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Abstract

f90wrap is a tool to automatically generate Python extension modules which interface to

Fortran libraries that makes use of derived types. It builds on the capabilities of the popular

f2py utility by generating a simpler Fortran 90 interface to the original Fortran code which is

then suitable for wrapping with f2py, together with a higher-level Pythonic wrapper that
makes the existance of an additional layer transparent to the �nal user. f90wrap has been

used to wrap a number of large software packages of relevance to the condensed matter

physics community, including the QUIP molecular dynamics code and the CASTEP density

functional theory code.
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1. Introduction

Modern scienti�c computing relies on the existence of many

well-documented software libraries. This has led to a new

programing paradigm based around interfacing of existing

libraries and packages, which allows existing tools to be

combined to produce something that is more than the sum

of the constituent parts [1]. Python has emerged as the de

facto standard ‘glue’ language [2] for these purposes, mean-

ing that any code that has a Python interface can be com-

bined with others in complex and imaginative ways which

often go beyond the original intentions of the developers.

The success of Python in this domain is largely thanks to

the well-developed ecosystem of scienti�c packages (e.g.

numpy [3], scipy [4], matplotlib [5], the Jupyter
[6] framework which encourages literate programing and
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reproducible research, and the anaconda distribution and

package management system).

Despite the rise in popularity of high-level program-

ing languages, the majority of high performance computing

codes in use across the computational modelling community

today—and within the domain of computational condensed

matter physics in particular—are monolithic programs writ-

ten in low-level languages such as C or Fortran, focused on

performing a single task speci�ed by the users input �le. In

standard usage patterns, outputs from codes run at HPC cen-

tres are typically stored in human-readable format to a text

�le or, increasingly, in structured formats such as XML, JSON

and HDF5 before transferring to a workstation for subsequent

analysis. While this traditional mode of operation has served

the scienti�c community well for decades, it has become clear

that by adopting a more modern approach, in which the codes

serve as software engines tied into a larger and heterogeneous

production environment, both the ease and the rate of gain-

ing new functionality would be much higher, meaning that the

real world impact of simulation codes could be signi�cantly

enhanced.
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While the task of Fortran-to-Python interface genera-

tion addressed in this article is general to a wide range of

computational modelling domains, the examples presented

fall within the condensed matter physics/materials modelling

domain. This is of particularly importance given the increas-

ing requirement to interface codes to one another to under-

pin and support the recent upsurge in usage of data-driven

and machine-learning approaches across computational mod-

elling. The challenges and solution methods discussed here

are of course still applicable to a much wider domain of

application.

1.1. File-based interfaces

A number of successful projects enable interoperability

through �le-based communication between codes, with scripts

generating input �les and parsing output from off-the-shelf

versions of packages.

Prominent examples of interoperable packages within the

�eld of condensedmatter include the Atomic Simulation Envi-

ronment (ASE) [7] and Py-ChemShell [8]. ASE is regarded

as the state-of-the-art in this �eld, as it provides the widest

range of ‘calculators’, enabling many electronic structure and

force �eld codes to be used as drop-in replacements. High-

level functionality can be coded generically or imported from

other packages such as spglib [9] for space-group sym-

metry or phonopy [10] for phonon calculations. However,

the reliance on �le-based interfaces requires substantial time

investment to maintain a library of input generators and output

parsers. Having such a collection of parsers aids validation and

veri�cation supporting activities such as the ∆-code project,

where a cross-comparison of density functional theory (DFT)

codes was carried out [11], as well as providing opportunities

to normalize simulation data to a common format suitable for

sharing and reuse [12].

Interoperability is a key requirement to support a variety of

aims including: (i) improved software sustainability; (ii) veri�-

cation and validation [11]; (iii) multiscale materials modelling

where several codes are coupled [13]; (iv) machine learning

[14]; and (v) uncertainty quanti�cation [15].

1.2. Deep scripting interfaces

For ef�cient coupling of codes, or to enable access to all fea-

tures of a complex code, a direct programmatic interface is

needed, going beyond the capabilities of the �le-based inter-

faces discussed above. Moreover, �le-based interfaces can be

slow and/or incomplete and robust parsers have proven hard to

write and costly to maintain. Standardised output (e.g. chemi-

cal markup language [16]) and next-generationparsers are part

of the solution: for example the NOMAD centre of excellence

has producedparsers formanywidely used electronic structure

codes [12].

Modern scienti�c codes that follow good software engi-

neering principles consist of self-contained modules that

implement a well-de�ned and slowly evolving API (appli-

cation programming interface). The top-level programme is

(conceptually) a script that connects user input �les to this

API. This suggests an alternative approach to interoperability,

namely using the existing modular structure to provide a much

deeper wrapping, exposing the full public API of each code to

a wide community of script writers who do not need famil-

iarity with the underlying code. In this way, ef�ciency can be

maintained, e.g. for DFT codes, keeping the previous solution

in memory enables ef�cient wavefunction extrapolation from

one timestep to the next.

In general, the deep interface approach brings further,

much wider bene�ts. These include the expansion of access

to advanced features to less experienced programmers, the

simpli�cation of top-level programs using ef�cient algorithms

available in high-level languages, enhanced introspection and

visualisation capabilities, and the immediate provision of a

full unit and regression testing framework. The latter enables

continuous integration, resulting in higher quality and more

sustainable code bases. Further bene�ts include the encour-

agement of good software engineering practices—modularity,

re-entrancy and stable APIs—and speeding up the develop-

ment of new algorithms using an optimal mix of high- and

low-level languages. High-level scripting also promotes open

data efforts, because the barriers (both technical and legal)

to publishing scripts that lead to new scienti�c results are

much lower than within the monolithic software package

framework.

Despite recent increases in the use of high-level languages,

the scienti�c computing community is fortunate to possess a

great deal of high-quality and well-maintained Fortran code.

For example, analysis of usage data from the UK national

supercomputer centre, ARCHER, collected by EPCC shows

that approximately 70% of recent CPU usage has come from

Fortran codes, compared to around 7% for C++ codes and

around 6% for C codes [17].

Adding deep Python interfaces to existing codes makes

optimal use of this resource, increasing the sustainability of

the software infrastructure. Future proo�ng goes further, as

thanks to the dominance of Python anything accessible from

Python will be available to newly emerging high-level techni-

cal languages such as Julia [18]. While there are many auto-

matic interface generators for C++ codes (e.g. SWIG [19] or

Boost.Python [20]), support for modern Fortran is much

more limited despite its widespread use in scienti�c comput-

ing. The f2py [21] interface generator supports many aspects

of Fortran 77/90/95 codes. This allows individual routines or

simple libraries to be wrapped in a portable, compiler inde-

pendent way with good array support. However, f2py has no

support for modern Fortran features such as derived types (cf

classes in C++) or overloaded interfaces.

The open source f90wrap package described in this arti-

cle adds derived type support tof2py using an additional layer
of wrappers. f90wrap also exposes module data, provides

ef�cient array access with no copying of data, and supports

Python 2.7+ and 3.x. A schematic overview of the process

of wrapping a modular Fortran code is shown in �gure 1.

The approach builds on techniques developed in the QUIP
(Quantum mechanics and interatomic potentials) code [22],

which originated as a pure Fortran 95 library but has had a full

deep Python interface–quippy—since 2009 that gives full

access to public subroutines, derived types and data. Recently
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Figure 1. Schematic overview of the usage of f90wrap to expose
modular Fortran codes to Python.

more and more high-level functionality has been coded in

Python, and/ormoved over to thewidely-usedASE framework

discussed above.

The rest of the article is organised as follows: section 2

provides an overview of the method of solution employed;

section 3 give details of the usage and features of the package;

section 4 presents case studies demonstrating the applicability

of f90wrap.

2. Methodology

There are �ve key step in the process of wrapping a For-

tran package with f90wrap to allow it to be called from

Python:

(a) The Fortran source �les are scanned, building up an

abstract symbol tree (AST) which describes all the mod-

ules, types, subroutines, functions and interfaces found.

(b) The AST is transformed to remove nodes which should

not be wrapped (e.g. private symbols in modules, routines

with arguments of a derived type external to the project,

etc).

(c) The f90wrap.f90wrapgen.F90WrapperGen-
erator class is used to write a simpli�ed Fortran 90

prototype for each routine, with derived type arguments

replaced by integer arrays containing a representation of

a pointer to the derived type, in the manner described in

[23]. This allows opaque references to the underlying

Fortran derived type data structures to be passed back

and forth between Python and Fortran.

(d) f2py is used to combine the F90 wrappers and the orig-

inal compiled functions into a Python extension module

(optionally, f2py can be replaced by f2py-f90wrap, a
slightly modi�ed version which adds support for excep-

tion handling and interruption during execution of Fortran

code, as described in more detail below).

(e) The f90wrap.pywrapgen.PythonWrapperGen-
erator class is used to write a thin object-oriented layer

on top of the f2py-generated wrapper functions which

handles conversion between Python object instances

and Fortran derived-type variables, converting arguments

back and forth automatically.

3. Usage and features of f90wrap

3.1. Installation and basic usage

f90wrap is a registered Python package and is available from
the Python package index. Source code is available under ver-

sion 3 of the Lesser General Public Licence (LGPL) from

GitHub [24]. It can be used with either Python 2.7 or 3.x and

installed via the command

3.1.1. pip install f90wrap. To use f90wrap to wrap a

set of Fortran 90 source �les and produce wrappers suitable

for input to f2py use:

3.1.2. f90wrap -m MODULE F90_FILES. where MODULE
is the name of the Pythonmodule to be produced (e.g. the name

of the Fortran code you are wrapping) and F90_FILES is a

list of Fortran source �les containing the modules, types and

subroutines the user would like to expose via Python.

This will produce two types of output: Fortran 90 wrap-

per �les suitable for input to f2py to produce a low-level

Python extension module (typically named _MODULE.so),
and a high-level Python package named MODULE designed to

be used together with the f2py-generated module to give a

more Pythonic interface.

One Fortran 90 wrapper �le is written for each source

�le, named f90wrap_F90_FILE.f90, plus possibly an

extra �le named f90wrap_toplevel.f90 if there are

any subroutines or functions de�ned outside of modules in

F90_FILES.
To use f2py to compile these wrappers into an extension

module, use:

3.1.3. f2py -c -m _MODULE OBJ_FILES f90wrap_∗.f

90 ∗.o LINK_OPTIONS. where _MODULE is the name

of the low-level extension module to be produced, and

LINK_OPTIONS can be used to link in other dependent

libraries which are required at runtime but do not to be

explicitly exposed to Python (e.g. mathematics libraries such

as BLAS and LAPACK).
Optionally, one can replace f2py with f2py-f90wrap,

which is a slightly modi�ed version of f2py distributed with

f90wrap that introduces some additional features:

(a) Allows the Fortran present() intrinsic function to

work correctly with optional arguments. If an argument

to an f2py wrapped function is optional and is not given,

it is replaced with a NULL pointer.

(b) Allows Fortran routines to raise a Python

runtimeerror exception with a message by calling

an external function f90wrap_abort(). This is

implemented using a setjmp()/longjmp() trap.

This allows internal errors to be caught and translated

into Python exceptions.

(c) Allows Fortran routines to be interrupted with ctrl+C
by installing a custom interrupt handler before the call
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into Fortran is made. After the Fortran routine returns, the

previous interrupt handler is restored.

3.2. Additional features

Documentation is automatically extracted from the source

code and made available to the user through Python docu-

mentation strings (‘docstrings’), enhancing the productivity of

the development environment. This can be rendered into user

documentation using the Sphinx package.

A variety of additional command line arguments can be

passed to f90wrap to customize how the wrappers are gen-

erated; these are described in the online documentation.

3.3. Limitations

There are a number of limitations of the wrapping approach,

some of which are fundamental and others which could be

addressed by adding additional functionality in future.

(a) Unlike standard f2py, f90wrap converts all

intent(out) array arguments to intent(in,
out). This is a deliberate design decision to allow

allocatable and automatic arrays of unknown output size

to be used from Python. It is impossible in general to

infer what size array needs to be allocated, so relying on

the user to pre-allocate arrays from Python is the safest

solution.

(b) Scalar arguments without a speci�ed intent are treated as

intent(in) by f2py. To have inout scalars, one

can callf90wrapwith the-default-to-inout�ag
and declare the Python variables as single-element numpy

arrays (using numpy.zeros(1), for example).

(c) Pointer arguments are not currently supported. This is not

a fundamental limitation and could be addressed in future.

(d) Arrays of derived types are not yet fully supported: a

workaround is provided for 1D-�xed-length arrays, i.e.

type(a), dimension(b) :: c. This is also not a
fundamental limitation.

4. Case studies

f90wrap is capable of wrapping large, complex codes and

providing deep access to all internal data. The examples pre-

sented below are taken frommaterialsmodelling, but the appli-

cability of f90wrap is general. It is now used extensively in

the QUIP [22] and CASTEP codes [25].

4.1. Wrapping the Bader code

As an example of what can be achieved, an f90wrap wrap-

per for the Bader charge analysis code [26, 27] has been

produced. This is a widely used code for post-processing

charge densities to construct Bader volumes and compute

the total charge associated with each volume. The addition

of a Python interface allows the code to be used in work-

�ows without the burdens of input/output and �le-format

conversion.

To produce this package, it was suf�cient to download the

source code [28] and use f90wrap to automatically generate

a deep Python interface with very little manual work, using the

commands below:

f90wrap -v -k kind_map -I init.py -m bader\

kind_mod.f90 matrix_mod.f90 \

ions_mod.f90 options_mod.f90 charge_mod.f90 \

chgcar_mod.f90 cube_mod.f90 io_mod.f90 \

bader_mod.f90 voronoi_mod.f90 multipole_mod.f90

f2py-f90wrap -c -m _bader f90wrap_∗.f90 -L. -lbader

The �rst line generates Python interfaces to the listed For-

tran 90 modules, with the additional of a small amount of

hand-written Python code (init.py) and a mapping from

Fortran to Python types provided in the �le kind_map. The
name of the output module is speci�ed with the -m argument

as Bader.
As a brief demonstration of the utility of the new wrapper,

we show how to restart a GPAW [29] DFT calculation, here for

an 8 atom silicon crystal, and retrieve the density, noting that

GPAW does not intrinsically have the ability to compute Bader

charges.

import bader

from gpaw import restart

# read in charge density

si, gpaw = restart(’si-vac.gpw’)

rho = gpaw.get_pseudo_density()

# use wrapped Bader code to post-process

bdr = bader.bader(si, rho)

# collect charge density associated with atom #3

atom = 3

rho3 = np.zeros_like(rho)

for v in (bdr.nnion == atom+1).nonzero()[0]:

rho3[bdr.volnum == v+1] = rho[bdr.volnum == v+1]

This script uses the Python interface to construct a Bader

partitioning of the charge density, and then accesses members

of the bdr Fortran derived-type instance (e.g. bdr.nnion,
the indices of ions associated with particular volumes, and

bdr.volnum, the number associated with each volume) to

extend the capabilities of the original code, here in a trivial

way to collect together the parts of the charge density asso-

ciated with a particular atom as illustrated in �gure 2, but in

principle this could be much more complex. The modi�ed ver-

sion of the Bader code including the automatically generated

Python interface is available from [30].

4.2. Wrapping the QUIP and GAP codes

f90wrap is used to generate the quippy wrappers to the

quantum mechanics and interatomic potentials (QUIP) and

Gaussian approximation potential (GAP) codes [31] which are

used for advanced molecular simulations such as training and

using machine learning interatomic potentials [14]. f90wrap
actually grew out of the need to expose these Fortran codes to

Python to allow interoperability with other tools such as the

Atomic Simulation Environment (ASE); originally the same

4
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Figure 2. Illustration of the application of f90wrap to compute
Bader partitioning of the charge density from a DFT calculation of
silicon with the GPAW code, which does not natively provide this
functionality. The charge density associated with one atom is shown
with an isosurface.

functionality was implemented directly within the QUIP code,

but more recently QUIP has been switched over to call the

rewritten f90wrap directly. This brings advantages in terms

ofmodularity and, crucially, Python 3 compatibility.A number

of examples and tutorials using QUIP and GAP from Python

are given on the libatoms website [32].

4.3. Wrapping the CASTEP code

Starting in 2014 a Python interface to the CASTEP DFT code

[33] was produced using f90wrap. The CasPyTep pack-

age provides functionality far in excess of what could be done

manually—around 35 kLOC (thousand lines of code) Fortran

and 55 kLOC Python are auto-generated, giving access to 20+

derived types and ∼2600 subroutines. Module-level variables

such as the current simulation cell are exposed, with Fortran

derived types visible as Python classes.

The interface allows atoms to be moved and calculations

to be continued without either restarting from scratch or incur-

ring the large I/O burden associatedwith checkpointing the full

state of the code. This makes it quick to try out new high-level

algorithms: for example, a general-purpose preconditioner for

geometry optimisation [34] was implemented as a high-level

Python code by making it possible to use it with CASTEP

and other codes. A number of similar projects which make

use of the Python interface to enable rapid prototyping are

ongoing.

5. Discussion and conclusion

This article has motivated the case for exposing deep inter-

face to Fortran codes to Python and analysed the bene�ts, as

well as reviewing the f90wrap package which provides a

practical tool to realise this ambition. It is already capable of

wrapping large Fortran codes, as demonstrated by the case

studies discussed above.

From a pedagodic perspective, one might question whether

providing Python interface layers will take users further away

from the Fortran source code. This objection presupposes users

look at source code; typical industrial users often do not even

have access to the source code, and typically academic users

simply compile and run it. In contrast, Python interfaces allow

everyone to prototype developments rapidly. Of course, HPC

and low-level developers still need to code in Fortran, but

by opening up scienti�c tools to a broader community, it

would become feasible for new users such as experimental-

ists to develop impressive, high-level code without having to

understand Fortran at all. In this way, f90wrap provides an

enabling technology, opening up software development to new

developers.

While the principal users of f90wrap are currently

intended to be code developers, in the longer term this could

become a wider usage pattern suitable for all users, since the

computational overhead of wrapping Fortran code and expos-

ing it to Python is relatively light. For interactive use, serial

execution is convenient, but for complex tasks paralleliza-

tion of the Fortran code is typically required. This can still

be done though the wrapper, using either OpenMP (multi-

ple threads) or MPI (multiple processes). In the former case,

usage is straightforward; the Fortran codemust simply by com-

piled with OpenMP support enabled. While Python’s global

interpreter lock (GIL) prevents multi-threading within Python

code,multithreading is still possible in OpenMP regions inside

Fortran function calls; care must be taken however, to ensure

that suf�cient time is spent within each call to offset the over-

head of starting and pausing threads. Wrapping MPI Fortan

code is a little more complex, since the Python interpreter must

be con�gured to act as the rootMPI task, but this is eminentally

achievable.

In recent years many fundamental science software tools

have come to maturity. Scripting interfaces are already very

useful for automating calculations, but taking this further to

connect components in new ways would help to give legacy

Fortran code a new lease of life. It is hoped that the capa-

bilities of f90wrap will allow it to be part of this exciting

development.
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