|J, M, α〉 ⊥
�±|J, M, α′〉 if α �= α′. It follows that dimHJ,M depends on J but not on M , as
long as |M | ≤ J . Let dJ = dimHJ,M . We have

Sn∑
J=|M|

dJ = L M,n . (A.8)

Then dJ = L J,n − L J+1,n , which gives the expression in (c). ��
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Appendix B: Lemma on Convergence

Although simple,we include aproof of the following lemma for the sakeof completeness:

Lemma B.1. For d ≥ 1, let K ⊆ [0, 1]d be a compact set and G : K → R a continuous
function. Suppose there is some x� ∈ K such that G(x�) > G(x) for all x ∈ K\{x�}.
Write Kn = {k = (k1, . . . , kd) ∈ N

d : k/n ∈ K } and let εi (k, n) be sequences satisfying
maxk∈Kn |εi (k, n)| → 0.

(1) If A(k, n) are sequences satisfying 1
n log(maxk∈Kn |A(k, n)|) → 0 then for any ε > 0

∑
k∈Kn

en[G(k/n)+ε1(k,n)] A(k, n)∑
k∈Kn

en[G(k/n)+ε1(k,n)] =
∑

k:‖k/n−x�‖<ε en[G(k/n)+ε1(k,n)] A(k, n)∑
k∈Kn

en[G(k/n)+ε1(k,n)] + o(1),

as n → ∞. (B.1)

(2) If F : K → R is a continuous function then

∑
k∈Kn

en[G(k/n)+ε1(k,n)] [F(k/n) + ε2(k, n)]∑
k∈Kn

en[G(k/n)+ε1(k,n)] → F(x�), as n → ∞. (B.2)

Proof. For the first part, letα > 0 be such that ‖x −x�‖ ≥ ε implies G(x�) ≥ G(x)+2α,
and let k� satisfy k�/n → x�. Then for n large enough

∣∣∣
∑

k:‖k/n−x�‖≥ε en[G(k/n)+ε1(k,n)] A(k, n)∑
k∈Kn

en[G(k/n)+ε1(k,n)]
∣∣∣

≤ max
k∈Kn

|A(k, n)|
∑

k:‖k/n−x�‖≥ε en[G(k/n)+ε1(k,n)]

en[G(k�/n)+ε1(k�,n)]

≤ (n + 1)d max
k∈Kn

|A(k, n)| en[maxk ε1(k,n)−ε1(k�,n)−α]

= o(1). (B.3)

For the second part, let δ > 0 be arbitrary and let ε > 0 be such that ‖x −x�‖ < ε implies
|F(x) − F(x�)| < δ. Applying the first part with A(k, n) = F(k/n) + ε2(k, n) − F(x�)

we get

∣∣∣∣∣
∑

k∈Kn
en[G(k/n)+ε1(k,n)] [F(k/n) + ε2(k, n)]∑

k∈Kn
en[G(k/n)+ε1(k,n)] − F(x�)

∣∣∣∣∣
≤ o(1) +

∑
‖k/n−x�‖<ε en[G(k/n)+ε1(k,n)] ∣∣F(k/n) + ε2(k, n) − F(x�)

∣∣
∑

k∈Kn
en[G(k/n)+ε1(k,n)]

≤ 2δ (B.4)

for n large enough. This proves the claim. ��
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Appendix C: Uniqueness of the Maximizer of φβ

Recall that, for x1 ≥ x2 ≥ . . . ≥ xθ ≥ 0 satisfying
∑

i xi = 1, we defined

φβ(x1, . . . , xθ ) = β

2

( θ∑
i=1

x2i − 1
)

−
θ∑

i=1

xi log xi . (C.1)

In [7] it was proved that (for θ ≥ 3, that is S ≥ 1) φβ(·) is maximised at x1 = x2 =
· · · = xθ = 1

θ
when β < βc, and at some point satisfying x1 > x2 when β ≥ βc. Here

we provide the following additional information about the maximiser.

Lemma C.1. For all values of β > 0, there is a unique maximizer x� of φβ(x), which
is of the form

x� = (x�
1,

1−x�
1

θ−1 , . . . ,
1−x�

1
θ−1 )

with the last θ − 1 entries equal.

Proof. As noted in [7, Thm 4.2], the method of Lagrange multipliers tells us that a
maximizer x of φβ(·) must be of the form

x1 = . . . = xr = t, xr+1 = . . . = xθ = 1−r t
θ−r , (C.2)

for some r ∈ {1, . . . , θ} and some t ∈ [ 1
θ
, 1

r ]. Let us write D = {(r, t) : r ∈ [1, θ ], t ∈
[ 1
θ
, 1

r ]} and

φβ(r, t) = β
2

(
r t2 + (1−r t)2

θ−r − 1
)− (

r t log t + (1 − r t) log 1−r t
θ−r

)
, (r, t) ∈ D. (C.3)

Thus, when r is an integer, φβ(r, t) agrees with φβ(x) evaluated at x of the form (C.2).
We aim to show: first that φβ(r, t) has no maximum in the interior ofD, and second that,
on the boundary ∂D, it is largest along the line r = 1.

We find that
∂φβ

∂t
= r

[
β
(

θ t−1
θ−r

)− log
( t (θ−r)

1−r t

)]
. (C.4)

Clearly ∂φβ

∂t = 0 whenever t = 1
θ
. The other solutions to ∂φβ

∂t = 0 may be parameterized
using ξ = θ t−1

θ−r :

r = 1
ξ

(
1 − θξ

eβξ −1

)
, t = ξ

(
1 + 1

eβξ −1

)
, (C.5)

for ξ > 0 in a suitable range. Next,

∂φβ

∂r
= β

2

(
θ t−1
θ−r

)2 − t log
( t (θ−r)

1−r t

)
+ θ t−1

θ−r . (C.6)

To look for points where both partial derivatives vanish, we put in the parameterization
(C.5) and set the result to = 0. After simplifying, this reduces to the condition:

1
2βξ = tanh( 12βξ), (C.7)

which has no solution ξ > 0. It follows that any maxima of φβ(r, t) must lie on the
boundary ∂D. The boundary consists of the following 3 parts:

• A: the line t = 1
θ
,
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• B: the curve t = 1
r , and• C: the line r = 1.

Along A, φβ(r, 1
θ
) is constant. Along B we have

φβ(r, 1
r ) = log r − β

2 (1 − r−1) =: f (r), 1 ≤ r ≤ θ. (C.8)

It is easy to see that f (r) is either monotone, or has only one extreme point (at r = β
2 )

which is a minimum. Thus f (r) is maximal at one of the endpoints. This proves that
φβ(r, t) is maximized along C, as claimed.

For uniqueness of themaximizer note that (C.4), with r = 1, has atmost two solutions
ξ > 0, at most one of which can be at a maximum. ��

Appendix D: Proof of the Poisson–Dirichlet Formula (3.27)

Recall that we write

R(h1, . . . , hθ ; x1, . . . , xθ ) = det
[
ehi x j

]θ
i, j=1

∏
1≤i< j≤θ

j − i

(hi − h j )(xi − x j )
(D.1)

and recall also from (3.21) the notation

qh(t) = 1
θ

(
eh1t + · · · + ehθ t). (D.2)

We prove:

Proposition D.1. For θ ∈ {2, 3, . . . } we have

EPD(θ)

[∏
i≥1

qh(Xi )
]

= R(h1, . . . , hθ ; 1, 0, . . . , 0). (D.3)

Proof. We use the classical fact that the Poisson–Dirichlet distribution may be con-
structed as a limit of Ewens distributions on Sn as n → ∞. The Ewens distribution
assigns to each permutation σ ∈ Sn the probability

θ�(σ)

θ(θ + 1) · · · (θ + n − 1)
, (D.4)

and if σ is random with this distribution then the ordered cycle sizes of σ , rescaled by
n, converge weakly to PD(θ ), as proved in [14].

Let En denote expectation over the Ewens-distribution on Sn , and for σ ∈ Sn let
us also write σ = (σ1, σ2, . . . , σ�) for the partition of n corresponding to its cycle-
decomposition. Recall that

∏
i≥1

qh(σi/n) = θ−�(σ ) pσ (eh1/n, . . . , ehθ /n), (D.5)

and note that this is a bounded function of σ (it is at most emaxi |hi |). Using (6.3) we have

En

[∏
i≥1

qh(σi/n)
]

= 1

θ(θ + 1) · · · (θ + n − 1)

∑
λ�n

�(λ)≤θ

sλ(e
h1/n, . . . , ehθ /n)

∑
σ∈Sn

χλ(σ ).

(D.6)
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By orthogonality of irreducible characters the last sum is simply n! δλ,(n) where (n) =
(n, 0, 0, . . . ) is the trivial partition. Using the definition (6.2) of the Schur-function we
thus get

En

[∏
i≥1

qh(σi/n)
]

= n!
θ(θ + 1) · · · (θ + n − 1)

det
[
e

hi
n (nδ j,1+θ− j)]θ

i, j=1∏
1≤i< j≤θ (e

hi /n − eh j /n)

= R(h1, . . . , hθ ; 1 + θ−1
n , θ−2

n , . . . , 1
n , 0)

n!
θ(θ + 1) · · · (θ + n − 1)

· n(θ
2)

∏
1≤i< j≤θ

hi − h j

n(ehi /n − eh j /n)

(δi,1 + θ−i
n ) − (δ j,1 +

θ− j
n )

j − i
.

(D.7)

To see the last equality, note that it holds if all the hi are distinct, hence by continuity it
holds in general provided we interpret (hi − h j )/n(ehi /n − eh j /n) as = 1 if hi = h j .
Here

∏
1≤i< j≤θ

(δi,1 + θ−i
n ) − (δ j,1 +

θ− j
n )

j − i
= n−(θ−1

2 )

(θ − 1)! (1 + o(1)) (D.8)

and
n!

θ(θ + 1) · · · (θ + n − 1)
= (θ − 1)!

nθ−1 (1 + o(1)). (D.9)

Now
(
θ
2

) − (
θ−1
2

) = θ − 1, R is continuous, the left-hand-side of (D.7) converges to
the left-hand-side of (D.3), and the remaining product on the right-hand-side of (D.7)
converges to 1, so the result follows on letting n → ∞. ��
Proof of (3.27). We have the two identities

R(h1, . . . , hθ ;αx1, . . . , αxθ ) = R(αh1, . . . , αhθ ; x1, . . . , xθ ), α ∈ C, (D.10)

and

R(h1, . . . , hθ ; x, y, y, . . . , y) = exp(y
∑

i hi )R(h1, . . . , hθ ; x − y, 0, . . . , 0). (D.11)

Indeed, (D.10) is immediate from the definition of R, and (D.11) can be seen by letting
ε → 0 in the identity

R(h1, . . . , hθ ; x, y, y + ε, . . . , y + kε)

= exp(y
∑

i hi )R(h1, . . . , hθ ; x − y, 0, ε, . . . , kε), k = θ − 2, (D.12)

which in turn follows from the multilinearity of the determinant.
Using Proposition D.1, writing x = x�

1 and y = x�
2 = · · · = x�

θ , and recalling that
z� = x�

1 − x�
2 = x − y (and hence y = 1−z�

θ
), this gives (3.27). ��
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